US3620954A - Electrolytic cells - Google Patents
Electrolytic cells Download PDFInfo
- Publication number
- US3620954A US3620954A US766849A US3620954DA US3620954A US 3620954 A US3620954 A US 3620954A US 766849 A US766849 A US 766849A US 3620954D A US3620954D A US 3620954DA US 3620954 A US3620954 A US 3620954A
- Authority
- US
- United States
- Prior art keywords
- anode
- cell
- holding means
- switch
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 39
- 239000003792 electrolyte Substances 0.000 claims abstract description 38
- 229910052751 metal Inorganic materials 0.000 claims description 26
- 239000002184 metal Substances 0.000 claims description 26
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 24
- 229910052753 mercury Inorganic materials 0.000 claims description 24
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 239000010949 copper Substances 0.000 claims description 12
- 239000010405 anode material Substances 0.000 claims description 6
- 238000003466 welding Methods 0.000 claims description 6
- 230000005484 gravity Effects 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 238000005192 partition Methods 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 7
- 238000004090 dissolution Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical group [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- 239000011591 potassium Chemical group 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- MRMOZBOQVYRSEM-UHFFFAOYSA-N tetraethyllead Chemical group CC[Pb](CC)(CC)CC MRMOZBOQVYRSEM-UHFFFAOYSA-N 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 229910052797 bismuth Inorganic materials 0.000 description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 125000002524 organometallic group Chemical group 0.000 description 3
- -1 polytetrafluoroethylene Polymers 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- XOOGZRUBTYCLHG-UHFFFAOYSA-N tetramethyllead Chemical group C[Pb](C)(C)C XOOGZRUBTYCLHG-UHFFFAOYSA-N 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000203 mixture Chemical group 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000004636 vulcanized rubber Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/01—Products
- C25B3/13—Organo-metallic compounds
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/30—Cells comprising movable electrodes, e.g. rotary electrodes; Assemblies of constructional parts thereof
Definitions
- PATENTEDNUV 15 ml ELECTROLYTIC csus This invention relates to electrolytic cells. In particular, it relates to cells which have sheet form anodes which are replaced as they are dissolved.
- An article in Chemie-lngenieur-Technik 35 (I963) 330 describes, inter alia, an electrolytic cell in which metal alkyls, in particular lead tetraethyl, can be produced by electrolysis.
- This electrolysis uses metal anodes, preferably of lead, a complex organometallic electrolyte and rotating disc-form cathodes which are wetted with mercury.
- This cell which was of a relatively small scale, was run at a maximum of 200 a., distributed among three anodes and four rotating disc cathodes. The lead anodes wen-e 4 mm. thick, and these were interposed between the rotating disc cathodes which were spaced 9 mm. apart.
- the electrolyte gap between the electrodes was 2.5 mm., which widened to 4.5 mm. just before the anodes dissolved.
- the anodes corresponded in shape to the effective part of the rotating circular cathodes.
- this cell is run at a constant voltage of, e.g. 4.5 volts, the intensity of the cross section, from an individual anode decreases from 67 a. at the start, to 37 a. just before complete dissolution, for an initial current density of 36 a./dm. If it were desired to run the cell at a constant current intensity, the voltage would have to be increased accordingly. In this known cell, it was possible by using a mechanical dodge to ensure that, when working with a substantially constant voltage, the average current absorption throughout the cell also remained substantially constant. This was achieved by initially inserting only one metal anode and introducing the other two anodes at intervals of one hour.
- the anodes dissolved completely in about three hours, when the cell was in continuous operation, it always contained (after 3 hours from the start of operation) one relatively freshly inserted anode which carried a high-current intensity, one anode about half dissolved which carried a reduced current intensity and one anode almost completely dissolved which carried a current intensity near the lower of the limiting values specified above.
- the cell can be run at an average power consumption of 1,000 watts at about 5 volts, i.e. under extremely constant conditions.
- the cell naturally has to be increased very considerably in size so that it is able to use, for example, I0,000 to 100,000 a.
- a cell designed on a semicommercial scale which passes a current of about 1,000 a. has itself some deficiencies. These deficiencies result from the relatively low conductivity of the organometallic electrolyte which makes it absolutely essential that the electrode gap should not undergo any appreciable change during the dissolution of the metal anodes.
- anodes which are a few millimeters thick.
- the anodes could be made as thick as desired and the rotating disc cathodes provided with corresponding clearances, the cell would become increasingly uneconomic as it is run.
- anodes mm. thick were used and the electrolysis was started with an electrode gap of 2 mm. on both sides,
- the electrode gap would become six times wider during the dissolution of the anode. This in turn would lead to a very large increase in the resistance and to a reduction in both the current absorption and the current density, which seriously affects the economics of the cell's operation.
- An object of the present invention is to eliminate these difficulties and to provide a generally applicable and economic electrolysis process using such a cell.
- Such an arrangement has the advantage that the anodes need only be replaced infrequently, for example every 24 hours when the anodes are 30 mm. thick.
- this system has the disadvantage that a complicated design of the rotor is needed to enable the interval between the pairs of discs to be adjusted in operation, i.e. during rotation.
- An electrolysis cell according to the present invention uses relatively thin metal anodes, but at the same time avoids all the disadvantages of previous designs.
- the invention provides an electrolysis cell comprising at least two disc-form cathodes which are arranged vertically in the electrolyte, and at least one sheet-form metal anode and means for introduction of the anode into the electrolyte during electrolysis as it is dissolved by the electrolysis.
- the anode material is replenished, as required, from outside the electrolysis cell by directly joining the new anode to the anode which has almost been dissolved. Accordingly, when introducing more anode material, even when the electrolysis is operated for a very long time, it is not necessary to open the cell. Opening the cell usually requires a gate to prevent air from getting in to the cell and the present invention avoids leaks through diffusion or defective operation of the gates.
- FIG. 1 is a schematic showing depicting three phases of the operation of the cathode-anode system of the invention
- FIG. 2 is a schematic representation of a cell according to the invention.
- FIG. 3 and FIG. 4 are plan views in cross section of alternative means for mounting of and making electrical connection with, and moving the anodes, in the upper part of the cell, above the level of the electrolyte;
- FIG. 5 is a schematic representation of one procedure for connecting a new anode strip to a nearly consumed anode strip
- FIG. 6 shows a system for automatically feeding a plurality of electrode strips to a cell.
- FIG. 1 diagrammatically illustrates a strip of anode material 1 dipping into an electrolyte in the gap between two disc cathodes.
- the drawing shows only one disc cathode 2 mounted on a rotor shaft 3.
- the cathodes are in the form of circular rotating discs which are wetted with mercury.
- the principle of the invention of introducing anodes into electrolysis cells may also be applied to cathode systems of a fundamentally difi'erent type.
- the principle of the invention is, however, most readily applied to a cell comprising circular rotating cathodes in the form of discs.
- the anode 1 is in the form of a metal band of any length and a few millimeters thick, e.g. about 2 to 6 mm. thick; the width of the band is desirably somewhat smaller than the diameter of the rotating disc cathodes. If such a band, which is initially cut off horizontally, is inserted from above between a pair of rotating disc cathodes, as shown in FIG. 1, phase I, part of the anode is dissolved during electrolysis in the area shown by the hatching in FIG. 1, phase I. This produces, eventually, the situation shown in FIG. 1, phase ll. lf then the band anode is pushed down into the position shown in phase [II of FIG. 1, a substantially sickle-shaped portion is electrolytically cut out of the anode as shown by the hatching in FIG. 1, phase III and eventually is completely dissolved as the feed continues.
- a safety clearance of about 0.5 to 1 cm. is desirably left between the lowest points of the lead band and the surface of the mercury.
- the crescenbshaped part of the anode band which is dissolved in one stage of the process constitutes about 35 percent of the surface area of the individual cathode discs.
- the surface of the individual cathode disc which is actually effectively used amounts to some 70 percent of the circular area.
- the band anode must satisfy the following requirements:
- the band must be fixed accurately and firmly between the rotating cathodes
- the band should be connected to a source of current at a suitable point, if possible without involving a large resistance in this connection;
- the fixed hand must be capable of being readily and quickly released both from its position and from the electrical contact with the source of current so that it can be pushed forward a suitable distance;
- the band After it has been pushed forward, the band must be capable of being readily fixed in position and quickly brought back into contact with the source of current. Although in theory, simply moving the band by the correct distance, e.g. by hand,
- overflow edge 5 and with an interrupted partition 6 which acts as a support for the band anode would be possible, it is nevertheless desirable that overflow edge 5 and with an interrupted partition 6 which acts as a support for the band anode.
- the cell further includes a tank 9, electrolyte 10 having upper level 11, tank top 12 and cell cover 13.
- the electrode extends outwardly through the tank top 12 and cell cover 13, through two seals 15 and 16.
- the tank top 12 and cell cover 13 are jointed together to form a gas space 14, into which an inert gas, e.g. nitrogen, under a positive pressure, i.e. above atmospheric and above the pressure in the cell (which can be atmospheric,) can be introduced via inlet 17. In this manner entry of air into the cell can be prevented.
- an inert gas e.g. nitrogen
- the anode l is connected to a source of positive potential as indicated at 18; the cathode 2 is electrically connected to the shaft 3 which is connected outside the cell to a source of negative potential as is indicated at 20, via brush 19.
- Means for holding and lowering the anode can be disposed in the space 21 between the electrolyte level 11 and tank top 12, such means being shown in FIG. 3 and FIG. 4.
- Each individual band anode l is in contact with a copper plate 7 with which it makes electrical connection. This arrangement is preferably spaced well away from the surface of the electrolyte. Copper plates may also be provided on both sides of the anodes.
- Inflatable bodies 8 of an elastic material for example in lenticular or rectangular form, are arranged on both sides of the current-carrying parts, both the anodes and copper plates. Elastic metal bellows or even suitable rubber devices may be used as these inflatable members. Special types of rubber are available that are resistant to the corrosive effect of the electrolyte, which may be sprayed upwards, or of the aluminum alkyls volatilizing from it.
- inflatable bodies of vulcanized rubber or of any kind of synthetic rubber which are covered with thin films of polytetrafluoroethylene, polypropylene, poly-4-methyl-lpenetene or of similar polymers which are highly resistant chemically.
- the device as a whole is accommodated in a shaft of suitable length above the actual electrolysis zone so that at most it will assume a slightly elevated temperature, but will never reach the temperature of the electrolyte itself.
- a large number of these individual components may be arranged beside each other in a shaft of suitable cross section, i.e. in alternation beginning from the shaft support, inflatable body copper plate lead band copper plate inflatable body copper plate and so on.
- Small tubes lead from the inflatable bodies to a common pipe through which these bodies can be inflated by suitable means, e.g. by using a gas or oil under pressure.
- suitable means e.g. by using a gas or oil under pressure.
- a pressure of 0.05 atoms is sufficient to fix the entire system of plates, for example when using a metal band 20 cm. wide and a rubber sac of 16 cm. diameter.
- the bearing pressure amounts to approximately 10 kg.
- the difference in voltage between the lead band and the current-carrying copper plate was measured under this load at a current intensity in the individual anode of 60 a.
- the voltage loss amounted to 30 mv. where the pressure inside the inflatable bodies was 0.05 atoms and to 20 mv. where the pressure was 0.] atom. There was no further change in this value when the pressure was increased. These are extremely good values; and these minimal voltage losses through the resistance of the connection are of no consequence at all when using a total cell voltage of about 4 to 5 volts.
- the band anodes are guided at the upper end of the shaft through a suitable elastic sealing material which prevents air from entering.
- This sealing system may also be duplicated so that, e.g. two seals are arranged one above the other a few centimeters apart, the gap between the protective plates being placed under a slight pressure of nitrogen.
- One particularly simple method for providing a continuous feed of the anode would be to install an extruder above the cell.
- welding or melting operations could be avoided by joining the replacement anode with the almost exhausted anode using a dovetail joint of the kind frequently used in carpentry.
- the two plates merely have to lie tightly together at the joint, and if necessary may be held together under light pressure.
- This joint serves its purpose without any danger of traces of the old anode becoming detached and dropping into the mercury when a joint of this kind arrives in the dissolution zone as electrolysis proceeds, cf. FIG. 5.
- the invention has been described with reference to a cell in which lead anodes are dissolved, to form, e.g., a tetra-alkyl lead compound. This is a most important application. However, it may also be readily used with other metals.
- Other suitable anode materials include in particular, tin, antimony, bismuth and aluminum. This method of replacing used anodes would appear to be particularly important in the case of aluminum because greater difficulties are involved in welding this metal than in welding lead.
- the anodes leading into the electrolysis cell in the form of extremely long bands wound into rolls which may then be fed intermittently into the electrolyte by a suitable mechanism.
- bands wound into rolls this can be achieved by arranging the system of rolls one above the other along a slope as shown in FIG. 6.
- this arrangement has the disadvantage that the anodes are unable to drop the correct distance under their own weight.
- the method according to the invention of letting metal tapes into a reactor in the absence of air may, of course, also be used for other purposes, for example in the production of high-purity aluminum.
- a system of cathodes is arranged opposite to aluminum anodes inserted into the cell in accordance with the invention, and either a solid high-purity aluminum is deposited on to thin, fixed aluminum cathodes at a low-current density, or alternatively, aluminum is deposited in the form of a crystalline powder at high-current densities, the powder being subsequently discharged from the cell in a continuous cycle using sludge pumps.
- the invention is particularly suitable for the production of metal alkyls by the electrolysis of organometallic compounds, in particular, of organic aluminum compounds of the type described in German Pat. specification No. 1,161,562.
- This patent specification relates to the production of alkyl compounds of lead in particular, but also of other solid metals such as magnesium, aluminum, tin, antimony or bismuth.
- the process is particularly suitable for the production of organometallic compounds containing alkyl radicals with up to six carbon atoms, the production of lead tetra-alkyl compounds being a particularly important commercial application.
- the lower lead tetra-alkyls which are extensively used in practice, in particular lead tetramethyl and lead tetraethyl, may be produced with advantage in accordance with the invention using the principles discussed earlier on.
- German Pat. specifications No. l,l66,l96 which relates, for example, to the production of tetraethyl lead by the electrolysis of organic aluminum complex compounds, and to No. l,220,855 relating to the corresponding production of lead tetramethyl.
- the first of these two patent specifications relates to the production of aluminum trialkyl and magnesium dialkyls in the presence of organic aluminum complex compounds as electrolytes, whilst the second relates to an important modification for the production of lead tetramethyl through the electrolysis of organic aluminum complex compounds in particular.
- a strip-form anode disposed vertically in the tank between the disc-form plates, extending upwardly through the top of the tank and connected to a source of positive potential
- anode feed means for controlled advancing of the anode between the cathodes to compensate for dissolving of the anode by the electrolysis.
- a cell as claimed in claim 1 including a bath of mercury in the mercury container, and means maintaining the electrolyte tank filled to at least adjacent the top of the disc-form plates, the anode terminating above the mercury.
- said anode feed means including selectively releasable holding means for keeping the anode in a fixed position in the cell and selectively releasing the anode for said advancing thereof, the anode being able to advance into the electrolyte under gravity when the holding means is released.
- a cell as claimed in claim 4 including a bath of mercury in the mercury container, and means maintaining the electrolyte tank filled to at least adjacent the top of the disc-form plates, the anode terminating above the mercury.
- said anode feed means including selectively releasable holding means for keeping the anode in a fixed position in the cell and selectively releasing the anode for said advancing thereof.
- a cell according to claim 6, the anode including, without the cell, a rolled portion from which the anode can be fed to the cell.
- a cell as claimed in claim 6 in which the anode is able to advance into the electrolyte under gravity when the holding means are released.
- a cell as claimed in claim 1 and a second seal for the anode disposed outside the tank, and means for maintaining a gas inert to the electrolyte under positive pressure between said seals, preventing air from entering the tank.
- a cell as claimed in claim 1 in which the strip form anode comprises a strip which is joined outside the tank to a new strip of anode material.
- An electrolysis cell comprising:
- anode feed means for controlled advancing of the anode between the cathodes to compensate for dissolving of the anode by the electrolysis, said anode feed means including selectively releasable holding means for keeping the anode in a fixed position in the cell and selectively releasing the anode for said advancing thereof, and
- said holding means comprising an inflatable body which when inflated presses against the anode and holds it in position.
- An electrolysis cell comprising:
- anode feed means for controlled advancing of the anode between the cathodes to compensate for dissolving of the anode by the electrolysis, said anode feed means including selectively releasable holding means for keeping the anode in a fixed position in the cell and selectively releasing the anode for said advancing thereof, and
- switch means in said connection of the anode to a positive potential, said holding means being effective to close said switch when holding the anode in place and open said switch when the anode is released by the holding means.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrolytic Production Of Metals (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19671671484 DE1671484C3 (de) | 1967-10-14 | 1967-10-14 | Elektrolysezelle mit eingeschleusten, sich auflösenden bandförmigen Metallanoden |
Publications (1)
Publication Number | Publication Date |
---|---|
US3620954A true US3620954A (en) | 1971-11-16 |
Family
ID=5686424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US766849A Expired - Lifetime US3620954A (en) | 1967-10-14 | 1968-10-11 | Electrolytic cells |
Country Status (6)
Country | Link |
---|---|
US (1) | US3620954A (enrdf_load_stackoverflow) |
AT (1) | AT291938B (enrdf_load_stackoverflow) |
BE (1) | BE721971A (enrdf_load_stackoverflow) |
ES (1) | ES358917A1 (enrdf_load_stackoverflow) |
FR (1) | FR1587448A (enrdf_load_stackoverflow) |
GB (1) | GB1226036A (enrdf_load_stackoverflow) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3915683A (en) * | 1968-04-09 | 1975-10-28 | Pilkington Brothers Ltd | Method for manufacture of float glass |
US4800009A (en) * | 1987-04-24 | 1989-01-24 | Aleksandar Despic | Electrochemical cell with moving electrode |
US5334301A (en) * | 1992-03-04 | 1994-08-02 | Heraeus Elektrochemie Gmbh | Electrochemical cell having inflatable seals between electrodes |
US20030112916A1 (en) * | 2000-02-25 | 2003-06-19 | Keeney Franklin W. | Cold nuclear fusion under non-equilibrium conditions |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4400056C1 (de) * | 1994-01-04 | 1995-07-06 | Rittel Andreas | Elektrolyseapparat |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US526482A (en) * | 1894-09-25 | Apparatus for electrodepositing | ||
US2046467A (en) * | 1931-01-29 | 1936-07-07 | Katadyn Inc | Sterilization of liquids by means of oligodynamy |
US2234967A (en) * | 1936-03-11 | 1941-03-18 | Du Pont | Production of alkali metals |
GB786743A (en) * | 1954-09-02 | 1957-11-27 | Glacier Co Ltd | Electro-deposition of metal layers |
US3427237A (en) * | 1967-05-01 | 1969-02-11 | Thomas M Morris | Electrolysis method and electrolytic cell |
-
1968
- 1968-10-02 GB GB1226036D patent/GB1226036A/en not_active Expired
- 1968-10-07 BE BE721971D patent/BE721971A/xx unknown
- 1968-10-07 ES ES358917A patent/ES358917A1/es not_active Expired
- 1968-10-09 FR FR1587448D patent/FR1587448A/fr not_active Expired
- 1968-10-10 AT AT990968A patent/AT291938B/de not_active IP Right Cessation
- 1968-10-11 US US766849A patent/US3620954A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US526482A (en) * | 1894-09-25 | Apparatus for electrodepositing | ||
US2046467A (en) * | 1931-01-29 | 1936-07-07 | Katadyn Inc | Sterilization of liquids by means of oligodynamy |
US2234967A (en) * | 1936-03-11 | 1941-03-18 | Du Pont | Production of alkali metals |
GB786743A (en) * | 1954-09-02 | 1957-11-27 | Glacier Co Ltd | Electro-deposition of metal layers |
US3427237A (en) * | 1967-05-01 | 1969-02-11 | Thomas M Morris | Electrolysis method and electrolytic cell |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3915683A (en) * | 1968-04-09 | 1975-10-28 | Pilkington Brothers Ltd | Method for manufacture of float glass |
US4800009A (en) * | 1987-04-24 | 1989-01-24 | Aleksandar Despic | Electrochemical cell with moving electrode |
US5334301A (en) * | 1992-03-04 | 1994-08-02 | Heraeus Elektrochemie Gmbh | Electrochemical cell having inflatable seals between electrodes |
US20030112916A1 (en) * | 2000-02-25 | 2003-06-19 | Keeney Franklin W. | Cold nuclear fusion under non-equilibrium conditions |
Also Published As
Publication number | Publication date |
---|---|
AT291938B (de) | 1971-08-10 |
BE721971A (enrdf_load_stackoverflow) | 1969-04-08 |
FR1587448A (enrdf_load_stackoverflow) | 1970-03-20 |
ES358917A1 (es) | 1970-05-16 |
GB1226036A (enrdf_load_stackoverflow) | 1971-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7767065B2 (en) | Device and method for electrolytically treating an at least superficially electrically conducting work piece | |
US4220508A (en) | Process for electrolytic etching | |
US3620954A (en) | Electrolytic cells | |
GB1513524A (en) | Processes for preventing the generation of mist of electrolyte and for recovering generated gases in electrowinning metal recovery and electrodes for use in said processes | |
JPS5481133A (en) | Anodic oxidation device | |
Zhiyu et al. | Electrochemical reduction of niobium ions in molten LiF-NaF | |
CN101629312A (zh) | 离子液体体系电沉积铅方法 | |
JPS6238436B2 (enrdf_load_stackoverflow) | ||
US3702814A (en) | Electrolytic recovery cell | |
ES8505737A1 (es) | Procedimiento pra recubrir con una capa metalica, por via electrolitica, de forma continua uno o ambos lados de una tira metalica | |
US3803016A (en) | Electrolytic cell having adjustable anode sections | |
JPS5241103A (en) | Equipment for electrolysis of metal suspension | |
DE3375407D1 (en) | Process for the manufacture of active aluminium oxide | |
US3427237A (en) | Electrolysis method and electrolytic cell | |
US4800009A (en) | Electrochemical cell with moving electrode | |
JPS57101692A (en) | Horizontal electroplating method by insoluble electrode | |
US4272351A (en) | Apparatus for electrolytic etching | |
US3904497A (en) | Process for electrolytic recovery of metallic gallium | |
US4505785A (en) | Method for electroplating steel strip | |
KR820001142Y1 (ko) | 알루미늄 및 알루미늄 합금의 표면처리장치 | |
KR810002106B1 (ko) | 알루미늄 및 알루미늄 합금의 표면처리 방법 | |
JPH06207292A (ja) | フツ化ペルフルオロアルキルスルホニルの製造方法およびそれに使用するための電極 | |
US4022673A (en) | Electrochemical production of 1,4-dihydro aromatic compounds | |
Lokhande et al. | Studies on stability of PEC cells formed with CdS: Al films | |
KR200205979Y1 (ko) | 납-주석 합금도금 아노드 안내장치 |