US3673074A - Apparatus for improving the heat economy of an electrolytic cell for the production of aluminum - Google Patents
Apparatus for improving the heat economy of an electrolytic cell for the production of aluminum Download PDFInfo
- Publication number
- US3673074A US3673074A US814592A US3673074DA US3673074A US 3673074 A US3673074 A US 3673074A US 814592 A US814592 A US 814592A US 3673074D A US3673074D A US 3673074DA US 3673074 A US3673074 A US 3673074A
- Authority
- US
- United States
- Prior art keywords
- housing
- roof
- anode
- lower edge
- guide rail
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 15
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000003792 electrolyte Substances 0.000 claims description 10
- 238000009413 insulation Methods 0.000 claims description 10
- 230000005855 radiation Effects 0.000 claims description 8
- 238000007789 sealing Methods 0.000 claims description 6
- 238000003780 insertion Methods 0.000 claims description 2
- 230000037431 insertion Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 12
- 239000007789 gas Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 210000002445 nipple Anatomy 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002519 antifouling agent Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/06—Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
- C25C3/08—Cell construction, e.g. bottoms, walls, cathodes
Definitions
- Striker 57 ABSTRACT Method and apparatus for improving the heat economy of electrloytic cells for the production of aluminum in which a sealed housing is provided above the bath of the cell and about the anode extending thereinto to maintain about an anode portion above the bath in said housing a volume of confined air, thereby reducing heat loss to the outer atmosphere.
- the present invention relates to a method and an apparatus for improving the heat economy of electrolytic cells for the production of aluminum, especially of electrolytic cells with continuous, prebaked anodes.
- Electrolytic cells'for the production of aluminum differ with regard to their anodes from each other and cells with so-called green anodes or self-baking continuous anodes, as well as cells which are operated with prebaked anodes, are known in the art.
- Cells with prebaked anodes may be provided with discontinuously operating anodes, or as for instance disclosed in the German Pat. No. 863,999 with continuously operating anodes.
- the method for improving the heat economy of electrolytic cells for aluminum production mainly comprises the step of maintaining above the bath and about the aforementioned portion of the anode a confined volume of air to thus reduce radiation of heat from the anode to the surrounding outer atmosphere.
- the apparatus of the present invention mainly comprises closed housing means covering the open end of the troughshaped container of the cell and surrounding the upper portion of the anode extending upwardly from the electrolyte in the container to maintain about the upper portion of the anode a confined volume of air to thereby reduce heat radiation from the anode to the surrounding atmosphere.
- the anode does not transmit the heat developed therein during operation of the cell to the outer atmosphere surrounding the cell, but the heat developed by the anode will warm up the volume of air confined in the housing until a temperature equilibrium is obtained.
- the walls of the housing will be maintained at a temperature which will approach, when the walls are provided with a heat insulation, the temperature maintained in the interior of the housing.
- the surface of the housing in such a manner that heat losses through radiation are considerably reduced.
- the uniform temperature maintained in the housing will be advantageous for the coking of the adhesive connecting adjacent anode blocks to each other and, due to the higher temperature maintained in the interior of the housing, the electric resistance of the anode will also be reduced.
- the gases forming during the electrolytic process collect in the interior of the housing and are preferably exhausted therefrom since, due to their high fluorine content, such gases should not be discharged into the room in which the electrolytic cell is arranged.
- exhausting gas from the interior of the housing care should be taken that the amount of gas discharged will not exceed the amount of gas developed during the process so that sucking of air from the outer atmosphere into the housing will be prevented.
- FIGURE is a schematic partially sectioned front view of the arrangement according to the present invention.
- the electrolytic cell comprises a trough-shaped container 2 having an upper open end and adapted to contain an electrolyte for the production of aluminum.
- a prebaked anode 4 extends with a lower portion thereof into the container in contact with the electrolyte therein and with a considerable portion thereof beyond the upper edge of the container 2.
- a housing 6 is provided above the open end of the container 2 and surrounding the upper portion of the anode 4 with considerable clearance to maintain above the bath in the container and about the anode4 a confined volume of air to thereby reduce heat radiation from the anode to the surrounding atmosphere.
- the housing 6 includes rigid frame means comprising upper substantially horizontal guide rail means 8 and opposite additional guide rail means 10,10 which are slightly inclined with respect to a vertical inthe direction toward each other.
- the lower ends of the guide rail means 10 and 10' may be fixed to the floor, as shown in the drawing, or to the upper edge of the container 2.
- the front and rear walls 12, respectively 12' of the housing are fixedly connected to the frame means of the housing and these walls may be reinforced by reinforcing ribs 14, only one of which is shown in the drawing.
- the upper portion of the housing may be formed by wall means in form of a truncated pyramid l6 and the upper open end thereof is closed by a roof 18, which is movable along the horizontal guide rails 8 between a closed position, as shown in the drawing, and an open position laterally, to the left as viewed in the drawing, displaced from the closed position, so that when the roof 18 is in the open position additional anode blocks may be.
- each of the side walls 20 of the housing are movable from the closed position, shown in the drawing, in upward direction to an open position along the guide rails 10 and 10 to provide lateral access to the interior of the housing for operation of the electrolytic cell, i.e., for feeding new electrolyte into the container 2.
- each of the side walls 20 comprises a pair of plates 22 and 24 which partly overlap each other.
- the lower plate 24 is connected by chains 26 or the like, which are guided over guide rollers 28, to motor-operated winches 30 or the like, so that the lower plate 24 may be raised by these chains.
- Each of the lower plates 24 has at the lower end thereof an inwardly projecting portion 32 which, during raising of plate 24, engages the bottom edge of-the upper plate 22 to raise the latter also along the respective guide rail during further upward movement of the lower plate 24.
- the necessaryy total opening to be provided will depend on the operating conditions of the electrolytic cell. It is to be understood that the side wall plates 22 and 24 are moved to the open position for a time interval as short as possible in order to reduce cooling of the interior of the housing during opening of the side walls.
- Proper seals are provided at theupper and lower edges of the side wall plates 22 and 24 and such seals may for instance include U-shaped members 34, 34' and 34" respectively connected to the bottom edge of the truncated portion 16 of the housing, the bottom edge of the upper plate 22 and to the ground on which the frame means are mounted and which respectively cooperate with flanges of angle irons 36, 36' and 36" respectively connected to the upper edge of the upper plate 22, the upper edge of the lower plate 24 and to the bottom edge of the latter.
- the spaces in the U-shaped member 34, 34 and 34" may be partly filled with aluminum oxide to provide in cooperation with the flanges of the members 36, 36' and 36" a proper seal.
- the bottom edge of the roof 18 is also sealingly received in a frame 40 of U-shaped crosssection. Lateral movement of the roof 18 between the closed and then open position may be accomplished by a pair of motor-driven and reversible winches 38 and 38' connected to the roof 18 by chains 41 or the like.
- the chains 41 are connected to the roof 18 by means of lifting mechanisms 42, only one of which is shown in the drawing.
- Each of the lifting mechanisms 42 comprises a roller 44 riding on the guide rail means 8 and tumably carried by a lever 46 which is pivotally connected intermediate its ends at 48 to the roof 18, while the upper end of the lever is connected to the respective chain 41.
- a gas discharge opening 52 is provided in the upper truncated portion of the housing for sucking waste gas from the interior of the latter through exhaust means connected to the discharge opening 52.
- a pair of U-shaped beams 54 extend transversely through an upper portion of the interior of the housing and, are connected to the latter in a manner not shown in the drawing.
- the U-shaped beams 54 serve to support, electrically insulated from the beams, conductor means 56 which are connected at the lower ends thereof to nipples 58 projecting laterally from the anode 4.
- the manner in which the conductors 56 are connected to the network is not shown in the drawing.
- the roof l8 and the walls of the housing are provided at the inner surface thereof with heat insulation layers as indicated in the drawing at 18', 16, 22 and 24 and it is understood that the front and rear walls 12 and 12 of the housing are likewise provided with such an insulation.
- This insulation will, during operation of the cell, maintain the volume of air confined in the interior of the housing at a temperature of 180-250C, whereas in the absence of such an insulation, the temperature of the air in the housing would be maintained at a temperature of about C.
- the heat losses of the anode 4 are reduced to such an extent that at the anode side less heat is radiated to the outer atmosphere than in electrolytic cells operated with oxide covered, discontinuous anodes.
- the gas exhausted through the aperture 52 may be washed according to a known process, whereby the fluorine will be recovered and in such a process the high fluorine concentration obtained with the arrangement of the present invention will be of great advantage.
- a structure comprising a trough-shaped container having an upper open end and being adapted to contain an electrolyte; an anode extending with a portion thereof into the electrolyte and having an upper portion above the latter; and closed, heat-insulated housing means covering said open end of said container and surrounding said upper portion of said anode to maintain about the latter a confined volume of air to thereby reduce heat radiation from said anode to the surrounding at mosphere, said housing means comprising rigid frame means, a front and a rear wall fixed to said frame means, and a roof movable between a closed position closing the upper end of said housing means and an open position providing access to the interior of said housing means for insertion of anodes thereinto.
- said housing means comprises further a pair of opposite side wall means each including movable portions and additional opposite guide rail means forming part of said frame means for guiding said movable portions between an open and a closed position.
- each of said opposite side wall means comprises a pair of vertically displaced and partly overlapping movable portions, drive means connected to the lower one of said vertically displaced portions and means connected to the lower edge of said lower portion and engaging the lower edge of the upper portion during raising of the lower portion by the drive means to thereby raise also said upper portion.
- said cooperating sealing means comprise a U-shaped member into which said lower edge of said roof extends,.and wherein said drive means includes lifting means for slightly lifting said roof to thereby lift said lower edge out of said U-shaped member before moving said roof laterally to its open position.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1758149A DE1758149C2 (de) | 1968-04-10 | 1968-04-10 | Vorrichtung zur Verbesserung des Wärmehaushalts von Aluminium-Elektrolysezellen neuzeitlicher Bauart mit vorgebrannten, kontinuierlichen Anoden |
Publications (1)
Publication Number | Publication Date |
---|---|
US3673074A true US3673074A (en) | 1972-06-27 |
Family
ID=5694876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US814592A Expired - Lifetime US3673074A (en) | 1968-04-10 | 1969-04-09 | Apparatus for improving the heat economy of an electrolytic cell for the production of aluminum |
Country Status (6)
Country | Link |
---|---|
US (1) | US3673074A (enrdf_load_stackoverflow) |
AT (1) | AT286658B (enrdf_load_stackoverflow) |
CA (1) | CA927779A (enrdf_load_stackoverflow) |
CH (1) | CH525283A (enrdf_load_stackoverflow) |
DE (1) | DE1758149C2 (enrdf_load_stackoverflow) |
FR (1) | FR2005918A1 (enrdf_load_stackoverflow) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3912615A (en) * | 1973-06-20 | 1975-10-14 | Alexei Andreevich Minchenko | Covering for an aluminium cell with burnt anodes |
US3948749A (en) * | 1975-04-02 | 1976-04-06 | Copperloy Corporation | Aluminum potline shield |
US4033846A (en) * | 1975-09-16 | 1977-07-05 | Lista Og Mosjoen Aluminiumverk, Elkem Aluminum A/S & Co. | Apparatus for gas collection in aluminum smelting furnaces |
US4043892A (en) * | 1975-12-15 | 1977-08-23 | Reynolds Metals Company | Aluminum reduction cell having a lateral enclosure system |
US4218300A (en) * | 1978-08-24 | 1980-08-19 | Swiss Aluminium Ltd. | Covering for a cell for fused salt electrolysis |
USRE31266E (en) * | 1975-09-16 | 1983-06-07 | Lista Og Mosjoen Aluminiumverk, Elkem Aluminum A/S & Co. | Apparatus for gas collection in aluminum smelting furnaces |
US4608135A (en) * | 1985-04-22 | 1986-08-26 | Aluminum Company Of America | Hall cell |
US20130032487A1 (en) * | 2011-08-05 | 2013-02-07 | Olivo Sivilotti | Multipolar Magnesium Cell |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO135874C (enrdf_load_stackoverflow) * | 1974-09-04 | 1977-06-15 | Lista & Mosjoen Alu | |
DE3033710A1 (de) * | 1980-09-02 | 1982-04-01 | Schweizerische Aluminium AG, 3965 Chippis | Vorrichtung zum regulieren des waermeflusses einer aluminiumschmelzflusselektrolysezelle und verfahren zum betrieb dieser zelle |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU193084A1 (ru) * | УСТРОЙСТВО дл УДАЛЕНИЯ ГАЗА ОТ АЛЮМИНИЕВОГО | |||
US2061146A (en) * | 1934-02-24 | 1936-11-17 | Ferrand Louis | Furnace for electrolytic purposes |
US2526876A (en) * | 1948-05-08 | 1950-10-24 | Elektrokemisk As | Method of handling continuous electrodes |
US3351546A (en) * | 1962-10-19 | 1967-11-07 | Pechiney Prod Chimiques Sa | High yield electrolytic fusion cell having anode suspension means |
US3470075A (en) * | 1967-02-06 | 1969-09-30 | Arthur F Johnson | Process and apparatus for filtering effluent produced from aluminum reduction cells |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE445246C (de) * | 1927-06-07 | Vaw Ver Aluminium Werke Ag | Ofen zur Herstellung von Aluminium und aehnlichen Leichtmetallen sowie ihrer Legierungen mittels Schmelzelektrolyse | |
DE863999C (de) * | 1951-07-12 | 1954-02-08 | Vaw Ver Aluminium Werke Ag | Verfahren zum Verbinden der Kohlebloecke von kontinuierlichen Elektroden fuer Elektrooefen, insbesondere fuer die Schmelzflusselektrolyse |
BE534969A (enrdf_load_stackoverflow) * | 1954-01-19 | |||
BE548465A (enrdf_load_stackoverflow) * | 1955-06-08 | |||
DE1160645B (de) * | 1956-07-12 | 1964-01-02 | Montedison Spa | Mehrzellenofen zur Schmelzflusselektrolyse und Verfahren zur Herstellung von Aluminium in einem solchen Ofen |
DE1146259B (de) * | 1960-10-28 | 1963-03-28 | Aluminium Ind Ag | Verfahren zum Auskleiden der Waende der Kathodenwanne einer Aluminium-elektrolysezelle und nach diesem Verfahren hergestellte Kathodenwanne |
US3371020A (en) * | 1964-12-14 | 1968-02-27 | Union Carbide Corp | Process for the electrodeposition of metals |
-
1968
- 1968-04-10 DE DE1758149A patent/DE1758149C2/de not_active Expired
-
1969
- 1969-02-27 CH CH293469A patent/CH525283A/de not_active IP Right Cessation
- 1969-03-18 AT AT266769A patent/AT286658B/de not_active IP Right Cessation
- 1969-04-01 FR FR6909825A patent/FR2005918A1/fr not_active Withdrawn
- 1969-04-09 US US814592A patent/US3673074A/en not_active Expired - Lifetime
- 1969-04-10 CA CA048311A patent/CA927779A/en not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU193084A1 (ru) * | УСТРОЙСТВО дл УДАЛЕНИЯ ГАЗА ОТ АЛЮМИНИЕВОГО | |||
US2061146A (en) * | 1934-02-24 | 1936-11-17 | Ferrand Louis | Furnace for electrolytic purposes |
US2526876A (en) * | 1948-05-08 | 1950-10-24 | Elektrokemisk As | Method of handling continuous electrodes |
US3351546A (en) * | 1962-10-19 | 1967-11-07 | Pechiney Prod Chimiques Sa | High yield electrolytic fusion cell having anode suspension means |
US3470075A (en) * | 1967-02-06 | 1969-09-30 | Arthur F Johnson | Process and apparatus for filtering effluent produced from aluminum reduction cells |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3912615A (en) * | 1973-06-20 | 1975-10-14 | Alexei Andreevich Minchenko | Covering for an aluminium cell with burnt anodes |
US3948749A (en) * | 1975-04-02 | 1976-04-06 | Copperloy Corporation | Aluminum potline shield |
US4033846A (en) * | 1975-09-16 | 1977-07-05 | Lista Og Mosjoen Aluminiumverk, Elkem Aluminum A/S & Co. | Apparatus for gas collection in aluminum smelting furnaces |
USRE31266E (en) * | 1975-09-16 | 1983-06-07 | Lista Og Mosjoen Aluminiumverk, Elkem Aluminum A/S & Co. | Apparatus for gas collection in aluminum smelting furnaces |
US4043892A (en) * | 1975-12-15 | 1977-08-23 | Reynolds Metals Company | Aluminum reduction cell having a lateral enclosure system |
US4218300A (en) * | 1978-08-24 | 1980-08-19 | Swiss Aluminium Ltd. | Covering for a cell for fused salt electrolysis |
US4608135A (en) * | 1985-04-22 | 1986-08-26 | Aluminum Company Of America | Hall cell |
US20130032487A1 (en) * | 2011-08-05 | 2013-02-07 | Olivo Sivilotti | Multipolar Magnesium Cell |
Also Published As
Publication number | Publication date |
---|---|
DE1758149B1 (de) | 1974-01-03 |
CH525283A (de) | 1972-07-15 |
AT286658B (de) | 1970-12-28 |
CA927779A (en) | 1973-06-05 |
FR2005918A1 (enrdf_load_stackoverflow) | 1969-12-19 |
DE1758149C2 (de) | 1974-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3673074A (en) | Apparatus for improving the heat economy of an electrolytic cell for the production of aluminum | |
US11015254B2 (en) | Aluminum electrolytic bath having continuous aluminum-frame anode with built-in conductors | |
CA1135216A (en) | Apparatus for electrolytic production of magnesium metal from its chloride | |
GB1503985A (en) | Device for collecting the fumes given off during the production of aluminium in a fused bath electrolysis cell with a continuous anode | |
CN105256337A (zh) | 一种新型稀土电解槽 | |
CA1114328A (en) | Process and device for the production of aluminium by the electrolysis of a molten charge | |
CA1125232A (en) | Covering for a cell for fused salt electrolysis | |
CN201313942Y (zh) | 一种400kA以上预焙阳极铝电解槽 | |
US3714002A (en) | Alumina reduction cell and improved anode system therein | |
NO971191L (no) | Aluminiumnedsenkbar sammenstilling for aluminiumproduksjonsceller | |
US4406767A (en) | Anode hooding system for a fused salt electrolytic cell | |
JPS5853717B2 (ja) | アルミニウム電解槽アルミニウムメタル層の安定化法 | |
CN208964821U (zh) | 碳素制品浸渍装置 | |
CN111762777B (zh) | 一种立式焙烧结合内串石墨化炉 | |
DE816021C (de) | Ofen zur Darstellung von Aluminium u. dgl. mit kontinuierlichen Elektroden | |
US3912615A (en) | Covering for an aluminium cell with burnt anodes | |
US3736244A (en) | Electrolytic cells for the production of aluminum | |
CN221255861U (zh) | 一种升降式屋顶散热保温装置 | |
CN215212626U (zh) | 一种具有防风抑尘功能的干煤棚 | |
CA1333782C (en) | Method and means for feeding aluminium oxide to cells for producing aluminium by molten electrolysis and anode casing for self baking anodes in electrolytic cells for production of aluminium | |
US4051224A (en) | Process and apparatus for collecting the fumes given off during the production of aluminium in an electrolysis cell with a continuous anode | |
SU583208A1 (ru) | Газоотсос электролизера дл получени алюмини с самообжигающимс анадом | |
CN209178501U (zh) | 一种新型电解槽结构 | |
CN219342353U (zh) | 一种铝型材着色装置 | |
CN211046114U (zh) | 一种安全双层防护结构配电箱 |