US3686378A - Improved separation of the deposition mandrel from a vapor phase deposited semiconductor body - Google Patents
Improved separation of the deposition mandrel from a vapor phase deposited semiconductor body Download PDFInfo
- Publication number
- US3686378A US3686378A US58458A US3686378DA US3686378A US 3686378 A US3686378 A US 3686378A US 58458 A US58458 A US 58458A US 3686378D A US3686378D A US 3686378DA US 3686378 A US3686378 A US 3686378A
- Authority
- US
- United States
- Prior art keywords
- carrier
- semiconductor material
- precipitation
- semiconductor
- cracks
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 54
- 230000008021 deposition Effects 0.000 title description 2
- 238000000926 separation method Methods 0.000 title description 2
- 239000012808 vapor phase Substances 0.000 title description 2
- 239000000463 material Substances 0.000 claims abstract description 40
- 238000001556 precipitation Methods 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 21
- 230000001376 precipitating effect Effects 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000007792 gaseous phase Substances 0.000 abstract description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 15
- 229910052710 silicon Inorganic materials 0.000 description 15
- 239000010703 silicon Substances 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910002804 graphite Inorganic materials 0.000 description 8
- 239000010439 graphite Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 208000031872 Body Remains Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- SLLGVCUQYRMELA-UHFFFAOYSA-N chlorosilicon Chemical compound Cl[Si] SLLGVCUQYRMELA-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/01—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/049—Equivalence and options
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/073—Hollow body
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/122—Polycrystalline
Definitions
- Tick ABSTRACT An at least unilaterally open, hollow body of semiconductor material, such as a tubular or cup-shaped body for example, is produced by precipitating the semiconductor material from a gaseous phase upon a heatable carrier consisting of a different material whose thermal coefficient of expansion is greater than that of the semiconductor material. During the process the carrier is heated to a temperature at which the difference in thermal expansion causes fissures or cracks to appear in the precipitated semiconductor material. Thereafter the precipitation of semiconductor materia1 is continued until the cracks are closed by the further growth of precipitating semiconductor material. Ultimately the carrier is removed by pulling or dropping it out of the resulting cooled semiconductor body.
- My invention relates to producing an at least unilaterally open, hollow body of semiconductor material by precipitating the semiconductor material from a gaseous compound or phase of the material upon a heatable carrier structure consisting of a different material, and removing the carrier upon precipitation of a sufficiently thick layer of semiconductor material.
- the semiconductor body thus produced may have an annular or tubular shape open at both sides, or it may consist of a unilaterally closed-tubular or cup-shaped structure.
- FIG. 1 a tubular body 1 of silicon or other semiconductor material shown in perspective
- FIG. 2 shows in cross .sectionan example of a cup-shaped body or crucible boat made of such a material.
- a method of this type proposed previously requires removing the carrier structure from the hollow semiconductor body produced thereupon, by burning the carrier out of the body.
- Another object subsidiary to the one just mentioned is to enable the removal of the carrier structure from the precipitated hollow semiconductor body without destruction or damage to the carrier structure so that it remains applicable for performing one or more further precipitation processes.
- the carrier preferably is made of graphite or the like industrial carbon material.
- I first heat the carrier to the processing temperature required or advantageous for the precipitation of the semiconductor material from the gasous phase until the precipitated layer has reached a given thickness at which the semiconductor body remains sufficiently self-supporting and coherent despite the subsequent formation of fissures or cracks. I then temporarily raise the temperature of the carrier above that employed during the precipitation stage with the result of causing the cracks. Thereafter I again reduce the temperature of the carrier to the one employed during the first precipitation stage, thus causing a further growth of semiconductor material upon the previously precipitated semiconductor layer to make the cracks grow closed.
- the method according to the invention is performed by mounting a carrier, for example a rod or other structure of graphite, in a hermetically closed reaction vessel and then heating the carrier within the vessel while simultaneously passing a gaseous compound of the semiconductor material into the vessel.
- a carrier for example a rod or other structure of graphite
- the process and the processing equipment need not differ from the processes and equipment known for the production of electronic silicon material, described for example in the U.S. Pat. No. 2,999,735 of Reuschel, U.S. Pat. No. 3,146,123 of Bischoff, and U.S. Pat. No. 3,042,494 of Gutsche.
- FIGS. 1 and 2 show a tubular body 1 and a cupshaped body 2, respectively, as described above, and
- FIG.. 3 illustrates schematically and partly in section a tubular body I of silicon precipitated upon a rodshaped cylindrical carrier 3 of graphite.
- the carrier 3 is clamped at both ends and is heated by passing electric current longitudinally through the carrier.
- the heating may also be effected by electric induction heating which is preferably applied for heating the carrier used in the production of a cup-shaped or other unilaterally closed semiconductor body such as the one exemplified in FIG. 2.
- the gaseous phase to be passed into the reaction vessel may consist, for example, of SiHCl mixed with molecular hydrogen H
- the carrier of graphite is heated to the precipitation temperature, for example about l,O50 C to about 1,200 C
- the introduction of the gaseous mixture into the reaction vessel causes crystalline silicon to precipitate upon the carrier.
- This pyrolytic precipitation and deposition process is continued until a desired layer thickness of the semiconductor material is attained, this thickness being dependent upon the dimensions of the hollow semiconductor body to be produced.
- the precipitation can be interrupted when a wall thickness of about 1 mm is attained. Then the carrier is heated to a higher temperature. This has the consequence that the carrier structure of graphite expands more than the precipitated layer of silicon due to the fact that the thermal coefficient of expansion of graphite is greater than that of silicon. The difference in expansion causes the silicon layer to crack.
- the temperature increase during this stage of the process is so chosen that the silicon layer will not completely crack away from the carrier. It has been found advantageous, referring to a tubular semiconductor body of the above-mentioned dimensions, to apply a temperature increase of about 50 to about C. Such a temperature increase has the effect that the inner diameter of the precipitated layer of silicon will slightly widen but the silicon layer will remain a coherent entity.
- the temperature of the carrier structure can. be reduced to a value which may be the minimum at which a further precipitation of crystalline silicon will just remain possible, or the temperature may be maintained at the increased value at which the fissures or cracks have formed in the semiconductor material. Subsequently an additional quantity of crystalline silicon is precipitated until the cracks grow closed.
- the precipitation process need not necessarily be interrupted during the stage of increased temperature.
- the process rather can also be performed so that further silicon will'precipitate during the interval of increased temperature.
- the precipitation process is terminated and the carrier-structure together with the precipitated layer of silicon is permitted to cool. Thereafter the carrier structure can be removed from the tubular or other semiconductor body simply by letting the carrier drop out of the opening of the semiconductor body. Due to its weight and somewhat smaller diameter, the carrier structure will readily slide out of the tubular body and can again be used for the production of another semiconductor body.
- the method of producing an at least unilaterally open hollow body of silicon which comprises precipitating a layer of silicon from a gaseous compound thereof onto a graphite carrier, the precipitation temperature being in the range from about 1,050C to about l,200C, heating the carrier upon precipitation of the layer of semiconductor material to a temperature of about 50C to about C above the precipitation temperature, whereby cracks occur'in the layer of precipitated semiconductor material, then continuing the precipitation of semiconductor material until the cracks are eliminated by further growth of precipitated semiconductor material, cooling the carrier and pulling the carrier from the resulting hollow semiconductor body without destroying said hollow semiconductor body.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
- Carbon And Carbon Compounds (AREA)
- Silicon Compounds (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19691943359 DE1943359A1 (de) | 1969-08-26 | 1969-08-26 | Verfahren zum Herstellen eines mindestens einseitig offenen Hohlkoerpers aus Halbleitermaterial |
Publications (1)
Publication Number | Publication Date |
---|---|
US3686378A true US3686378A (en) | 1972-08-22 |
Family
ID=5743825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US58458A Expired - Lifetime US3686378A (en) | 1969-08-26 | 1970-07-27 | Improved separation of the deposition mandrel from a vapor phase deposited semiconductor body |
Country Status (9)
Country | Link |
---|---|
US (1) | US3686378A (enrdf_load_stackoverflow) |
JP (1) | JPS4819792B1 (enrdf_load_stackoverflow) |
AT (1) | AT308830B (enrdf_load_stackoverflow) |
CH (1) | CH508418A (enrdf_load_stackoverflow) |
DE (1) | DE1943359A1 (enrdf_load_stackoverflow) |
FR (1) | FR2059682B1 (enrdf_load_stackoverflow) |
GB (1) | GB1273097A (enrdf_load_stackoverflow) |
NL (1) | NL7010647A (enrdf_load_stackoverflow) |
SE (1) | SE351320B (enrdf_load_stackoverflow) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3853974A (en) * | 1970-04-06 | 1974-12-10 | Siemens Ag | Method of producing a hollow body of semiconductor material |
US3867497A (en) * | 1972-03-28 | 1975-02-18 | Wacker Chemitronic | Process of making hollow bodies or tubes of semi-conducting materials |
US3950479A (en) * | 1969-04-02 | 1976-04-13 | Siemens Aktiengesellschaft | Method of producing hollow semiconductor bodies |
US3961003A (en) * | 1972-05-17 | 1976-06-01 | Dow Corning Corporation | Method and apparatus for making elongated Si and SiC structures |
US3979490A (en) * | 1970-12-09 | 1976-09-07 | Siemens Aktiengesellschaft | Method for the manufacture of tubular bodies of semiconductor material |
US4062714A (en) * | 1975-09-16 | 1977-12-13 | Wacker-Chemitronic Gesellschaft Fur Elektronik Grundstoffe Mbh | Process for making hollow silicon bodies and bodies utilizing board-shaped members to form the basic geometric shape so made |
US4117802A (en) * | 1976-09-09 | 1978-10-03 | Compagnie Generale D'electricite | Method and device for depositing a layer of glass on the inner wall of a tube |
US4238436A (en) * | 1979-05-10 | 1980-12-09 | General Instrument Corporation | Method of obtaining polycrystalline silicon |
US4332751A (en) * | 1980-03-13 | 1982-06-01 | The United States Of America As Represented By The United States Department Of Energy | Method for fabricating thin films of pyrolytic carbon |
US4550014A (en) * | 1982-09-09 | 1985-10-29 | The United States Of America As Represented By The United States Department Of Energy | Method for production of free-standing polycrystalline boron phosphide film |
US6581415B2 (en) | 2001-01-31 | 2003-06-24 | G.T. Equipment Technologies, Inc. | Method of producing shaped bodies of semiconductor materials |
US20070248521A1 (en) * | 2006-04-13 | 2007-10-25 | Cabot Corporation | Production of silicon through a closed-loop process |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2974388A (en) * | 1958-01-30 | 1961-03-14 | Norton Co | Process of making ceramic shells |
US3139363A (en) * | 1960-01-04 | 1964-06-30 | Texas Instruments Inc | Method of making a silicon article by use of a removable core of tantalum |
US3477885A (en) * | 1965-03-26 | 1969-11-11 | Siemens Ag | Method for producing a structure composed of mutually insulated semiconductor regions for integrated circuits |
US3576932A (en) * | 1969-02-17 | 1971-04-27 | Texas Instruments Inc | Sintering vapor deposited silica on a mandrel designed to reduce shrinkage |
-
1969
- 1969-08-26 DE DE19691943359 patent/DE1943359A1/de active Pending
-
1970
- 1970-07-17 NL NL7010647A patent/NL7010647A/xx unknown
- 1970-07-27 US US58458A patent/US3686378A/en not_active Expired - Lifetime
- 1970-08-18 FR FR707030258A patent/FR2059682B1/fr not_active Expired
- 1970-08-24 CH CH1259570A patent/CH508418A/de not_active IP Right Cessation
- 1970-08-24 GB GB40616/70A patent/GB1273097A/en not_active Expired
- 1970-08-24 AT AT765070A patent/AT308830B/de not_active IP Right Cessation
- 1970-08-25 JP JP45073925A patent/JPS4819792B1/ja active Pending
- 1970-08-26 SE SE11613/70A patent/SE351320B/xx unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2974388A (en) * | 1958-01-30 | 1961-03-14 | Norton Co | Process of making ceramic shells |
US3139363A (en) * | 1960-01-04 | 1964-06-30 | Texas Instruments Inc | Method of making a silicon article by use of a removable core of tantalum |
US3477885A (en) * | 1965-03-26 | 1969-11-11 | Siemens Ag | Method for producing a structure composed of mutually insulated semiconductor regions for integrated circuits |
US3576932A (en) * | 1969-02-17 | 1971-04-27 | Texas Instruments Inc | Sintering vapor deposited silica on a mandrel designed to reduce shrinkage |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3950479A (en) * | 1969-04-02 | 1976-04-13 | Siemens Aktiengesellschaft | Method of producing hollow semiconductor bodies |
US3853974A (en) * | 1970-04-06 | 1974-12-10 | Siemens Ag | Method of producing a hollow body of semiconductor material |
US3979490A (en) * | 1970-12-09 | 1976-09-07 | Siemens Aktiengesellschaft | Method for the manufacture of tubular bodies of semiconductor material |
US3867497A (en) * | 1972-03-28 | 1975-02-18 | Wacker Chemitronic | Process of making hollow bodies or tubes of semi-conducting materials |
US3961003A (en) * | 1972-05-17 | 1976-06-01 | Dow Corning Corporation | Method and apparatus for making elongated Si and SiC structures |
US4062714A (en) * | 1975-09-16 | 1977-12-13 | Wacker-Chemitronic Gesellschaft Fur Elektronik Grundstoffe Mbh | Process for making hollow silicon bodies and bodies utilizing board-shaped members to form the basic geometric shape so made |
US4117802A (en) * | 1976-09-09 | 1978-10-03 | Compagnie Generale D'electricite | Method and device for depositing a layer of glass on the inner wall of a tube |
US4238436A (en) * | 1979-05-10 | 1980-12-09 | General Instrument Corporation | Method of obtaining polycrystalline silicon |
US4332751A (en) * | 1980-03-13 | 1982-06-01 | The United States Of America As Represented By The United States Department Of Energy | Method for fabricating thin films of pyrolytic carbon |
US4550014A (en) * | 1982-09-09 | 1985-10-29 | The United States Of America As Represented By The United States Department Of Energy | Method for production of free-standing polycrystalline boron phosphide film |
US6581415B2 (en) | 2001-01-31 | 2003-06-24 | G.T. Equipment Technologies, Inc. | Method of producing shaped bodies of semiconductor materials |
US20070248521A1 (en) * | 2006-04-13 | 2007-10-25 | Cabot Corporation | Production of silicon through a closed-loop process |
US7780938B2 (en) | 2006-04-13 | 2010-08-24 | Cabot Corporation | Production of silicon through a closed-loop process |
Also Published As
Publication number | Publication date |
---|---|
AT308830B (de) | 1973-07-25 |
SE351320B (enrdf_load_stackoverflow) | 1972-11-20 |
FR2059682A1 (enrdf_load_stackoverflow) | 1971-06-04 |
JPS4819792B1 (enrdf_load_stackoverflow) | 1973-06-15 |
DE1943359A1 (de) | 1971-03-04 |
NL7010647A (enrdf_load_stackoverflow) | 1971-03-02 |
CH508418A (de) | 1971-06-15 |
GB1273097A (en) | 1972-05-03 |
FR2059682B1 (enrdf_load_stackoverflow) | 1974-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3686378A (en) | Improved separation of the deposition mandrel from a vapor phase deposited semiconductor body | |
JP3412636B2 (ja) | 珪素ウェーハの処理方法 | |
JP6537590B2 (ja) | 炭化珪素単結晶インゴットの製造方法 | |
JPS58130517A (ja) | 単結晶薄膜の製造方法 | |
TWI774929B (zh) | 碳化矽單晶的製造方法 | |
US3129061A (en) | Process for producing an elongated unitary body of semiconductor material crystallizing in the diamond cubic lattice structure and the product so produced | |
US3385723A (en) | Carbon article coated with beta silicon carbide | |
JPS61201607A (ja) | 熱分解窒化ホウ素物品およびその製造方法 | |
JP2686223B2 (ja) | 単結晶製造装置 | |
Fan et al. | Zone‐melting recrystallization of 3‐in.‐diam Si films on SiO2‐coated Si substrates | |
US1709781A (en) | Process for precipitating hafnium and zirconium on an incandescent body | |
US2996783A (en) | Method of shaping sic by vaporization and condensation | |
Scharff et al. | Flash‐Lamp‐Induced Crystal Growth of Silicon on Amorphous Substrates Using Artificial Surface‐Relief Structures | |
US3441385A (en) | Reducing dislocation defects of silicon semiconductor monocrystals by heat treatment | |
US3092462A (en) | Method for the manufacture of rods of meltable material | |
JPH0797299A (ja) | SiC単結晶の成長方法 | |
US3649210A (en) | Apparatus for crucible-free zone-melting of crystalline materials | |
US3929556A (en) | Nucleating growth of lead-tin-telluride single crystal with an oriented barium fluoride substrate | |
JPS6317291A (ja) | 結晶成長方法及びその装置 | |
JP2929006B1 (ja) | 高品質結晶薄板材料の製造方法 | |
JPH0218375A (ja) | 半導体単結晶引上げ装置 | |
US3366462A (en) | Method of producing monocrystalline semiconductor material | |
JP2828868B2 (ja) | Ii−vi族化合物半導体の液相結晶成長方法 | |
US4169755A (en) | Growth of crystalline rods of gallium arsenide in a crucible of specially treated fibrous silicon dioxide | |
JPH0543400A (ja) | GaAs単結晶の製造方法 |