US3700849A - Multiple grooving of pavement - Google Patents

Multiple grooving of pavement Download PDF

Info

Publication number
US3700849A
US3700849A US11470A US3700849DA US3700849A US 3700849 A US3700849 A US 3700849A US 11470 A US11470 A US 11470A US 3700849D A US3700849D A US 3700849DA US 3700849 A US3700849 A US 3700849A
Authority
US
United States
Prior art keywords
pavement
particles
cutting
slurry
reusable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US11470A
Other languages
English (en)
Inventor
Edward A Zuzelo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EDWARD A ZUZELO
Original Assignee
EDWARD A ZUZELO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EDWARD A ZUZELO filed Critical EDWARD A ZUZELO
Application granted granted Critical
Publication of US3700849A publication Critical patent/US3700849A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/08Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades
    • E01C23/085Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades using power-driven tools, e.g. vibratory tools
    • E01C23/088Rotary tools, e.g. milling drums
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01HSTREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
    • E01H1/00Removing undesirable matter from roads or like surfaces, with or without moistening of the surface
    • E01H1/10Hydraulically loosening or dislodging undesirable matter; Raking or scraping apparatus ; Removing liquids or semi-liquids e.g., absorbing water, sliding-off mud
    • E01H1/101Hydraulic loosening or dislodging, combined or not with mechanical loosening or dislodging, e.g. road washing machines with brushes or wipers
    • E01H1/103Hydraulic loosening or dislodging, combined or not with mechanical loosening or dislodging, e.g. road washing machines with brushes or wipers in which the soiled loosening or washing liquid is removed, e.g. by suction
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C2301/00Machine characteristics, parts or accessories not otherwise provided for
    • E01C2301/50Methods or devices for preventing dust by spraying or sucking

Definitions

  • ABSTRACT [51] Int. Cl ..E01c 23/09 Particles of pavement removed by cutting thereof into Field of Search 8, 39; 175/66, 20 multiple grooves to impart antiskid properties thereto 15/320; 51/264, 270 are slurried with water and the slurry disposed of remote from the pavement. Particles of cutting materi- [56] References C'ted a1 slurried therewith are reclaimed therefrom for P reuse, and pavement P31116165 are 01311011811) recovered from the slurry as well.
  • a primary object of the present invention is elimination of safety hazards attendant upon or consequent to multiple grooving of pavement.
  • Another object is improvement in efficiency of multiple grooving of pavement.
  • a further object is more economical multiple grooving of pavement.
  • FIG. 1 is a partially schematic side elevation of a machine useful according to the present invention in the multiple grooving of pavement;
  • FIG. 2 is a similar view of auxiliary apparatus shown in trailer form
  • FIG. 3 is an enlarged side sectional elevation of a detail of FIG. 1;
  • FIG. 4 is a sectional plan taken at IVIV of FIG. 3;
  • FIG. 5 is a schematic flow diagram applicable to the foregoing in the practice of this invention.
  • the objects of the present invention are accomplished, in multiple grooving of pavement to improve traction thereon when wet, wherein particles of pavement material and cutting material result from grooving engagement of cutting means with the pavement at a cutting location, by slurrying such resulting particles with water supplied to the cutting location, collecting such slurry, and reclaiming reusable cutting particles therefrom.
  • particles of cutting material slurried therewith are recovered therefrom for reuse, and preferably centrifugally, pavement particles are optionally recovered centrifugally from the slurry as well.
  • FIG. 1 shows steerable machine having a set of front wheels 13 and a set of rear wheels 15 (only one of each being visible) on pavement l and having frame 11 supported by the wheels and carrying thereon additional components.
  • engine 14 Shown in block form on the frame at the front are engine 14 and, driven directly by the engine, generator 16 and hydrostatic drive 17.
  • cutting assembly 20 Suspended under the midportion of the frame on retractable support 21 is cutting assembly 20, which is shown fragmentarily in greater detail in FIGS. 3 and 4.
  • Fluid line 31 connects the hydrostatic drive to the cutter assembly to rotate the cutting discs or blades.
  • Suitable hydraulic motors to which lines 30 and 31 connect to drive the machine and the cutter assembly, respectively, are not shown but are constructed and connected to the wheel axle and the cutter shaft as is well known in the art.
  • the machine may be driven by mechanical coupling to the engine through suitable reduction gearing, and the cutter assembly may be rotated by similar mechanical interconnection; or, if desired, either or both drives may be electric, from one or more engine-driven generators or alternators.
  • front-wheel drive is indicated for the machine itself, that the rear wheels may be driven instead of or in addition to the front wheels.
  • This invention is independent of any particular form of drive of the machine itself or of the cutter assembly, being useful with any suitable forms of drive.
  • FIG. 2 shows trailer 40 with bed 41 supported on front wheels 43 and rear wheels 45 (only one of each being visible) and carrying reservoir or source tank 42 with inlet 46 for clean water and storage tank 44 with outlet 48 for the slurry or more specifically for used water from the slurry.
  • Normally closed valve 50 may be opened to interconnect the source tank and the storage tank if and when desired.
  • Lines 32 from the clean water source tank and return line 34' to the storage tank are readily attachable to and detachable from respective lines 32 and 34 on the machine of FIG. 1 by means of the fittings shown terminating the lines.
  • Interposed between the return line and the storage tank are two centrifugal separators of conventional hydrocyclone type.
  • First separator 51 receives slurry from the cutter assembly through line 34', which constitutes the hydrocyclone feed line; the hydrocyclone underflow passes into compartment 53 thereunder, while the overflow passes through line 35 (containing an appropriate pump) to second separator 52, for which it constitutes the hydrocyclone feed line.
  • the underflow from the second separator passes into compartment 54 thereunder, while the overflow passes through line 36 into storage tank 44.
  • First compartment 53 has line 55 (with pump) for fresh water from source tank 42 entering the top and has line 56 (with pump and check valve) for used water leaving the bottom and joining line 35 leading to the second separator.
  • Second compartment 54 has line 58 from the bottom joining line 65 (with dual pump at the junction), which in turn (with check valve) joins line 36 leading to storage tank 44.
  • the respective compartments are openable on the opposite side (not shown) and optionally on the visible side also to facilitate removal of the underflow materials accumulated therein.
  • brush assembly 60 Supported underneath the midportion of trailer bed 41 is brush assembly 60, comprising cylindrical rotary brush 62 protruding into contact with the pavement underneath surrounding shroud 63.
  • Line 64 (with pump) leads to jets 68 (one visible) directed from the rear toward the conjunction of the brush with the pavement, while return line 65 from a trough (not visible) formed by the bottom of the shroud joins line 58 (at the last mentioned dual pump) and then joins line 36 leading to the storage tank as aforementioned.
  • Drive chain (or belt) 69 from the rear wheels to the brush rotates it in a direction opposite to the direction of travel of the trailer.
  • the various pumps on the trailer are provided with electrical leads (not shown) to connect with connectors 37 located at the rear of frame 11 of the machine and terminating the illustrated electrical leads from the generator.
  • FIGS. 3 and 4 show cutter assembly of FIG. 1 on an enlarged scale, in side sectional elevation and sectional plan, respectively.
  • Horizontal shaft 70 is supported at its ends by yoke 21 and carries, spaced equally along the shaft and transversely of the machine itself, a multiplicity of cutting discs or blades 71 detachably secured thereto between spacers 72.
  • Shroud 74 of generally involute cross-sectional form has end plate 76 and surrounds the blades except at the bottom, being closer to the blades at the front and further therefrom at the rear.
  • the shroud is closed underneath at the front by relatively small sloping trough 73 connected to return line 33, and at the rear by relatively large sloping trough 75 connected to return line 38.
  • the rear trough is a multiplicity of jet nozzles 78 fed from manifold 77, which is connected by line 79 to clean water line- 32.
  • the nozzles are spaced under and between adjacent blades and direct the water sideways and forward against the blades and toward the cutting junction of the blades with pavement 1, in which they are forming multiplicity of grooves 100 (one visible).
  • the machine is operated to move forward slowly and to rotate the blades relatively rapidly to cut a multiplicity of shallow parallel grooves closely spaced and extending in the longitudinal direction of machine movement. Clean water is supplied to the. cutting location, where it is slurried with particles of pavement removed by the abrasive cutting and with particles of cutting material (chiefly diamonds) dislodged from the blades themselves.
  • the resulting slurry is picked up and forwarded to the first stage of centrifugal separation, wherein the diamond or other dense particles of cutter material are largely segregated in the underflow, while the overflow slurry of pavement particles passes out the overflow.
  • the underflow is washed with additional clean water in a conventional filtration compartment, optionally with mechanical agitation of the filter elements (usually fine metallic screens), after which the wash water is added to the overflow from the first separation, which then constitutes the feed for the second separation.
  • the diamonds are recovered manually at suitable intervals for reuse in manufacture of additional cutter blades or for other appropriate use.
  • the pavement particles are largely segregated in the underflow, which has a dense ropy consistency and accumulates in the form of a damp sludge, from which some water may be pumped away to the used water storage, which is where the overflow from the second separation also goes.
  • the accumulated sludge is removed manually at appropriate intervals for disposal at a remote site either wet or after drying, whereupon the resulting caked powder is suitable for use as a filler in various cementitious construction materials or the like.
  • Particulate material not picked up at the cutting location is subjected to a second pickup step, as the trailer passes thereover, through the brushing action and supplying of additional slurrying water to the brushing location.
  • the resulting slurry is fed to storage tank 44 via connection with line 65, as already indicated by reference to FIG. 2, but in the event of an appreciable diamond concentration at the brushing location the slurry is optionally fed by alternative connection with line 34, 34 (as in FIG. 5) to the first separation step along with the slurry from the cutting location.
  • the entire process is continuous and can continue until all the clean water has been used, whereupon most of it will have collected in the storage tank in the form of used water, i.e., containing unseparated pavement particles and perhaps a slight amount of cutter material in particulate form, together with oil, rubber, soil and the like removed from the pavement surface.
  • the trailer may be detached from the machine and be replaced by another trailer having a full tank of clean water and an empty tank for used water, as well as clean compartments for diamonds and forsludge.
  • the clean water and used water tanks may be interconnected by opening the valve therebetween (as suggested by the broken line in FIG.
  • the present invention avoids flooding the pavement being grooved, and possibly an adjoining traveled lane of pavement to which the water would drain, which is hazardous to traffic. It also avoids leaving an incrustation of pavement particles, such as impairs the effectiveness of the grooving and also presents a hazard when dislodged subsequently, as by jet engines. Economy of operation is effected by recovery of diamonds or other valuable components of the cutter material, as well as by possible use of byproduct particulate pavement material. Other advantages and benefits thereof will accrue and become apparent to those undertaking to practice the invention.
  • Procedure for producing multiple parallel grooves in pavement to improve traction thereon when wet comprising the steps of rotating cutting means in grooving engagement with the pavement at a multiplicity of laterally spaced locations and simultaneously moving the rotating cutting means in the grooving direction, thereby dislodging particles of pavement material and denser particles of reusable cutting material from the cutting means during groove formation; supplying water thereto and thereby forming a slurry of such particles, and collecting such slurry; scrubbing the grooved pavement subsequent to such original slurry formation and subjecting water used in such subsequent scrubbing step to a hydrocycloning step, concentrating particles of reusable cutting material by hydrocycloning the slurry, and so recovering particles of reusable cutting material therefrom; and disposing of the residual slurry containing component particulate pavement material at a remote location.
  • the improvement comprising reclaiming dislodged diamond particles for subsequent reuse, including subsequently scrubbing the pavement at the former cutting location, thereby forming a slurry of dislodged particles in water, and collecting such slurry for reclamation of diamond particles therefrom.
  • Process according to claim 2 including performing the scrubbing step while the pavement is wet from slurrying performed previously in the vicinity of the cutting location.
  • Process according to claim 4 including the subsequent steps of separating from the recovered mate rial predominantly liquid and predominantly solid fractions.
  • Process according to claim 5 including the further step of separating from the predominantly solid material a first fraction consisting essentially of pavement material and a second fraction consisting essentially of cutting material.
  • Process according to claim 8 including the step of brushing the grooved pavement at the scrubbing location.
  • Procedure for producing multiple parallel grooves in pavement to improve traction thereon when wet comprising the steps of rotating cutting means in grooving engagement with the pavement at a multiplicity of laterally spaced locations and simultaneously moving the rotating cutting means in the grooving direction, thereby dislodging particles of pavement material and denser particles of reusable cutting material from the cutting means during groove formation; supplying water thereto and thereby forming a slurry of such particles, and collecting such slurry; scrubbing the grooved pavement subsequent to such original slurry formation and subjecting water used in such subsequent scrubbing step to a separation step, concentrating particles of reusable cutting material, and so recovering particles of reusable cutting material therefrom; and disposing of the residual slurry containing component particulate pavement material at a remote location.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Road Repair (AREA)
  • Road Paving Structures (AREA)
US11470A 1970-02-16 1970-02-16 Multiple grooving of pavement Expired - Lifetime US3700849A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US1147070A 1970-02-16 1970-02-16

Publications (1)

Publication Number Publication Date
US3700849A true US3700849A (en) 1972-10-24

Family

ID=21750523

Family Applications (1)

Application Number Title Priority Date Filing Date
US11470A Expired - Lifetime US3700849A (en) 1970-02-16 1970-02-16 Multiple grooving of pavement

Country Status (10)

Country Link
US (1) US3700849A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
JP (1) JPS5038256B1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
AU (1) AU2436571A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
BE (1) BE762384A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
CA (1) CA954734A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
DE (1) DE2107161A1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
FR (1) FR2080516B1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
GB (1) GB1297887A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
LU (1) LU62543A1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
NL (1) NL7101424A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779606A (en) * 1971-03-01 1973-12-18 C Hatcher Pavement cutting machine with improved liquid coolant supply
US3788704A (en) * 1972-09-15 1974-01-29 Cardinal Ind Inc Water system in multiple grooving of pavement
US3989184A (en) * 1973-06-26 1976-11-02 Hartmut Albishausen Apparatus for collecting and classifying a mixture of solid, gaseous and liquid constituents
US4554066A (en) * 1984-01-04 1985-11-19 Turbitt David Mark Density classification of particulate materials by elutriation methods and apparatus
US4770711A (en) * 1984-08-24 1988-09-13 Petroleum Fermentations N.V. Method for cleaning chemical sludge deposits of oil storage tanks
US5470466A (en) * 1993-03-17 1995-11-28 Schaaf; William R. Method and apparatus for removing ferrous particles from coolant fluid during machining
US20110192389A1 (en) * 2008-10-08 2011-08-11 Eun Young Jang Environmentally-friendly cutting apparatus using a wire saw, and cutting method using same
US20170275181A1 (en) * 2016-03-28 2017-09-28 Acme Concrete Paving, Inc Mobile water recycling recovery system and methods
US20220316333A1 (en) * 2021-04-06 2022-10-06 Bomag Gmbh Ground milling machine with energy supply system, method for operating a ground milling machine, and method for retrofitting a ground milling machine
US20240035240A1 (en) * 2022-08-01 2024-02-01 Wirtgen Gmbh Self-propelled earth working machine having a coolant discharge tank
US12226925B2 (en) 2020-02-04 2025-02-18 Baron Investments, Llc Spacers for cutting and grinding blades, blade and spacer assemblies, and gang blade assemblies and methods relating to same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO841436L (no) * 1984-04-11 1985-10-14 Nodest Vei As Fremgangsmaate og anordning for utbedring av baerelag for veibelegg.
US4827559A (en) * 1985-07-10 1989-05-09 Federal-Mogul Corporation Vacuum system for pavement grooving machine
DE9105598U1 (de) * 1991-05-06 1991-07-18 Burger-Armaturen GmbH, 5840 Schwerte Vorrichtung zum Einbringen eines Bauelements in eine Straßendecke
DE19541887A1 (de) * 1995-11-10 1997-05-15 Rainer Scholz Verfahren und Vorrichtung zur Abreinigung einer durch umweltschädliche Medien kontaminierten und/oder in ihrer Griffigkeit beeinträchtigten Fahrbahn oder sonstigen Verkehrsfläche
CN106192848B (zh) * 2016-07-18 2018-04-13 陈友贵 一种多功能立体环卫清扫车
CN113585015B (zh) * 2021-08-24 2023-06-27 中庆建设有限责任公司 一种市政混凝土路面压纹设备
DE102023207508A1 (de) * 2023-08-04 2025-02-06 Bomag Gmbh VERFAHREN ZUR STAUBREDUKTION BEIM FRÄSBETRIEB EINER SELBSTFAHRENDEN BODENFRÄSMA-SCHINE, INSBESONDERE STRAßENFRÄSE, RECYCLER ODER STABILISIERER, SOWIE SELBSTFAHRENDE BODENFRÄSMASCHINE

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2680260A (en) * 1947-08-06 1954-06-08 Danielsson Nils Johan Scrubbing machine with rotating brush for scrubbing surfaces
US2771718A (en) * 1952-02-16 1956-11-27 Gustafson Aron Stone polishing machine
US2905266A (en) * 1957-08-16 1959-09-22 Torit Mfg Company Separators
US2919898A (en) * 1957-08-16 1960-01-05 Phillips Petroleum Co Treatment of well drilling mud
US3119602A (en) * 1962-05-15 1964-01-28 Bert E Johnson Sludge removal hood and bonnet assembly for a rotary power-driven saw
US3407005A (en) * 1967-02-13 1968-10-22 Concut Inc Pavement leveling or grooving machine
US3572841A (en) * 1969-01-15 1971-03-30 Norton Co Material pickup for groove cutters
US3598446A (en) * 1969-06-11 1971-08-10 Concut Inc Pavement surfacing machine with vacuum water recovery system
US3608968A (en) * 1969-04-03 1971-09-28 Christensen Diamond Prod Co Pavement cutting and water and cutting pickup apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2628730B (en) * 1930-04-17 1931-04-23 George Francis Atyeo Stone and such like material where ball shot or like abrasive material is employed

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2680260A (en) * 1947-08-06 1954-06-08 Danielsson Nils Johan Scrubbing machine with rotating brush for scrubbing surfaces
US2771718A (en) * 1952-02-16 1956-11-27 Gustafson Aron Stone polishing machine
US2905266A (en) * 1957-08-16 1959-09-22 Torit Mfg Company Separators
US2919898A (en) * 1957-08-16 1960-01-05 Phillips Petroleum Co Treatment of well drilling mud
US3119602A (en) * 1962-05-15 1964-01-28 Bert E Johnson Sludge removal hood and bonnet assembly for a rotary power-driven saw
US3407005A (en) * 1967-02-13 1968-10-22 Concut Inc Pavement leveling or grooving machine
US3572841A (en) * 1969-01-15 1971-03-30 Norton Co Material pickup for groove cutters
US3608968A (en) * 1969-04-03 1971-09-28 Christensen Diamond Prod Co Pavement cutting and water and cutting pickup apparatus
US3598446A (en) * 1969-06-11 1971-08-10 Concut Inc Pavement surfacing machine with vacuum water recovery system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779606A (en) * 1971-03-01 1973-12-18 C Hatcher Pavement cutting machine with improved liquid coolant supply
US3788704A (en) * 1972-09-15 1974-01-29 Cardinal Ind Inc Water system in multiple grooving of pavement
US3989184A (en) * 1973-06-26 1976-11-02 Hartmut Albishausen Apparatus for collecting and classifying a mixture of solid, gaseous and liquid constituents
US4554066A (en) * 1984-01-04 1985-11-19 Turbitt David Mark Density classification of particulate materials by elutriation methods and apparatus
US4770711A (en) * 1984-08-24 1988-09-13 Petroleum Fermentations N.V. Method for cleaning chemical sludge deposits of oil storage tanks
US5470466A (en) * 1993-03-17 1995-11-28 Schaaf; William R. Method and apparatus for removing ferrous particles from coolant fluid during machining
US20110192389A1 (en) * 2008-10-08 2011-08-11 Eun Young Jang Environmentally-friendly cutting apparatus using a wire saw, and cutting method using same
US20170275181A1 (en) * 2016-03-28 2017-09-28 Acme Concrete Paving, Inc Mobile water recycling recovery system and methods
US12226925B2 (en) 2020-02-04 2025-02-18 Baron Investments, Llc Spacers for cutting and grinding blades, blade and spacer assemblies, and gang blade assemblies and methods relating to same
US20220316333A1 (en) * 2021-04-06 2022-10-06 Bomag Gmbh Ground milling machine with energy supply system, method for operating a ground milling machine, and method for retrofitting a ground milling machine
US20240035240A1 (en) * 2022-08-01 2024-02-01 Wirtgen Gmbh Self-propelled earth working machine having a coolant discharge tank

Also Published As

Publication number Publication date
BE762384A (fr) 1971-07-16
JPS5038256B1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) 1975-12-08
AU2436571A (en) 1972-07-20
FR2080516B1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) 1974-02-15
FR2080516A1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) 1971-11-19
GB1297887A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) 1972-11-29
DE2107161A1 (de) 1971-09-09
NL7101424A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) 1971-08-18
LU62543A1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) 1971-08-17
CA954734A (en) 1974-09-17

Similar Documents

Publication Publication Date Title
US3700849A (en) Multiple grooving of pavement
US3608968A (en) Pavement cutting and water and cutting pickup apparatus
CN115156245B (zh) 车载式渣土处理系统和渣土处理方法
CA2798425C (en) Surface cleaning and recycling apparatus and method
US6733086B1 (en) Vacuum system for milling machine
US3598446A (en) Pavement surfacing machine with vacuum water recovery system
US3802742A (en) Multiple grooving of pavement
CN111255470B (zh) 泥水土压双模式盾构系统及控制方法
DE3744695C2 (de) Verfahren zum Baggern und Aufbereitung von Schlick aus Hafen, Wasserstraßen etc. und Aufnahmekopf für Bagger
US1935643A (en) Process fob treating oil bearing
CN210367083U (zh) 盾构清洗泥浆水回收净化系统
CN221868767U (zh) 一种牵引式混凝土砂石回收设备
JP3932411B2 (ja) トンネル内壁面の洗浄装置
JP2683753B2 (ja) 泥水加圧式シールド掘削装置
CN206560913U (zh) 一种混凝土浆水回收装置
CN211813742U (zh) 一种混凝土运输车清理系统
CA2823113A1 (en) Hydrocarbon reclamation method and assembly
JP3738285B2 (ja) トンネル内壁面の洗浄装置
CN206631744U (zh) 一种沙石分离机的进料槽
KR20160029897A (ko) 콘크리트 노면의 다이아몬드 그라인딩 폐기물 처리를 위한 슬러리 세정차 및 이를 이용한 슬러리 처리방법
JPH0335980B2 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
CN118267778B (zh) 一种用于盾构施工的泥浆处理系统
CN119434069B (zh) 一种道路建设用沥青收集装置
CN109876910B (zh) 用于废汽车回收的汽车破碎装置
CN203343903U (zh) 数控水切割机床用起砂装置