US3767351A - Vibratory granulate compacting apparatus for block manufacture - Google Patents

Vibratory granulate compacting apparatus for block manufacture Download PDF

Info

Publication number
US3767351A
US3767351A US00188715A US3767351DA US3767351A US 3767351 A US3767351 A US 3767351A US 00188715 A US00188715 A US 00188715A US 3767351D A US3767351D A US 3767351DA US 3767351 A US3767351 A US 3767351A
Authority
US
United States
Prior art keywords
piston
cylinder
energy
pistons
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00188715A
Other languages
English (en)
Inventor
H Blaser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Von Roll AG
Original Assignee
Von Roll AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH1563670A external-priority patent/CH518125A/de
Application filed by Von Roll AG filed Critical Von Roll AG
Application granted granted Critical
Publication of US3767351A publication Critical patent/US3767351A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • B30B11/022Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space whereby the material is subjected to vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor
    • B22C15/10Compacting by jarring devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor
    • B22C15/28Compacting by different means acting simultaneously or successively, e.g. preliminary blowing and finally pressing
    • B22C15/30Compacting by different means acting simultaneously or successively, e.g. preliminary blowing and finally pressing by both pressing and jarring devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • B28B3/022Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form combined with vibrating or jolting

Definitions

  • ABSTRACT An essentially tubular shell has movable tops and bottoms, which are subjected to vibratory impacts in noncyclically recurring pulses; top or bottom may be subjected to a constant pressure, or both may be subjected to impacts which are synchronized and opposite each other.
  • the impact pulses are controllable both as to frequency (which may be zero), amplitude and wave shape, the impulses being preferably controlled from an electrical programming source which controls application of pressure fluid to the top and bottom.
  • the present invention relates to a vibratory compacting apparatus particularly to manufacture blocks from granulates, such as block anodes, in which granulates are placed into a shell and subjected to vibration treatment, in which the granulates are compacted.
  • vibration of granulates to provide compaction is not as effective as non-harmonic, that is non-cyclically recurring vibrations, such as pulses, impacts and abrupt blows, presenting a welldefined maximum of energy for a short period of time, that is, when looked at in an oscillograph representation, presenting sharply definedpeaked pulses.
  • non-cyclical recurrance rate as referred to in the present specification, a motion is meant which is nonharmonic in the sense of showing cyclically recurring oscillations.
  • a shell having movable top and bottom parts, which are connected to a power transfer device such as a pressure fluid operated piston-cylinder arrangement.
  • the granulate to be compacted is placed within the shell, and energy pulses are applied to at least one of the top, or bottom parts in non-cylically recurring pulses.
  • One of the parts may be subjected to a constant compaction pressure, while the other is subjected to impacts, so that blows will be transmitted to the granulate to be compacted; or, both the top and bottom cover parts may be operated in synchronism, and in counter-acting directions so that compacting blows are delivered against the granulate within the shell, from both the top and the bottom.
  • the blows are controlled from a programming source, which may be electrical, which provides a control for a transducer applying pressure fluid to the cylinderpiston arrangement.
  • a steady compacting pressure may be exerted, for example by mounting one of the cylinder-piston arrangements transmitting the blow on a housing portion which is subjected to pressure, for example hydraulic pressure.
  • both the amplitude, wave form and frequency of the compacting impulses is changeable; the frequency of compacting pressure applied to one of the cylinder-piston arrangements may be zero, that is, provide a constant essentially unvarying compacting pressure.
  • FIG. 1 is a highly schematic illustration of the apparatus to make blocks, and generally illustrating the application of the invention
  • FIG. 2a is a schematic longitudinal sectional view through an apparatus to compact granulates
  • FIG. 2b is a schematic diagram illustrating control connections, and programming control for the apparatus of FIG. 2a.
  • a press, or similar suitable arrangement has a movable bottom 201, slidable within a shell 202.
  • Granulate generally indicated at 203 is placed into the shell.
  • the bottom 201 is connected to a stand 204 which bears against a base 205 in any suitable manner, and not illustrated in FIG. 1.
  • the bearing connection between base 205 and bottom 204 can be fixed, or can be resilient, that is, can be over interposed springs (not shown).
  • An impacting apparatus 206 providing upward motion to the bottom 201 is located within base 204. Since the impacts can be recurring the apparatus will be referred to as a vibrator although it is to be understood that the recurrence rate of vibrations applied to the bottom 201 on which the granulate 203 is located is non-cyclical.
  • the vibrator is
  • the vibrator apparatus 206 provides blows and impacts which are non-harmonic, that is, non-cyclically recurring.
  • An energy source 207 which may,- for example, be a source of compressed air, hydraulic fluid, or electrical energy, provides energy over line 208 to a control device 209. The controlled energy is then transmitted over line 211 to the vibrator.
  • the interconnection of lines 208, 211, and the placement of the control apparatus 209 is variable in accordance with available space, and operating requirements.
  • Control apparatus 209 providing controlled application of energy over line 211 to the impacting apparatus 206 is itself controllable by means of a controller 210 which may be manually operated, or electrically, for example by means of a programming source.
  • the vibrator itself is a cylinder-piston arrangement having masses movable relative with respect to each other, as controlled by the energy over lines 208, 211.
  • One of these masses can be fixed with the bottom 201, or can be elastically secured thereto.
  • the granulate can be vibrated entirely from the bottom. It is, however, preferred and increases the compacting effect when the top of the granulate is likewise loaded.
  • a top cover 212, within a cylinder-piston device 213 is provided, which can be lowered against the top of the granulate.
  • the cylinder-piston arrangement 213 provides a steady constant pressure against the granulate or, as will appear hereafter, can likewise be controlled to provide impacts or blows against the granulate, preferably in synchronism, and in opposite direction with the blows provided by device 206 and connected to the bottom.
  • the top compacting arrangement is not strictly necessary, however, since the noncyclically recurring, .that is the non-harmonic vibrations transmitted from the device 206 already provide for substantial compaction.
  • FIG. 2a A specific example of the apparatus is shown in FIG. 2a, wherein the device 1 is shown as a whole.
  • a base 2 has a machine frame 4 supported thereon by means of springs 3.
  • a housing 5 is located within frame 4, the housing including a shell 6, a top cover 7 and a bottom cover 8, the parts 6, 7 and 8 being sealed with respect to each other by seals 9, 10.
  • the interior of shell 5 has a top part 12 and a bottom part 13, parts l2, 13 being longitudinally guided by rods 14, 15, in the direction of the longitudinal axis of the housing 5.
  • Top part 12 which forms a pressure piston, has a piston rod 16 secured thereto; slidable within a pistoncylinder arrangement 17.
  • the cylinder-piston arrangement 17 includes a cylinder portion 18 within which a cylinder 20 and a cylinder housing 21 are located.
  • the cylinder housing 21 also carries control equipment to be described below. Cylinder housing 21 is secured to the inner wall of the upper cover 7.
  • a cylinder-piston arrangement which may be identical, or similar to the one just described, is located at the bottom of the shell, beneath a bottom part 13 forming a counteracting piston.
  • Bottom part 13 has a piston rod 23 connected to the bottom part 13. It includes a cylinder portion 24 and a piston 25.
  • Cylinder portion 24 has a cylinder 26 and a cylinder housing 27, the cylinder housing 27 carrying control equipment to control the piston drive 22, and which will be described below.
  • Cylinder housing 27 is not connected to the bottom shell, as the top cylinder housing, but rather is com nected to a table 29 of an additional cylinder-piston drive 30.
  • the cylinder 32 of the additional cylinderpiston drive is secured to the lower portion 8, closing off the shell. Pressure lines 31 lead to the additional cylinder 32.
  • a bracket 35 extends from frame 4, and supports a further cylinder piston arrangement 36.
  • the piston rod 37 is pivotally connected to a link 38 which is secured to a shaft 39, joumalled on machine frame 4.
  • An arm 40 is secured to the top cover 7 for the shell and is likewise connected to shaft 39.
  • Line connections 45, 47 are introduced above the top piston 12, and below the bottom piston 13, and in the top and bottom regions of the apparatus. Connections 45, 47 are connectable with lines 48, 49 which can be connected to a suction apparatus 50 of any suitable form.
  • the compactor 1 is operated by hydraulic pressure.
  • the hydraulic pressure that is, the pressure pulses, are controlled from a programming source 60 (FIG. 2b), which is programmed to provide output signals which can vary as schematically indicated by boxes 61, 62, 63, 64.
  • the programmer thus provides an output signal in which the feed of projection of any one of the pistons 12, 13 can be controlled (see box ofdiagram 61).
  • amplitude A (diagram 62); frequency, or duration of impact (diagram 63) and wave shape (diagram 64) are controllable.
  • the signal provided from programmer 60 represents a command signal.
  • the transducer-amplifiers 80, 81 may be electro-hydraulic servo valves which apply pressure fluid, such as hydraulic pressure fluid to the piston-cylinder arrangement 17, 22, respectively.
  • the valve may also control compressed air, or other pressure fluids; rather than utilizing valves, the control signals can be applied to magnetically operated impacting devices, over mechanical or solid state relays.
  • the transducers 80, 81 as shown in FIG. 2a are supplied over lines 82, 83 with hydraulic fluid under high pressure; the fluid at low pressure is taken over lines 84, 85 back to a reservoir or sump 87 (FIG. 2b), preferably over a radiator 86 to cool the fluid, to be then picked up by a pump 88, driven by a motor 89, and supplied over a filter 90 to a pressure reservoir 91.
  • the pressure at pressure reservoir 91 is controlled by means of a pressure regulating valve 92.
  • Transducer-amplifiers 80, 81 are connected over lines 93, 94, 95, 96 with the two piston-cylinder arrangements 17, 22 respectively.
  • Position transducers 97, 98 for the transducer amplifiers 80, 81, and position transducers 99, 100 for piston rods 16, 23 provide feedback signals which are conducted over lines 69, 70, 71, 72 to the comparators 67, 68 (FIG. 2b), to be there compared with the command signal from the programmer 60.
  • a completely closed control loop is provided.
  • the arrangement need not, however, have the closed control loop, in which measured position signals are compared with command signals, and the motion is controlled by an error signal.
  • the two pistoncylinder drives 17, 22 provide the same impacts to the granulate 44 within shell 5, that is, both piston-cylinder drives are controlled by a single programming source 60, acting in opposition from each other, so that pistons l2, 13 will have the same motion, directed towards each other, in synchronism.
  • Different programming arrangements can be used, that is, each one of the pistons 12, 13 may be controlled by its own programmer, or a single programmer can be used in a time-sharing arrangement.
  • the feeback circuit described in detail is not necessary, but it provides for greater accuracy; direct connection of control signals from a programmer 60 to the respective pistons 12,13 can likewise be used.
  • the pressure medium applied to the cylinder-piston combinations 17, 22 is either hydraulic, or pneumatic.
  • Indicators 102, 104 (FIG. 2b) can be included in the feedback circuit 70, 72 which indicates the actual position of the pistons 12, 13 confining the granulate within the shell.
  • Other indicators, or controllers and recorders can be connected as is well known in the art.
  • the position of the pistons l2, 13 is used as a feedback signal. It is also possible to measure pressure being exerted by the pistons and compare the exerted pressure with a programming source providing pressure impacting signals.
  • the apparatus of the present invention can be used in accordance with various combinations of feed, steady pressure, impacts, and impacts superimposed on steady pressure or slowly varying pressure.
  • pressure variation with zero frequency that is, at even or only very slowly changing pressure feed
  • the granulate is compacted by the pressure of the two piston-cylinder arrangements 17, 22 compressing the granulate.
  • Superimposed non-cyclically recurring impacts provide additional energy for effective compaction of the granulate.
  • Vibratory granulate compacting apparatus for the manufacture of blocks comprising a housing;
  • a multi-part container having a bottom part, a top part and a shell part located between the bottom and top part and having a central axis, the granular material being placed within the container for compaction;
  • a piston means connected to at least one of the parts to move the connected part in axial direction for compaction of material located within the container by steady-state pressure and, selectively, vibratory motion;
  • fluid energy means connected to said piston means and moving said piston means to provide compacting pressure and vibratory impacts in axial direction, the energy having parameters including amplitude, frequency, wave shape;
  • electrical signal controlled fluid control means controlling application of fluid energy from said source to said energy means
  • programmed electrical control means generating signals representative of at least one of said parameters, connected to and controlling said signalcontrolled fluid control means to apply said fluid energy controlled by one of said parameters.
  • Apparatus according to claim 1 comprising a pair of energy means, one each connected to the bottom and top part of the multi-part container, respectively;
  • the piston means comprises a top and a bottom piston, respectively connected to the top and bottom part.
  • one of the energy means is controllable to provide steady compacting pressure, whereby the frequency of compaction is zero;
  • the other energy means is controllable to provide impacts at non-cyclically recurring intervals to prevent harmonic oscillations from being established.
  • Apparatus according to claim 3 wherein the energy means connected to both the top and bottom parts are controllable to provide, each, counter-acting synchronized impacts directed towards each other.
  • the energy means comprises a cylinder for the piston to form a piston-cylinder combination
  • one of the cylinder parts of one piston-cylinder combination is fixedly connected to the housing; the pistons of both said piston-cylinder combinations being connected to the bottom and top parts respectively; and the other cylinder part is slidably secured in the housing.
  • one of the cylinders being secured to the removable top cover, and the additional cylinder-piston combination being secured to the bottom cover.
  • Apparatus according to claim 1 wherein the means applying energy to the parts, and the means controlling the frequency and amplitude parameter of application of energy comprises a source of control signals;
  • control signals derived from the source provide signals of opposite polarity
  • Apparatus according to claim 1 including resilient means supporting the housing.
  • suction outlet means are provided both at the upper and lower portions of the housing.
  • Compaction apparatus comprising a generally tubular shell (6);
  • hydraulic power means (17, 22) controlling movement of the pistons into the shell to compact granulate therein; an electro-hydraulic and program means (60) connected to said control loop and controlling the power means (17, 22) applying hydraulic pressure by each said pistons (12, 13) with respect to at least one of: amplitude; frequency; and wave shape of applied power to provide for compacting and retracting movement of the pistons and vibratory impacts thereof to be transmitted from the pistons to the material within the shell, as controlled by said program means (60).
  • Apparatus according to claim 14, wherein the program means controlling the power means comprises a random signal generator providing non-cyclically recurring power control signals.
  • Apparatus according to claim 14, wherein the program means controlling the power means comprises a signal generator
  • the electrohydraulic control loop comprises transducer means connected to the power means to transduce the signals from the signal generator to compression strokes by said top, and bottom piston, respectively.
  • Apparatus according to claim 16 wherein the signal controlling application of power to one of the pistons is a slowly, or unvarying compression signal and the signal controlling the other piston is a pulse-type signal providing impact, or blow-type excursions of the other piston at non-cyclically recurring rates.
  • Apparatus according to claim 2 comprising hydraulic connection means connecting the fluid energy source and the cylinder-piston combination, the electrical signal controlled fluid control means being interposed in the connection means and being located on the cylinder of the piston-cylinder combination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Press Drives And Press Lines (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Air Transport Of Granular Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
US00188715A 1970-10-22 1971-10-13 Vibratory granulate compacting apparatus for block manufacture Expired - Lifetime US3767351A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1563670A CH518125A (de) 1970-10-22 1970-10-22 Vorrichtung zur Herstellung von Blöcken
CH1657170A CH529587A (de) 1970-10-22 1970-11-09 Vorrichtung zur Herstellung von Blöcken

Publications (1)

Publication Number Publication Date
US3767351A true US3767351A (en) 1973-10-23

Family

ID=25716753

Family Applications (1)

Application Number Title Priority Date Filing Date
US00188715A Expired - Lifetime US3767351A (en) 1970-10-22 1971-10-13 Vibratory granulate compacting apparatus for block manufacture

Country Status (5)

Country Link
US (1) US3767351A (en:Method)
CH (1) CH529587A (en:Method)
DE (1) DE2145440C3 (en:Method)
FR (1) FR2112330B1 (en:Method)
GB (1) GB1374113A (en:Method)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907474A (en) * 1972-07-20 1975-09-23 Von Roll Ag Compacting apparatus including steady and vibratory force means
US4376744A (en) * 1980-09-02 1983-03-15 Ptx-Pentronix, Inc. Mechanical and fluid actuated ram for powder compacting press and method of compacting powder material
US4563144A (en) * 1985-01-22 1986-01-07 Rose Andrew F Hydraulic block press
US5127816A (en) * 1988-09-07 1992-07-07 Heinrich Wagner Sinto Maschinenfabrik Gmbh Molding machine
US5323655A (en) * 1993-04-23 1994-06-28 Troxler Electronic Laboratories, Inc. Method and apparatus for compacting material samples
NL1005779C2 (nl) * 1997-04-09 1998-10-12 Boer Staal Bv Den Werkwijze alsmede inrichting voor het verdichten van korrelvormige massa zoals betonspecie.
EP0870585A1 (en) * 1997-04-09 1998-10-14 Den Boer Staal B.V. Method and installation for compacting a granular mass, such as concrete mortar
US6099738A (en) * 1997-12-17 2000-08-08 Micromag Corporation Method and system for removing solutes from a fluid using magnetically conditioned coagulation
US6305925B1 (en) * 1997-08-01 2001-10-23 Sacmi- Cooperative Meccanici Imola - Soc. Coop. A.R.L. Apparatus for pressing ceramic powders
US6309206B1 (en) * 1997-08-01 2001-10-30 Sacmi-Cooperativa Meccanici Imola-Soc Coop. A.R.L. Plant for forming ceramic tiles, including those of large dimensions, by means of a partially isostatic molds
EP1287978A2 (de) * 2001-08-31 2003-03-05 Fette GmbH Verfahren und Vorrichtung zum Pressen von Metallpulver zu einem Pressling
WO2003008131A3 (en) * 2001-07-20 2003-11-27 Hawk Prec Components Group Inc Apparatus and method for high-velocity compaction of multiple-level parts
US6729189B2 (en) * 2000-05-12 2004-05-04 Antti Paakkinen Method and apparatus for measuring packing properties
US20070221569A1 (en) * 2006-03-22 2007-09-27 3M Innovative Properties Company Filter media
US20080164184A1 (en) * 2007-01-09 2008-07-10 Marston Peter G Fluidic sealing system for a wet drum magnetic separator
US20080203015A1 (en) * 2007-01-09 2008-08-28 Marston Peter G System and method for enhancing an activated sludge process
US20080210613A1 (en) * 2007-01-09 2008-09-04 Ionel Wechsler System and method for removing dissolved contaminants, particulate contaminants, and oil contaminants from industrial waste water
US20100155327A1 (en) * 2007-01-09 2010-06-24 Steven Woodard System and method for enhancing a wastewater treatment process
US20100213123A1 (en) * 2007-01-09 2010-08-26 Marston Peter G Ballasted sequencing batch reactor system and method for treating wastewater
US20110036771A1 (en) * 2007-01-09 2011-02-17 Steven Woodard Ballasted anaerobic system and method for treating wastewater
EP2711149A1 (fr) 2012-09-25 2014-03-26 Solios Carbone Dispositif de transport de pâte suivant deux axes perpendiculaires et ensemble de fabrication de blocs moules comprenant un tel dispositif
JP2015003334A (ja) * 2013-06-21 2015-01-08 花王株式会社 粉体の圧縮成型装置
CN104441201A (zh) * 2014-10-30 2015-03-25 西安交通大学 一种双向同步振压式振动压砖机
US9651523B2 (en) 2012-09-26 2017-05-16 Evoqua Water Technologies Llc System for measuring the concentration of magnetic ballast in a slurry
CN109702144A (zh) * 2017-10-25 2019-05-03 天津市东达伟业机车车辆有限公司 一种具有镶嵌式冷铁的砂芯芯盒
US20200181032A1 (en) * 2017-07-13 2020-06-11 Imertech Method for obtaining a compacted material and compacted material obtained thereby
US10919792B2 (en) 2012-06-11 2021-02-16 Evoqua Water Technologies Llc Treatment using fixed film processes and ballasted settling
US11460052B2 (en) 2020-01-28 2022-10-04 Caterpillar Paving Products Inc. Hydraulic oscillation mitigation system for working machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH660631A5 (de) * 1983-02-28 1987-05-15 Fischer Ag Georg Verfahren zur messung von formstoffeigenschaften, ein mittel zu dessen ausfuehrung und eine anwendung des verfahrens.
JPS60171104A (ja) * 1984-02-15 1985-09-04 品川白煉瓦株式会社 耐火煉瓦成形方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2348197A (en) * 1940-09-16 1944-05-09 Hydraulic Dev Corp Inc Briquetting press molding process
US3013321A (en) * 1959-02-20 1961-12-19 Internat Clay Machinery Of Del Brick press
US3050809A (en) * 1960-12-08 1962-08-28 Mckiernan Terry Corp Synchronized and equalized opposed hammer press
US3616495A (en) * 1958-05-09 1971-11-02 Jerome H Lemelson Molding apparatus
US3689186A (en) * 1969-06-16 1972-09-05 Von Roll Ag Apparatus for manufacturing blocks or the like

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2348197A (en) * 1940-09-16 1944-05-09 Hydraulic Dev Corp Inc Briquetting press molding process
US3616495A (en) * 1958-05-09 1971-11-02 Jerome H Lemelson Molding apparatus
US3616495B1 (en) * 1958-05-09 1994-11-22 Jerome H Lemelson Molding apparatus
US3013321A (en) * 1959-02-20 1961-12-19 Internat Clay Machinery Of Del Brick press
US3050809A (en) * 1960-12-08 1962-08-28 Mckiernan Terry Corp Synchronized and equalized opposed hammer press
US3689186A (en) * 1969-06-16 1972-09-05 Von Roll Ag Apparatus for manufacturing blocks or the like

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907474A (en) * 1972-07-20 1975-09-23 Von Roll Ag Compacting apparatus including steady and vibratory force means
US4376744A (en) * 1980-09-02 1983-03-15 Ptx-Pentronix, Inc. Mechanical and fluid actuated ram for powder compacting press and method of compacting powder material
US4563144A (en) * 1985-01-22 1986-01-07 Rose Andrew F Hydraulic block press
US5127816A (en) * 1988-09-07 1992-07-07 Heinrich Wagner Sinto Maschinenfabrik Gmbh Molding machine
US5323655A (en) * 1993-04-23 1994-06-28 Troxler Electronic Laboratories, Inc. Method and apparatus for compacting material samples
NL1005779C2 (nl) * 1997-04-09 1998-10-12 Boer Staal Bv Den Werkwijze alsmede inrichting voor het verdichten van korrelvormige massa zoals betonspecie.
EP0870585A1 (en) * 1997-04-09 1998-10-14 Den Boer Staal B.V. Method and installation for compacting a granular mass, such as concrete mortar
US6054079A (en) * 1997-04-09 2000-04-25 Den Boer Staal B. V. Method and installation for compacting a granular mass, such as concrete mortar
US6558593B2 (en) 1997-08-01 2003-05-06 Sacmi - Cooperativa Meccanici Imola - Soc. Coop. A.R.L. Method for pressing ceramic powders
US6305925B1 (en) * 1997-08-01 2001-10-23 Sacmi- Cooperative Meccanici Imola - Soc. Coop. A.R.L. Apparatus for pressing ceramic powders
US6309206B1 (en) * 1997-08-01 2001-10-30 Sacmi-Cooperativa Meccanici Imola-Soc Coop. A.R.L. Plant for forming ceramic tiles, including those of large dimensions, by means of a partially isostatic molds
US6099738A (en) * 1997-12-17 2000-08-08 Micromag Corporation Method and system for removing solutes from a fluid using magnetically conditioned coagulation
US6729189B2 (en) * 2000-05-12 2004-05-04 Antti Paakkinen Method and apparatus for measuring packing properties
WO2003008131A3 (en) * 2001-07-20 2003-11-27 Hawk Prec Components Group Inc Apparatus and method for high-velocity compaction of multiple-level parts
EP1287978A2 (de) * 2001-08-31 2003-03-05 Fette GmbH Verfahren und Vorrichtung zum Pressen von Metallpulver zu einem Pressling
US20070221569A1 (en) * 2006-03-22 2007-09-27 3M Innovative Properties Company Filter media
US20070222101A1 (en) * 2006-03-22 2007-09-27 3M Innovative Properties Company Systems and methods of making molded composite blocks
US8205755B2 (en) 2006-03-22 2012-06-26 3M Innovative Properties Company Filter media
US8206627B2 (en) * 2006-03-22 2012-06-26 3M Innovative Properties Company Systems and methods of making molded composite blocks
US20100213123A1 (en) * 2007-01-09 2010-08-26 Marston Peter G Ballasted sequencing batch reactor system and method for treating wastewater
US8702987B2 (en) 2007-01-09 2014-04-22 Evoqua Water Technologies Llc Methods for enhancing a wastewater treatment process
US20100155327A1 (en) * 2007-01-09 2010-06-24 Steven Woodard System and method for enhancing a wastewater treatment process
US20080210613A1 (en) * 2007-01-09 2008-09-04 Ionel Wechsler System and method for removing dissolved contaminants, particulate contaminants, and oil contaminants from industrial waste water
US20110036771A1 (en) * 2007-01-09 2011-02-17 Steven Woodard Ballasted anaerobic system and method for treating wastewater
US20080203015A1 (en) * 2007-01-09 2008-08-28 Marston Peter G System and method for enhancing an activated sludge process
US20080164184A1 (en) * 2007-01-09 2008-07-10 Marston Peter G Fluidic sealing system for a wet drum magnetic separator
US8470172B2 (en) 2007-01-09 2013-06-25 Siemens Industry, Inc. System for enhancing a wastewater treatment process
US8506800B2 (en) 2007-01-09 2013-08-13 Siemens Industry, Inc. System for enhancing a wastewater treatment process
US8540877B2 (en) 2007-01-09 2013-09-24 Siemens Water Technologies Llc Ballasted sequencing batch reactor system and method for treating wastewater
US8623205B2 (en) 2007-01-09 2014-01-07 Siemens Water Technologies Llc Ballasted anaerobic system
US8673142B2 (en) 2007-01-09 2014-03-18 Siemens Water Technologies Llc System for enhancing a wastewater treatment process
US10023486B2 (en) 2007-01-09 2018-07-17 Evoqua Water Technologies Llc Ballasted sequencing batch reactor system and method for treating wastewater
US7695623B2 (en) 2007-01-09 2010-04-13 Cambridge Water Technology, Inc. System and method for enhancing an activated sludge process
US8840786B2 (en) 2007-01-09 2014-09-23 Evoqua Water Technologies Llc System and method for removing dissolved contaminants, particulate contaminants, and oil contaminants from industrial waste water
US8845901B2 (en) 2007-01-09 2014-09-30 Evoqua Water Technologies Llc Ballasted anaerobic method for treating wastewater
US10919792B2 (en) 2012-06-11 2021-02-16 Evoqua Water Technologies Llc Treatment using fixed film processes and ballasted settling
RU2621094C2 (ru) * 2012-09-25 2017-05-31 Солиос Карбон Устройство для транспортирования пасты по двум перпендикулярным направлениям и установка для производства формованных блоков, содержащая такое устройство
EP2711149A1 (fr) 2012-09-25 2014-03-26 Solios Carbone Dispositif de transport de pâte suivant deux axes perpendiculaires et ensemble de fabrication de blocs moules comprenant un tel dispositif
US9651523B2 (en) 2012-09-26 2017-05-16 Evoqua Water Technologies Llc System for measuring the concentration of magnetic ballast in a slurry
JP2015003334A (ja) * 2013-06-21 2015-01-08 花王株式会社 粉体の圧縮成型装置
CN104441201A (zh) * 2014-10-30 2015-03-25 西安交通大学 一种双向同步振压式振动压砖机
CN104441201B (zh) * 2014-10-30 2016-06-29 西安交通大学 一种双向同步振压式振动压砖机
US20200181032A1 (en) * 2017-07-13 2020-06-11 Imertech Method for obtaining a compacted material and compacted material obtained thereby
US11840488B2 (en) * 2017-07-13 2023-12-12 Imertech Method for obtaining a compacted material and compacted material obtained thereby
CN109702144A (zh) * 2017-10-25 2019-05-03 天津市东达伟业机车车辆有限公司 一种具有镶嵌式冷铁的砂芯芯盒
US11460052B2 (en) 2020-01-28 2022-10-04 Caterpillar Paving Products Inc. Hydraulic oscillation mitigation system for working machine

Also Published As

Publication number Publication date
CH529587A (de) 1972-10-31
FR2112330B1 (en:Method) 1974-09-27
DE2145440A1 (de) 1972-04-27
FR2112330A1 (en:Method) 1972-06-16
DE2145440C3 (de) 1978-03-23
GB1374113A (en) 1974-11-13
DE2145440B2 (de) 1977-07-28

Similar Documents

Publication Publication Date Title
US3767351A (en) Vibratory granulate compacting apparatus for block manufacture
US6342750B1 (en) Vibration drive for a mold
CA2428293A1 (en) Compacting device for compacting molded bodies from granular materials and method of using the compacting device
GB1445736A (en) Manufacture of blocks by compaction of granular material
US3262507A (en) Driving and extraction of piles and/or encasing structures
US20030113397A1 (en) Compressing device for performing compression operations on shaped bodies made of grainy materials
US20050189823A1 (en) Vibrator for acting on an object in a predetermined direction and apparatus for producing concrete blocks
JPH02503654A (ja) 砂を振動締固めする装置及び方法
US6544025B1 (en) Concrete compacting device with vibration sensor and control unit
DE58901439D1 (de) Verfahren und vorrichtung zur durchfuehrung des verfahrens zum verdichten von giessereiformsand.
US4878534A (en) Apparatus for the compacting of granular molding materials
US3621786A (en) Railway ballast tamper
US3426404A (en) Block making machine
US5652002A (en) Vibration apparatus for concrete molding box
JP2662910B2 (ja) 振動圧縮成形機
JP2595294Y2 (ja) 三次元振動機
US4850421A (en) Shaking apparatus
JPH0783862B2 (ja) 振動発生機用振動力可変装置
JPH01143799A (ja) 振動粉末成形装置
SU722680A1 (ru) Вибропресс дл формовани порошка
SU710788A1 (ru) Вибропресс дл формовани порошков
CA1220014A (en) Method and apparatus for making foundry molds
JPH0538554A (ja) 鋳物砂充填装置
SU829340A1 (ru) Вибропресс дл формовани изделийиз пОРОшКА
EP4316690A1 (en) Stand for high frequency vibrating compacting the molding sand