US3131725A - High tensile multi-layer cylinder - Google Patents

High tensile multi-layer cylinder Download PDF

Info

Publication number
US3131725A
US3131725A US45420A US4542060A US3131725A US 3131725 A US3131725 A US 3131725A US 45420 A US45420 A US 45420A US 4542060 A US4542060 A US 4542060A US 3131725 A US3131725 A US 3131725A
Authority
US
United States
Prior art keywords
metal
cylinders
cylinder
layers
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US45420A
Inventor
John J Chyle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chicago Bridge and Iron Co
Original Assignee
Chicago Bridge and Iron Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chicago Bridge and Iron Co filed Critical Chicago Bridge and Iron Co
Priority to US45420A priority Critical patent/US3131725A/en
Application granted granted Critical
Publication of US3131725A publication Critical patent/US3131725A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • F16L9/04Reinforced pipes

Definitions

  • the expired Stresau Reissue Patent No. 22,251 is illustrative of the first type and has been the subject of substantial commercial operations.
  • Other patents such as the expired Raymond Patents No. 2,268,961, 2,273,- 736, and 2,331,504, may be considered generally representative of the coil wrapped structures.
  • the present invention is based upon the concept that the coil wrap process provides a means for rapidly constructing vessels of much thinner layers and of substantially thicker total wall thickness.
  • the invention proposes to make cylinders of any practical diameter and wall thickness by coil wrapping paper thin sheets or strips of very high tensile strength metal.
  • the accompanying drawing illustrates a high pressure cylinder of the character embodying the present invention.
  • the single figure illustrates a cylinder with parts broken away and sectioned to show the construction.
  • the cylinder 1 is'shown as comprised of a large number'of very thin spirally wrapped thin layers 2 of metal, as described hereinafte Cylindrical sections as illustrated may be secured end to end, or closed at the ends as may be desired to make a high pressure vessel.
  • the thickness of the wall will be determined by the strength of the metal, the diameter and the stress condition of the cylinder.
  • the present invention overcomes this difiiculty and permits fabrication of very high tensile strength metals by employing paper thin sheets or strips of the metal. These have been found to be formable as by wrapping into coiled cylinders of substantial diameter. Thicknesses of the order of .03 to .04 inch are suitable for metals having a tensile strength of the order of 150,000 pounds per square inch obtained as by heat treating or cold working prior to fabrication. For higher tensile strength metal thinner sheets or strips should be employed, and it is conceivable that metal foils may be used in some instances.
  • the cylinders will have generally in excess of twenty-five layers per inch of thickness, and instead of the usual tensile strengths of less than about 100,000 pounds per square inch obtained in present day cylinders of multi-layer constructed of reasonably low carbon steel, the cylinders of the invention will have tensile strengths of the order of 150,- 000 pounds per square inch and even higher as may be obtainable by specially heat treated high carbon steels or alloys capable of rolling to the thinnesses referred to prior to such heat treatment.
  • the cylinders may be constructed of a length corresponding to the width of the sheet with the latter coil wrapped in the formation of the cylinders. Where the material can be obtained only in strips of less Width than the desired length of the cylinders, it is possible to spirally wrap strips upon the inner mandrel or core, as in the wrapping of spiral pipe.
  • One of the advantages of the wrapping process of making the multi-layer cylinders of the present invention lies in the fact that welding may be reduced to a minimum by avoiding practically all longitudinal seam welding except for the start and finish and any necessary end to end sheet or strip welding.
  • the cylinder 1 is composed of an inner retaining cylindrical metal core 2 having coil wrapped thereon a paper thin metal sheet 3 in a large number of successive convolutions to provide the desired wall thickness for the cylinder.
  • the core 2 may be a cylinder fabricated from a plate of approximately one quarter inch thickness and a metal capable of forming into the cylinder with the meeting longitudinal edges welded together as at 4.
  • the metal of core 2 should be a low carbon steel that can be readily formed in whatever thickness is obtained.
  • the coil layers of sheet 3 are constructed by tightly wrapping the sheet upon the core 2 until the desired wall thickness is provided for the cylinder. Where the pull exerted in wrapping sheet 3 substantially stresses it as it is applied to the cylinder, it is possible to produce a final cylinder wherein core 2 and inner layers of metal adjacent thereto are under initial compression stress effected by an initial tensile stress in the outer layers.
  • the sheet 3 is preferably of a steel which can be rolled at the mill in suitable widths and to a thickness substantially less than inch, such as to a thickness of the order of .03 or .04 inch. The thinner the better. It then should be capable of substantial increase in tensile strength by suitable heat treating processes as by heating to beyond the upper critical temperatures and rapidly cooling thereof to below the Ms temperature (the temperature at which martensite begins to form).
  • a typical composition (Specification 4405 of American Metal Society) is as follows:
  • the present invention is the first to provide a high pressure cylinder having a wall of substantial thickness and of metal with a tensile strength exceeding 100,000 pounds per square inch.
  • the cylinders may be made substantially larger in diameter for the same internal working pressures, thereby providing desirable greater capacity.
  • the cylinders can be made of substantially less wall thickness for the same working pressures, thereby providing much lighter weight structures, a factor substantially important in missiles and rockets.
  • Sheets of the thickness indicated can be obtained in widths up to five feet or even more, and make it possible to construct cylinders of a corresponding length. Girth welds between abutting ends of cylinders, because of the fineness of the layers may be made as readily as in solid wall cylinders.
  • a cylinder for incorporation in pressure vessels, rockets and the like for retaining high internal fluid pressures comprising a tubular metallic cylindrical core of substantial thickness and rigidity reinforced by a coil wrapping of a plurality of layers of flexible metallic sheet material having a thickness less than about .04 of an inch and a tensile strength exceeding 100,000 pounds per square inch, said coil wrapping having its adjacent layers in tight frictional metal to metal contact throughout and having a total thickness several times that of said core, said core having a thickness several times that of said sheet material, the individual layers of said wrapping being generally unattached to each other between the ends thereof, and welds maintaining the layers in tightly wrapped relation.
  • a cylinder for incorporation in pressure vessels, rockets and the like for retaining high internal pressures comprising a tubular metallic cylindrical core of substantial thickness and rigidity reinforced by a coil wrapping of a plurality of layers of flexible metallic sheet material having a thickness less than about .04 of an inch and a tensile strength exceeding 100,000 pounds per square inch, said coil wrapping having its adjacent layers in tight frictional metal to metal contact throughout and having a total thickness several times that of said core, said reinforcing having the outer convolutions thereof under resi'ual tensile stress placing the core under residual compression stress, said core having a thickness several times that of said sheet material, the individual layers of said wrapping being generally unattached to each other between the ends thereof, and welds maintaining the layers in tightly wrapped relation.

Description

May 5, 1964 J. .1. CHYLE HIGH TENSILE MULTI-LAYER CYLINDER Filed July 26. 1960 N as Ins
fin V. B
United States Patent 0 3,131,725 HIGH TENQIE MULTi-LAYER YLENBER John J. Chyle, Wauwatosa, Wis, assignor, by mesne assignments, to Chicago Bridge is; iron Company, Oak Brook, iii, a corporation of iiiinois Filed July 26, 1960, Ser. No. 45,420 2 Qlaims. (iii. 133-440) This invention relates to a high tensile multi-layer cylinder for use wherever very high internal fiuid pressures are to be retained.
in the fabrication of pressure vessels the use of multilayer steel cylinders has been known for some time and the advantages have been well established. In commercial practice only cylinders of the type wherein each layer is itself cylindrical have found favor. Cylinders employing coil wrapped layers have not found favor.
The expired Stresau Reissue Patent No. 22,251 is illustrative of the first type and has been the subject of substantial commercial operations. Other patents such as the expired Raymond Patents No. 2,268,961, 2,273,- 736, and 2,331,504, may be considered generally representative of the coil wrapped structures.
Former workers in this field have always visualized the use of ordinary steels available in sheets of to in thickness and in sizes generally suitable for weld fabrication. Because of the stifiness of such sheets it has been generally easier to form them in a roll prior to application to the structure being fabricated, rather than to attempt forming them into the desired curvature in situ and by wrapping processes.
The present invention is based upon the concept that the coil wrap process provides a means for rapidly constructing vessels of much thinner layers and of substantially thicker total wall thickness. The invention proposes to make cylinders of any practical diameter and wall thickness by coil wrapping paper thin sheets or strips of very high tensile strength metal.
The accompanying drawing illustrates a high pressure cylinder of the character embodying the present invention. In the drawing the single figure illustrates a cylinder with parts broken away and sectioned to show the construction.
In the drawing the cylinder 1 is'shown as comprised of a large number'of very thin spirally wrapped thin layers 2 of metal, as described hereinafte Cylindrical sections as illustrated may be secured end to end, or closed at the ends as may be desired to make a high pressure vessel. The thickness of the wall will be determined by the strength of the metal, the diameter and the stress condition of the cylinder.
It has not been possible heretofore to provide large cylinders of metal having tensile strength in excess of about 105,000 pounds per square inch and up to and in excess of 150,000 pounds per square inch tensile strength. Such high strength metals in thicknesses greater than about i are generally of low ductility and difiicult to form into cylindrical shape without encountering crackmg.
The present invention overcomes this difiiculty and permits fabrication of very high tensile strength metals by employing paper thin sheets or strips of the metal. These have been found to be formable as by wrapping into coiled cylinders of substantial diameter. Thicknesses of the order of .03 to .04 inch are suitable for metals having a tensile strength of the order of 150,000 pounds per square inch obtained as by heat treating or cold working prior to fabrication. For higher tensile strength metal thinner sheets or strips should be employed, and it is conceivable that metal foils may be used in some instances.
By employing the present invention, instead of the usual three to four layers of metal per inch of wall thickness in present day multi-layer cylinders, the cylinders will have generally in excess of twenty-five layers per inch of thickness, and instead of the usual tensile strengths of less than about 100,000 pounds per square inch obtained in present day cylinders of multi-layer constructed of reasonably low carbon steel, the cylinders of the invention will have tensile strengths of the order of 150,- 000 pounds per square inch and even higher as may be obtainable by specially heat treated high carbon steels or alloys capable of rolling to the thinnesses referred to prior to such heat treatment.
Depening upon the availability of wide sheets of the material capable of welding edge to edge, the cylinders may be constructed of a length corresponding to the width of the sheet with the latter coil wrapped in the formation of the cylinders. Where the material can be obtained only in strips of less Width than the desired length of the cylinders, it is possible to spirally wrap strips upon the inner mandrel or core, as in the wrapping of spiral pipe.
Where it is desirable to weld cylinders end to end or adjacent strip edges to each other, this may be done by processes designed to produce joints of the same high tensile strength as the metal of the stock.
One of the advantages of the wrapping process of making the multi-layer cylinders of the present invention lies in the fact that welding may be reduced to a minimum by avoiding practically all longitudinal seam welding except for the start and finish and any necessary end to end sheet or strip welding.
It is possible to wrap with substantial tightness to prestress the cylinders and thereby place the inner portion of the cylinder wall under initial compressive stresses and the outer portion under initial tensile stresses, somewhat as indicated in US. Patent No. 3,098,620 granted to Fred A. Carstens, the application of which was copending herewith.
The accompanying drawing illustrates diagrammatically a coil wrapped cylinder of the present invention constituting the best mode presently contemplated for carrying out the invention.
Referring to the drawing, the cylinder 1 is composed of an inner retaining cylindrical metal core 2 having coil wrapped thereon a paper thin metal sheet 3 in a large number of successive convolutions to provide the desired wall thickness for the cylinder.
The core 2 may be a cylinder fabricated from a plate of approximately one quarter inch thickness and a metal capable of forming into the cylinder with the meeting longitudinal edges welded together as at 4. In general the metal of core 2 should be a low carbon steel that can be readily formed in whatever thickness is obtained.
The coil layers of sheet 3 are constructed by tightly wrapping the sheet upon the core 2 until the desired wall thickness is provided for the cylinder. Where the pull exerted in wrapping sheet 3 substantially stresses it as it is applied to the cylinder, it is possible to produce a final cylinder wherein core 2 and inner layers of metal adjacent thereto are under initial compression stress effected by an initial tensile stress in the outer layers.
The sheet 3 is preferably of a steel which can be rolled at the mill in suitable widths and to a thickness substantially less than inch, such as to a thickness of the order of .03 or .04 inch. The thinner the better. It then should be capable of substantial increase in tensile strength by suitable heat treating processes as by heating to beyond the upper critical temperatures and rapidly cooling thereof to below the Ms temperature (the temperature at which martensite begins to form).
For this purpose steel conforming to the following composition range may be employed:
A typical composition (Specification 4405 of American Metal Society) is as follows:
C .40 Mn .70 Si .25 Cr .80 Ni l 80 Mo 25 V 10 When such a steel is heated to 1650 F. and subsequently quenched and tempered at 1000 R, the tensile strength will increase from approximately 100,000 pounds per square inch to approximately 200,000 pounds per square inch. At the same time the metal will become correspondingly less ductile. However, because the sheet is so thin its bending stresses in wrapping the same core 2 will be sufficiently low to avoid cracking from brittleness.
Various alloy steels may be employed to give desired characteristics. In general, it is believed that the present invention is the first to provide a high pressure cylinder having a wall of substantial thickness and of metal with a tensile strength exceeding 100,000 pounds per square inch.
One of the advantages in utilizing the coil wrap method of producing the cylinders is that welding is kept to a minimum. Longitudinal welds are only needed to secure the starting edge of the sheet to be coiled, and generally to secure the final end edge of the wrapped coil. Ali intermediate layer contact is frictionally tight to provide the desired flexibility and greater strength of multilayer construction as compared to solid wall cylinders.
It is possible to provide wall thicknesses of any extent whereas solid wall weld fabricated cylinders are usually limited to about six inches. By reason of the greater wall thicknesses possible with the present invention and the greater strength metal that can be used, the cylinders may be made substantially larger in diameter for the same internal working pressures, thereby providing desirable greater capacity.
By taking advantage of the higher tensile strength of the metal employed, the cylinders can be made of substantially less wall thickness for the same working pressures, thereby providing much lighter weight structures, a factor substantially important in missiles and rockets.
Sheets of the thickness indicated can be obtained in widths up to five feet or even more, and make it possible to construct cylinders of a corresponding length. Girth welds between abutting ends of cylinders, because of the fineness of the layers may be made as readily as in solid wall cylinders.
Various modes of carrying out the invention are contemplated as being within the scope of the following claims particularly pointing out and distinctly claiming the subject matter which is regarded as the invention.
1 claim:
1. A cylinder for incorporation in pressure vessels, rockets and the like for retaining high internal fluid pressures, comprising a tubular metallic cylindrical core of substantial thickness and rigidity reinforced by a coil wrapping of a plurality of layers of flexible metallic sheet material having a thickness less than about .04 of an inch and a tensile strength exceeding 100,000 pounds per square inch, said coil wrapping having its adjacent layers in tight frictional metal to metal contact throughout and having a total thickness several times that of said core, said core having a thickness several times that of said sheet material, the individual layers of said wrapping being generally unattached to each other between the ends thereof, and welds maintaining the layers in tightly wrapped relation.
2. A cylinder for incorporation in pressure vessels, rockets and the like for retaining high internal pressures, comprising a tubular metallic cylindrical core of substantial thickness and rigidity reinforced by a coil wrapping of a plurality of layers of flexible metallic sheet material having a thickness less than about .04 of an inch and a tensile strength exceeding 100,000 pounds per square inch, said coil wrapping having its adjacent layers in tight frictional metal to metal contact throughout and having a total thickness several times that of said core, said reinforcing having the outer convolutions thereof under resi'ual tensile stress placing the core under residual compression stress, said core having a thickness several times that of said sheet material, the individual layers of said wrapping being generally unattached to each other between the ends thereof, and welds maintaining the layers in tightly wrapped relation.
References Cited in the tile of this patent UNITED STATES PATENTS 2,268,961 Raymond et al. Jan. 6, 1942 2,332,462 Nilson Oct. 19, 1943 2,359,446 Scudder Oct. 3, 1944 2,363,967 Jasper Nov. 28, 1944 2,372,723 Jasper Apr. 3, 1945 2,914,091 Barnes et al. Nov. 24, 1959 2,933,214 Douyard Apr. 19, 1960 2,982,457 DAlelio May 2, 1961

Claims (1)

1. A CYLINDER FOR INCORPORATION IN PRESSURE VESSELS, ROCKETS AND THE LIKE FOR RETAINING HIGH INTERNAL FLUID PRESSURES, COMPRISING A TUBULAR METALLIC CYLINDRICAL CORE OF SUBSTANTIAL THICKNESS AND RIGIDITY REINFORCED BY A COIL WRAPPING OF A PLURALITY OF LAYERS OF FLEXIBLE METALLIC SHEET MATERIAL HAVING A THICKNESS LESS THAN ABOUT .04 OF AN INCH AND A TENSILE STRENGTH EXCEEDING 100,000 POUNDS PER SQUARE INCH, SAID COIL WRAPPING HAVING ITS ADJACENT LAYERS IN TIGHT FRICTIONAL METAL TO METAL CONTACT THROUGHOUT AND
US45420A 1960-07-26 1960-07-26 High tensile multi-layer cylinder Expired - Lifetime US3131725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US45420A US3131725A (en) 1960-07-26 1960-07-26 High tensile multi-layer cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US45420A US3131725A (en) 1960-07-26 1960-07-26 High tensile multi-layer cylinder

Publications (1)

Publication Number Publication Date
US3131725A true US3131725A (en) 1964-05-05

Family

ID=21937785

Family Applications (1)

Application Number Title Priority Date Filing Date
US45420A Expired - Lifetime US3131725A (en) 1960-07-26 1960-07-26 High tensile multi-layer cylinder

Country Status (1)

Country Link
US (1) US3131725A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3212664A (en) * 1963-04-23 1965-10-19 Gen Motors Corp Weld reinforcements
US3267190A (en) * 1965-04-12 1966-08-16 Electric Storage Battery Co Method of making storage battery electrodes
US4147381A (en) * 1976-07-23 1979-04-03 Walter Schwarz Pipe coupling
US5822838A (en) * 1996-02-01 1998-10-20 Lockheed Martin Corporation High performance, thin metal lined, composite overwrapped pressure vessel
AT512703A1 (en) * 2012-04-12 2013-10-15 Hti High Tech Ind Ag Piston-cylinder unit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2268961A (en) * 1938-12-05 1942-01-06 Raymond Gwynne Vessel for containing high pressure fluids
US2332462A (en) * 1940-10-19 1943-10-19 Smith Corp A O Multilayer pressure vessel
US2359446A (en) * 1941-12-08 1944-10-03 Smith Corp A O Method of constructing multilayer pressure vessels
US2363967A (en) * 1942-05-02 1944-11-28 Smith Corp A O Multilayer vessel
US2372723A (en) * 1941-11-07 1945-04-03 Smith Corp A O Method of improving the stress distribution in multilayer high pressure cylinders
US2914091A (en) * 1957-03-25 1959-11-24 Foil Process Corp Multiple passage pipe
US2933214A (en) * 1955-03-11 1960-04-19 Chrysler Corp Pressure vessel
US2982457A (en) * 1958-11-28 1961-05-02 Dal Mon Research Co Tubular structures

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2268961A (en) * 1938-12-05 1942-01-06 Raymond Gwynne Vessel for containing high pressure fluids
US2332462A (en) * 1940-10-19 1943-10-19 Smith Corp A O Multilayer pressure vessel
US2372723A (en) * 1941-11-07 1945-04-03 Smith Corp A O Method of improving the stress distribution in multilayer high pressure cylinders
US2359446A (en) * 1941-12-08 1944-10-03 Smith Corp A O Method of constructing multilayer pressure vessels
US2363967A (en) * 1942-05-02 1944-11-28 Smith Corp A O Multilayer vessel
US2933214A (en) * 1955-03-11 1960-04-19 Chrysler Corp Pressure vessel
US2914091A (en) * 1957-03-25 1959-11-24 Foil Process Corp Multiple passage pipe
US2982457A (en) * 1958-11-28 1961-05-02 Dal Mon Research Co Tubular structures

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3212664A (en) * 1963-04-23 1965-10-19 Gen Motors Corp Weld reinforcements
US3267190A (en) * 1965-04-12 1966-08-16 Electric Storage Battery Co Method of making storage battery electrodes
US4147381A (en) * 1976-07-23 1979-04-03 Walter Schwarz Pipe coupling
US5822838A (en) * 1996-02-01 1998-10-20 Lockheed Martin Corporation High performance, thin metal lined, composite overwrapped pressure vessel
US6401963B1 (en) 1996-02-01 2002-06-11 Lockheed Martin Corporation High performance, thin metal lined, composite overwrapped pressure vessel
USRE38433E1 (en) 1996-02-01 2004-02-24 Lockheed Martin Corporation High performance, thin metal lined, composite overwrapped pressure vessel
AT512703A1 (en) * 2012-04-12 2013-10-15 Hti High Tech Ind Ag Piston-cylinder unit
AT512703B1 (en) * 2012-04-12 2014-06-15 Neuson Hydrotec Gmbh Piston-cylinder unit

Similar Documents

Publication Publication Date Title
US2337247A (en) Method of making multilayer vessels
US2652943A (en) High-pressure container having laminated walls
US4018634A (en) Method of producing high strength steel pipe
EP3036054B1 (en) Process for producing a multilayer pipe by expansion
DE804099C (en) Double-walled, corrosion-resistant pipe wound from metal strips
US3024938A (en) Sectional pressure vessel and method of making it
US1938633A (en) Manufacture of metal tubes
US3068562A (en) Method of making pressure vessels
US2480369A (en) Manufacture of multilayer cylinder for high-pressure vessels
US4585917A (en) Method for relieving residual stresses by build-up welding over outer surface of pipe
US3131725A (en) High tensile multi-layer cylinder
US1982852A (en) Pipe
US2609595A (en) Method of forming laminated pressure vessels
US1963745A (en) Process of making composite metal articles
EP0233437B1 (en) Corrosion-resistant tube or storage tank consisting of two metal layers
CN107900625A (en) The compound spiral of carbon steel stainless steel and its manufacture method
US2332462A (en) Multilayer pressure vessel
JPS6312688B2 (en)
EP3858506B1 (en) Long steel pipe for reel method and manufacturing method for same
US40498A (en) Improvement in the construction of cannons and fire-arms
US3481025A (en) Method and apparatus for reinforcing the walls of welded pipes or other tubular elements
US95604A (en) Improvement in the construction of, ordnance
JP2004238673A (en) Steel tube member having excellent fatigue strength, and working method therefor
EP1379341B8 (en) Method of manufacturing a closed profile
SU1085662A1 (en) Method of producing multilayer shells