US3709319A - Resonator chamber silencer for gas turbine - Google Patents
Resonator chamber silencer for gas turbine Download PDFInfo
- Publication number
- US3709319A US3709319A US00187090A US3709319DA US3709319A US 3709319 A US3709319 A US 3709319A US 00187090 A US00187090 A US 00187090A US 3709319D A US3709319D A US 3709319DA US 3709319 A US3709319 A US 3709319A
- Authority
- US
- United States
- Prior art keywords
- boxes
- row
- acoustically absorbent
- gas
- gas turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003584 silencer Effects 0.000 title claims abstract description 33
- 230000002745 absorbent Effects 0.000 claims abstract description 33
- 239000002250 absorbent Substances 0.000 claims abstract description 33
- 230000030279 gene silencing Effects 0.000 claims abstract description 23
- 239000007789 gas Substances 0.000 claims description 85
- 239000011810 insulating material Substances 0.000 claims description 3
- 230000007423 decrease Effects 0.000 description 5
- RLQJEEJISHYWON-UHFFFAOYSA-N flonicamid Chemical compound FC(F)(F)C1=CC=NC=C1C(=O)NCC#N RLQJEEJISHYWON-UHFFFAOYSA-N 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64F—GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
- B64F1/00—Ground or aircraft-carrier-deck installations
- B64F1/26—Ground or aircraft-carrier-deck installations for reducing engine or jet noise; Protecting airports from jet erosion
Definitions
- a free-standing structural frame is positioned adjacent the exhaust end of a gas turbine.
- the frame is provided within the frame.
- Each low-frequency silencing section includes a row of large, acoustically absorbent boxes followed by an expansion section.
- the high-frequency section comprises a number of parallel baffles which are relatively thin and acoustically absorbent in a higher frequency range.
- the acoustically absorbent box sections each support an expansion section and in one embodiment the acoustically absorbent box section supports both an expansion section and a parallel baffle section.
- the acoustically absorbent box sections and the parallel baffle section all attenuate sound by absorbing the sound into an acoustical fill within the respective sections.
- the expansion sections are merely large enclosed volumes insulated on interior walls which attenuate noise as a result of decreases in gas energy due to decreases in gas pressure.
- Another object of this invention is to provide a gas turbine exhaust silencer which will minimize pressure losses in the hot exhaust gas flow path.
- Still another object of this invention is to provide a gas turbine exhaust silencer which may be tuned" to increase the attenuation of certain noise frequencies.
- a low-frequency silencing section comprises a row of spaced apart, acoustically absorbent boxes having opposite adjacent sidewalls which define a plurality of hot gas passageways; and, a contiguous row of spaced apart, hollow resonator boxes which are aligned with the acoustically absorbent boxes so as to continue the hot 0 gas passageways.
- the spaced apart resonator boxes have adjacent opposite sidewalls, which include a plurality of openings therein, bounding and defining the hot gas passageways so that sound waves pass into the resonator boxes whereupon they are reflected off the interior walls to cancel incoming sound waves. Noise is selectively attenuated through this wave cancellation process while gas pressure losses are minimized throughout the gas passageways.
- FIG. 1 is a partially cutaway isometric view of one embodiment of a gas turbine exhaust silencer.
- FIG. 2 is an isometric view of the present invention incorporated into a partial showing of one embodiment of a low-frequency silencing section.
- a gas turbine exhaust silencer shown in FIG. I, is indicated generally at 11, adjacent the exhaust end of a gas turbine (not shown) housed in a turbine enclosure.
- the exhaust silencer communicates with the gas turbine through an exhaust plenum and an exhaust transition.
- the exhaust silencer may be supported by a skeletal structural frame 13 defining an exhaust duct including flanged beams 21 supported by flanged columns 27.
- low-frequency silencing sections there are two low-frequency silencing sections.
- One of these low-frequency sections includes an acoustic box section and a resonator section.
- the acoustic box section may comprise a row of conventionally mounted, soundabsorbing boxes or may be similar to the acceleration section" in the Smith and Frederick application.
- the latter arrangement provides a row of large hollow boxes 35, filled with suitable acoustic thermal insulating material 47 and has a hollow box beam 45 running therethrough for support and ventilation purposes.
- the box beam, through the acoustic box rests freely on opposite support beams which define the exhaust duct.
- the acoustic boxes are arranged in a row, side by side, and have perforated op-' posite adjacent sidewalls 49 forming a plurality of gas flow passageways 39. Sound is absorbed into the suitable acoustical, thermal insulation 47, which may be fiberglass, through the perforated opposite, adjacent sidewalls.
- Other closure portions 51, of the acoustic boxes are generally fabricated from non-perforated.
- a resonator section which forms the subject matter of the present invention, may be supported by the acoustic box section in the manner described in the Smith and Frederick application for an expansion section.
- the resonator section includes a row of side-byside hollow resonator boxes 69 disposed across the exhaust duct defined by the structural frame and spaced apart so as to be in alignment with the gas passageways 39 formed by opposite, adjacent acoustic box sidewalls 49 and therefore effectively continuing the gas passageways.
- the resonator boxes 69 have opposite, adjacent sheet metal sidewalls 71 continuing the gas passageways. These sidewalls have a plurality of openings 75 formed therein communicating with the gas passageways 39.
- End walls 79 of the resonator boxes are fabricated from non-perforated sheet metal to complete the enclosure.
- the resonator boxes may be tuned for different noise attenuations by varying the diameters of the sidewall openings, the center-to-center spacing of the openings and the length and number of resonators in the flow direction.
- the maximum noise attenuation peak for the silencer (about 60db). If the openings are r-inch diameter on 5% inch centers, the maximum attenuation peak will occur in that third octave band having 100 cycles per second as its center frequency. if the openings are l-inch diameter on 9- inch centers, then, the maximum attenuation peak will occur in the third octave band having 80 cycles per second as its center frequency.
- the first resonator being 2 feet long in the gas flow direction having l-inch diameter openings on 9-inch centers, the second also being 2 feet long but having %-inch diameter openings on 5% inch centers, then a broader,
- the resonator section there may be another low-frequency silencing section of the kind disclosed in the Smith and Frederick application.
- the expansion section is a large vacant volume in which gas is allowed to decrease in pressure and velocity with a corresponding decrease in sound energy.
- a parallel baffle section is supported above the upper acoustic box section and the expansion section.
- the parallel baffle sec tion includes a row of spaced apart, relatively thin in a direction perpendicular to the gas flow, acoustically absorbent parallel baffles 29. Because of the thin baffle dimensions, they are useful in attenuating highfrequency noise. From the parallel baffle section the hot gases may be exhausted to the atmosphere.
- Hot exhaust gases from the exhaust end of a gas turbine pass through the exhaust plenum and the exhaust transition into an acoustic box section.
- the row of spaced apart acoustic boxes provide gas passageways through the acoustic box section. Perforated, opposite adjacent sidewalls of the acoustic boxes which defme the gas passageways permit low-frequency sound absorption into the acoustical and thermally insulated boxes.
- the hot gases then flow into the resonator section which comprises a row of hollow spaced apart boxes aligned with the acoustic boxes so as to continue the gas passageways.
- Opposite adjacent resonator box sidewalls .having openings therein permit selected sound wave frequencies to enter the resonator box; be reflected off interior portions of the box and thereafter to cancel incoming sound waves.
- Both the acoustic box section and the resonator section are useful in attenuating low-frequency sounds because of their rather broad geometry in a direction perpendicular to the gas flow. Also, the-resonator section may be tuned to attenuate selected low-frequency noises.
- The'acoustic box section and the resonator section may be followed by another low-frequency section comprising the same elements or, in the alternative, a low-frequency silencing section comprising an acoustic box section and a hollow expansion section.
- This other low-frequency section may be entirely eliminated according to silencing needs and only a parallel baffle section may be included following any arrangement of low-frequency silencing sections.
- a row of acoustically absorbent boxes disposed across said duct and filled with acoustical, thermal insulating material, said acoustically absorbent boxes being spaced apart to form a plurality of gas passageways in the duct;
- said adjacent opposite sidewalls formed with openings communicating the gas passageways with the interior of each box.
- a gas turbine exhaust silencer including a structural frame defining an exhaust duct for carrying exhaust gases to the atmosphere, the combination of:
- a first low-frequency silencing section disposed across said duct including a row of acoustically absorbent boxes spaced apart to provide gas passageways, and, at least one contiguous row of resonator boxes aligned with the acoustically absorbent boxes to continue the gas passageways;
- a second low-frequency silencing section disposed across said duct including a second row of acoustically absorbent boxes spaced apart to further continue the gas passageways and, an expansion section defined by a large vacant chamber contiguous with said second row of acoustically absorbent boxes and disposed within the exhaust duct;
- a high-frequency silencing section including a row of relatively thin, acoustically absorbent parallel baffles contiguous with said expansion section and disposed across said exhaust duct.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Exhaust Silencers (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Chimneys And Flues (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US18709071A | 1971-10-06 | 1971-10-06 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3709319A true US3709319A (en) | 1973-01-09 |
Family
ID=22687564
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00187090A Expired - Lifetime US3709319A (en) | 1971-10-06 | 1971-10-06 | Resonator chamber silencer for gas turbine |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US3709319A (enrdf_load_stackoverflow) |
| JP (1) | JPS4844612A (enrdf_load_stackoverflow) |
| DE (1) | DE2248638A1 (enrdf_load_stackoverflow) |
| GB (1) | GB1375600A (enrdf_load_stackoverflow) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4122912A (en) * | 1977-03-23 | 1978-10-31 | The United States Of America As Represented By The Secretary Of The Navy | Dry cooled jet aircraft runup noise suppression system |
| US4747467A (en) * | 1986-04-01 | 1988-05-31 | Allied-Signal Inc. | Turbine engine noise suppression apparatus and methods |
| CH691191A5 (de) * | 2000-01-06 | 2001-05-15 | Rudolf Ing Htl Gehring | Drehverbindung auf Gleitlagerbasis. |
| US6539702B2 (en) * | 1997-09-25 | 2003-04-01 | Mitsubishi Heavy Industries, Ltd. | Gas turbine exhaust passage and damper system for same having a non-enclosed porous peripheral wall |
| US6705428B2 (en) | 2000-12-08 | 2004-03-16 | Abb Turbo Systems Ag | Exhaust gas system with helmholtz resonator |
| US20110168482A1 (en) * | 2010-01-08 | 2011-07-14 | Laxmikant Merchant | Vane type silencers in elbow for gas turbine |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4260037A (en) * | 1979-10-29 | 1981-04-07 | Deere & Company | Assembly for silencing engine cooling fan noise |
| JPH0616971B2 (ja) * | 1985-01-30 | 1994-03-09 | 株式会社井上ジャパックス研究所 | 穴明放電加工装置 |
| FI86475C (fi) * | 1985-11-27 | 1992-08-25 | Mitsubishi Materials Corp | Vaermeoeverfoeringsmaterial och dess framstaellningsfoerfarande. |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2324706A (en) * | 1941-01-02 | 1943-07-20 | Jacobson & Company Inc | Method and means for acoustical treatment |
| GB638407A (en) * | 1948-05-27 | 1950-06-07 | Douglas Jack Wayth Cullum | Noise-suppressing apparatus for use in conjunction with stationary jet propulsion engines |
| US2842222A (en) * | 1954-09-14 | 1958-07-08 | Burnett Estes | Acoustical test cell structures |
| US2884086A (en) * | 1956-04-24 | 1959-04-28 | John T Welbourn | Sound-absorbing housing and structure |
| US2959243A (en) * | 1956-03-29 | 1960-11-08 | Gen Sound Control Inc | Sound absorbing structure |
| US3347338A (en) * | 1965-06-28 | 1967-10-17 | Albert F Childress | Sound suppressor with baffle grids arranged across fluid stream passageway |
-
1971
- 1971-10-06 US US00187090A patent/US3709319A/en not_active Expired - Lifetime
-
1972
- 1972-09-19 GB GB4331672A patent/GB1375600A/en not_active Expired
- 1972-10-04 DE DE19722248638 patent/DE2248638A1/de active Pending
- 1972-10-06 JP JP47099938A patent/JPS4844612A/ja active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2324706A (en) * | 1941-01-02 | 1943-07-20 | Jacobson & Company Inc | Method and means for acoustical treatment |
| GB638407A (en) * | 1948-05-27 | 1950-06-07 | Douglas Jack Wayth Cullum | Noise-suppressing apparatus for use in conjunction with stationary jet propulsion engines |
| US2842222A (en) * | 1954-09-14 | 1958-07-08 | Burnett Estes | Acoustical test cell structures |
| US2959243A (en) * | 1956-03-29 | 1960-11-08 | Gen Sound Control Inc | Sound absorbing structure |
| US2884086A (en) * | 1956-04-24 | 1959-04-28 | John T Welbourn | Sound-absorbing housing and structure |
| US3347338A (en) * | 1965-06-28 | 1967-10-17 | Albert F Childress | Sound suppressor with baffle grids arranged across fluid stream passageway |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4122912A (en) * | 1977-03-23 | 1978-10-31 | The United States Of America As Represented By The Secretary Of The Navy | Dry cooled jet aircraft runup noise suppression system |
| US4747467A (en) * | 1986-04-01 | 1988-05-31 | Allied-Signal Inc. | Turbine engine noise suppression apparatus and methods |
| US6539702B2 (en) * | 1997-09-25 | 2003-04-01 | Mitsubishi Heavy Industries, Ltd. | Gas turbine exhaust passage and damper system for same having a non-enclosed porous peripheral wall |
| US6668540B2 (en) | 1997-09-25 | 2003-12-30 | Mitsubishi Heavy Industries, Ltd. | Gas turbine exhaust passage and damper system for same |
| US20050188673A1 (en) * | 1997-09-25 | 2005-09-01 | Mitsubishi Heavy Industries, Ltd. | Gas turbine exhaust passage and damper system for same |
| US6966172B2 (en) | 1997-09-25 | 2005-11-22 | Mitsubishi Heavy Industries, Ltd. | Gas turbine exhaust passage and damper system for same |
| CH691191A5 (de) * | 2000-01-06 | 2001-05-15 | Rudolf Ing Htl Gehring | Drehverbindung auf Gleitlagerbasis. |
| US6705428B2 (en) | 2000-12-08 | 2004-03-16 | Abb Turbo Systems Ag | Exhaust gas system with helmholtz resonator |
| US20110168482A1 (en) * | 2010-01-08 | 2011-07-14 | Laxmikant Merchant | Vane type silencers in elbow for gas turbine |
| US8087491B2 (en) | 2010-01-08 | 2012-01-03 | General Electric Company | Vane type silencers in elbow for gas turbine |
| US8230967B2 (en) | 2010-01-08 | 2012-07-31 | General Electric Company | Vane type silencers in elbow for gas turbine |
Also Published As
| Publication number | Publication date |
|---|---|
| JPS4844612A (enrdf_load_stackoverflow) | 1973-06-27 |
| GB1375600A (enrdf_load_stackoverflow) | 1974-11-27 |
| DE2248638A1 (de) | 1973-04-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2989136A (en) | Sound attenuation | |
| US6966172B2 (en) | Gas turbine exhaust passage and damper system for same | |
| US3887031A (en) | Dual-range sound absorber | |
| US3734234A (en) | Sound absorption structure | |
| US2674335A (en) | Muffler construction | |
| JPS6046311B2 (ja) | 消音装置 | |
| JPS6258006A (ja) | 排気ガスマフラ | |
| US3709319A (en) | Resonator chamber silencer for gas turbine | |
| GB1406844A (en) | Sound absorbing panels | |
| JPH0578040B2 (enrdf_load_stackoverflow) | ||
| US3738448A (en) | Sound silencing method and apparatus | |
| JPS5825812B2 (ja) | ボウオンコウチクブツコウセイヨウボウオンコウゾウタイ | |
| US2959243A (en) | Sound absorbing structure | |
| US7350620B2 (en) | Compact silencer | |
| US4113048A (en) | Method of and device for attenuating the noise radiated by gas jets | |
| US3762498A (en) | Gas turbine exhaust silencer | |
| US3704762A (en) | Gas turbine exhaust silencer and support | |
| JPH07139429A (ja) | ジェットエンジン用の騒音抑止装置に使用される騒音抑止要素 | |
| JPS63282449A (ja) | 送風装置 | |
| JPH01302060A (ja) | 送気ダクトの共振消音装置 | |
| US3746114A (en) | Sound attenuating structure | |
| US4196793A (en) | Method of and device for attenuating the noise radiated by gas jets | |
| JPH06146845A (ja) | 消音装置 | |
| JPS58156136A (ja) | 換気口用消音装置 | |
| SU1048137A1 (ru) | Глушитель шума Терка |