US3650714A - A method of coating diamond particles with metal - Google Patents
A method of coating diamond particles with metal Download PDFInfo
- Publication number
- US3650714A US3650714A US804144A US3650714DA US3650714A US 3650714 A US3650714 A US 3650714A US 804144 A US804144 A US 804144A US 3650714D A US3650714D A US 3650714DA US 3650714 A US3650714 A US 3650714A
- Authority
- US
- United States
- Prior art keywords
- diamond
- titanium
- particles
- metal
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 78
- 239000002245 particle Substances 0.000 title claims abstract description 54
- 238000000576 coating method Methods 0.000 title claims abstract description 25
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 22
- 239000002184 metal Substances 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims description 24
- 229910003460 diamond Inorganic materials 0.000 title abstract description 65
- 239000011248 coating agent Substances 0.000 title abstract description 17
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000010936 titanium Substances 0.000 claims abstract description 33
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 33
- 150000004678 hydrides Chemical class 0.000 claims description 10
- 229910052723 transition metal Inorganic materials 0.000 claims description 10
- 150000003624 transition metals Chemical class 0.000 claims description 10
- -1 titanium hydride Chemical compound 0.000 claims description 9
- 229910000048 titanium hydride Inorganic materials 0.000 claims description 7
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical group C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 claims description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 abstract description 10
- 239000011347 resin Substances 0.000 abstract description 9
- 229920005989 resin Polymers 0.000 abstract description 9
- 229910052726 zirconium Inorganic materials 0.000 abstract description 9
- 238000005520 cutting process Methods 0.000 abstract description 7
- 238000003491 array Methods 0.000 abstract description 2
- 238000005524 ceramic coating Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 28
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 22
- 239000000463 material Substances 0.000 description 21
- 238000005219 brazing Methods 0.000 description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 16
- 239000010949 copper Substances 0.000 description 15
- 229910052802 copper Inorganic materials 0.000 description 14
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- 229910052759 nickel Inorganic materials 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 239000011241 protective layer Substances 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 241001156002 Anthonomus pomorum Species 0.000 description 1
- 229910000952 Be alloy Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical group [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- YCKOAAUKSGOOJH-UHFFFAOYSA-N copper silver Chemical compound [Cu].[Ag].[Ag] YCKOAAUKSGOOJH-UHFFFAOYSA-N 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- LBSAHBJMEHMJTN-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Zn].[Zn].[Zn] LBSAHBJMEHMJTN-UHFFFAOYSA-N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000007688 edging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/51—Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/51—Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
- C04B41/5133—Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the refractory metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/52—Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/88—Metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/89—Coating or impregnation for obtaining at least two superposed coatings having different compositions
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1436—Composite particles, e.g. coated particles
- C09K3/1445—Composite particles, e.g. coated particles the coating consisting exclusively of metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12181—Composite powder [e.g., coated, etc.]
Definitions
- ABSTRACT Titanium (or zirconium) coated single diamonds have high cohesion bonding between coating and diamond and have external surfaces adhesion-receptive to subsequently applied less oxidizable metal, resin, and ceramic coatings which permit the double coated particles to be mounted at elevated temperatures in or on extraneous supports with or without application of pressure, without loosening the cohesion bonding and without resort to nonoxidizing atmospheres; or permitting them to be directly mounted in nonoxidizing atmospheres, in either case providing long life support for single or multiple diamond arrays as in cutting and abrading implements.
- diamond particles are supported for cutting, abrading, and other uses by attaching them, singly or multiply, to the surface of a support or by embedding them, in single or multiple layers or other conglomerate configuration, partially or wholly in metallic, ceramic or organic matrices.
- the diamond surface interface bond is usually created either in the act of attaching the diamond to the support or in the act of hardening or sintering the matrix.
- conventional binder metals for example, copper and silver alloys provide little if anything more than mechanical bonds to diamonds due to the failure of such alloys to wet the diamond surface and to the absence of any chemical bonds providing anything more than very low energies of adhesion
- the art looking for improved bonds, began to carry out the brazing or embedding operations in the presence of transition metals, particularly titanium or zirconium, either as such or as hydrides.
- U.S. Pat. No. 2,570,248 suggested use of an admixture of titanium hydride and copper powders applied to the junction of two bodies to be brazed; and Hall U.S. Pat. No. 2,728,651 suggested applying a slurry of titanium hydride in an organic liquid to a diamond and then sprinkling these titanium hydride coated diamonds onto a solder alloy layer and heating and dissociating the hydride and melting the solder and dissolving the titanium.
- diamond bonds of great strength are provided by creating the diamond surface interface bond prior to any operation of permanently attaching it to an ultimate extraneous support or seating it in a matrix, so that only diamond-reactive materials need be present when creating the diamond surface bond.
- These materials, forming the diamond surface interface bond, because they are oxidizable, are then covered with a less oxidizable protective layer or layers so that subsequent attaching or embedding operations with non-oxidizable brazing alloys can be carried out in the air without oxidizing the titanium. Operation in a nonoxidizing atmosphere is thus required only during the creation of the diamond surface interface and is not thereafter needed.
- this invention provides single diamond particles with bonded coatings of those transition metals which are most likely to react with diamond or carbon, namely, titanium or zirconium or mixtures thereof.
- the coatings are in the form of thin continuous layers of substantially uniform thickness which are bonded throughout the entire interface between the film and the diamond exterior surface with high energies of adhesion commensurate with those created by chemical bonds such as are present in titanium or zirconium carbide structure.
- One of the beauties of the present invention is that a whole batch of diamond particles having mechanical deposits contacting each other can have the deposits converted into heat bonded coatings all at one time without fusing adjacent particles together, since the heat treatment is at a far less temperature than that which would melt the titanium or zirconium deposits.
- fusion takes place between the coated diamonds which therefore can no longer be recovered in individual, discrete, flowable condition but rather fuse into a solid mass.
- Diamond chips weighing an aggregate of 200 carats, 200250 mesh size, and cleaned by conventional solvents to rid their surfaces of organic contaminants are placed in a mechanical tumbler along with approximately 6 grams of titanium or zirconium powder (at least some of which, 10 percent or more, is in the hydride form) having a mesh size of 600 and tumbled for a length of time under room temperature and atmospheric pressure conditions until each diamond particle bears over its entire exterior surface a clinging deposit of the powder.
- the diamonds with the deposits thereon are then placed together in a graphite crucible and brought down to a vacuum ofabout 10' mm. of mercury and to a minimum of about 10" and subjected to a temperature of 850900" C. for a period of at least 10-15 minutes.
- the particles in the crucible are allowed to cool in the vacuum and then are removed from the vacuum chamber.
- each particle is discrete and unattached to other particles except by occasional frangible attachment, which can be readily broken without damage to the surface.
- each particle Under the microscope, each particle is seen to have acquired a very thin smooth even external metallic film of substantially uniform thickness which may be for example about percent by weight of the combined weight of the film and the enclosed diamond.
- the diamond core is shown at 1
- the diamond surface interface with the surrounding titanium film is at 2
- 3 is the titanium film.
- the coating is not loosened as is the case with nickel-clad diamonds.
- the bonds of this invention do withstand de-bonding forces imparted as a result of difference in the coefficients of expansion of the diamond and the coating.
- the initial layer formed on the diamond particles is thus viewed as being a non-homogeneous layer progressing outwardly from titanium carbide content at and near the interface towards all or entirely all uncarbided titanium content on and near the external surface rendering the coated particle adhesion-receptive to metallic as well as nonmetallic bonding materials.
- the coated particle has the high cohesion characteristics of metal-carbide structure at the interface, yet permits further application to the external surface of the coated particle of protective layers by conventional techniques with the resulting outer adhesions being greater than would be provided were the external surface of the initial layer constituted of titanium carbide.
- This dual function characteristic of the single applied titanium layer is achieved by omitting from the coating the metal alloys or brazing materials which were heretofore used but produced only low diamond adhesions, not far removed from those of solely mechanical bonds, and by limiting the depth of carbide formation.
- the uncarbided surface may be subsequently carburized as by heating in a pack of carbon or methane where such carburizing is desired, as to reduce oxidation or create a harder surface and is not incompatible with good adhesion to subsequent bonding materials.
- a minimum temperature is about 350 C., i.e., sufficient to dissociate the hydride and the maximum is that temperature at which graphitization of the diamond under the prevailing conditions would occur, say l,250 C.
- temperature conditions should be always such as to minimize formation of any significant amounts of carbide on the external surface of the coated particles. Because of this dual function of the single applied layer, one does not include, as has been done previously in initial titanium coatings, any other alloy or brazing material, producing far lower adhesions more commensurate with solely mechanical bonds.
- EXAMPLE la The same procedure is followed except the deposit is an admixture of 1 part of titanium and 1 part zirconium by weight (again each partially in the form of hydrides).
- a further layer of copper or nickel is plated onto the entire FIG. 1 particle to a thickness of 0.002 0.005 inch.
- conventional vacuum deposit techniques including sputtering, may be utilized.
- the coated particles are then embedded in a metallic matrix by the following procedure to produce the product shown (again greatly magnified) in FIG. 2 wherein 1 is the diamond particle; 2 is the interface; 3 is the titanium layer; 4 is the copper or nickel layer; and 5 is a fragment of the metallic matrix:
- the particles are mixed with copper powder and subjected to a hot press in a graphite mold or a cold press and subsequently sintered or infiltrated with brazing material by usual techniques.
- a resin powder with or without metallic or other filler may be used.
- vitrifying techniques may be used.
- the copper or nickel layer 4 may be constituted of successive layers of copper and nickel.
- the copper coated, the nickel coated, or the double copper, nickel coated particle may be sintered or fused in situ at the sintering or fusing temperatures of the less-oxidizable metal or metals in a nonoxidizing atmosphere producing metallurgical cohesion bonding between the transition metal and the overlying less-oxidizable metal.
- a protective layer or layers such as 4 is essential only in those cases where further operations are to be done without the benefit of nonoxidizing atmospheres.
- a metal layer or layers is helpful wherever press techniques are to be utilized since the softer metal will not damage the surface of the mold.
- the coated diamond particles 1, 2, 3, 4 can be used themselves as powdered metals with conventional powdered metallurgical techniques such as cold pressing, sintering, or infiltration for manufacturing diamond impregnated bodies.
- a coated product prepared as in Example 2 can be mounted on a tool by applying a conventional brazing material between the coated particle and a clean surface ofa steel shank and the brazing material then heated with a gas torch in air to melt the brazing material.
- FIG. 3 The resulting product is shown in FIG. 3 wherein Z] is the diamond; 23 is the titanium layer; 24 is the copper or nickel layer; 25 is the brazing material and 26 is a portion of the steel shank,
- Coated particles prepared in accordance with Example 2 are covered with a layer of sponge iron by the following procedure:
- Brazing material is applied to the coated particles which are then mixed with sponge iron powder and placed in vacuum or hydrogen furnace to braze the iron particles to the surface of the coated diamond.
- a batch of said products are then embedded in a resin matrix by conventional procedure.
- FIG. 4 This produces the product shown in FIG. 4 wherein 31 is the diamond; 32 is the interface; 33 is the titanium layer; 34 is a metallic layer; 35 is a brazing material; 36 are sponge iron particles; and 37 is a portion of a resin matrix.
- a coated product prepared in accordance with Example I is plated with a coating of copper or nickel to a thickness of about 0.002 0.005 inch.
- minute whiskers, fibers or filaments, of ceramic, glass or aluminum oxide are placed in the metal plating solution and allowed to settle on the surface of the diamond during the course of approximately 25 minutes. Subsequent agitation of the diamonds in the plating solution results in further deposit of whiskers on the coated diamond particle surfaces during the plating operation.
- whisker-covered particles are then embedded in a resin matrix by conventional techniques to provide a grinding wheel section as shown in FIG. 5, wherein 41 is a natural or synthetic diamond particle; 42 is the interface; 43 is the titanium layer; 44 is a copper or nickel coating; 45 are whiskers; and 46 is a portion of the resin matrix.
- FIG. 6 shows a fragment of a wheel dressing tool having an unusually high diamond concentration which produces more cutting points and eliminates undercutting action by dressed abrasive particles.
- a low carbon steel shank having'a cavity about 0.150 inch in diameter by 0.250 inch deep.
- Diamond particles bearing the titanium coatings of this invention overlaid with a nickel or copper layer (or both) are hot pressed into the cavity with copper and silver brazing alloy powders at 750 C. in air.
- the titanium may be over-coated directly with a ceramic or resin material as by applying them in powdered form and then vitrifying or hot pressing the applied powder in a conventional manner.
- the coated diamond particles of this invention may be used in making a great variety of cutting or abrading products including dressing tools, dressing wheels, saw blades, grinding wheels, grinding wheel segments either single or multiple layer, saw blade segments or inserts, drilling bits, routing, boring, turning, countersinking, and single or multiple point tools, chamfering and edging tools and wire and other saws and all other kinds of honing, lapping, cutting and abrading devices; or may be used to manufacture optical lens generators or button inserts.
- the protective metallic layer may be of any metal bonding material which can be electroplated, electroless plated, vacuum deposited or sputtered, for example, nickel, copper, iron, zinc, tin, silver, gold, cadmium or cobalt or their alloys or admixtures thereof.
- Useful brazing or soldering bonding materials are copper, bronze, copper-silver alloy, copper-beryllium alloy, copperzinc alloy or any other metallurgical brazing material or solders which have adhesion to the protective layer or to the transition metal coating if the metallic protective layer is omitted.
- a method of coating diamond particles comprising mixing a batch of individual discrete diamond particles with transition metal powder consisting essentially of powders selected from the class consisting of powders of titanium, zirconium, and their hydrides, and mixtures thereof, to form a dry deposit of said powder over the external surfacesof said diamond particles and then subjecting the particles with their deposits thereon in a single container to a temperature in the range of a minimum of about 350 and a maximum of l,000 C. in a nonoxidizing atmosphere to coat the entire surface of each particle with a thin continuous layer consisting essentially of said transition metal, cooling the particles and removing them from said atmosphere in the form of individual discrete, nonadherent, flowable transition metal coated particles, each containing a single diamond particle.
- titanium carbide structure is formed at the interfaces between the metal coatings and the diamonds.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Polishing Bodies And Polishing Tools (AREA)
- Carbon And Carbon Compounds (AREA)
- Powder Metallurgy (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US80414469A | 1969-03-04 | 1969-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3650714A true US3650714A (en) | 1972-03-21 |
Family
ID=25188293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US804144A Expired - Lifetime US3650714A (en) | 1969-03-04 | 1969-03-04 | A method of coating diamond particles with metal |
Country Status (10)
Cited By (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2313769A1 (de) * | 1972-03-22 | 1973-09-27 | Edenvale Eng Works | Verfahren zur herstellung von metallbeschichteten diamantkoernern |
US3841852A (en) * | 1972-01-24 | 1974-10-15 | Christensen Diamond Prod Co | Abraders, abrasive particles and methods for producing same |
US3850590A (en) * | 1970-09-28 | 1974-11-26 | Impregnated Diamond Prod Ltd | An abrasive tool comprising a continuous porous matrix of sintered metal infiltrated by a continuous synthetic resin |
US3852049A (en) * | 1973-04-02 | 1974-12-03 | Gen Electric | Vitreous-bonded cubic boron nitride abrasive grinding system |
US3871840A (en) * | 1972-01-24 | 1975-03-18 | Christensen Diamond Prod Co | Abrasive particles encapsulated with a metal envelope of allotriomorphic dentrites |
US3879901A (en) * | 1970-06-24 | 1975-04-29 | De Beers Ind Diamond | Metal-coated diamonds in a metal alloy matrix |
US3918217A (en) * | 1972-07-24 | 1975-11-11 | Lloyd R Oliver & Company | Abrading device with protrusions on metal bonded abrasive grits |
US3923476A (en) * | 1973-01-22 | 1975-12-02 | Alexander Rose Roy | Method of producing coated abrasive particles |
US3929432A (en) * | 1970-05-29 | 1975-12-30 | De Beers Ind Diamond | Diamond particle having a composite coating of titanium and a metal layer |
US3973925A (en) * | 1973-03-20 | 1976-08-10 | Toshio Asaeda | Manufacturing process for a metal bonded grinding tool and the metal bonded grinding tool produced thereby |
US4079552A (en) * | 1974-11-06 | 1978-03-21 | Fletcher J Lawrence | Diamond bonding process |
US4117968A (en) * | 1975-09-04 | 1978-10-03 | Jury Vladimirovich Naidich | Method for soldering metals with superhard man-made materials |
US4142869A (en) * | 1973-12-29 | 1979-03-06 | Vereschagin Leonid F | Compact-grained diamond material |
US4157897A (en) * | 1977-04-14 | 1979-06-12 | Norton Company | Ceramic bonded grinding tools with graphite in the bond |
EP0004177A1 (en) * | 1978-03-09 | 1979-09-19 | De Beers Industrial Diamond Division (Proprietary) Limited | A method of metal coating of diamond or cubic boron nitride particles and an abrasive tool containing the particles thus coated |
US4373934A (en) * | 1981-08-05 | 1983-02-15 | General Electric Company | Metal bonded diamond aggregate abrasive |
US4439237A (en) * | 1978-06-27 | 1984-03-27 | Mitsui Mining & Smelting Co., Ltd. | Metallurgically bonded diamond-metal composite sintered materials and method of making same |
WO1987007197A1 (en) * | 1986-05-22 | 1987-12-03 | Cline Carl F | Method for production of cermets of abrasive materials |
US4738689A (en) * | 1984-03-20 | 1988-04-19 | General Electric Company | Coated oxidation-resistant porous abrasive compact and method for making same |
US4943488A (en) * | 1986-10-20 | 1990-07-24 | Norton Company | Low pressure bonding of PCD bodies and method for drill bits and the like |
US4951427A (en) * | 1989-05-30 | 1990-08-28 | General Electric Company | Refractory metal oxide coated abrasives and grinding wheels made therefrom |
US5011514A (en) * | 1988-07-29 | 1991-04-30 | Norton Company | Cemented and cemented/sintered superabrasive polycrystalline bodies and methods of manufacture thereof |
US5024680A (en) * | 1988-11-07 | 1991-06-18 | Norton Company | Multiple metal coated superabrasive grit and methods for their manufacture |
US5030276A (en) * | 1986-10-20 | 1991-07-09 | Norton Company | Low pressure bonding of PCD bodies and method |
US5062865A (en) * | 1987-12-04 | 1991-11-05 | Norton Company | Chemically bonded superabrasive grit |
US5090969A (en) * | 1987-10-21 | 1992-02-25 | Takeo Oki | Coated abrasive grains and a manufacturing method therefor |
US5104422A (en) * | 1989-05-30 | 1992-04-14 | General Electric Company | Refractory metal oxide coated abrasives and grinding wheels made therefrom |
US5116568A (en) * | 1986-10-20 | 1992-05-26 | Norton Company | Method for low pressure bonding of PCD bodies |
US5118342A (en) * | 1990-03-26 | 1992-06-02 | Isuzu Motors Limited | Partially hardened sintered body |
US5126207A (en) * | 1990-07-20 | 1992-06-30 | Norton Company | Diamond having multiple coatings and methods for their manufacture |
US5151107A (en) * | 1988-07-29 | 1992-09-29 | Norton Company | Cemented and cemented/sintered superabrasive polycrystalline bodies and methods of manufacture thereof |
US5173091A (en) * | 1991-06-04 | 1992-12-22 | General Electric Company | Chemically bonded adherent coating for abrasive compacts and method for making same |
US5190796A (en) * | 1991-06-27 | 1993-03-02 | General Electric Company | Method of applying metal coatings on diamond and articles made therefrom |
US5230718A (en) * | 1987-10-21 | 1993-07-27 | Takeo Oki | Coated abrasive grains and a manufacturing method therefor |
US5239784A (en) * | 1990-04-18 | 1993-08-31 | B & J Manufacturing Company | Cavitied abrading device with smooth lands area and layered grit |
US5308367A (en) * | 1991-06-13 | 1994-05-03 | Julien D Lynn | Titanium-nitride and titanium-carbide coated grinding tools and method therefor |
US5346719A (en) * | 1993-08-02 | 1994-09-13 | General Electric Company | Tungsten metallization of CVD diamond |
US5392982A (en) * | 1988-11-29 | 1995-02-28 | Li; Chou H. | Ceramic bonding method |
US5500248A (en) * | 1994-08-04 | 1996-03-19 | General Electric Company | Fabrication of air brazable diamond tool |
US5529805A (en) * | 1994-09-22 | 1996-06-25 | General Electric Company | Method for manufacturing a diamond article |
US5588975A (en) * | 1995-05-25 | 1996-12-31 | Si Diamond Technology, Inc. | Coated grinding tool |
US5609286A (en) * | 1995-08-28 | 1997-03-11 | Anthon; Royce A. | Brazing rod for depositing diamond coating metal substrate using gas or electric brazing techniques |
US5681653A (en) * | 1995-05-11 | 1997-10-28 | Si Diamond Technology, Inc. | Diamond cutting tools |
US5750207A (en) * | 1995-02-17 | 1998-05-12 | Si Diamond Technology, Inc. | System and method for depositing coating of modulated composition |
US5755299A (en) * | 1995-08-03 | 1998-05-26 | Dresser Industries, Inc. | Hardfacing with coated diamond particles |
USRE35812E (en) * | 1988-08-01 | 1998-06-02 | Oliver; Lloyd R. | Bonded abrasive grit structure |
US5957365A (en) * | 1997-03-03 | 1999-09-28 | Anthon; Royce A. | Brazing rod for depositing diamond coating to metal substrate using gas or electric brazing techniques |
WO2000045025A1 (en) * | 1999-01-30 | 2000-08-03 | Brit Bit Limited | Apparatus and method for mitigating wear in downhole tools |
US6102140A (en) * | 1998-01-16 | 2000-08-15 | Dresser Industries, Inc. | Inserts and compacts having coated or encrusted diamond particles |
US6138779A (en) * | 1998-01-16 | 2000-10-31 | Dresser Industries, Inc. | Hardfacing having coated ceramic particles or coated particles of other hard materials placed on a rotary cone cutter |
US6170583B1 (en) | 1998-01-16 | 2001-01-09 | Dresser Industries, Inc. | Inserts and compacts having coated or encrusted cubic boron nitride particles |
WO2001023630A1 (en) * | 1999-09-24 | 2001-04-05 | 3M Innovative Properties Company | Fused abrasive bodies comprising an oxygen scavenger metal |
US6258418B1 (en) | 1998-06-24 | 2001-07-10 | Ronald A. Rudder | Method for producing diamond-tiled cooking utensils and other workpieces for durable stick-resistant surfaces |
US6286206B1 (en) | 1997-02-25 | 2001-09-11 | Chou H. Li | Heat-resistant electronic systems and circuit boards |
US6319608B1 (en) | 2000-05-15 | 2001-11-20 | General Electric Company | Titanium chromium alloy coated diamond crystals for use in saw blade segments and method for their production |
WO2002002844A3 (en) * | 2000-06-30 | 2002-05-02 | Saint Gobain Abrasives Inc | Process for coating superabrasive particles with metal |
US6384342B1 (en) | 1997-02-25 | 2002-05-07 | Chou H. Li | Heat-resistant electronic systems and circuit boards with heat resistant reinforcement dispersed in liquid metal |
US20020061651A1 (en) * | 2000-04-21 | 2002-05-23 | Nihon Microcoating Co., Ltd. | Polishing agent, method of producing same, and method of polishing |
US6413589B1 (en) | 1988-11-29 | 2002-07-02 | Chou H. Li | Ceramic coating method |
US6458017B1 (en) | 1998-12-15 | 2002-10-01 | Chou H. Li | Planarizing method |
US6524357B2 (en) | 2000-06-30 | 2003-02-25 | Saint-Gobain Abrasives Technology Company | Process for coating superabrasive with metal |
US20030077995A1 (en) * | 1998-07-09 | 2003-04-24 | Li Chou H. | Chemical mechanical polishing slurry |
US6575353B2 (en) | 2001-02-20 | 2003-06-10 | 3M Innovative Properties Company | Reducing metals as a brazing flux |
US20030157867A1 (en) * | 1999-09-02 | 2003-08-21 | Doan Trung Tri | Particle forming method |
US6676492B2 (en) | 1998-12-15 | 2004-01-13 | Chou H. Li | Chemical mechanical polishing |
US20040107648A1 (en) * | 2002-09-24 | 2004-06-10 | Chien-Min Sung | Superabrasive wire saw and associated methods of manufacture |
US20040192172A1 (en) * | 2001-06-14 | 2004-09-30 | Dan Towery | Oxidizing polishing slurries for low dielectric constant materials |
WO2004101225A1 (en) | 2003-05-09 | 2004-11-25 | Diamond Innovations, Inc. | Abrasive particles having coatings with tortuous surface topography |
US20050108948A1 (en) * | 2002-09-24 | 2005-05-26 | Chien-Min Sung | Molten braze-coated superabrasive particles and associated methods |
US20050210755A1 (en) * | 2003-09-05 | 2005-09-29 | Cho Hyun S | Doubled-sided and multi-layered PCBN and PCD abrasive articles |
US20060059785A1 (en) * | 2002-09-24 | 2006-03-23 | Chien-Min Sung | Methods of maximizing retention of superabrasive particles in a metal matrix |
US20080187769A1 (en) * | 2006-04-13 | 2008-08-07 | 3M Innovative Properties | Metal-coated superabrasive material and methods of making the same |
US20080314646A1 (en) * | 2007-06-25 | 2008-12-25 | Smith International, Inc. | Barrier coated granules for improved hardfacing material using atomic layer deposition |
US20100122853A1 (en) * | 2007-02-23 | 2010-05-20 | Baker Hughes Incorporated | Encapsulated diamond particles, materials and impregnated diamond earth-boring bits including such particles, and methods of forming such particles, materials, and bits |
US20100230174A1 (en) * | 2009-03-13 | 2010-09-16 | Baker Hughes Incorporated | Impregnated Bit with Improved Grit Protrusion |
US20100263938A1 (en) * | 2009-04-21 | 2010-10-21 | Baker Hughes Incorporated | Impregnated Bit with Increased Binder Percentage |
US20110180199A1 (en) * | 2007-04-17 | 2011-07-28 | United Technologies Corporation | Powder -metallurgy braze preform and method of use |
CN102218537A (zh) * | 2011-05-28 | 2011-10-19 | 长沙泰维超硬材料有限公司 | 一种粉末冶金制备预变形线金刚石线据的方法 |
CN104029299A (zh) * | 2014-06-05 | 2014-09-10 | 苏州赛尔科技有限公司 | 一种wlcsp封装芯片专用超薄金属基金刚石切割片及制备方法 |
US20170145280A1 (en) * | 2014-09-02 | 2017-05-25 | A.L.M.T. Corp. | Diamond composite material and heat radiating member |
US9908216B2 (en) * | 2012-01-31 | 2018-03-06 | Jtekt Corporation | Grinding wheel manufacturing method and grinding wheel |
WO2018160297A1 (en) * | 2017-02-28 | 2018-09-07 | 3M Innovative Properties Company | Metal bond abrasive articles and methods of making metal bond abrasive articles |
US10246335B2 (en) | 2016-05-27 | 2019-04-02 | Baker Hughes, A Ge Company, Llc | Methods of modifying surfaces of diamond particles, and related diamond particles and earth-boring tools |
US10704334B2 (en) | 2017-06-24 | 2020-07-07 | Wenhui Jiang | Polycrystalline diamond compact cutters having protective barrier coatings |
US10738821B2 (en) * | 2018-07-30 | 2020-08-11 | XR Downhole, LLC | Polycrystalline diamond radial bearing |
US10760615B2 (en) | 2018-07-30 | 2020-09-01 | XR Downhole, LLC | Polycrystalline diamond thrust bearing and element thereof |
WO2020226738A1 (en) | 2019-05-08 | 2020-11-12 | Gregory Prevost | Polycrystalline diamond bearings for rotating machinery with compliance |
WO2020256910A1 (en) | 2019-05-29 | 2020-12-24 | XR Downhole, LLC | Polycrystalline diamond power transmission surfaces |
CN112536735A (zh) * | 2020-10-30 | 2021-03-23 | 河南富莱格超硬材料有限公司 | 金刚石砂轮及其制备方法 |
US10968991B2 (en) | 2018-07-30 | 2021-04-06 | XR Downhole, LLC | Cam follower with polycrystalline diamond engagement element |
US11014759B2 (en) | 2018-07-30 | 2021-05-25 | XR Downhole, LLC | Roller ball assembly with superhard elements |
US11035407B2 (en) | 2018-07-30 | 2021-06-15 | XR Downhole, LLC | Material treatments for diamond-on-diamond reactive material bearing engagements |
US11054000B2 (en) | 2018-07-30 | 2021-07-06 | Pi Tech Innovations Llc | Polycrystalline diamond power transmission surfaces |
US11187040B2 (en) | 2018-07-30 | 2021-11-30 | XR Downhole, LLC | Downhole drilling tool with a polycrystalline diamond bearing |
US11225842B2 (en) | 2018-08-02 | 2022-01-18 | XR Downhole, LLC | Polycrystalline diamond tubular protection |
CN114012089A (zh) * | 2020-10-20 | 2022-02-08 | 北京安泰钢研超硬材料制品有限责任公司 | 一种金刚石包裹球的制备方法及生成装置 |
CN114227557A (zh) * | 2021-12-24 | 2022-03-25 | 西安奕斯伟材料科技有限公司 | 修整盘及其制备方法、化学机械抛光设备 |
US11286985B2 (en) | 2018-07-30 | 2022-03-29 | Xr Downhole Llc | Polycrystalline diamond bearings for rotating machinery with compliance |
US11371556B2 (en) | 2018-07-30 | 2022-06-28 | Xr Reserve Llc | Polycrystalline diamond linear bearings |
US11603715B2 (en) | 2018-08-02 | 2023-03-14 | Xr Reserve Llc | Sucker rod couplings and tool joints with polycrystalline diamond elements |
US11614126B2 (en) | 2020-05-29 | 2023-03-28 | Pi Tech Innovations Llc | Joints with diamond bearing surfaces |
US11655850B2 (en) | 2020-11-09 | 2023-05-23 | Pi Tech Innovations Llc | Continuous diamond surface bearings for sliding engagement with metal surfaces |
CN117983810A (zh) * | 2024-04-03 | 2024-05-07 | 天津市镍铠表面处理技术有限公司 | 一种金刚石铜高导热粉体材料及其制备方法与应用 |
US12006973B2 (en) | 2020-11-09 | 2024-06-11 | Pi Tech Innovations Llc | Diamond surface bearings for sliding engagement with metal surfaces |
US12064850B2 (en) | 2021-12-30 | 2024-08-20 | Saint-Gobain Abrasives, Inc. | Abrasive articles and methods for forming same |
US12228177B2 (en) | 2020-05-29 | 2025-02-18 | Pi Tech Innovations Llc | Driveline with double conical bearing joints having polycrystalline diamond power transmission surfaces |
US12296434B2 (en) | 2021-12-30 | 2025-05-13 | Saint-Gobain Abrasives, Inc. | Abrasive articles and methods for forming same |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1388172A (en) * | 1972-03-22 | 1975-03-26 | De Beers Ind Diamond | Metal coating of diamonds |
SE7508730L (sv) * | 1974-08-02 | 1976-02-03 | Inst Materialovedenia Akademii | Forfarande for sammanlodning av metaller med extremt harda material, foretredesvis syntetiska material, samt lodemedel for genomforande av forfarandet |
IE42894B1 (en) * | 1975-07-28 | 1980-11-05 | Gen Electric | Improvements in coated diamond and cubic boron mitride particles and processes thereof |
DE3003484A1 (de) * | 1980-01-31 | 1981-08-06 | VMEI Lenin, Sofia | Verfahren zur herstellung von schleifkoerpern |
JPS58223564A (ja) * | 1982-05-10 | 1983-12-26 | Toshiba Corp | 砥石およびその製造法 |
US5106392A (en) * | 1991-03-14 | 1992-04-21 | General Electric Company | Multigrain abrasive particles |
US5232469A (en) * | 1992-03-25 | 1993-08-03 | General Electric Company | Multi-layer metal coated diamond abrasives with an electrolessly deposited metal layer |
US9194189B2 (en) | 2011-09-19 | 2015-11-24 | Baker Hughes Incorporated | Methods of forming a cutting element for an earth-boring tool, a related cutting element, and an earth-boring tool including such a cutting element |
JP5681826B1 (ja) * | 2014-06-16 | 2015-03-11 | 嘉五郎 小倉 | 軸芯測定装置 |
CN111113285B (zh) * | 2020-01-13 | 2024-07-23 | 宋京新 | 一种电镀钢丝齿拼合式周边砂轮 |
CN111644739A (zh) * | 2020-06-15 | 2020-09-11 | 哈尔滨工业大学 | 用于空气气氛钎焊ysz陶瓷的钎料体系及钎焊方法 |
CN112405376B (zh) * | 2020-10-30 | 2022-03-01 | 郑州磨料磨具磨削研究所有限公司 | 一种脆性金属结合剂、金属结合剂砂轮及其制备方法和应用 |
KR102685109B1 (ko) * | 2021-12-13 | 2024-07-15 | 주식회사 더굿시스템 | 복합재료 및 이 복합재료를 포함하는 방열부품 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2319331A (en) * | 1942-04-28 | 1943-05-18 | Callite Tungsten Corp | Abrasive article |
US2411867A (en) * | 1942-12-19 | 1946-12-03 | Brenner Bert | Industrial diamond tool and method of producing same |
US3178273A (en) * | 1961-01-07 | 1965-04-13 | Libal Herbert | Method of producing tool surface layers containing diamond particles |
US3276852A (en) * | 1962-11-20 | 1966-10-04 | Jerome H Lemelson | Filament-reinforced composite abrasive articles |
US3293012A (en) * | 1962-11-27 | 1966-12-20 | Exxon Production Research Co | Process of infiltrating diamond particles with metallic binders |
US3356473A (en) * | 1964-05-28 | 1967-12-05 | Gen Electric | Metal-bonded diamond abrasive body |
-
1969
- 1969-03-04 US US804144A patent/US3650714A/en not_active Expired - Lifetime
-
1970
- 1970-02-19 ZA ZA701109A patent/ZA701109B/xx unknown
- 1970-02-19 GB GB801970A patent/GB1310686A/en not_active Expired
- 1970-03-03 CH CH308070A patent/CH531398A/fr not_active IP Right Cessation
- 1970-03-03 SE SE7002763A patent/SE374538B/xx unknown
- 1970-03-03 BE BE746768D patent/BE746768A/xx unknown
- 1970-03-04 DE DE19702010183 patent/DE2010183A1/de active Pending
- 1970-03-04 JP JP45018638A patent/JPS4910968B1/ja active Pending
- 1970-03-04 NL NL7003116A patent/NL7003116A/xx not_active Application Discontinuation
- 1970-03-04 FR FR7007712A patent/FR2037597A5/fr not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2319331A (en) * | 1942-04-28 | 1943-05-18 | Callite Tungsten Corp | Abrasive article |
US2411867A (en) * | 1942-12-19 | 1946-12-03 | Brenner Bert | Industrial diamond tool and method of producing same |
US3178273A (en) * | 1961-01-07 | 1965-04-13 | Libal Herbert | Method of producing tool surface layers containing diamond particles |
US3276852A (en) * | 1962-11-20 | 1966-10-04 | Jerome H Lemelson | Filament-reinforced composite abrasive articles |
US3293012A (en) * | 1962-11-27 | 1966-12-20 | Exxon Production Research Co | Process of infiltrating diamond particles with metallic binders |
US3356473A (en) * | 1964-05-28 | 1967-12-05 | Gen Electric | Metal-bonded diamond abrasive body |
Cited By (161)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3929432A (en) * | 1970-05-29 | 1975-12-30 | De Beers Ind Diamond | Diamond particle having a composite coating of titanium and a metal layer |
US3879901A (en) * | 1970-06-24 | 1975-04-29 | De Beers Ind Diamond | Metal-coated diamonds in a metal alloy matrix |
US3850590A (en) * | 1970-09-28 | 1974-11-26 | Impregnated Diamond Prod Ltd | An abrasive tool comprising a continuous porous matrix of sintered metal infiltrated by a continuous synthetic resin |
US3871840A (en) * | 1972-01-24 | 1975-03-18 | Christensen Diamond Prod Co | Abrasive particles encapsulated with a metal envelope of allotriomorphic dentrites |
US3841852A (en) * | 1972-01-24 | 1974-10-15 | Christensen Diamond Prod Co | Abraders, abrasive particles and methods for producing same |
DE2313769A1 (de) * | 1972-03-22 | 1973-09-27 | Edenvale Eng Works | Verfahren zur herstellung von metallbeschichteten diamantkoernern |
US3918217A (en) * | 1972-07-24 | 1975-11-11 | Lloyd R Oliver & Company | Abrading device with protrusions on metal bonded abrasive grits |
US3923476A (en) * | 1973-01-22 | 1975-12-02 | Alexander Rose Roy | Method of producing coated abrasive particles |
US3973925A (en) * | 1973-03-20 | 1976-08-10 | Toshio Asaeda | Manufacturing process for a metal bonded grinding tool and the metal bonded grinding tool produced thereby |
US3852049A (en) * | 1973-04-02 | 1974-12-03 | Gen Electric | Vitreous-bonded cubic boron nitride abrasive grinding system |
US4142869A (en) * | 1973-12-29 | 1979-03-06 | Vereschagin Leonid F | Compact-grained diamond material |
US4079552A (en) * | 1974-11-06 | 1978-03-21 | Fletcher J Lawrence | Diamond bonding process |
US4155721A (en) * | 1974-11-06 | 1979-05-22 | Fletcher J Lawrence | Bonding process for grinding tools |
US4117968A (en) * | 1975-09-04 | 1978-10-03 | Jury Vladimirovich Naidich | Method for soldering metals with superhard man-made materials |
US4157897A (en) * | 1977-04-14 | 1979-06-12 | Norton Company | Ceramic bonded grinding tools with graphite in the bond |
EP0004177A1 (en) * | 1978-03-09 | 1979-09-19 | De Beers Industrial Diamond Division (Proprietary) Limited | A method of metal coating of diamond or cubic boron nitride particles and an abrasive tool containing the particles thus coated |
US4399167A (en) * | 1978-03-09 | 1983-08-16 | Pipkin Noel J | Metal coating of abrasive particles |
US4439237A (en) * | 1978-06-27 | 1984-03-27 | Mitsui Mining & Smelting Co., Ltd. | Metallurgically bonded diamond-metal composite sintered materials and method of making same |
US4373934A (en) * | 1981-08-05 | 1983-02-15 | General Electric Company | Metal bonded diamond aggregate abrasive |
US4738689A (en) * | 1984-03-20 | 1988-04-19 | General Electric Company | Coated oxidation-resistant porous abrasive compact and method for making same |
WO1987007197A1 (en) * | 1986-05-22 | 1987-12-03 | Cline Carl F | Method for production of cermets of abrasive materials |
US5116568A (en) * | 1986-10-20 | 1992-05-26 | Norton Company | Method for low pressure bonding of PCD bodies |
US4943488A (en) * | 1986-10-20 | 1990-07-24 | Norton Company | Low pressure bonding of PCD bodies and method for drill bits and the like |
US5030276A (en) * | 1986-10-20 | 1991-07-09 | Norton Company | Low pressure bonding of PCD bodies and method |
US5090969A (en) * | 1987-10-21 | 1992-02-25 | Takeo Oki | Coated abrasive grains and a manufacturing method therefor |
US5230718A (en) * | 1987-10-21 | 1993-07-27 | Takeo Oki | Coated abrasive grains and a manufacturing method therefor |
US5062865A (en) * | 1987-12-04 | 1991-11-05 | Norton Company | Chemically bonded superabrasive grit |
US5011514A (en) * | 1988-07-29 | 1991-04-30 | Norton Company | Cemented and cemented/sintered superabrasive polycrystalline bodies and methods of manufacture thereof |
US5151107A (en) * | 1988-07-29 | 1992-09-29 | Norton Company | Cemented and cemented/sintered superabrasive polycrystalline bodies and methods of manufacture thereof |
USRE35812E (en) * | 1988-08-01 | 1998-06-02 | Oliver; Lloyd R. | Bonded abrasive grit structure |
US5024680A (en) * | 1988-11-07 | 1991-06-18 | Norton Company | Multiple metal coated superabrasive grit and methods for their manufacture |
US6413589B1 (en) | 1988-11-29 | 2002-07-02 | Chou H. Li | Ceramic coating method |
US5392982A (en) * | 1988-11-29 | 1995-02-28 | Li; Chou H. | Ceramic bonding method |
US4951427A (en) * | 1989-05-30 | 1990-08-28 | General Electric Company | Refractory metal oxide coated abrasives and grinding wheels made therefrom |
US5104422A (en) * | 1989-05-30 | 1992-04-14 | General Electric Company | Refractory metal oxide coated abrasives and grinding wheels made therefrom |
US5118342A (en) * | 1990-03-26 | 1992-06-02 | Isuzu Motors Limited | Partially hardened sintered body |
US5239784A (en) * | 1990-04-18 | 1993-08-31 | B & J Manufacturing Company | Cavitied abrading device with smooth lands area and layered grit |
US5126207A (en) * | 1990-07-20 | 1992-06-30 | Norton Company | Diamond having multiple coatings and methods for their manufacture |
US5224969A (en) * | 1990-07-20 | 1993-07-06 | Norton Company | Diamond having multiple coatings and methods for their manufacture |
US5173091A (en) * | 1991-06-04 | 1992-12-22 | General Electric Company | Chemically bonded adherent coating for abrasive compacts and method for making same |
US5308367A (en) * | 1991-06-13 | 1994-05-03 | Julien D Lynn | Titanium-nitride and titanium-carbide coated grinding tools and method therefor |
US5190796A (en) * | 1991-06-27 | 1993-03-02 | General Electric Company | Method of applying metal coatings on diamond and articles made therefrom |
US5346719A (en) * | 1993-08-02 | 1994-09-13 | General Electric Company | Tungsten metallization of CVD diamond |
US5500248A (en) * | 1994-08-04 | 1996-03-19 | General Electric Company | Fabrication of air brazable diamond tool |
US5647878A (en) * | 1994-08-04 | 1997-07-15 | General Electric Company | Fabrication of brazable in air diamond tool inserts and inserts fabricated thereby |
US5529805A (en) * | 1994-09-22 | 1996-06-25 | General Electric Company | Method for manufacturing a diamond article |
US5750207A (en) * | 1995-02-17 | 1998-05-12 | Si Diamond Technology, Inc. | System and method for depositing coating of modulated composition |
US5681653A (en) * | 1995-05-11 | 1997-10-28 | Si Diamond Technology, Inc. | Diamond cutting tools |
US5731079A (en) * | 1995-05-11 | 1998-03-24 | Si Diamond Technology, Inc. | Diamond cutting tools |
US5588975A (en) * | 1995-05-25 | 1996-12-31 | Si Diamond Technology, Inc. | Coated grinding tool |
US5755299A (en) * | 1995-08-03 | 1998-05-26 | Dresser Industries, Inc. | Hardfacing with coated diamond particles |
US5755298A (en) * | 1995-08-03 | 1998-05-26 | Dresser Industries, Inc. | Hardfacing with coated diamond particles |
US5609286A (en) * | 1995-08-28 | 1997-03-11 | Anthon; Royce A. | Brazing rod for depositing diamond coating metal substrate using gas or electric brazing techniques |
US6938815B2 (en) | 1997-02-25 | 2005-09-06 | Chou H. Li | Heat-resistant electronic systems and circuit boards |
US6384342B1 (en) | 1997-02-25 | 2002-05-07 | Chou H. Li | Heat-resistant electronic systems and circuit boards with heat resistant reinforcement dispersed in liquid metal |
US6286206B1 (en) | 1997-02-25 | 2001-09-11 | Chou H. Li | Heat-resistant electronic systems and circuit boards |
US5957365A (en) * | 1997-03-03 | 1999-09-28 | Anthon; Royce A. | Brazing rod for depositing diamond coating to metal substrate using gas or electric brazing techniques |
US6170583B1 (en) | 1998-01-16 | 2001-01-09 | Dresser Industries, Inc. | Inserts and compacts having coated or encrusted cubic boron nitride particles |
US6138779A (en) * | 1998-01-16 | 2000-10-31 | Dresser Industries, Inc. | Hardfacing having coated ceramic particles or coated particles of other hard materials placed on a rotary cone cutter |
US6102140A (en) * | 1998-01-16 | 2000-08-15 | Dresser Industries, Inc. | Inserts and compacts having coated or encrusted diamond particles |
US6258418B1 (en) | 1998-06-24 | 2001-07-10 | Ronald A. Rudder | Method for producing diamond-tiled cooking utensils and other workpieces for durable stick-resistant surfaces |
US20030077995A1 (en) * | 1998-07-09 | 2003-04-24 | Li Chou H. | Chemical mechanical polishing slurry |
US6976904B2 (en) | 1998-07-09 | 2005-12-20 | Li Family Holdings, Ltd. | Chemical mechanical polishing slurry |
US6676492B2 (en) | 1998-12-15 | 2004-01-13 | Chou H. Li | Chemical mechanical polishing |
US6458017B1 (en) | 1998-12-15 | 2002-10-01 | Chou H. Li | Planarizing method |
US6722559B1 (en) | 1999-01-30 | 2004-04-20 | Weatherford/Lamb, Inc. | Apparatus and method for mitigating wear in downhole tools |
WO2000045025A1 (en) * | 1999-01-30 | 2000-08-03 | Brit Bit Limited | Apparatus and method for mitigating wear in downhole tools |
US20030157867A1 (en) * | 1999-09-02 | 2003-08-21 | Doan Trung Tri | Particle forming method |
US6803073B2 (en) | 1999-09-02 | 2004-10-12 | Micron Technology, Inc. | Particle forming method |
US7270596B2 (en) | 1999-09-02 | 2007-09-18 | Micron Technology, Inc. | Chemical mechanical polishing process |
US20030166379A1 (en) * | 1999-09-02 | 2003-09-04 | Doan Trung Tri | Chemical mechanical polishing slurry |
US6977097B2 (en) | 1999-09-02 | 2005-12-20 | Micron Technology, Inc. | Particle forming methods |
US6974367B1 (en) * | 1999-09-02 | 2005-12-13 | Micron Technology, Inc. | Chemical mechanical polishing process |
US20050205838A1 (en) * | 1999-09-02 | 2005-09-22 | Doan Trung T | Chemical mechanical polishing process |
US6893333B2 (en) * | 1999-09-02 | 2005-05-17 | Micron Technology, Inc. | Chemical mechanical polishing slurry |
US6416560B1 (en) | 1999-09-24 | 2002-07-09 | 3M Innovative Properties Company | Fused abrasive bodies comprising an oxygen scavenger metal |
KR100769745B1 (ko) * | 1999-09-24 | 2007-10-23 | 쓰리엠 이노베이티브 프로퍼티즈 캄파니 | 산소 제거 금속을 포함하는 융합 연마재 |
WO2001023630A1 (en) * | 1999-09-24 | 2001-04-05 | 3M Innovative Properties Company | Fused abrasive bodies comprising an oxygen scavenger metal |
US20020061651A1 (en) * | 2000-04-21 | 2002-05-23 | Nihon Microcoating Co., Ltd. | Polishing agent, method of producing same, and method of polishing |
US7153196B2 (en) * | 2000-04-21 | 2006-12-26 | Nihon Microcoating Co., Ltd. | Method of polishing using a polishing agent |
US6319608B1 (en) | 2000-05-15 | 2001-11-20 | General Electric Company | Titanium chromium alloy coated diamond crystals for use in saw blade segments and method for their production |
US6524357B2 (en) | 2000-06-30 | 2003-02-25 | Saint-Gobain Abrasives Technology Company | Process for coating superabrasive with metal |
RU2247794C2 (ru) * | 2000-06-30 | 2005-03-10 | Сент-Гобэн Абразивс, Инк. | Способ покрытия суперабразива металлом |
WO2002002844A3 (en) * | 2000-06-30 | 2002-05-02 | Saint Gobain Abrasives Inc | Process for coating superabrasive particles with metal |
US6663682B2 (en) | 2000-06-30 | 2003-12-16 | Saint-Gobain Abrasives Technology Company | Article of superabrasive coated with metal |
CN100348776C (zh) * | 2000-06-30 | 2007-11-14 | 圣戈本磨料股份有限公司 | 用金属涂覆超级磨料的方法 |
US6858050B2 (en) | 2001-02-20 | 2005-02-22 | 3M Innovative Properties Company | Reducing metals as a brazing flux |
US20030201308A1 (en) * | 2001-02-20 | 2003-10-30 | 3M Innovative Properties Company | Reducing metals as a brazing flux |
US6575353B2 (en) | 2001-02-20 | 2003-06-10 | 3M Innovative Properties Company | Reducing metals as a brazing flux |
US20040192172A1 (en) * | 2001-06-14 | 2004-09-30 | Dan Towery | Oxidizing polishing slurries for low dielectric constant materials |
US20050108948A1 (en) * | 2002-09-24 | 2005-05-26 | Chien-Min Sung | Molten braze-coated superabrasive particles and associated methods |
US6915796B2 (en) | 2002-09-24 | 2005-07-12 | Chien-Min Sung | Superabrasive wire saw and associated methods of manufacture |
US20040107648A1 (en) * | 2002-09-24 | 2004-06-10 | Chien-Min Sung | Superabrasive wire saw and associated methods of manufacture |
US20060059785A1 (en) * | 2002-09-24 | 2006-03-23 | Chien-Min Sung | Methods of maximizing retention of superabrasive particles in a metal matrix |
WO2004101225A1 (en) | 2003-05-09 | 2004-11-25 | Diamond Innovations, Inc. | Abrasive particles having coatings with tortuous surface topography |
US20050022457A1 (en) * | 2003-05-09 | 2005-02-03 | Zheng Chen | Abrasive particles having coatings with tortuous surface topography |
US7435276B2 (en) | 2003-05-09 | 2008-10-14 | Diamond Innovations, Inc. | Abrasive particles having coatings with tortuous surface topography |
CN104625979B (zh) * | 2003-05-09 | 2018-05-25 | 戴蒙得创新股份有限公司 | 具有曲折表面形貌之覆层的磨料颗粒 |
CN104625979A (zh) * | 2003-05-09 | 2015-05-20 | 戴蒙得创新股份有限公司 | 具有曲折表面形貌之覆层的磨料颗粒 |
CN1852796B (zh) * | 2003-07-25 | 2010-10-06 | 宋健民 | 超级磨料线锯及相关制造方法 |
US20050210755A1 (en) * | 2003-09-05 | 2005-09-29 | Cho Hyun S | Doubled-sided and multi-layered PCBN and PCD abrasive articles |
US20080187769A1 (en) * | 2006-04-13 | 2008-08-07 | 3M Innovative Properties | Metal-coated superabrasive material and methods of making the same |
US8069936B2 (en) * | 2007-02-23 | 2011-12-06 | Baker Hughes Incorporated | Encapsulated diamond particles, materials and impregnated diamond earth-boring bits including such particles, and methods of forming such particles, materials, and bits |
US20100122853A1 (en) * | 2007-02-23 | 2010-05-20 | Baker Hughes Incorporated | Encapsulated diamond particles, materials and impregnated diamond earth-boring bits including such particles, and methods of forming such particles, materials, and bits |
US20110180199A1 (en) * | 2007-04-17 | 2011-07-28 | United Technologies Corporation | Powder -metallurgy braze preform and method of use |
US20080314646A1 (en) * | 2007-06-25 | 2008-12-25 | Smith International, Inc. | Barrier coated granules for improved hardfacing material using atomic layer deposition |
US8056652B2 (en) * | 2007-06-25 | 2011-11-15 | Smith International, Inc. | Barrier coated granules for improved hardfacing material using atomic layer deposition |
US20100230174A1 (en) * | 2009-03-13 | 2010-09-16 | Baker Hughes Incorporated | Impregnated Bit with Improved Grit Protrusion |
US8220567B2 (en) * | 2009-03-13 | 2012-07-17 | Baker Hughes Incorporated | Impregnated bit with improved grit protrusion |
US8225890B2 (en) * | 2009-04-21 | 2012-07-24 | Baker Hughes Incorporated | Impregnated bit with increased binder percentage |
US20100263938A1 (en) * | 2009-04-21 | 2010-10-21 | Baker Hughes Incorporated | Impregnated Bit with Increased Binder Percentage |
CN102218537B (zh) * | 2011-05-28 | 2012-10-10 | 长沙泰维超硬材料有限公司 | 一种粉末冶金制备预变形线金刚石线锯的方法 |
CN102218537A (zh) * | 2011-05-28 | 2011-10-19 | 长沙泰维超硬材料有限公司 | 一种粉末冶金制备预变形线金刚石线据的方法 |
US9908216B2 (en) * | 2012-01-31 | 2018-03-06 | Jtekt Corporation | Grinding wheel manufacturing method and grinding wheel |
CN104029299A (zh) * | 2014-06-05 | 2014-09-10 | 苏州赛尔科技有限公司 | 一种wlcsp封装芯片专用超薄金属基金刚石切割片及制备方法 |
US20170145280A1 (en) * | 2014-09-02 | 2017-05-25 | A.L.M.T. Corp. | Diamond composite material and heat radiating member |
US10246335B2 (en) | 2016-05-27 | 2019-04-02 | Baker Hughes, A Ge Company, Llc | Methods of modifying surfaces of diamond particles, and related diamond particles and earth-boring tools |
WO2018160297A1 (en) * | 2017-02-28 | 2018-09-07 | 3M Innovative Properties Company | Metal bond abrasive articles and methods of making metal bond abrasive articles |
CN110337347A (zh) * | 2017-02-28 | 2019-10-15 | 3M创新有限公司 | 金属粘结磨料制品及制备金属粘结磨料制品的方法 |
US11383350B2 (en) | 2017-02-28 | 2022-07-12 | 3M Innovative Properties Company | Metal bond abrasive articles and methods of making metal bond abrasive articles |
CN110337347B (zh) * | 2017-02-28 | 2022-07-12 | 3M创新有限公司 | 金属粘结磨料制品及制备金属粘结磨料制品的方法 |
US10704334B2 (en) | 2017-06-24 | 2020-07-07 | Wenhui Jiang | Polycrystalline diamond compact cutters having protective barrier coatings |
US11014759B2 (en) | 2018-07-30 | 2021-05-25 | XR Downhole, LLC | Roller ball assembly with superhard elements |
US11994006B2 (en) | 2018-07-30 | 2024-05-28 | Xr Reserve Llc | Downhole drilling tool with a polycrystalline diamond bearing |
US11761486B2 (en) | 2018-07-30 | 2023-09-19 | Xr Reserve Llc | Polycrystalline diamond bearings for rotating machinery with compliance |
US12326170B2 (en) | 2018-07-30 | 2025-06-10 | Xr Reserve Llc | Polycrystalline diamond radial bearing |
US10968991B2 (en) | 2018-07-30 | 2021-04-06 | XR Downhole, LLC | Cam follower with polycrystalline diamond engagement element |
US11746875B2 (en) | 2018-07-30 | 2023-09-05 | Xr Reserve Llc | Cam follower with polycrystalline diamond engagement element |
US11035407B2 (en) | 2018-07-30 | 2021-06-15 | XR Downhole, LLC | Material treatments for diamond-on-diamond reactive material bearing engagements |
US11054000B2 (en) | 2018-07-30 | 2021-07-06 | Pi Tech Innovations Llc | Polycrystalline diamond power transmission surfaces |
US11187040B2 (en) | 2018-07-30 | 2021-11-30 | XR Downhole, LLC | Downhole drilling tool with a polycrystalline diamond bearing |
US11655679B2 (en) | 2018-07-30 | 2023-05-23 | Xr Reserve Llc | Downhole drilling tool with a polycrystalline diamond bearing |
US12281541B2 (en) | 2018-07-30 | 2025-04-22 | Xr Reserve, Llc | Downhole drilling tool with a polycrystalline diamond bearing |
US11242891B2 (en) | 2018-07-30 | 2022-02-08 | XR Downhole, LLC | Polycrystalline diamond radial bearing |
US11274731B2 (en) | 2018-07-30 | 2022-03-15 | Pi Tech Innovations Llc | Polycrystalline diamond power transmission surfaces |
US11761481B2 (en) | 2018-07-30 | 2023-09-19 | Xr Reserve Llc | Polycrystalline diamond radial bearing |
US11286985B2 (en) | 2018-07-30 | 2022-03-29 | Xr Downhole Llc | Polycrystalline diamond bearings for rotating machinery with compliance |
US11371556B2 (en) | 2018-07-30 | 2022-06-28 | Xr Reserve Llc | Polycrystalline diamond linear bearings |
US10760615B2 (en) | 2018-07-30 | 2020-09-01 | XR Downhole, LLC | Polycrystalline diamond thrust bearing and element thereof |
US10738821B2 (en) * | 2018-07-30 | 2020-08-11 | XR Downhole, LLC | Polycrystalline diamond radial bearing |
US11499619B2 (en) | 2018-07-30 | 2022-11-15 | David P. Miess | Cam follower with polycrystalline diamond engagement element |
US11970339B2 (en) | 2018-07-30 | 2024-04-30 | Xr Reserve Llc | Roller ball assembly with superhard elements |
US11608858B2 (en) | 2018-07-30 | 2023-03-21 | Xr Reserve Llc | Material treatments for diamond-on-diamond reactive material bearing engagements |
US11603715B2 (en) | 2018-08-02 | 2023-03-14 | Xr Reserve Llc | Sucker rod couplings and tool joints with polycrystalline diamond elements |
US11225842B2 (en) | 2018-08-02 | 2022-01-18 | XR Downhole, LLC | Polycrystalline diamond tubular protection |
WO2020226738A1 (en) | 2019-05-08 | 2020-11-12 | Gregory Prevost | Polycrystalline diamond bearings for rotating machinery with compliance |
WO2020256910A1 (en) | 2019-05-29 | 2020-12-24 | XR Downhole, LLC | Polycrystalline diamond power transmission surfaces |
WO2021011128A1 (en) | 2019-05-29 | 2021-01-21 | XR Downhole, LLC | Polycrystalline diamond linear bearings |
US11906001B2 (en) | 2020-05-29 | 2024-02-20 | Pi Tech Innovations Llc | Joints with diamond bearing surfaces |
US11614126B2 (en) | 2020-05-29 | 2023-03-28 | Pi Tech Innovations Llc | Joints with diamond bearing surfaces |
US12228177B2 (en) | 2020-05-29 | 2025-02-18 | Pi Tech Innovations Llc | Driveline with double conical bearing joints having polycrystalline diamond power transmission surfaces |
CN114012089B (zh) * | 2020-10-20 | 2023-10-10 | 北京安泰钢研超硬材料制品有限责任公司 | 一种金刚石包裹球的制备方法及生成装置 |
CN114012089A (zh) * | 2020-10-20 | 2022-02-08 | 北京安泰钢研超硬材料制品有限责任公司 | 一种金刚石包裹球的制备方法及生成装置 |
CN112536735A (zh) * | 2020-10-30 | 2021-03-23 | 河南富莱格超硬材料有限公司 | 金刚石砂轮及其制备方法 |
US11655850B2 (en) | 2020-11-09 | 2023-05-23 | Pi Tech Innovations Llc | Continuous diamond surface bearings for sliding engagement with metal surfaces |
US11933356B1 (en) | 2020-11-09 | 2024-03-19 | Pi Tech Innovations Llc | Continuous diamond surface bearings for sliding engagement with metal surfaces |
US12006973B2 (en) | 2020-11-09 | 2024-06-11 | Pi Tech Innovations Llc | Diamond surface bearings for sliding engagement with metal surfaces |
CN114227557A (zh) * | 2021-12-24 | 2022-03-25 | 西安奕斯伟材料科技有限公司 | 修整盘及其制备方法、化学机械抛光设备 |
US12064850B2 (en) | 2021-12-30 | 2024-08-20 | Saint-Gobain Abrasives, Inc. | Abrasive articles and methods for forming same |
US12296434B2 (en) | 2021-12-30 | 2025-05-13 | Saint-Gobain Abrasives, Inc. | Abrasive articles and methods for forming same |
CN117983810A (zh) * | 2024-04-03 | 2024-05-07 | 天津市镍铠表面处理技术有限公司 | 一种金刚石铜高导热粉体材料及其制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
JPS4910968B1 (enrdf_load_html_response) | 1974-03-14 |
ZA701109B (en) | 1971-01-27 |
GB1310686A (en) | 1973-03-21 |
CH531398A (fr) | 1972-12-15 |
BE746768A (enrdf_load_html_response) | 1970-09-03 |
DE2010183A1 (de) | 1970-09-10 |
NL7003116A (enrdf_load_html_response) | 1970-09-08 |
FR2037597A5 (enrdf_load_html_response) | 1970-12-31 |
SE374538B (enrdf_load_html_response) | 1975-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3650714A (en) | A method of coating diamond particles with metal | |
KR100371979B1 (ko) | 연마 공구, 드레싱 공구 및 드레싱 공구 제조 방법 | |
US4923490A (en) | Novel grinding wheels utilizing polycrystalline diamond or cubic boron nitride grit | |
US6540800B2 (en) | Abrasive particles with metallurgically bonded metal coatings | |
EP0439017B1 (en) | Multilayer coated abrasive element for bonding to a backing | |
KR900002701B1 (ko) | 공구용 다이어몬드 소결체 및 그 제조 방법 | |
US20020095875A1 (en) | Abrasive diamond composite and method of making thereof | |
US5062865A (en) | Chemically bonded superabrasive grit | |
US2562587A (en) | Bonded abrasive | |
US4968326A (en) | Method of brazing of diamond to substrate | |
CN1014306B (zh) | 低压粘结金刚石聚晶体及其制造方法 | |
US20080187769A1 (en) | Metal-coated superabrasive material and methods of making the same | |
JP2010527888A (ja) | コーティングされたcbn | |
KR100375649B1 (ko) | 연마 용구에 사용되는 제거가능한 결합제 | |
JP4653922B2 (ja) | ダイアモンドまたはダイアモンド含有材料で構成されている基質に被膜を付着させる方法 | |
JPH08108369A (ja) | 砥石工具とその製造方法 | |
JP4903566B2 (ja) | ホウ素被覆された研磨剤 | |
EP0184455B1 (en) | Bonding method | |
CN1027495C (zh) | 化学结合的超硬磨料 | |
JPH09272060A (ja) | 砥石工具およびその製造方法 | |
JP2735685B2 (ja) | 被覆された超研摩材砥粒及びこれを含んでなる工具 | |
KR0153252B1 (ko) | 피복된 초연마재 그릿, 이의 제조방법 및 이를 함유하는 기구 | |
WO2004089849A1 (en) | Method of manufacturing a diamond composite body having a modified outer surface | |
JPH02292173A (ja) | 高密度ダイヤモンド砥石の製造方法 | |
Rabinkin et al. | Advances in brazing: 6. Brazing of diamonds and cubic boron nitride |