US3763658A - Combined cascade and multicomponent refrigeration system and method - Google Patents
Combined cascade and multicomponent refrigeration system and method Download PDFInfo
- Publication number
- US3763658A US3763658A US00002447A US3763658DA US3763658A US 3763658 A US3763658 A US 3763658A US 00002447 A US00002447 A US 00002447A US 3763658D A US3763658D A US 3763658DA US 3763658 A US3763658 A US 3763658A
- Authority
- US
- United States
- Prior art keywords
- feed stream
- refrigerant
- heat exchanger
- heat exchange
- multicomponent refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000005057 refrigeration Methods 0.000 title claims abstract description 16
- 239000003507 refrigerant Substances 0.000 claims abstract description 156
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 92
- 239000007788 liquid Substances 0.000 claims description 83
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 60
- 229930195733 hydrocarbon Natural products 0.000 claims description 42
- 150000002430 hydrocarbons Chemical class 0.000 claims description 42
- 239000004215 Carbon black (E152) Substances 0.000 claims description 31
- 239000001294 propane Substances 0.000 claims description 30
- 238000009834 vaporization Methods 0.000 claims description 25
- 230000008016 vaporization Effects 0.000 claims description 25
- 238000001816 cooling Methods 0.000 claims description 24
- 239000012071 phase Substances 0.000 claims description 24
- 238000009835 boiling Methods 0.000 claims description 22
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 230000000750 progressive effect Effects 0.000 claims description 9
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 8
- 239000012809 cooling fluid Substances 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000007791 liquid phase Substances 0.000 claims description 2
- 238000010992 reflux Methods 0.000 claims description 2
- 239000007921 spray Substances 0.000 description 10
- 239000003345 natural gas Substances 0.000 description 7
- 238000009833 condensation Methods 0.000 description 6
- 230000005494 condensation Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0245—Different modes, i.e. 'runs', of operation; Process control
- F25J1/0249—Controlling refrigerant inventory, i.e. composition or quantity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
- F25J1/0055—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0087—Propane; Propylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0214—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
- F25J1/0215—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
- F25J1/0216—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0245—Different modes, i.e. 'runs', of operation; Process control
- F25J1/0249—Controlling refrigerant inventory, i.e. composition or quantity
- F25J1/025—Details related to the refrigerant production or treatment, e.g. make-up supply from feed gas itself
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0292—Refrigerant compression by cold or cryogenic suction of the refrigerant gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/60—Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/64—Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/68—Separating water or hydrates
Definitions
- ABSTRACT A refrigeration system and method are disclosed for liquefying a feed stream by first subjecting the feed stream to heat exchange with a single component refrigerant in a closed, cascade cycle and, thereafter, subjecting the feed stream to heat exchange with a multicomponent refrigerant in a multiple zone heat exchanger forming a portion of a second, closed refrigerant cycle.
- Such cascade cycles have commonly included a plurality of individual refrigerants having decreasing atmospheric boiling points each of which is circulated in a closed cycle in heat exchange relationship with the feed stream and with each other.
- individual refrigerants require a very large number of separate heat exchangers, pumps, compressors and associated piping and valving for the separate, closed loops of each state.
- the cooling curves of individual refrigerants do not closely match the continuous cooling curve of the feed stream, and this is of particular importance with respect to the low temperature end of the cascade system wherein very substantial amounts of horsepower are wasted by this inherent inefficiency in such cascade systems.
- the present invention constitutes a substantial improvement over both the classical cascade-type systems and the prior art multicomponent systems just described. This is based upon the discovery that maximum efficiency and minimum capital investment can be obtained by first cooling the feed stream in a plurality of stages using the same single component refrigerant at progressively lower pressures and temperatures, followed by, liquefying and subcooling the feed stream by heat exchange with a fourcomponent refrigerant in a simplified, two-zone exchanger.
- the present invention is based upon the use of the same single component refrigerant to cool and partially condense the multicomponent refrigerantsuch that the fractional condensate and vapor fraction of the multicomponent refrigerant are formed independently of the heat exchange functions occurring in the main exchanger. That is, contrary to the prior art systems, the multicomponent refrigerant is not subjected to heat exchange with itself to form successive fractions. As a result, the complexity and cost of the complete refrigeration system is greatly reduced while, at the same time, achieving all of the thermodynamic benefits of having very closely matched cooling curves.
- the use of only four components in the multicomponent refrigerant results in a refrigerant of relatively low average molecular weight, and permits the use of a much higher, substantially more efficient compressor discharge for the multicomponent refrigerant.
- FIGURE of the drawings is a schematic, flow diagram of the complete refrigeration system illustrating one preferred embodiment of the invention.
- the natural gas feed stream enters the system in line 10, after having been freed of carbon dioxide impurities, and may be at a pressure of 73 5 psia and a temperature of approximately 107F.
- the feed stream is passed through a first heat exchanger 12 which forms the first of three, cascade heat changer 12 to a first temperature level in the order of F., and is passed to a phase separator 14 from which condensed water is removed and discharged through line 16.
- the partly dried natural gas feed stream is then passed through line 18 to one or other of a pair of driers 20 which remove the remaining moisture from the feed stream.
- the driers contain a suitable well known dessicant and are suitably piped and valved so as to be capable of alternate regeneration as is well known in the art.
- the dried feed stream is then passed through line 22 to a second single component refrigerant heat exchanger 24 wherein the feed stream is cooled to approximately 30F.
- the cooled feed stream is then passed through line 26 to benzene scrub column 28 from which benzene and other heavy hydrocarbons are removed as condensate through discharge line 30.
- a minor amount of lighter hydrocarbons including methane, ethane, and propane are also removed and may be sent to a fractionation system (not shown) so as to provide make-up referigerants as will be subsequently described.
- a major portion of the flow from the bottom of column 28 is recirculated through a steam reboiler 32 so as to provide vapor to the bottom trays of the column.
- the natural gas feed stream leaves column 28 as overhead vapor and passes through line 34 to a third single component refrigerant heat exchanger 36 wherein it is cooled to approximately 29F.
- the feed stream is then passed to a second phase separator 38 from which additional condensed hydrocarbons are separated and passed through line 40 back to the benzene column, via pump 42 and line 44, so as to provide reflux for the column.
- the natural gas feed stream leaves the top of phase separator 38 as vapor and may consist of over 90 percent methane at a pressure of approximately 705 psia and at a temperature in the order of 29F.
- the feed stream is then passed through line 46 to one tube circuit 48 of a two zone heat exchanger 50.
- the feed stream passes upwardly through tube circuit 48 and is cooled by a counter-flow of a first multicomponent refrigerant fraction sprayed downwardly over the tube bundle from spray header 52.
- This multicomponent refrigerant portion of the cycle will be hereinafter described in detail however, it may be noted that the feed stream is cooled to approximately l70F by the time it reaches the top of tube circuit 48 in the first zone.
- the feed stream then passes directly into a second tube circuit 54 in the second zone and passes upwardly through this tube circuit in which it is cooled by second counterflowing multicomponent refrigerant fraction sprayed downwardly from spray header 56.
- the feed stream is withdrawn from the top of tube circuit 54 as a totally liquid and subcooled stream having a temperature in the order of 262F and a pressure in the order of 650 psia.
- the liquefied and deeply subcooled feed stream is then expanded in valve 58 to a pressure in the order of 75 psia and a temperature in the order of 258F. Because of the deep subcooling, no flash occurs and the liquid may be delivered directly to a storage tank in which it may be stored at atmospheric pressure and a temperature in the order of 258F.
- the propane, or other single component refrigerant is compressed in a compressor having a first stage 60 and a second stage 62.
- the compressed propane is cooled and totally condensed in water cooler 64 and is expanded in valve 66 before entering heat exchanger 12 at a temperature in the order of 65F and a pressure of approximately 1 l psia.
- Heat exchanger 12, as well as the other propane exchangers may be of conventional design as, for example, having U-tubes submerged in the liquid propane.
- a portion of the liquid propane is vaporized in cooling the feed stream in the U- tubes and this vapor is returned through line 68 to an intermediate stage of compressor 62.
- the remaining liquid refrigerant from exchanger 12 is passed through line 70 to branch lines 72 and 90.
- the portion in branch line 72 is expanded by valve 74 to a pressure in the order of 61 psia and is introduced into exchanger 24 at a temperature in the order of 25F.
- a second portion of the liquid refrigerant is vaporized in cooling the feed stream in exchanger 24 and is returned through line 76 to the suction side of compressor 62.
- the remaining liquid propane from exchanger 24 is passed through line 78 and expanded in valve 80 to a pressure in the order of 18 psia and is introduced into exchanger 36 at a temperature in the order of 35F.
- the single component refrigerant is also utilized to cool, and partly condense, the multicomponent refrigerant which is subsequently utilized to liquefy and subcool the feed stream in exchanger 50.
- This cooling of the multicomponent refrigerant by the single component refrigerant is affected in heat exchanger 86 and 88 by the second portion of the liquid propane from exchanger 12 which is supplied through main line and branch line 90.
- This portion of the propane refrigerant is expanded in valve 92 to a pressure in the order of 61 psia and is introduced into exchanger 86 at a temperature in the order of 25F.
- a portion of the propane is vaporized in cooling the multicomponent refrigerant and is withdrawn from exchanger 86 through line 87 and is returned to the suction side of compressor 62.
- the remaining liquid propane is passed from exchanger 86 to exchanger 88 via line 93 and expansion valve 94 such that the propane enters exchanger 88 at a pressure in the order of 18 psia and at a temperature of approximately 35F.
- This portion is vaporized in partially condensing the multicomponent refrigerant and the propane vapor is withdrawn and returned to the suction side of compressor 60 via lines 96 and 84.
- the propane refrigerant portion of the system comprises a closed cycle wherein the feed stream is cooled by the propane in exchangers 12, 24 and 36 while the multicomponent refrigerant is partially condensed in the propane exchangers 86 and 88.
- a make-up line 97 may be provided downstream of valve 66 so that liquid propane may be added as required.
- gaseous propane may be added to suction side of the compressors if liquid propane is not available.
- the compressed multicomponent refrigerant vapor in line 108 may be at apressure of 61 l psia and a temperature in the order of 107F. It is then passed through line 108 to heat exchanger 86 wherein it is cooled by the propane to approximately 30F. Thereafter, it is passed directly through the second propane exchanger 88 from which it is discharged at a temperature in the order of 27F and is passed through line 109 to phase separator 110.
- the multicomponent refrigerant has been partially condensed such that the liquid condensate in the bottom of separator 110 preferably comprises about 2 mole percent of nitrogen, 24 mole percent of methane, 48 molepercent of ethane, and 26 mole percent of propane.
- This single-step partial condensation of the multicomponent refrigerant condenses a substantial portion of the total refrigerant flow such as, for example, 30-70 percent by volume per unit time. Accordingly, it is necessary that the multicomponent refrigerant be precooled to a temperature substantially below the freezing point of .water, and preferably to a temperature in the order of OF to 100F. More specifically, ithas been found that the multicomponent refrigerant should be precooled in exchanger 88 to approximtely the same temperature level as the feed stream in exchanger 36 which is in the range of 0F to -50F. 1
- the liquid condensate in separator 1 10 is passed through line 112 to tube circuit 114 of heat exchanger 50 wherein it is subcooled to a temperature in the order of 170lF.
- This subcooled liquid is expandedin valve 116 to a pressure in the order of 49 psia, whereby a small portion flashes to vapor, and its temperature drops to -182F
- This liquid, andthe flashed vapor is injected into exchanger 50 via line 118 and spray header 52 so as to provide refrigerant flowing downwardly over tube circuits 48, 122 and 114.
- the overhead vapor preferably has a composition of 20 mole percent nitrogen, 58 mole percent methane, 19 mole percent ethane, and 3 mole percent propane.
- This vapor is passed through line 120 to'tube circuit 122 wherein the vapor is cooled and condensed by reason of the downwardly sprayed refrigerant fraction just described.
- the condensed multicomponent refrigerant in tube circuit 122 passes directly into a second tube circuit 124 wherein it is subcooled to a temperature in the order of 262F.
- This subcooled liquid fraction is expanded in valve 128 to a pressure in the order of 51 psia whereby a small portion is flashed to vapor and the temperature drops to approximately 269F.
- This liquid and flashed vapor is injected into exchanger 50 via line 130 and spray header 56 so as to provide downwardly flowing refrigerant over the tube circuits 54 and 124.
- the multicomponent liquid fraction from spray header 56 is vaporized and thereby subcools both the feed stream in circuit 54 and the multicomponent liquid fraction in circuit 124.
- the multicomponent liquid fraction sprayed from spray header 52 is vaporized in heat exchange with tube circuits 48, 122, and 114.
- all of the multicomponent refrigerant is recombined in vapor phase at the bottom of heat exchanger 50 and it is withdrawn and passed through lines 136 and 138 to the suction side of compressor 100.
- the multicomponent refrigerant portion of the system forms a separate, closed cycle whereby the feed stream is most efficiently cooled from the propane level down to the flnal subcooled temperature of 262F.
- a make-up line 140 and valve 142 may be provided to add such multicomponent refrigerant as is required to compensate for unavoidable losses.
- this make-up refrigerant may be obtained by fractionating the hydrocarbons discharged through line 30 from benzene column 28 and adding additional nitrogen.
- the present invention provides a refrigerant cycle in which the feed stream is progressively cooled first by a plurality of cascade heat exchangers and secondly by an integral multicomponent heat exchanger having first and second spray zones or stages wherein the feed stream is subjected to cooling by progressive vaporization of two multicomponent liquid fractions. It will also be noted that in connection with this two-zone multicomponent exchanger, the multicomponent refrigerant is subjected to only one partial condensation, namely the partial condensation occurring in heat exchangers 86 and 88.
- the condensate formed in these exchangers and separated in separator 110 is merely subcooled and injected into the'main heat exchanger 50, while the uncondensed portion is cooled and subcooled in the main heat exchanger before it is injected back into the shell side. It will therefore be apparent that the number of tube circuits, phase separators, and associated piping and valving is an absolute minimum while, at the same time, all of the advantages of multicomponent refrigeration are achieved in liquefying and subcooling the feed.
- spray headers 52 and 56 should be designed for uniform distribution of the multicomponent liquids and flashed vapors over the tube circuits.
- a phase separator may be inserted between valve 116 and header 52, as well as between valve 128 and header 56 so as to separate the two phase fluids.
- the separated liquids in the bottoms of these separators may be passed to the respective spray headers, and the separated vapors are injected into exchanger 50 through lines (not shown) which enter the exchanger shell immediately adjacent headers 52 and 56.
- both the liquid refrigerant and the small amount of flashed vapor are injected into the column at the location of headers 52 and 56.
- a method of totally liquefying a gaseous, methanerich feed stream comprising the steps of:
- step (j) expanding said totally liquefied methane-rich feed stream from the superatmospheric pressure at which it is totally liquefied in step (j) to a substantially reduced pressure.
- the method as claimed in claim 1 further including the step of maintaining the composition of said multicomponent refrigerant so as to have an average molecular weight within the range of 24-28.
- the method as claimed in claim 2 further including the step of maintaining a multicomponent refrigerant composition comprising 2-12 mole percent of nitrogen, 35-45 mole percent of methane, 32-42 mole percent of ethane, and 9-19 mole percent of propane.
- step (j) 4. The method as claimed in claim 1 wherein said precooled methane-rich feed stream is cooled in step (j) to a subcooled temperature which is sufficiently below its liquefaction temperature to maintain substantially all of said feed stream in liquid phase upon expansion thereof according to step (1).
- said multicomponent refrigerant consists of only four components, three of said components comprising C to C hydrocarbons and the fourth component being a nonhydrocarbon component having a normal boiling point substantially below that of methane.
- a method of liquefying at least the major portion of a gaseous, methane-rich feed stream comprising the steps of:
- conduit means connected to said fifth heat exv cooled methane-rich feed stream to a temperature changer means and to said compressor for returnsubstantially below minus 200F solely by divering said vaporized first and second fractions to said sive heat exchange with said first and second subcompressor as said multicomponent refrigerant, cooled liquid fractions undergoing vaporization, k. conduit means connected to said fifth heat exm. returning both of said vaporized liquid fractions changer means for withdrawing said totally liquefor recompression according to step (c), and tied feed stream from said second stage of said fifth n. expanding said liquefied methane-rich feed stream heat exchanger means, and
- a refrigeration system for totally liquefying a gasing said totally liquefied feed stream to a substaneous methane-rich feed stream at superatmospheric pressure comprising the combination of:
- first multi-stage heat exchanger means connected to a source of a single component refrigerant and 2 to said feed stream for precooling said feed stream in heat exchange with said single component refrigerantundergoing vaporization at a plurality of progressively lower temperatures
- first multiple stage heat exchanger means for precooling said feed stream to a temperature within the range of 0F to 50F in progressive heat exb.
- a compressor for compressing said multicompotional component having a boiling point substannent refrigerant to a superatmospheric pressure, tially below that of methane,
- a compressor-after-cooler connected to said comc. means for maintaining the composition of said pressor for cooling said compressed multicompomulticomponent refrigerant with an average monent refrigerant to a first lower temperature, lecular weight within the range of 24-28,
- second multi-stage heat exchanger means cond. a compressor for compressing said separate multinected to said after-cooler and to a source of a sincomponent refrigerant to a pressure within the gle component refrigerant for further cooling said range of 600 to 1,200 psia, cooled multicomponent refrigerant to a sufficiently e. a compressor after-cooler connected to said comlower temperature to partially condense 30 percent pressor for first precooling said compressed multito 70 percent thereof in heat exchange with said component refrigerant, single component refrigerant undergoing vaporizaf.
- second multiple stage heat exchanger means contion at a plurality of progressively lower temperanected to said after-cooler for further precooling tures, and partially condensing a substantial portion of f. a single phase separator connected to said second said multicomponent refrigerant in heat exchange multi-stage heat exchanger means for separating with a single component hydrocarbon refrigerant said partially condensed multicomponent refrigerat a plurality of progressively lower temperatures ant into a vapor fraction and a condensed liquid and pressures, fraction, g. a single phase separator connected to said second g.
- third heat exchanger means connected to said heat exchanger means for separating said partially phase separator and including expansion means for condensed multicomponent refrigerant into a sinsubcooling said condensed. liquid fraction in heat gle vapor fraction and a single condensed fraction, exchange with itself, after expansion in said expanexapnsion sion means, to form a first subcooled liquid frach.
- third heat exchanger means connected to said seption, arator and including expansion means for subcoolh.
- fourth heat exchanger means connected to said ing said condensed liquid fraction in heat exchange phase separator means and including expansion with itself, after expansion in said expansion means for liquefying and subcooling said vapor means, to form a first subcooled liquid fraction, fraction in heat-exchange with said first subcooled i.
- fourth heat exchanger means connected to said liquid fraction, and with itself after expansion in said expansionmeans, to form a'second subcooled liquid fraction
- fifth heat exchanger means connected to said first heat exchanger means including first and second densed feed stream into a vapor fraction and a liquid condensate
- a scrub column intermediate said first and second
- third heat exchanger means for precooling and first and second subcooled liquid fractions underpartially condensing a substantial portion of said going vaporization in said first and second stages.
- expansion means connected to said fifth heat exdensed multicomponent refrigerant into a vapor changer means for reducing the pressure of said fraction and a condensed liquid fraction, further cooled feed stream to a reduced pressure.
- fourth heat exchanger means connected to said 11.
- first and second heat exchanger means forprogressivelyh. fifth heat exchanger means connected to said sepasively precooling and partially condensing said feed rator for liquefying and subcooling said vapor fracstream in heat exchange relationship with a single tion in heat exchange with said first subcooled liqcomponent hydrocarbon refrigerant undergoing uid fraction, and with itself after expansion, to form vaporization at two progressively lower temperaa second subcooled liquid fraction, and tures
- sixth heat exchanger means for liquefying at least b. a phase separator separating said partially conthe major portion of said precooled feed stream in heat exchange with said first and second subcooled liquid fractions undergoing vaporization.
- the refrigeration system as claimed in claim 11 further including reboiler means operatively connected to said scrub column for heating a portion of said removed benzene and heavy hydrocarbons and reinjecting the same into the bottom portion of said column as reboil fluid.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US244770A | 1970-01-12 | 1970-01-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3763658A true US3763658A (en) | 1973-10-09 |
Family
ID=21700811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00002447A Expired - Lifetime US3763658A (en) | 1970-01-12 | 1970-01-12 | Combined cascade and multicomponent refrigeration system and method |
Country Status (7)
Country | Link |
---|---|
US (1) | US3763658A (enrdf_load_stackoverflow) |
CA (1) | CA933855A (enrdf_load_stackoverflow) |
DE (1) | DE2023614B2 (enrdf_load_stackoverflow) |
GB (1) | GB1297082A (enrdf_load_stackoverflow) |
IT (1) | IT1032004B (enrdf_load_stackoverflow) |
MY (1) | MY7300305A (enrdf_load_stackoverflow) |
NO (1) | NO132703C (enrdf_load_stackoverflow) |
Cited By (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3874184A (en) * | 1973-05-24 | 1975-04-01 | Phillips Petroleum Co | Removing nitrogen from and subsequently liquefying natural gas stream |
US3970441A (en) * | 1973-07-17 | 1976-07-20 | Linde Aktiengesellschaft | Cascaded refrigeration cycles for liquefying low-boiling gaseous mixtures |
US4057972A (en) * | 1973-09-14 | 1977-11-15 | Exxon Research & Engineering Co. | Fractional condensation of an NG feed with two independent refrigeration cycles |
US4065278A (en) * | 1976-04-02 | 1977-12-27 | Air Products And Chemicals, Inc. | Process for manufacturing liquefied methane |
US4094655A (en) * | 1973-08-29 | 1978-06-13 | Heinrich Krieger | Arrangement for cooling fluids |
US4112700A (en) * | 1974-08-09 | 1978-09-12 | Linde Aktiengesellschaft | Liquefaction of natural gas |
USRE30085E (en) * | 1965-03-31 | 1979-08-28 | Compagnie Francaise D'etudes Et De Construction Technip | Method and apparatus for the coding and low temperature liquefaction of gaseous mixtures |
JPS58153075A (ja) * | 1982-02-18 | 1983-09-10 | エア−・プロダクツ・アンド・ケミカルス・インコ−ポレ−テツド | メタン−リツチガス流の冷却及び液化方法 |
EP0094010A3 (en) * | 1982-05-10 | 1985-01-16 | Air Products And Chemicals, Inc. | Process for liquefied natural gas |
US4504296A (en) * | 1983-07-18 | 1985-03-12 | Air Products And Chemicals, Inc. | Double mixed refrigerant liquefaction process for natural gas |
GB2147984A (en) * | 1983-10-11 | 1985-05-22 | Exxon Production Research Co | A process for the liquefaction of natural gas |
US4541852A (en) * | 1984-02-13 | 1985-09-17 | Air Products And Chemicals, Inc. | Deep flash LNG cycle |
US4702757A (en) * | 1986-08-20 | 1987-10-27 | Air Products And Chemicals, Inc. | Dual air pressure cycle to produce low purity oxygen |
US4704147A (en) * | 1986-08-20 | 1987-11-03 | Air Products And Chemicals, Inc. | Dual air pressure cycle to produce low purity oxygen |
US4704148A (en) * | 1986-08-20 | 1987-11-03 | Air Products And Chemicals, Inc. | Cycle to produce low purity oxygen |
EP0252455A3 (en) * | 1986-07-10 | 1988-09-14 | Air Products And Chemicals, Inc. | Automated control system for a multicomponent refrigeration system |
US4911741A (en) * | 1988-09-23 | 1990-03-27 | Davis Robert N | Natural gas liquefaction process using low level high level and absorption refrigeration cycles |
EP0414107A3 (en) * | 1989-08-21 | 1991-04-03 | Air Products And Chemicals, Inc. | Liquefaction of natural gas using process-loaded expanders |
US5291736A (en) * | 1991-09-30 | 1994-03-08 | Compagnie Francaise D'etudes Et De Construction "Technip" | Method of liquefaction of natural gas |
US5335508A (en) * | 1991-08-19 | 1994-08-09 | Tippmann Edward J | Refrigeration system |
US5440894A (en) * | 1993-05-05 | 1995-08-15 | Hussmann Corporation | Strategic modular commercial refrigeration |
US5791160A (en) * | 1997-07-24 | 1998-08-11 | Air Products And Chemicals, Inc. | Method and apparatus for regulatory control of production and temperature in a mixed refrigerant liquefied natural gas facility |
US6016665A (en) * | 1997-06-20 | 2000-01-25 | Exxon Production Research Company | Cascade refrigeration process for liquefaction of natural gas |
US6250244B1 (en) * | 1995-10-05 | 2001-06-26 | Bhp Petroleum Pty Ltd | Liquefaction apparatus |
US6298688B1 (en) | 1999-10-12 | 2001-10-09 | Air Products And Chemicals, Inc. | Process for nitrogen liquefaction |
US6308531B1 (en) * | 1999-10-12 | 2001-10-30 | Air Products And Chemicals, Inc. | Hybrid cycle for the production of liquefied natural gas |
US6347532B1 (en) | 1999-10-12 | 2002-02-19 | Air Products And Chemicals, Inc. | Gas liquefaction process with partial condensation of mixed refrigerant at intermediate temperatures |
US6427483B1 (en) | 2001-11-09 | 2002-08-06 | Praxair Technology, Inc. | Cryogenic industrial gas refrigeration system |
US6662589B1 (en) | 2003-04-16 | 2003-12-16 | Air Products And Chemicals, Inc. | Integrated high pressure NGL recovery in the production of liquefied natural gas |
US20040083756A1 (en) * | 2002-11-01 | 2004-05-06 | Jean-Pierre Tranier | Combined air separation natural gas liquefaction plant |
US20040187520A1 (en) * | 2001-06-08 | 2004-09-30 | Wilkinson John D. | Natural gas liquefaction |
US20050198998A1 (en) * | 2004-03-09 | 2005-09-15 | Guang-Chung Lee | Refrigeration system |
US20050204773A1 (en) * | 2004-03-19 | 2005-09-22 | Sanyo Electric Co., Ltd. | Refrigerating machine |
US20060000234A1 (en) * | 2004-07-01 | 2006-01-05 | Ortloff Engineers, Ltd. | Liquefied natural gas processing |
US20060112725A1 (en) * | 2004-08-06 | 2006-06-01 | Owen Ryan O | Natural gas liquefaction process |
US20070276542A1 (en) * | 2006-05-25 | 2007-11-29 | Honeywell International Inc. | System and method for optimization of gas lift rates on multiple wells |
US20080000265A1 (en) * | 2006-06-02 | 2008-01-03 | Ortloff Engineers, Ltd. | Liquefied Natural Gas Processing |
US20080016908A1 (en) * | 2006-07-24 | 2008-01-24 | Ransbarger Weldon L | Lng system with enhanced refrigeration efficiency |
US20080190352A1 (en) * | 2007-02-12 | 2008-08-14 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Lng tank ship and operation thereof |
US20080202159A1 (en) * | 2007-02-21 | 2008-08-28 | Honeywell International Inc. | Apparatus and method for optimizing a liquefied natural gas facility |
WO2008006867A3 (en) * | 2006-07-14 | 2008-10-30 | Shell Int Research | Method and apparatus for cooling a hydrocarbon stream |
US20080282731A1 (en) * | 2007-05-17 | 2008-11-20 | Ortloff Engineers, Ltd. | Liquefied Natural Gas Processing |
US20080295527A1 (en) * | 2007-05-31 | 2008-12-04 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Lng tank ship with nitrogen generator and method of operating the same |
US20080308175A1 (en) * | 2007-06-15 | 2008-12-18 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Method and Apparatus for Treating Boil-Off Gas in an LNG Carrier Having a Reliquefaction Plant, and LNG Carrier Having Said Apparatus for Treating Boil-Off Gas |
US20090199591A1 (en) * | 2008-02-11 | 2009-08-13 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Liquefied natural gas with butane and method of storing and processing the same |
US20090259081A1 (en) * | 2008-04-10 | 2009-10-15 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Method and system for reducing heating value of natural gas |
US20090266086A1 (en) * | 2007-04-30 | 2009-10-29 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Floating marine structure having lng circulating device |
US20090314030A1 (en) * | 2006-08-02 | 2009-12-24 | Shell Internationale Research Maatschappij B.V. | Method and apparatus for liquefying a hydrocarbon stream |
US20100024474A1 (en) * | 2007-01-25 | 2010-02-04 | Sander Kaart | Method and apparatus for cooling a hydrocarbon stream |
US20100122542A1 (en) * | 2008-11-17 | 2010-05-20 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Method and apparatus for adjusting heating value of natural gas |
US20100147024A1 (en) * | 2008-12-12 | 2010-06-17 | Air Products And Chemicals, Inc. | Alternative pre-cooling arrangement |
US20100154469A1 (en) * | 2008-12-19 | 2010-06-24 | Chevron U.S.A., Inc. | Process and system for liquefaction of hydrocarbon-rich gas stream utilizing three refrigeration cycles |
DE102009018248A1 (de) | 2009-04-21 | 2010-10-28 | Linde Aktiengesellschaft | Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion |
CN101880560A (zh) * | 2009-05-05 | 2010-11-10 | 气体产品与化学公司 | 预冷却的液化方法 |
CN102304403A (zh) * | 2011-08-08 | 2012-01-04 | 成都赛普瑞兴科技有限公司 | 一种丙烯预冷混合冷剂液化天然气的方法及装置 |
CN102393126A (zh) * | 2011-10-25 | 2012-03-28 | 中国寰球工程公司 | 双循环混合冷剂的天然气液化系统和方法 |
US8434325B2 (en) | 2009-05-15 | 2013-05-07 | Ortloff Engineers, Ltd. | Liquefied natural gas and hydrocarbon gas processing |
DE102012017653A1 (de) | 2012-09-06 | 2014-03-06 | Linde Ag | Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion |
US20140157822A1 (en) * | 2012-12-06 | 2014-06-12 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Thermal performing refrigeration cycle |
US20140157824A1 (en) * | 2012-12-06 | 2014-06-12 | L'air Liquide Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude | Method for improved thermal performing refrigeration cycle |
US8794030B2 (en) | 2009-05-15 | 2014-08-05 | Ortloff Engineers, Ltd. | Liquefied natural gas and hydrocarbon gas processing |
ITFI20130076A1 (it) * | 2013-04-04 | 2014-10-05 | Nuovo Pignone Srl | "integrally-geared compressors for precooling in lng applications" |
US8850849B2 (en) | 2008-05-16 | 2014-10-07 | Ortloff Engineers, Ltd. | Liquefied natural gas and hydrocarbon gas processing |
WO2014204817A3 (en) * | 2013-06-18 | 2015-02-19 | Pioneer Energy, Inc. | Systems and methods for separating alkane gases with applications to raw natural gas processing |
CN104848653A (zh) * | 2014-02-17 | 2015-08-19 | 博莱克·威奇公司 | 回收液态甲烷气体的方法及设备 |
US20160177955A1 (en) * | 2013-08-07 | 2016-06-23 | Hanwha Techwin Co., Ltd. | Compression system |
WO2017072019A1 (en) | 2015-10-27 | 2017-05-04 | Linde Aktiengesellschaft | Large-scale hydrogen liquefaction by means of a high pressure hydrogen refrigeration cycle combined to a novel single mixed-refrigerant precooling |
US10443930B2 (en) | 2014-06-30 | 2019-10-15 | Black & Veatch Holding Company | Process and system for removing nitrogen from LNG |
US10443927B2 (en) * | 2015-09-09 | 2019-10-15 | Black & Veatch Holding Company | Mixed refrigerant distributed chilling scheme |
US10533794B2 (en) | 2016-08-26 | 2020-01-14 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US10551118B2 (en) | 2016-08-26 | 2020-02-04 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US10551119B2 (en) | 2016-08-26 | 2020-02-04 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
EP3604993A2 (en) | 2018-08-02 | 2020-02-05 | Air Products And Chemicals, Inc. | Balancing power in split mixed refrigerant liquefaction system |
EP3368630B1 (en) | 2015-10-27 | 2020-12-02 | Linde GmbH | Low-temperature mixed--refrigerant for hydrogen precooling in large scale |
CN113958867A (zh) * | 2021-10-19 | 2022-01-21 | 中控智网(北京)能源技术有限公司 | 天然气管道的控制方法、系统、设备及存储介质 |
US11428465B2 (en) | 2017-06-01 | 2022-08-30 | Uop Llc | Hydrocarbon gas processing |
US11480389B2 (en) | 2017-09-13 | 2022-10-25 | Air Products And Chemicals, Inc. | Multi-product liquefaction method and system |
US11543180B2 (en) | 2017-06-01 | 2023-01-03 | Uop Llc | Hydrocarbon gas processing |
FR3132565A3 (fr) | 2022-05-11 | 2023-08-11 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procédé et appareil de liquéfaction d’hydrogène |
EP4230937A1 (de) | 2022-02-21 | 2023-08-23 | Linde GmbH | Verfahren und anlage zur erzeugung eines verflüssigten kohlenwasserstoffprodukts |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103694961A (zh) * | 2013-11-12 | 2014-04-02 | 北京市燃气集团有限责任公司 | 适用于预冷温度为-40至-60℃的天然气液化系统的多元混合制冷剂 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3066492A (en) * | 1959-05-15 | 1962-12-04 | Air Liquide | Process for the liquefaction of a gas |
US3274787A (en) * | 1961-06-01 | 1966-09-27 | Air Liquide | Method for cooling a gaseous mixture to a low temperature |
US3364685A (en) * | 1965-03-31 | 1968-01-23 | Cie Francaise D Etudes Et De C | Method and apparatus for the cooling and low temperature liquefaction of gaseous mixtures |
US3418819A (en) * | 1965-06-25 | 1968-12-31 | Air Liquide | Liquefaction of natural gas by cascade refrigeration |
US3578073A (en) * | 1967-03-31 | 1971-05-11 | Air Liquide | Heat exchange apparatus with integral formation of heat exchangers and separators |
US3581510A (en) * | 1968-07-08 | 1971-06-01 | Phillips Petroleum Co | Gas liquefaction by refrigeration with parallel expansion of the refrigerant |
US3581511A (en) * | 1969-07-15 | 1971-06-01 | Inst Gas Technology | Liquefaction of natural gas using separated pure components as refrigerants |
-
1970
- 1970-01-12 US US00002447A patent/US3763658A/en not_active Expired - Lifetime
- 1970-05-12 GB GB1297082D patent/GB1297082A/en not_active Expired
- 1970-05-14 DE DE2023614A patent/DE2023614B2/de not_active Ceased
- 1970-05-15 NO NO1879/70A patent/NO132703C/no unknown
- 1970-05-16 IT IT50720/70A patent/IT1032004B/it active
- 1970-05-19 CA CA083031A patent/CA933855A/en not_active Expired
-
1973
- 1973-12-30 MY MY3605/73A patent/MY7300305A/xx unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3066492A (en) * | 1959-05-15 | 1962-12-04 | Air Liquide | Process for the liquefaction of a gas |
US3274787A (en) * | 1961-06-01 | 1966-09-27 | Air Liquide | Method for cooling a gaseous mixture to a low temperature |
US3364685A (en) * | 1965-03-31 | 1968-01-23 | Cie Francaise D Etudes Et De C | Method and apparatus for the cooling and low temperature liquefaction of gaseous mixtures |
US3418819A (en) * | 1965-06-25 | 1968-12-31 | Air Liquide | Liquefaction of natural gas by cascade refrigeration |
US3578073A (en) * | 1967-03-31 | 1971-05-11 | Air Liquide | Heat exchange apparatus with integral formation of heat exchangers and separators |
US3581510A (en) * | 1968-07-08 | 1971-06-01 | Phillips Petroleum Co | Gas liquefaction by refrigeration with parallel expansion of the refrigerant |
US3581511A (en) * | 1969-07-15 | 1971-06-01 | Inst Gas Technology | Liquefaction of natural gas using separated pure components as refrigerants |
Cited By (138)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE30085E (en) * | 1965-03-31 | 1979-08-28 | Compagnie Francaise D'etudes Et De Construction Technip | Method and apparatus for the coding and low temperature liquefaction of gaseous mixtures |
US3874184A (en) * | 1973-05-24 | 1975-04-01 | Phillips Petroleum Co | Removing nitrogen from and subsequently liquefying natural gas stream |
US3970441A (en) * | 1973-07-17 | 1976-07-20 | Linde Aktiengesellschaft | Cascaded refrigeration cycles for liquefying low-boiling gaseous mixtures |
US4094655A (en) * | 1973-08-29 | 1978-06-13 | Heinrich Krieger | Arrangement for cooling fluids |
US4057972A (en) * | 1973-09-14 | 1977-11-15 | Exxon Research & Engineering Co. | Fractional condensation of an NG feed with two independent refrigeration cycles |
US4112700A (en) * | 1974-08-09 | 1978-09-12 | Linde Aktiengesellschaft | Liquefaction of natural gas |
US4065278A (en) * | 1976-04-02 | 1977-12-27 | Air Products And Chemicals, Inc. | Process for manufacturing liquefied methane |
JPS58153075A (ja) * | 1982-02-18 | 1983-09-10 | エア−・プロダクツ・アンド・ケミカルス・インコ−ポレ−テツド | メタン−リツチガス流の冷却及び液化方法 |
US4404008A (en) * | 1982-02-18 | 1983-09-13 | Air Products And Chemicals, Inc. | Combined cascade and multicomponent refrigeration method with refrigerant intercooling |
EP0094010A3 (en) * | 1982-05-10 | 1985-01-16 | Air Products And Chemicals, Inc. | Process for liquefied natural gas |
US4504296A (en) * | 1983-07-18 | 1985-03-12 | Air Products And Chemicals, Inc. | Double mixed refrigerant liquefaction process for natural gas |
GB2147984A (en) * | 1983-10-11 | 1985-05-22 | Exxon Production Research Co | A process for the liquefaction of natural gas |
US4548629A (en) * | 1983-10-11 | 1985-10-22 | Exxon Production Research Co. | Process for the liquefaction of natural gas |
US4541852A (en) * | 1984-02-13 | 1985-09-17 | Air Products And Chemicals, Inc. | Deep flash LNG cycle |
EP0153649A3 (en) * | 1984-02-13 | 1986-10-01 | Air Products And Chemicals, Inc. | Deep flash lng cycle |
EP0252455A3 (en) * | 1986-07-10 | 1988-09-14 | Air Products And Chemicals, Inc. | Automated control system for a multicomponent refrigeration system |
US4809154A (en) * | 1986-07-10 | 1989-02-28 | Air Products And Chemicals, Inc. | Automated control system for a multicomponent refrigeration system |
US4702757A (en) * | 1986-08-20 | 1987-10-27 | Air Products And Chemicals, Inc. | Dual air pressure cycle to produce low purity oxygen |
US4704147A (en) * | 1986-08-20 | 1987-11-03 | Air Products And Chemicals, Inc. | Dual air pressure cycle to produce low purity oxygen |
US4704148A (en) * | 1986-08-20 | 1987-11-03 | Air Products And Chemicals, Inc. | Cycle to produce low purity oxygen |
US4911741A (en) * | 1988-09-23 | 1990-03-27 | Davis Robert N | Natural gas liquefaction process using low level high level and absorption refrigeration cycles |
EP0414107A3 (en) * | 1989-08-21 | 1991-04-03 | Air Products And Chemicals, Inc. | Liquefaction of natural gas using process-loaded expanders |
US5335508A (en) * | 1991-08-19 | 1994-08-09 | Tippmann Edward J | Refrigeration system |
US5291736A (en) * | 1991-09-30 | 1994-03-08 | Compagnie Francaise D'etudes Et De Construction "Technip" | Method of liquefaction of natural gas |
US5440894A (en) * | 1993-05-05 | 1995-08-15 | Hussmann Corporation | Strategic modular commercial refrigeration |
US6250244B1 (en) * | 1995-10-05 | 2001-06-26 | Bhp Petroleum Pty Ltd | Liquefaction apparatus |
US6016665A (en) * | 1997-06-20 | 2000-01-25 | Exxon Production Research Company | Cascade refrigeration process for liquefaction of natural gas |
US5791160A (en) * | 1997-07-24 | 1998-08-11 | Air Products And Chemicals, Inc. | Method and apparatus for regulatory control of production and temperature in a mixed refrigerant liquefied natural gas facility |
RU2142605C1 (ru) * | 1997-07-24 | 1999-12-10 | Эр Продактс Энд Кемикалз, Инк. | Способ и устройство для регулируемого контроля выработки и температуры в оборудовании со смешанным хладагентом, предназначенном для сжижения природного газа |
US6347532B1 (en) | 1999-10-12 | 2002-02-19 | Air Products And Chemicals, Inc. | Gas liquefaction process with partial condensation of mixed refrigerant at intermediate temperatures |
US6308531B1 (en) * | 1999-10-12 | 2001-10-30 | Air Products And Chemicals, Inc. | Hybrid cycle for the production of liquefied natural gas |
US6298688B1 (en) | 1999-10-12 | 2001-10-09 | Air Products And Chemicals, Inc. | Process for nitrogen liquefaction |
USRE39637E1 (en) | 1999-10-12 | 2007-05-22 | Air Products And Chemicals, Inc. | Hybrid cycle for the production of liquefied natural gas |
US20040187520A1 (en) * | 2001-06-08 | 2004-09-30 | Wilkinson John D. | Natural gas liquefaction |
US20090293538A1 (en) * | 2001-06-08 | 2009-12-03 | Ortloff Engineers, Ltd. | Natural gas liquefaction |
US7010937B2 (en) | 2001-06-08 | 2006-03-14 | Elkcorp | Natural gas liquefaction |
US6427483B1 (en) | 2001-11-09 | 2002-08-06 | Praxair Technology, Inc. | Cryogenic industrial gas refrigeration system |
US20040083756A1 (en) * | 2002-11-01 | 2004-05-06 | Jean-Pierre Tranier | Combined air separation natural gas liquefaction plant |
US7143606B2 (en) | 2002-11-01 | 2006-12-05 | L'air Liquide-Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etide Et L'exploitation Des Procedes Georges Claude | Combined air separation natural gas liquefaction plant |
US6662589B1 (en) | 2003-04-16 | 2003-12-16 | Air Products And Chemicals, Inc. | Integrated high pressure NGL recovery in the production of liquefied natural gas |
US20050198998A1 (en) * | 2004-03-09 | 2005-09-15 | Guang-Chung Lee | Refrigeration system |
US7082787B2 (en) | 2004-03-09 | 2006-08-01 | Bp Corporation North America Inc. | Refrigeration system |
US20050204773A1 (en) * | 2004-03-19 | 2005-09-22 | Sanyo Electric Co., Ltd. | Refrigerating machine |
US20060000234A1 (en) * | 2004-07-01 | 2006-01-05 | Ortloff Engineers, Ltd. | Liquefied natural gas processing |
US7216507B2 (en) | 2004-07-01 | 2007-05-15 | Ortloff Engineers, Ltd. | Liquefied natural gas processing |
US7637121B2 (en) | 2004-08-06 | 2009-12-29 | Bp Corporation North America Inc. | Natural gas liquefaction process |
US20060112725A1 (en) * | 2004-08-06 | 2006-06-01 | Owen Ryan O | Natural gas liquefaction process |
US20070276542A1 (en) * | 2006-05-25 | 2007-11-29 | Honeywell International Inc. | System and method for optimization of gas lift rates on multiple wells |
US8571688B2 (en) | 2006-05-25 | 2013-10-29 | Honeywell International Inc. | System and method for optimization of gas lift rates on multiple wells |
US20080000265A1 (en) * | 2006-06-02 | 2008-01-03 | Ortloff Engineers, Ltd. | Liquefied Natural Gas Processing |
US7631516B2 (en) | 2006-06-02 | 2009-12-15 | Ortloff Engineers, Ltd. | Liquefied natural gas processing |
WO2008006867A3 (en) * | 2006-07-14 | 2008-10-30 | Shell Int Research | Method and apparatus for cooling a hydrocarbon stream |
JP2009543894A (ja) * | 2006-07-14 | 2009-12-10 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | 炭化水素流を液化するための方法及び装置 |
US20090241593A1 (en) * | 2006-07-14 | 2009-10-01 | Marco Dick Jager | Method and apparatus for cooling a hydrocarbon stream |
US7591149B2 (en) * | 2006-07-24 | 2009-09-22 | Conocophillips Company | LNG system with enhanced refrigeration efficiency |
US20080016908A1 (en) * | 2006-07-24 | 2008-01-24 | Ransbarger Weldon L | Lng system with enhanced refrigeration efficiency |
US20090314030A1 (en) * | 2006-08-02 | 2009-12-24 | Shell Internationale Research Maatschappij B.V. | Method and apparatus for liquefying a hydrocarbon stream |
US9400134B2 (en) | 2006-08-02 | 2016-07-26 | Shell Oil Company | Method and apparatus for liquefying a hydrocarbon stream |
US20100024474A1 (en) * | 2007-01-25 | 2010-02-04 | Sander Kaart | Method and apparatus for cooling a hydrocarbon stream |
US8549876B2 (en) | 2007-01-25 | 2013-10-08 | Shell Oil Company | Method and apparatus for cooling a hydrocarbon stream |
US20080190117A1 (en) * | 2007-02-12 | 2008-08-14 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Lng tank and operation of the same |
US10508769B2 (en) | 2007-02-12 | 2019-12-17 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | LNG tank and operation of the same |
US10352499B2 (en) | 2007-02-12 | 2019-07-16 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | LNG tank and operation of the same |
US8943841B2 (en) | 2007-02-12 | 2015-02-03 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | LNG tank ship having LNG circulating device |
US11168837B2 (en) | 2007-02-12 | 2021-11-09 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | LNG tank and operation of the same |
US8028724B2 (en) | 2007-02-12 | 2011-10-04 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | LNG tank and unloading of LNG from the tank |
US20080190352A1 (en) * | 2007-02-12 | 2008-08-14 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Lng tank ship and operation thereof |
US20080190118A1 (en) * | 2007-02-12 | 2008-08-14 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Lng tank and unloading of lng from the tank |
US8820096B2 (en) | 2007-02-12 | 2014-09-02 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | LNG tank and operation of the same |
US20090211262A1 (en) * | 2007-02-12 | 2009-08-27 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Lng tank ship having lng circulating device |
US7946127B2 (en) * | 2007-02-21 | 2011-05-24 | Honeywell International Inc. | Apparatus and method for optimizing a liquefied natural gas facility |
US20080202159A1 (en) * | 2007-02-21 | 2008-08-28 | Honeywell International Inc. | Apparatus and method for optimizing a liquefied natural gas facility |
AU2008218811B2 (en) * | 2007-02-21 | 2012-01-19 | Honeywell International Inc. | Apparatus and method for optimizing a liquefied natural gas facility |
US20090266086A1 (en) * | 2007-04-30 | 2009-10-29 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Floating marine structure having lng circulating device |
US9869510B2 (en) | 2007-05-17 | 2018-01-16 | Ortloff Engineers, Ltd. | Liquefied natural gas processing |
US20080282731A1 (en) * | 2007-05-17 | 2008-11-20 | Ortloff Engineers, Ltd. | Liquefied Natural Gas Processing |
US20080295527A1 (en) * | 2007-05-31 | 2008-12-04 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Lng tank ship with nitrogen generator and method of operating the same |
US8959930B2 (en) * | 2007-06-15 | 2015-02-24 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Method and apparatus for treating boil-off gas in an LNG carrier having a reliquefaction plant, and LNG carrier having said apparatus for treating boil-off gas |
US20080308175A1 (en) * | 2007-06-15 | 2008-12-18 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Method and Apparatus for Treating Boil-Off Gas in an LNG Carrier Having a Reliquefaction Plant, and LNG Carrier Having Said Apparatus for Treating Boil-Off Gas |
US7644676B2 (en) | 2008-02-11 | 2010-01-12 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Storage tank containing liquefied natural gas with butane |
US20090199591A1 (en) * | 2008-02-11 | 2009-08-13 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Liquefied natural gas with butane and method of storing and processing the same |
US20100012015A1 (en) * | 2008-02-11 | 2010-01-21 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Storage tank containing liquefied natural gas with butane |
US7841288B2 (en) | 2008-02-11 | 2010-11-30 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Storage tank containing liquefied natural gas with butane |
US20090199759A1 (en) * | 2008-02-11 | 2009-08-13 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Storage tank containing liquefied natural gas with butane |
US9086188B2 (en) | 2008-04-10 | 2015-07-21 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Method and system for reducing heating value of natural gas |
US20090259081A1 (en) * | 2008-04-10 | 2009-10-15 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Method and system for reducing heating value of natural gas |
US8850849B2 (en) | 2008-05-16 | 2014-10-07 | Ortloff Engineers, Ltd. | Liquefied natural gas and hydrocarbon gas processing |
US20100122542A1 (en) * | 2008-11-17 | 2010-05-20 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Method and apparatus for adjusting heating value of natural gas |
US20100147024A1 (en) * | 2008-12-12 | 2010-06-17 | Air Products And Chemicals, Inc. | Alternative pre-cooling arrangement |
US20100154469A1 (en) * | 2008-12-19 | 2010-06-24 | Chevron U.S.A., Inc. | Process and system for liquefaction of hydrocarbon-rich gas stream utilizing three refrigeration cycles |
RU2568697C2 (ru) * | 2009-04-21 | 2015-11-20 | Линде Акциенгезелльшафт | Способ сжижения фракции, обогащенной углеводородами |
WO2010121752A2 (de) | 2009-04-21 | 2010-10-28 | Linde Aktiengesellschaft | Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion |
WO2010121752A3 (de) * | 2009-04-21 | 2012-10-11 | Linde Aktiengesellschaft | Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion |
CN102575897A (zh) * | 2009-04-21 | 2012-07-11 | 林德股份公司 | 液化富烃馏分的方法 |
DE102009018248A1 (de) | 2009-04-21 | 2010-10-28 | Linde Aktiengesellschaft | Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion |
NO346539B1 (no) * | 2009-04-21 | 2022-09-26 | Linde Ag | Fremgangsmåte for kondensasjon av en hydrokarbonrik fraksjon |
CN102575897B (zh) * | 2009-04-21 | 2014-11-26 | 林德股份公司 | 液化富烃馏分的方法 |
CN101880560A (zh) * | 2009-05-05 | 2010-11-10 | 气体产品与化学公司 | 预冷却的液化方法 |
US20100281915A1 (en) * | 2009-05-05 | 2010-11-11 | Air Products And Chemicals, Inc. | Pre-Cooled Liquefaction Process |
JP2010261038A (ja) * | 2009-05-05 | 2010-11-18 | Air Products & Chemicals Inc | 天然ガス流液化方法及び装置 |
US8434325B2 (en) | 2009-05-15 | 2013-05-07 | Ortloff Engineers, Ltd. | Liquefied natural gas and hydrocarbon gas processing |
US8794030B2 (en) | 2009-05-15 | 2014-08-05 | Ortloff Engineers, Ltd. | Liquefied natural gas and hydrocarbon gas processing |
CN102304403A (zh) * | 2011-08-08 | 2012-01-04 | 成都赛普瑞兴科技有限公司 | 一种丙烯预冷混合冷剂液化天然气的方法及装置 |
CN102393126B (zh) * | 2011-10-25 | 2013-11-06 | 中国寰球工程公司 | 双循环混合冷剂的天然气液化系统和方法 |
CN102393126A (zh) * | 2011-10-25 | 2012-03-28 | 中国寰球工程公司 | 双循环混合冷剂的天然气液化系统和方法 |
DE102012017653A1 (de) | 2012-09-06 | 2014-03-06 | Linde Ag | Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion |
US20140157824A1 (en) * | 2012-12-06 | 2014-06-12 | L'air Liquide Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude | Method for improved thermal performing refrigeration cycle |
US20140157822A1 (en) * | 2012-12-06 | 2014-06-12 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Thermal performing refrigeration cycle |
JP2016519277A (ja) * | 2013-04-04 | 2016-06-30 | ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. | Lng用途における予冷のための歯車結合圧縮機 |
WO2014161937A3 (en) * | 2013-04-04 | 2015-07-23 | Nuovo Pignone Srl | Integrally-geared compressors for precooling in lng applications |
CN105264316A (zh) * | 2013-04-04 | 2016-01-20 | 诺沃皮尼奥内股份有限公司 | 用于在lng应用中预冷却的整体齿轮式压缩机 |
CN105264316B (zh) * | 2013-04-04 | 2018-06-19 | 诺沃皮尼奥内股份有限公司 | 用于在lng应用中预冷却的整体齿轮式压缩机 |
ITFI20130076A1 (it) * | 2013-04-04 | 2014-10-05 | Nuovo Pignone Srl | "integrally-geared compressors for precooling in lng applications" |
WO2014204817A3 (en) * | 2013-06-18 | 2015-02-19 | Pioneer Energy, Inc. | Systems and methods for separating alkane gases with applications to raw natural gas processing |
US9719024B2 (en) | 2013-06-18 | 2017-08-01 | Pioneer Energy, Inc. | Systems and methods for controlling, monitoring, and operating remote oil and gas field equipment over a data network with applications to raw natural gas processing and flare gas capture |
US10000704B2 (en) | 2013-06-18 | 2018-06-19 | Pioneer Energy Inc. | Systems and methods for controlling, monitoring, and operating remote oil and gas field equipment over a data network with applications to raw natural gas processing and flare gas capture |
US20160177955A1 (en) * | 2013-08-07 | 2016-06-23 | Hanwha Techwin Co., Ltd. | Compression system |
CN104848653B (zh) * | 2014-02-17 | 2018-03-16 | 博莱克·威奇公司 | 回收液态甲烷气体的方法及设备 |
US10436505B2 (en) | 2014-02-17 | 2019-10-08 | Black & Veatch Holding Company | LNG recovery from syngas using a mixed refrigerant |
AU2014265028B2 (en) * | 2014-02-17 | 2019-08-22 | Black & Veatch Corporation | Lng recovery from syngas using a mixed refrigerant |
CN104848653A (zh) * | 2014-02-17 | 2015-08-19 | 博莱克·威奇公司 | 回收液态甲烷气体的方法及设备 |
US10443930B2 (en) | 2014-06-30 | 2019-10-15 | Black & Veatch Holding Company | Process and system for removing nitrogen from LNG |
US10443927B2 (en) * | 2015-09-09 | 2019-10-15 | Black & Veatch Holding Company | Mixed refrigerant distributed chilling scheme |
EP3368630B1 (en) | 2015-10-27 | 2020-12-02 | Linde GmbH | Low-temperature mixed--refrigerant for hydrogen precooling in large scale |
WO2017072019A1 (en) | 2015-10-27 | 2017-05-04 | Linde Aktiengesellschaft | Large-scale hydrogen liquefaction by means of a high pressure hydrogen refrigeration cycle combined to a novel single mixed-refrigerant precooling |
US10551118B2 (en) | 2016-08-26 | 2020-02-04 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US10551119B2 (en) | 2016-08-26 | 2020-02-04 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US10533794B2 (en) | 2016-08-26 | 2020-01-14 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US11428465B2 (en) | 2017-06-01 | 2022-08-30 | Uop Llc | Hydrocarbon gas processing |
US11543180B2 (en) | 2017-06-01 | 2023-01-03 | Uop Llc | Hydrocarbon gas processing |
US11480389B2 (en) | 2017-09-13 | 2022-10-25 | Air Products And Chemicals, Inc. | Multi-product liquefaction method and system |
EP3604993A2 (en) | 2018-08-02 | 2020-02-05 | Air Products And Chemicals, Inc. | Balancing power in split mixed refrigerant liquefaction system |
US10935312B2 (en) | 2018-08-02 | 2021-03-02 | Air Products And Chemicals, Inc. | Balancing power in split mixed refrigerant liquefaction system |
RU2766164C2 (ru) * | 2018-08-02 | 2022-02-08 | Эр Продактс Энд Кемикалз, Инк. | Балансировка мощности в сплит-системе сжижения со смешанным хладагентом |
CN113958867A (zh) * | 2021-10-19 | 2022-01-21 | 中控智网(北京)能源技术有限公司 | 天然气管道的控制方法、系统、设备及存储介质 |
CN113958867B (zh) * | 2021-10-19 | 2024-01-23 | 中控创新(北京)能源技术有限公司 | 天然气管道的控制方法、系统、设备及存储介质 |
EP4230937A1 (de) | 2022-02-21 | 2023-08-23 | Linde GmbH | Verfahren und anlage zur erzeugung eines verflüssigten kohlenwasserstoffprodukts |
FR3132565A3 (fr) | 2022-05-11 | 2023-08-11 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procédé et appareil de liquéfaction d’hydrogène |
Also Published As
Publication number | Publication date |
---|---|
DE2023614A1 (de) | 1971-07-22 |
DE2023614B2 (de) | 1978-06-15 |
NO132703B (enrdf_load_stackoverflow) | 1975-09-08 |
GB1297082A (enrdf_load_stackoverflow) | 1972-11-22 |
MY7300305A (en) | 1973-12-31 |
CA933855A (en) | 1973-09-18 |
IT1032004B (it) | 1979-05-30 |
NO132703C (enrdf_load_stackoverflow) | 1975-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3763658A (en) | Combined cascade and multicomponent refrigeration system and method | |
US4065278A (en) | Process for manufacturing liquefied methane | |
US3645106A (en) | Process for liquefying natural gas employing a multicomponent refrigerant for obtaining low temperature cooling | |
CA2035620C (en) | Method of liquefying natural gas | |
US4430103A (en) | Cryogenic recovery of LPG from natural gas | |
US6347531B1 (en) | Single mixed refrigerant gas liquefaction process | |
US6308531B1 (en) | Hybrid cycle for the production of liquefied natural gas | |
US3205669A (en) | Recovery of natural gas liquids, helium concentrate, and pure nitrogen | |
US4435198A (en) | Separation of nitrogen from natural gas | |
KR100962627B1 (ko) | 가스 액화를 위한 통합식 다중-루프 냉동 방법 | |
US6347532B1 (en) | Gas liquefaction process with partial condensation of mixed refrigerant at intermediate temperatures | |
US7127914B2 (en) | Hybrid gas liquefaction cycle with multiple expanders | |
US6742357B1 (en) | Integrated multiple-loop refrigeration process for gas liquefaction | |
US5291736A (en) | Method of liquefaction of natural gas | |
US3721099A (en) | Fractional condensation of natural gas | |
US4251247A (en) | Method and apparatus for cooling a gaseous mixture | |
US3970441A (en) | Cascaded refrigeration cycles for liquefying low-boiling gaseous mixtures | |
US4331461A (en) | Cryogenic separation of lean and rich gas streams | |
US5579655A (en) | Process and apparatus for the liquefaction of hydrogen | |
US3319429A (en) | Methods for separating mixtures of normally gaseous materials | |
US20230194161A1 (en) | Standalone high-pressure heavies removal unit for lng processing | |
US3531943A (en) | Cryogenic process for separation of a natural gas with a high nitrogen content | |
JPH07280431A (ja) | 供給材料ガスからのエチレン回収法 | |
US20230098976A1 (en) | Refrigeration systems associated with cryogenic process plants for ethane or propane recovery from natural gas | |
CA1059425A (en) | Process for manufacturing liquefied methane |