US3754110A - A susceptor having grooves - Google Patents
A susceptor having grooves Download PDFInfo
- Publication number
- US3754110A US3754110A US00226888A US3754110DA US3754110A US 3754110 A US3754110 A US 3754110A US 00226888 A US00226888 A US 00226888A US 3754110D A US3754110D A US 3754110DA US 3754110 A US3754110 A US 3754110A
- Authority
- US
- United States
- Prior art keywords
- susceptor
- grooves
- opposed
- set forth
- major surfaces
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/105—Induction heating apparatus, other than furnaces, for specific applications using a susceptor
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/12—Substrate holders or susceptors
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B31/00—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
- C30B31/06—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
- C30B31/14—Substrate holders or susceptors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
Definitions
- ABSTRACT The invention relates to a susceptor for heating bodies by means of high frequency energy.
- the lower side of the susceptor comprises a profile which consists of longitudinal grooves present near the side surfaces. By means of said grooves on the lower side, a homogeneous temperature distribution is obtained on the upper,side transversely over the susceptor.
- the invention relates to a method of treating a body, preferably a semiconductor body, which is present at a first surface of an elongate susceptor and which is heated by means of a high frequency energy source via the susceptor, said susceptor comprising a profile on a second surface opposite to the first surface.
- the invention also relates to articles manufactured by means of the method, to a susceptor for use of the method, and to a device for carrying out the method.
- the second surface of the susceptor comprises a profile having a substantially constant cross section viewed in the longitudinal direction of the susceptor, while in the centre of the said surfaces the susceptor is thinner than at the side surfaces.
- the invention is based on the recognition of the fact that a more homogeneous temperature distribution can be obtained with a quite different profile.
- the method mentioned in the preamble is characterized in that asusceptor is used the profile of which consists of grooves which extend tion transverse to the longitudinal direction over the 7 first surface of the susceptor.
- a susceptor is preferably used, the profile of which consists of one groove along each of the side surfaces.
- Such a method is preferably carried out in a device which comprises at least one susceptor according to the invention.
- the invention also relates to a semiconductor device which is manufactured from a semiconductor body treated while using the last-mentioned method.
- semiconductor devices which otherwise are manufactured in any conventional manner, have readily reproducible properties and are obtained in comparatively large yields.
- FIG. 1 shows temperature distributions corresponding to places on susceptors which are shown in FIG. 2 to 4
- FIG. 2 is a cross-sectional view of an unprofiled susceptor transverse to the longitudinal direction
- FIG. 3 and 4 are cross-sectional views transverse to the longitudinal direction of susceptors according to the invention.
- the temperatures shown in FIG. 1 are the temperatures which have been measured on semiconductor bodies 1 on the first surface 2, 3 or 4 of the susceptors 5, 6 or 7 in the places denoted by the crosses (see FIG. 2, 3 and 4).
- the susceptors are 400 mm long, 116 mm wide and 13 mm thick.
- the susceptors are of graphite.
- the susceptor shown in FIG. 3 comprises, at 7 mm from the side surfaces 9, grooves 8 which are 4 mm deep and 6 mm wide.
- the susceptor 7 shown in FIG. 4 has, at 7 mm from the side surfaces 10, grooves 11 which are 5 mm deep and 6 mm wide.
- the temperature distribution over a 92 mm wide region, has decreased from 27-30+ C to approximately 16 C in the case of the-profiled susceptor 6 shown in FIG. 3 and to 14 C in the case of the susceptor shown in FIG. 4, and the distribution of the susceptor shown in FIG. 2, over a range of 78 mm wide, from 20 C to approximately 9 C in the susceptor shown in FIG. 3 and approximately 5 C in the susceptor shown in FIG. 4.
- the above-mentioned dimensions are given only by way of example.
- the grooves may be wider, for example.
- the optimum dimensions of the grooves are also influenced by the wayof cooling the device in which the susceptors are used and by the major dimensions of the susceptor.
- a susceptor for uniformly heating in a high frequency field a substance in contact therewith compris- 1 ing a body having two opposed major surfaces, one major surface having two opposed edges and two grooves, each groove being substantially coextensive with and respectively spaced adjacent to said opposed edges, whereby when said body isin a high frequency field, said grooves effectively increase the heat generated by said field in said. body in the region of said grooves resulting in a more substantially homogeneous heat distribution at the other major surface and in substance in contact therewith.
- a susceptor as set forth in'claim l wherein said body is rectangularly shaped and said grooves are parallel with said opposed edges and respectively spaced from said edges by a distance less than the distance between said opposed'major surfaces.
- a susceptor as set forth in claim 1 adapted to be placed in contact with a semiconductive body for homogeneous heating of said semiconductive body.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL7103019A NL7103019A (zh) | 1971-03-06 | 1971-03-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3754110A true US3754110A (en) | 1973-08-21 |
Family
ID=19812633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00226888A Expired - Lifetime US3754110A (en) | 1971-03-06 | 1972-02-16 | A susceptor having grooves |
Country Status (7)
Country | Link |
---|---|
US (1) | US3754110A (zh) |
JP (1) | JPS5624368B1 (zh) |
DE (1) | DE2209782A1 (zh) |
FR (1) | FR2128647B1 (zh) |
GB (1) | GB1370717A (zh) |
IT (1) | IT949866B (zh) |
NL (1) | NL7103019A (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3892940A (en) * | 1972-07-01 | 1975-07-01 | Philips Corp | Apparatus for uniformly heating monocrystalline wafers |
US3980854A (en) * | 1974-11-15 | 1976-09-14 | Rca Corporation | Graphite susceptor structure for inductively heating semiconductor wafers |
US4099041A (en) * | 1977-04-11 | 1978-07-04 | Rca Corporation | Susceptor for heating semiconductor substrates |
US4334354A (en) * | 1977-07-12 | 1982-06-15 | Trw Inc. | Method of fabricating a solar array |
US4409451A (en) * | 1981-08-31 | 1983-10-11 | United Technologies Corporation | Induction furnace having improved thermal profile |
US20070186853A1 (en) * | 2006-02-10 | 2007-08-16 | Veeco Instruments Inc. | System and method for varying wafer surface temperature via wafer-carrier temperature offset |
US20100055318A1 (en) * | 2008-08-29 | 2010-03-04 | Veeco Instruments Inc. | Wafer carrier with varying thermal resistance |
US10167571B2 (en) | 2013-03-15 | 2019-01-01 | Veeco Instruments Inc. | Wafer carrier having provisions for improving heating uniformity in chemical vapor deposition systems |
US10316412B2 (en) | 2012-04-18 | 2019-06-11 | Veeco Instruments Inc. | Wafter carrier for chemical vapor deposition systems |
US11248295B2 (en) | 2014-01-27 | 2022-02-15 | Veeco Instruments Inc. | Wafer carrier having retention pockets with compound radii for chemical vapor deposition systems |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19630703C2 (de) * | 1996-07-30 | 2000-02-10 | Mtu Muenchen Gmbh | Verfahren und Vorrichtung zum Reparaturschweissen von Teilen aus Ni-Basis-Legierungen sowie Anwendung des Verfahrens und Vorrichtung |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2773923A (en) * | 1953-01-26 | 1956-12-11 | Raytheon Mfg Co | Zone-refining apparatus |
US3168696A (en) * | 1962-06-26 | 1965-02-02 | Erick O Schonstedt | Magnetic flux directing cylindrical core having a plurality of serially arranged interruptions |
US3524776A (en) * | 1967-01-30 | 1970-08-18 | Corning Glass Works | Process for coating silicon wafers |
US3529116A (en) * | 1964-11-21 | 1970-09-15 | Tokushu Denki Kk | Heating rotary drum apparatus having shaped flux pattern |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1360497A (fr) * | 1963-06-12 | 1964-05-08 | Siemens Ag | Procédé pour réaliser des couches cristallines en des substances peu volatiles, notamment des substances semi-conductrices |
US3399651A (en) * | 1967-05-26 | 1968-09-03 | Philco Ford Corp | Susceptor for growing polycrystalline silicon on wafers of monocrystalline silicon |
US3505499A (en) * | 1968-04-04 | 1970-04-07 | Siemens Ag | Device for thermal processing of disc shaped objects for semiconductors |
US3539759A (en) * | 1968-11-08 | 1970-11-10 | Ibm | Susceptor structure in silicon epitaxy |
US3608519A (en) * | 1968-12-31 | 1971-09-28 | Texas Instruments Inc | Deposition reactor |
-
1971
- 1971-03-06 NL NL7103019A patent/NL7103019A/xx unknown
-
1972
- 1972-02-16 US US00226888A patent/US3754110A/en not_active Expired - Lifetime
- 1972-03-01 DE DE19722209782 patent/DE2209782A1/de active Pending
- 1972-03-03 GB GB999872A patent/GB1370717A/en not_active Expired
- 1972-03-03 JP JP2270972A patent/JPS5624368B1/ja active Pending
- 1972-03-03 IT IT21396/72A patent/IT949866B/it active
- 1972-03-06 FR FR7207653A patent/FR2128647B1/fr not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2773923A (en) * | 1953-01-26 | 1956-12-11 | Raytheon Mfg Co | Zone-refining apparatus |
US3168696A (en) * | 1962-06-26 | 1965-02-02 | Erick O Schonstedt | Magnetic flux directing cylindrical core having a plurality of serially arranged interruptions |
US3529116A (en) * | 1964-11-21 | 1970-09-15 | Tokushu Denki Kk | Heating rotary drum apparatus having shaped flux pattern |
US3524776A (en) * | 1967-01-30 | 1970-08-18 | Corning Glass Works | Process for coating silicon wafers |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3892940A (en) * | 1972-07-01 | 1975-07-01 | Philips Corp | Apparatus for uniformly heating monocrystalline wafers |
US3980854A (en) * | 1974-11-15 | 1976-09-14 | Rca Corporation | Graphite susceptor structure for inductively heating semiconductor wafers |
US4099041A (en) * | 1977-04-11 | 1978-07-04 | Rca Corporation | Susceptor for heating semiconductor substrates |
US4334354A (en) * | 1977-07-12 | 1982-06-15 | Trw Inc. | Method of fabricating a solar array |
US4409451A (en) * | 1981-08-31 | 1983-10-11 | United Technologies Corporation | Induction furnace having improved thermal profile |
US20070186853A1 (en) * | 2006-02-10 | 2007-08-16 | Veeco Instruments Inc. | System and method for varying wafer surface temperature via wafer-carrier temperature offset |
US8603248B2 (en) | 2006-02-10 | 2013-12-10 | Veeco Instruments Inc. | System and method for varying wafer surface temperature via wafer-carrier temperature offset |
US20100055318A1 (en) * | 2008-08-29 | 2010-03-04 | Veeco Instruments Inc. | Wafer carrier with varying thermal resistance |
US10316412B2 (en) | 2012-04-18 | 2019-06-11 | Veeco Instruments Inc. | Wafter carrier for chemical vapor deposition systems |
US10167571B2 (en) | 2013-03-15 | 2019-01-01 | Veeco Instruments Inc. | Wafer carrier having provisions for improving heating uniformity in chemical vapor deposition systems |
US11248295B2 (en) | 2014-01-27 | 2022-02-15 | Veeco Instruments Inc. | Wafer carrier having retention pockets with compound radii for chemical vapor deposition systems |
Also Published As
Publication number | Publication date |
---|---|
FR2128647A1 (zh) | 1972-10-20 |
IT949866B (it) | 1973-06-11 |
FR2128647B1 (zh) | 1977-07-15 |
GB1370717A (en) | 1974-10-16 |
DE2209782A1 (de) | 1972-09-14 |
JPS5624368B1 (zh) | 1981-06-05 |
NL7103019A (zh) | 1972-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3754110A (en) | A susceptor having grooves | |
US3594227A (en) | Method for treating semiconductor slices with gases | |
US4099041A (en) | Susceptor for heating semiconductor substrates | |
DE69623967T2 (de) | Verfahren und vorrichtung zur thermischen behandlung von halbleitersubstraten | |
JP3008192B2 (ja) | 化学気相蒸着の加熱装置 | |
US3892940A (en) | Apparatus for uniformly heating monocrystalline wafers | |
US4981815A (en) | Method for rapidly thermally processing a semiconductor wafer by irradiation using semicircular or parabolic reflectors | |
KR960012316A (ko) | 피처리체의 처리장치 | |
US20180370078A1 (en) | Inductively heated mold for personal use | |
JPS6411712B2 (zh) | ||
WO1999036931A3 (en) | Low ceiling temperature process for a plasma reactor with heated source of a polymer-hardening precursor material | |
GB2180989B (en) | Process for high temperature surface reactions in semiconductor material | |
ES2176242T3 (es) | Calentamiento por induccion de materiales cargados. | |
US3152933A (en) | Method of producing electronic semiconductor devices having a monocrystalline body with zones of respectively different conductance | |
US6054688A (en) | Hybrid heater with ceramic foil serrated plate and gas assist | |
EP0519608A1 (en) | Substrate holder of thermally anisotropic material used for enhancing uniformity of grown epitaxial layers | |
US4543472A (en) | Plane light source unit and radiant heating furnace including same | |
KR960035866A (ko) | 반도체장치의 제조방법 및 반도체장치의 제조장치 | |
US5913974A (en) | Heat treating method of a semiconductor single crystal substrate | |
ES489039A1 (es) | Procedimiento para el tratamiento termico en continuo de ma-terial metalico alargado suelto e instalacion correspondien-te | |
US5672290A (en) | Power source and method for induction heating of articles | |
JP2000150136A (ja) | マイクロ波加熱方法およびその装置 | |
JPS5691436A (en) | Method for heating semiconductor substrate | |
GB1394200A (zh) | ||
KR20190035857A (ko) | 비-균일한 절연부를 갖는 열적 프로세스 디바이스 |