US3620954A - Electrolytic cells - Google Patents

Electrolytic cells Download PDF

Info

Publication number
US3620954A
US3620954A US766849A US3620954DA US3620954A US 3620954 A US3620954 A US 3620954A US 766849 A US766849 A US 766849A US 3620954D A US3620954D A US 3620954DA US 3620954 A US3620954 A US 3620954A
Authority
US
United States
Prior art keywords
anode
cell
holding means
switch
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US766849A
Other languages
English (en)
Inventor
Karl Ziegler
Wilhelm Eisenbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19671671484 external-priority patent/DE1671484C3/de
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3620954A publication Critical patent/US3620954A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/13Organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/30Cells comprising movable electrodes, e.g. rotary electrodes; Assemblies of constructional parts thereof

Definitions

  • PATENTEDNUV 15 ml ELECTROLYTIC csus This invention relates to electrolytic cells. In particular, it relates to cells which have sheet form anodes which are replaced as they are dissolved.
  • An article in Chemie-lngenieur-Technik 35 (I963) 330 describes, inter alia, an electrolytic cell in which metal alkyls, in particular lead tetraethyl, can be produced by electrolysis.
  • This electrolysis uses metal anodes, preferably of lead, a complex organometallic electrolyte and rotating disc-form cathodes which are wetted with mercury.
  • This cell which was of a relatively small scale, was run at a maximum of 200 a., distributed among three anodes and four rotating disc cathodes. The lead anodes wen-e 4 mm. thick, and these were interposed between the rotating disc cathodes which were spaced 9 mm. apart.
  • the electrolyte gap between the electrodes was 2.5 mm., which widened to 4.5 mm. just before the anodes dissolved.
  • the anodes corresponded in shape to the effective part of the rotating circular cathodes.
  • this cell is run at a constant voltage of, e.g. 4.5 volts, the intensity of the cross section, from an individual anode decreases from 67 a. at the start, to 37 a. just before complete dissolution, for an initial current density of 36 a./dm. If it were desired to run the cell at a constant current intensity, the voltage would have to be increased accordingly. In this known cell, it was possible by using a mechanical dodge to ensure that, when working with a substantially constant voltage, the average current absorption throughout the cell also remained substantially constant. This was achieved by initially inserting only one metal anode and introducing the other two anodes at intervals of one hour.
  • the anodes dissolved completely in about three hours, when the cell was in continuous operation, it always contained (after 3 hours from the start of operation) one relatively freshly inserted anode which carried a high-current intensity, one anode about half dissolved which carried a reduced current intensity and one anode almost completely dissolved which carried a current intensity near the lower of the limiting values specified above.
  • the cell can be run at an average power consumption of 1,000 watts at about 5 volts, i.e. under extremely constant conditions.
  • the cell naturally has to be increased very considerably in size so that it is able to use, for example, I0,000 to 100,000 a.
  • a cell designed on a semicommercial scale which passes a current of about 1,000 a. has itself some deficiencies. These deficiencies result from the relatively low conductivity of the organometallic electrolyte which makes it absolutely essential that the electrode gap should not undergo any appreciable change during the dissolution of the metal anodes.
  • anodes which are a few millimeters thick.
  • the anodes could be made as thick as desired and the rotating disc cathodes provided with corresponding clearances, the cell would become increasingly uneconomic as it is run.
  • anodes mm. thick were used and the electrolysis was started with an electrode gap of 2 mm. on both sides,
  • the electrode gap would become six times wider during the dissolution of the anode. This in turn would lead to a very large increase in the resistance and to a reduction in both the current absorption and the current density, which seriously affects the economics of the cell's operation.
  • An object of the present invention is to eliminate these difficulties and to provide a generally applicable and economic electrolysis process using such a cell.
  • Such an arrangement has the advantage that the anodes need only be replaced infrequently, for example every 24 hours when the anodes are 30 mm. thick.
  • this system has the disadvantage that a complicated design of the rotor is needed to enable the interval between the pairs of discs to be adjusted in operation, i.e. during rotation.
  • An electrolysis cell according to the present invention uses relatively thin metal anodes, but at the same time avoids all the disadvantages of previous designs.
  • the invention provides an electrolysis cell comprising at least two disc-form cathodes which are arranged vertically in the electrolyte, and at least one sheet-form metal anode and means for introduction of the anode into the electrolyte during electrolysis as it is dissolved by the electrolysis.
  • the anode material is replenished, as required, from outside the electrolysis cell by directly joining the new anode to the anode which has almost been dissolved. Accordingly, when introducing more anode material, even when the electrolysis is operated for a very long time, it is not necessary to open the cell. Opening the cell usually requires a gate to prevent air from getting in to the cell and the present invention avoids leaks through diffusion or defective operation of the gates.
  • FIG. 1 is a schematic showing depicting three phases of the operation of the cathode-anode system of the invention
  • FIG. 2 is a schematic representation of a cell according to the invention.
  • FIG. 3 and FIG. 4 are plan views in cross section of alternative means for mounting of and making electrical connection with, and moving the anodes, in the upper part of the cell, above the level of the electrolyte;
  • FIG. 5 is a schematic representation of one procedure for connecting a new anode strip to a nearly consumed anode strip
  • FIG. 6 shows a system for automatically feeding a plurality of electrode strips to a cell.
  • FIG. 1 diagrammatically illustrates a strip of anode material 1 dipping into an electrolyte in the gap between two disc cathodes.
  • the drawing shows only one disc cathode 2 mounted on a rotor shaft 3.
  • the cathodes are in the form of circular rotating discs which are wetted with mercury.
  • the principle of the invention of introducing anodes into electrolysis cells may also be applied to cathode systems of a fundamentally difi'erent type.
  • the principle of the invention is, however, most readily applied to a cell comprising circular rotating cathodes in the form of discs.
  • the anode 1 is in the form of a metal band of any length and a few millimeters thick, e.g. about 2 to 6 mm. thick; the width of the band is desirably somewhat smaller than the diameter of the rotating disc cathodes. If such a band, which is initially cut off horizontally, is inserted from above between a pair of rotating disc cathodes, as shown in FIG. 1, phase I, part of the anode is dissolved during electrolysis in the area shown by the hatching in FIG. 1, phase I. This produces, eventually, the situation shown in FIG. 1, phase ll. lf then the band anode is pushed down into the position shown in phase [II of FIG. 1, a substantially sickle-shaped portion is electrolytically cut out of the anode as shown by the hatching in FIG. 1, phase III and eventually is completely dissolved as the feed continues.
  • a safety clearance of about 0.5 to 1 cm. is desirably left between the lowest points of the lead band and the surface of the mercury.
  • the crescenbshaped part of the anode band which is dissolved in one stage of the process constitutes about 35 percent of the surface area of the individual cathode discs.
  • the surface of the individual cathode disc which is actually effectively used amounts to some 70 percent of the circular area.
  • the band anode must satisfy the following requirements:
  • the band must be fixed accurately and firmly between the rotating cathodes
  • the band should be connected to a source of current at a suitable point, if possible without involving a large resistance in this connection;
  • the fixed hand must be capable of being readily and quickly released both from its position and from the electrical contact with the source of current so that it can be pushed forward a suitable distance;
  • the band After it has been pushed forward, the band must be capable of being readily fixed in position and quickly brought back into contact with the source of current. Although in theory, simply moving the band by the correct distance, e.g. by hand,
  • overflow edge 5 and with an interrupted partition 6 which acts as a support for the band anode would be possible, it is nevertheless desirable that overflow edge 5 and with an interrupted partition 6 which acts as a support for the band anode.
  • the cell further includes a tank 9, electrolyte 10 having upper level 11, tank top 12 and cell cover 13.
  • the electrode extends outwardly through the tank top 12 and cell cover 13, through two seals 15 and 16.
  • the tank top 12 and cell cover 13 are jointed together to form a gas space 14, into which an inert gas, e.g. nitrogen, under a positive pressure, i.e. above atmospheric and above the pressure in the cell (which can be atmospheric,) can be introduced via inlet 17. In this manner entry of air into the cell can be prevented.
  • an inert gas e.g. nitrogen
  • the anode l is connected to a source of positive potential as indicated at 18; the cathode 2 is electrically connected to the shaft 3 which is connected outside the cell to a source of negative potential as is indicated at 20, via brush 19.
  • Means for holding and lowering the anode can be disposed in the space 21 between the electrolyte level 11 and tank top 12, such means being shown in FIG. 3 and FIG. 4.
  • Each individual band anode l is in contact with a copper plate 7 with which it makes electrical connection. This arrangement is preferably spaced well away from the surface of the electrolyte. Copper plates may also be provided on both sides of the anodes.
  • Inflatable bodies 8 of an elastic material for example in lenticular or rectangular form, are arranged on both sides of the current-carrying parts, both the anodes and copper plates. Elastic metal bellows or even suitable rubber devices may be used as these inflatable members. Special types of rubber are available that are resistant to the corrosive effect of the electrolyte, which may be sprayed upwards, or of the aluminum alkyls volatilizing from it.
  • inflatable bodies of vulcanized rubber or of any kind of synthetic rubber which are covered with thin films of polytetrafluoroethylene, polypropylene, poly-4-methyl-lpenetene or of similar polymers which are highly resistant chemically.
  • the device as a whole is accommodated in a shaft of suitable length above the actual electrolysis zone so that at most it will assume a slightly elevated temperature, but will never reach the temperature of the electrolyte itself.
  • a large number of these individual components may be arranged beside each other in a shaft of suitable cross section, i.e. in alternation beginning from the shaft support, inflatable body copper plate lead band copper plate inflatable body copper plate and so on.
  • Small tubes lead from the inflatable bodies to a common pipe through which these bodies can be inflated by suitable means, e.g. by using a gas or oil under pressure.
  • suitable means e.g. by using a gas or oil under pressure.
  • a pressure of 0.05 atoms is sufficient to fix the entire system of plates, for example when using a metal band 20 cm. wide and a rubber sac of 16 cm. diameter.
  • the bearing pressure amounts to approximately 10 kg.
  • the difference in voltage between the lead band and the current-carrying copper plate was measured under this load at a current intensity in the individual anode of 60 a.
  • the voltage loss amounted to 30 mv. where the pressure inside the inflatable bodies was 0.05 atoms and to 20 mv. where the pressure was 0.] atom. There was no further change in this value when the pressure was increased. These are extremely good values; and these minimal voltage losses through the resistance of the connection are of no consequence at all when using a total cell voltage of about 4 to 5 volts.
  • the band anodes are guided at the upper end of the shaft through a suitable elastic sealing material which prevents air from entering.
  • This sealing system may also be duplicated so that, e.g. two seals are arranged one above the other a few centimeters apart, the gap between the protective plates being placed under a slight pressure of nitrogen.
  • One particularly simple method for providing a continuous feed of the anode would be to install an extruder above the cell.
  • welding or melting operations could be avoided by joining the replacement anode with the almost exhausted anode using a dovetail joint of the kind frequently used in carpentry.
  • the two plates merely have to lie tightly together at the joint, and if necessary may be held together under light pressure.
  • This joint serves its purpose without any danger of traces of the old anode becoming detached and dropping into the mercury when a joint of this kind arrives in the dissolution zone as electrolysis proceeds, cf. FIG. 5.
  • the invention has been described with reference to a cell in which lead anodes are dissolved, to form, e.g., a tetra-alkyl lead compound. This is a most important application. However, it may also be readily used with other metals.
  • Other suitable anode materials include in particular, tin, antimony, bismuth and aluminum. This method of replacing used anodes would appear to be particularly important in the case of aluminum because greater difficulties are involved in welding this metal than in welding lead.
  • the anodes leading into the electrolysis cell in the form of extremely long bands wound into rolls which may then be fed intermittently into the electrolyte by a suitable mechanism.
  • bands wound into rolls this can be achieved by arranging the system of rolls one above the other along a slope as shown in FIG. 6.
  • this arrangement has the disadvantage that the anodes are unable to drop the correct distance under their own weight.
  • the method according to the invention of letting metal tapes into a reactor in the absence of air may, of course, also be used for other purposes, for example in the production of high-purity aluminum.
  • a system of cathodes is arranged opposite to aluminum anodes inserted into the cell in accordance with the invention, and either a solid high-purity aluminum is deposited on to thin, fixed aluminum cathodes at a low-current density, or alternatively, aluminum is deposited in the form of a crystalline powder at high-current densities, the powder being subsequently discharged from the cell in a continuous cycle using sludge pumps.
  • the invention is particularly suitable for the production of metal alkyls by the electrolysis of organometallic compounds, in particular, of organic aluminum compounds of the type described in German Pat. specification No. 1,161,562.
  • This patent specification relates to the production of alkyl compounds of lead in particular, but also of other solid metals such as magnesium, aluminum, tin, antimony or bismuth.
  • the process is particularly suitable for the production of organometallic compounds containing alkyl radicals with up to six carbon atoms, the production of lead tetra-alkyl compounds being a particularly important commercial application.
  • the lower lead tetra-alkyls which are extensively used in practice, in particular lead tetramethyl and lead tetraethyl, may be produced with advantage in accordance with the invention using the principles discussed earlier on.
  • German Pat. specifications No. l,l66,l96 which relates, for example, to the production of tetraethyl lead by the electrolysis of organic aluminum complex compounds, and to No. l,220,855 relating to the corresponding production of lead tetramethyl.
  • the first of these two patent specifications relates to the production of aluminum trialkyl and magnesium dialkyls in the presence of organic aluminum complex compounds as electrolytes, whilst the second relates to an important modification for the production of lead tetramethyl through the electrolysis of organic aluminum complex compounds in particular.
  • a strip-form anode disposed vertically in the tank between the disc-form plates, extending upwardly through the top of the tank and connected to a source of positive potential
  • anode feed means for controlled advancing of the anode between the cathodes to compensate for dissolving of the anode by the electrolysis.
  • a cell as claimed in claim 1 including a bath of mercury in the mercury container, and means maintaining the electrolyte tank filled to at least adjacent the top of the disc-form plates, the anode terminating above the mercury.
  • said anode feed means including selectively releasable holding means for keeping the anode in a fixed position in the cell and selectively releasing the anode for said advancing thereof, the anode being able to advance into the electrolyte under gravity when the holding means is released.
  • a cell as claimed in claim 4 including a bath of mercury in the mercury container, and means maintaining the electrolyte tank filled to at least adjacent the top of the disc-form plates, the anode terminating above the mercury.
  • said anode feed means including selectively releasable holding means for keeping the anode in a fixed position in the cell and selectively releasing the anode for said advancing thereof.
  • a cell according to claim 6, the anode including, without the cell, a rolled portion from which the anode can be fed to the cell.
  • a cell as claimed in claim 6 in which the anode is able to advance into the electrolyte under gravity when the holding means are released.
  • a cell as claimed in claim 1 and a second seal for the anode disposed outside the tank, and means for maintaining a gas inert to the electrolyte under positive pressure between said seals, preventing air from entering the tank.
  • a cell as claimed in claim 1 in which the strip form anode comprises a strip which is joined outside the tank to a new strip of anode material.
  • An electrolysis cell comprising:
  • anode feed means for controlled advancing of the anode between the cathodes to compensate for dissolving of the anode by the electrolysis, said anode feed means including selectively releasable holding means for keeping the anode in a fixed position in the cell and selectively releasing the anode for said advancing thereof, and
  • said holding means comprising an inflatable body which when inflated presses against the anode and holds it in position.
  • An electrolysis cell comprising:
  • anode feed means for controlled advancing of the anode between the cathodes to compensate for dissolving of the anode by the electrolysis, said anode feed means including selectively releasable holding means for keeping the anode in a fixed position in the cell and selectively releasing the anode for said advancing thereof, and
  • switch means in said connection of the anode to a positive potential, said holding means being effective to close said switch when holding the anode in place and open said switch when the anode is released by the holding means.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
US766849A 1967-10-14 1968-10-11 Electrolytic cells Expired - Lifetime US3620954A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19671671484 DE1671484C3 (de) 1967-10-14 1967-10-14 Elektrolysezelle mit eingeschleusten, sich auflösenden bandförmigen Metallanoden

Publications (1)

Publication Number Publication Date
US3620954A true US3620954A (en) 1971-11-16

Family

ID=5686424

Family Applications (1)

Application Number Title Priority Date Filing Date
US766849A Expired - Lifetime US3620954A (en) 1967-10-14 1968-10-11 Electrolytic cells

Country Status (6)

Country Link
US (1) US3620954A (enrdf_load_stackoverflow)
AT (1) AT291938B (enrdf_load_stackoverflow)
BE (1) BE721971A (enrdf_load_stackoverflow)
ES (1) ES358917A1 (enrdf_load_stackoverflow)
FR (1) FR1587448A (enrdf_load_stackoverflow)
GB (1) GB1226036A (enrdf_load_stackoverflow)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915683A (en) * 1968-04-09 1975-10-28 Pilkington Brothers Ltd Method for manufacture of float glass
US4800009A (en) * 1987-04-24 1989-01-24 Aleksandar Despic Electrochemical cell with moving electrode
US5334301A (en) * 1992-03-04 1994-08-02 Heraeus Elektrochemie Gmbh Electrochemical cell having inflatable seals between electrodes
US20030112916A1 (en) * 2000-02-25 2003-06-19 Keeney Franklin W. Cold nuclear fusion under non-equilibrium conditions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4400056C1 (de) * 1994-01-04 1995-07-06 Rittel Andreas Elektrolyseapparat

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US526482A (en) * 1894-09-25 Apparatus for electrodepositing
US2046467A (en) * 1931-01-29 1936-07-07 Katadyn Inc Sterilization of liquids by means of oligodynamy
US2234967A (en) * 1936-03-11 1941-03-18 Du Pont Production of alkali metals
GB786743A (en) * 1954-09-02 1957-11-27 Glacier Co Ltd Electro-deposition of metal layers
US3427237A (en) * 1967-05-01 1969-02-11 Thomas M Morris Electrolysis method and electrolytic cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US526482A (en) * 1894-09-25 Apparatus for electrodepositing
US2046467A (en) * 1931-01-29 1936-07-07 Katadyn Inc Sterilization of liquids by means of oligodynamy
US2234967A (en) * 1936-03-11 1941-03-18 Du Pont Production of alkali metals
GB786743A (en) * 1954-09-02 1957-11-27 Glacier Co Ltd Electro-deposition of metal layers
US3427237A (en) * 1967-05-01 1969-02-11 Thomas M Morris Electrolysis method and electrolytic cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915683A (en) * 1968-04-09 1975-10-28 Pilkington Brothers Ltd Method for manufacture of float glass
US4800009A (en) * 1987-04-24 1989-01-24 Aleksandar Despic Electrochemical cell with moving electrode
US5334301A (en) * 1992-03-04 1994-08-02 Heraeus Elektrochemie Gmbh Electrochemical cell having inflatable seals between electrodes
US20030112916A1 (en) * 2000-02-25 2003-06-19 Keeney Franklin W. Cold nuclear fusion under non-equilibrium conditions

Also Published As

Publication number Publication date
AT291938B (de) 1971-08-10
BE721971A (enrdf_load_stackoverflow) 1969-04-08
FR1587448A (enrdf_load_stackoverflow) 1970-03-20
ES358917A1 (es) 1970-05-16
GB1226036A (enrdf_load_stackoverflow) 1971-03-24

Similar Documents

Publication Publication Date Title
US7767065B2 (en) Device and method for electrolytically treating an at least superficially electrically conducting work piece
US4220508A (en) Process for electrolytic etching
US3620954A (en) Electrolytic cells
GB1513524A (en) Processes for preventing the generation of mist of electrolyte and for recovering generated gases in electrowinning metal recovery and electrodes for use in said processes
JPS5481133A (en) Anodic oxidation device
Zhiyu et al. Electrochemical reduction of niobium ions in molten LiF-NaF
CN101629312A (zh) 离子液体体系电沉积铅方法
JPS6238436B2 (enrdf_load_stackoverflow)
US3702814A (en) Electrolytic recovery cell
ES8505737A1 (es) Procedimiento pra recubrir con una capa metalica, por via electrolitica, de forma continua uno o ambos lados de una tira metalica
US3803016A (en) Electrolytic cell having adjustable anode sections
JPS5241103A (en) Equipment for electrolysis of metal suspension
DE3375407D1 (en) Process for the manufacture of active aluminium oxide
US3427237A (en) Electrolysis method and electrolytic cell
US4800009A (en) Electrochemical cell with moving electrode
JPS57101692A (en) Horizontal electroplating method by insoluble electrode
US4272351A (en) Apparatus for electrolytic etching
US3904497A (en) Process for electrolytic recovery of metallic gallium
US4505785A (en) Method for electroplating steel strip
KR820001142Y1 (ko) 알루미늄 및 알루미늄 합금의 표면처리장치
KR810002106B1 (ko) 알루미늄 및 알루미늄 합금의 표면처리 방법
JPH06207292A (ja) フツ化ペルフルオロアルキルスルホニルの製造方法およびそれに使用するための電極
US4022673A (en) Electrochemical production of 1,4-dihydro aromatic compounds
Lokhande et al. Studies on stability of PEC cells formed with CdS: Al films
KR200205979Y1 (ko) 납-주석 합금도금 아노드 안내장치