US3672033A - Metal laminated material and process for its manufacture - Google Patents
Metal laminated material and process for its manufacture Download PDFInfo
- Publication number
- US3672033A US3672033A US1333A US3672033DA US3672033A US 3672033 A US3672033 A US 3672033A US 1333 A US1333 A US 1333A US 3672033D A US3672033D A US 3672033DA US 3672033 A US3672033 A US 3672033A
- Authority
- US
- United States
- Prior art keywords
- spacers
- metal
- sheets
- wire
- metal sheets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 48
- 239000002184 metal Substances 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title abstract description 9
- 239000002648 laminated material Substances 0.000 title description 12
- 125000006850 spacer group Chemical group 0.000 claims abstract description 28
- 239000000463 material Substances 0.000 claims description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 16
- 229910052742 iron Inorganic materials 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000002360 explosive Substances 0.000 abstract description 15
- 238000003466 welding Methods 0.000 abstract description 6
- 239000002131 composite material Substances 0.000 abstract description 4
- 238000005253 cladding Methods 0.000 description 7
- 238000007747 plating Methods 0.000 description 3
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- 239000013528 metallic particle Substances 0.000 description 1
- 239000002984 plastic foam Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/06—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of high energy impulses, e.g. magnetic energy
- B23K20/08—Explosive welding
Definitions
- ABSTRACT [30] Foreign Application Priority Data
- the present disclosure is directed to a laminated metallic May 3, 1969 Germany ..P 19 22 757.7 composite and to a process for the production of said composites which comprises placing metallic spacers between the 52 US.
- the present invention relates to a laminate metallic material and to a process for the production of a metal laminated material by means of explosive cladding, wherein metallic spacers are inserted between the metallic sheets to be bonded together.
- the spacers must be fashioned so that they are sufliciently strong to carry the upper sheet. In addition, they must permit the air present between the metal sheets to escape during the blasting step so that no dammed up pressure (pressure surge) is produced. Furthermore, the requirement must be met that the material of the spacers will not be included in the laminated material because such inclusions lead to faults in the laminate.
- corrugated or zig-zag shaped, bent metal strips are provided which are disposed between the metal sheets to be bonded in an upright position.
- relatively large inclusions of foreign material in the metal strips result, said material extending in accordance with the shape of the metal strips.
- the metal strips represent a considerable amount of air resistance. The air displaced from the space upon the collision of the metal sheets can damm up at these places and form eddies, whereby bond flaws are produced.
- spacers from plastic foam, which spacers can optionally be additionally provided with metallic reinforcements.
- Such spacers can be employed only in connection with lightweight cover sheets. If the spacers are compressed too strongly at individual points, which can be the case with slightly warped cover sheets, charred spots, and not bonded points, are produced at those places.
- An object of the present invention is to avoid the prior art disadvantages in the manufacture of metal laminate material.
- Another object of the present invention is to provide an improved metal laminate material and an explosive bonding or cladding process for the production of a metal laminated material of the above-mentioned type wherein only minor inelusions of foreign material occur in the laminate, thus eliminating the danger of the formation of non-bonded spots or the occurence of tension crack corrosion.
- the spacer consists of the material of which one of the metal sheets to be bonded is made.
- the spacer can also consist of another material, insofar as such material does not form any brittle alloys with the metal sheets to be bonded. It is particularly advantageous to employ a soft iron wire for producing the helical shape, said wire being hardened due to the stress produced during coiling.
- the single FIGURE shows an arrangement of the individual layers of a laminate structure in a sectional view prior to the conductance of the explosive plating step.
- the lower metal sheet is designated by 1.
- several helically shaped thin metallic wires 2 are disposed, said wires lying flat in a suitable arrangement. Of these wires, only one is visible in the drawing.
- the upper sheet 3 On top of these wires rests the upper sheet 3, on top of which, in turn, the layer 4 of explosive material is provided.
- This layer is equipped with a primer (detonator or igniter) not shown herein, so that the layer can be detonated starting on one side and, during this process, progressively bonds the two metal sheets 1, 3 together.
- the wire 2 is incorporated into the welding bond and forms a zig-zag shaped inclusions which, however, are kept small due to the small thickness of the wire.
- the metal wires 2 consist, for example, of a soft iron wire having a thickness of about 0.1 0.8 mm.
- the wire is stretched and thus hardens (increases in strength), so that the wire which thereafter is also pulled apart in the longitudinal direction can withstand considerable stresses without buckling.
- the air driven out of the interstice between the sheets does not encounter any resistance, and relatively little foreign material is introduced into the bonding surface, so that no faults are produced.
- the wires can also be produced of the material of the sheets to be bonded. In this connection, care must be taken to ensure that the wires can bear the weight of the explosive-laden top metal sheet 3, without buckling.
- the helically shaped wire consisted of a soft iron wire having a diameter of 0.3 mm, coiled into spirals of a diameter of 3 mm. The wire was pulled apart to five times its original length, cut into sections, and these sections were distributed at distances of about 200 to 300 mm from one another over the entire surface area. After the explosive plating, it was found that no faults had been produced, and that the laminated material did not exhibit any raised spots visible on the surface.
- a copper metal sheet containing, for example, about a 1 mm thickness
- a soft copper wire having a thickness of, for example, about 0.2 mm, and rolled into spirals having a diameter of, for example, about 2.5 mm.
- an aluminum metal sheet (grade 1 100), containing a thickness of, for example, about 2 mm can be plated onto carbon steel (C 1008) using a soft iron wire having a thickness of, for example, about 0.15 mm and rolled into spirals having a diameter of, for example, about 3 mm.
- a process for the production of a laminated metallic material by means of explosive plating which comprises placing metallic spacers between and in supportive contact with a pair of superimposed substantially parallel metal sheets to be bonded, said spacers being wound in a helical shape from a wire with the axis of the helix oriented substantially parallel with respect to the metal sheets, applying a layer of explosive to the upper sheet of metal and detonating said explosive to produce impingement and welding of the upper sheet with the lower sheet.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Laminated Bodies (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19691922757 DE1922757C (de) | 1969-05-03 | Verfahren zum Herstellen eines Metall Verbundmatenals |
Publications (1)
Publication Number | Publication Date |
---|---|
US3672033A true US3672033A (en) | 1972-06-27 |
Family
ID=5733240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US1333A Expired - Lifetime US3672033A (en) | 1969-05-03 | 1970-01-08 | Metal laminated material and process for its manufacture |
Country Status (6)
Country | Link |
---|---|
US (1) | US3672033A (fr) |
JP (1) | JPS5231826B1 (fr) |
BE (1) | BE749669A (fr) |
FR (1) | FR2047139A5 (fr) |
GB (1) | GB1288432A (fr) |
NL (1) | NL7004818A (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4133471A (en) * | 1976-11-01 | 1979-01-09 | Asahi Kasei Kogyo Kabushiki Kaisha | Method for making clad metal sheets having at least one curved major surface |
US4393122A (en) * | 1979-04-18 | 1983-07-12 | Akira Takayasu | Clad steel plates |
US20080277452A1 (en) * | 2007-05-11 | 2008-11-13 | Stef Castelijns | Method of explosion welding to create an explosion welded article having a non-planar surface |
US20090293709A1 (en) * | 2008-05-27 | 2009-12-03 | Joynt Vernon P | Apparatus for defeating high energy projectiles |
US8151685B2 (en) | 2006-09-15 | 2012-04-10 | Force Protection Industries, Inc. | Apparatus for defeating high energy projectiles |
WO2019178598A1 (fr) * | 2018-03-16 | 2019-09-19 | Ems Engineered Materials Solutions, Llc | Composite à étalement thermique à gaine multicouche |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102489868B (zh) * | 2011-12-21 | 2013-08-14 | 湖南湘投金天钛金属有限公司 | 一种圆形钛钢复合板的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3055095A (en) * | 1957-11-29 | 1962-09-25 | Jersey Prod Res Co | Method of anchoring a well packer reinforcement |
US3205574A (en) * | 1962-11-01 | 1965-09-14 | Du Pont | Explosive bonding |
US3233312A (en) * | 1962-08-03 | 1966-02-08 | Du Pont | Explosively bonded product |
US3360848A (en) * | 1966-10-17 | 1968-01-02 | Du Pont | Process for explosion-bonding metals |
US3377693A (en) * | 1964-09-24 | 1968-04-16 | Asahi Kaseio Kogyo Kabushiki K | Process for producing clad metal plates by explosive bonding |
-
1970
- 1970-01-08 US US1333A patent/US3672033A/en not_active Expired - Lifetime
- 1970-04-03 NL NL7004818A patent/NL7004818A/xx unknown
- 1970-04-28 BE BE749669D patent/BE749669A/fr unknown
- 1970-04-30 FR FR7015859A patent/FR2047139A5/fr not_active Expired
- 1970-05-01 GB GB2113970A patent/GB1288432A/en not_active Expired
- 1970-05-04 JP JP45038181A patent/JPS5231826B1/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3055095A (en) * | 1957-11-29 | 1962-09-25 | Jersey Prod Res Co | Method of anchoring a well packer reinforcement |
US3233312A (en) * | 1962-08-03 | 1966-02-08 | Du Pont | Explosively bonded product |
US3205574A (en) * | 1962-11-01 | 1965-09-14 | Du Pont | Explosive bonding |
US3377693A (en) * | 1964-09-24 | 1968-04-16 | Asahi Kaseio Kogyo Kabushiki K | Process for producing clad metal plates by explosive bonding |
US3360848A (en) * | 1966-10-17 | 1968-01-02 | Du Pont | Process for explosion-bonding metals |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4133471A (en) * | 1976-11-01 | 1979-01-09 | Asahi Kasei Kogyo Kabushiki Kaisha | Method for making clad metal sheets having at least one curved major surface |
US4393122A (en) * | 1979-04-18 | 1983-07-12 | Akira Takayasu | Clad steel plates |
US8151685B2 (en) | 2006-09-15 | 2012-04-10 | Force Protection Industries, Inc. | Apparatus for defeating high energy projectiles |
US20080277452A1 (en) * | 2007-05-11 | 2008-11-13 | Stef Castelijns | Method of explosion welding to create an explosion welded article having a non-planar surface |
US7832614B2 (en) * | 2007-05-11 | 2010-11-16 | Eaton Corporation | Method of explosion welding to create an explosion welded article having a non-planar shape |
US20090293709A1 (en) * | 2008-05-27 | 2009-12-03 | Joynt Vernon P | Apparatus for defeating high energy projectiles |
WO2019178598A1 (fr) * | 2018-03-16 | 2019-09-19 | Ems Engineered Materials Solutions, Llc | Composite à étalement thermique à gaine multicouche |
Also Published As
Publication number | Publication date |
---|---|
JPS5231826B1 (fr) | 1977-08-17 |
DE1922757A1 (de) | 1970-11-26 |
FR2047139A5 (fr) | 1971-03-12 |
DE1922757B2 (de) | 1972-10-26 |
BE749669A (fr) | 1970-10-01 |
GB1288432A (fr) | 1972-09-06 |
NL7004818A (fr) | 1970-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2333343A (en) | Method of making structural materials | |
KR101281417B1 (ko) | 다층 파이프의 제조 방법 | |
US3194643A (en) | Clad metal product | |
US3419951A (en) | Fabrication of metal structures | |
US3200489A (en) | Method of making honeycomb core | |
US3610290A (en) | Metal laminates and tubing embodying such laminates | |
US3672033A (en) | Metal laminated material and process for its manufacture | |
US3205574A (en) | Explosive bonding | |
US3663723A (en) | Method of armouring articles of metal | |
US5067649A (en) | Bonding metal components | |
US3761007A (en) | Metal laminated material | |
EP0324231A2 (fr) | Méthode pour faire une plaque métallique multi-laminaire jointe par explosion | |
US3140539A (en) | Process for bonding metals by explosive means | |
US3730415A (en) | Composite for explosive bonding | |
US3281930A (en) | Joining clad metal parts | |
US3360848A (en) | Process for explosion-bonding metals | |
US2815436A (en) | Welding aluminum clad steel | |
US1280909A (en) | Manufacture of pipes. | |
US3543388A (en) | Controlled area explosive bonding | |
JPS5913314B2 (ja) | 爆発圧着クラツドの製造方法 | |
US3238071A (en) | Process of treating explosively clad metals | |
US3514840A (en) | Method of fabricating narrow-width composites | |
US3131725A (en) | High tensile multi-layer cylinder | |
US3369288A (en) | Method of diffusion bonding a honeycomb structure | |
US2024686A (en) | Welded seam |