US3616276A - Process for changing the valence of a metal of variable valence in an organic solution - Google Patents
Process for changing the valence of a metal of variable valence in an organic solution Download PDFInfo
- Publication number
- US3616276A US3616276A US815714A US3616276DA US3616276A US 3616276 A US3616276 A US 3616276A US 815714 A US815714 A US 815714A US 3616276D A US3616276D A US 3616276DA US 3616276 A US3616276 A US 3616276A
- Authority
- US
- United States
- Prior art keywords
- aqueous solution
- organic solution
- metal
- solution
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 81
- 239000002184 metal Substances 0.000 title claims abstract description 81
- 238000000034 method Methods 0.000 title claims abstract description 55
- 239000000243 solution Substances 0.000 claims abstract description 117
- 239000007864 aqueous solution Substances 0.000 claims abstract description 67
- 239000006185 dispersion Substances 0.000 claims abstract description 38
- 239000012528 membrane Substances 0.000 claims abstract description 15
- 229910052778 Plutonium Inorganic materials 0.000 claims description 52
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 claims description 52
- 229910052770 Uranium Inorganic materials 0.000 claims description 48
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 claims description 48
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 29
- 229910017604 nitric acid Inorganic materials 0.000 claims description 29
- 229910052781 Neptunium Inorganic materials 0.000 claims description 19
- 150000002739 metals Chemical class 0.000 claims description 19
- LFNLGNPSGWYGGD-UHFFFAOYSA-N neptunium atom Chemical compound [Np] LFNLGNPSGWYGGD-UHFFFAOYSA-N 0.000 claims description 19
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 16
- -1 alkyl phosphate Chemical compound 0.000 claims description 16
- 239000003085 diluting agent Substances 0.000 claims description 16
- 239000003792 electrolyte Substances 0.000 claims description 15
- 229910019142 PO4 Inorganic materials 0.000 claims description 14
- 229930195733 hydrocarbon Natural products 0.000 claims description 14
- 150000002430 hydrocarbons Chemical class 0.000 claims description 14
- 239000004215 Carbon black (E152) Substances 0.000 claims description 13
- 239000010452 phosphate Substances 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 238000007254 oxidation reaction Methods 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 239000010955 niobium Substances 0.000 claims description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 239000008346 aqueous phase Substances 0.000 description 10
- 235000021317 phosphate Nutrition 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 239000012074 organic phase Substances 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000003350 kerosene Substances 0.000 description 5
- 239000002265 redox agent Substances 0.000 description 5
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 229910002007 uranyl nitrate Inorganic materials 0.000 description 3
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 239000003758 nuclear fuel Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000010960 commercial process Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- LAWOZCWGWDVVSG-UHFFFAOYSA-N dioctylamine Chemical compound CCCCCCCCNCCCCCCCC LAWOZCWGWDVVSG-UHFFFAOYSA-N 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 229940021013 electrolyte solution Drugs 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- ZQPKENGPMDNVKK-UHFFFAOYSA-N nitric acid;plutonium Chemical compound [Pu].O[N+]([O-])=O ZQPKENGPMDNVKK-UHFFFAOYSA-N 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000010405 reoxidation reaction Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- CAKRAHQRJGUPIG-UHFFFAOYSA-M sodium;[4-azaniumyl-1-hydroxy-1-[hydroxy(oxido)phosphoryl]butyl]-hydroxyphosphinate Chemical compound [Na+].NCCCC(O)(P(O)(O)=O)P(O)([O-])=O CAKRAHQRJGUPIG-UHFFFAOYSA-M 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G56/00—Compounds of transuranic elements
- C01G56/007—Compounds of transuranic elements
- C01G56/008—Compounds of neptunium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G56/00—Compounds of transuranic elements
- C01G56/001—Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G56/00—Compounds of transuranic elements
- C01G56/004—Compounds of plutonium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
Definitions
- This invention relates to a process for changing the valence of a metal in organic solution. More particularly, the invention relates to a process for changing the valence of a metal in organic solution by electrochemical means.
- uranium can be precipitated from organic solution with HF. Since the uranium is generally in a higher valence state, it must be reduced to its tetravalent state prior to precipitation.
- mixtures of trivalent plutonium and hexavalent uranium in organic solution can be separated from each other by selective extraction with an immiscible aqueous solution whereby the uranium remains in the organic phase and the plutonium transfers to the aqueous phase. Since the plutonium is generally in its tetravalent state, it must be reduced to the trivalent state prior to separation.
- US. Pat. No. 3,361 ,65l discloses that tetravalent plutonium in a dilute nitric acid solution with hexavalent uranium can be reduced to its trivalent state electrolytically. This process has the disadvantage that the metals must be in aqueous solution. If the metals are in organic solution, they must, therefore, be first extracted with the nitric acid solution.
- the valence of one or more metals of variable valence in an organic solution can be changed electrochemically by forming a dispersion by agitating said organic solution and an immiscible aqueous solution and passing an electric current through the dispersion in the cathode zone of an electrolytic cell (if a lower valence state is desired) or in the anode zone (if a higher valence state is desired), the anode and cathode zones being separated by a porous membrane, to effect a change in valence state of one or more of the metals.
- FIGURE is a schematic sectional view of an electrolytical cell separated into two zones by a porous membrane.
- the present process is applicable to change the valence of a single metal in an organic solution so that it can be further processed. It is also applicable to change the valence of a metal in organic solution and effect a transfer of the metal to an immiscible aqueous solution in a single step.
- the distribution coefficient of the metal is affected by a change in valence and the aqueous solution is a preferential solvent for the metal in its reduced or oxidized state, the immiscible solutions are separated and the aqueous solution will be enriched in the metal in its new valence state whereas the organic solution will be depleted in that metal.
- organic solutions containing two or more metals of variable valence one of which has a distribution coefficient affected by a change in the valence, can be treated electrochemically and the metals separated from each other in a single step. After electrochemical treatment, one of the metals will have transferred to the aqueous solution and the other metal(s) will remain in the organic solution.
- the process of the invention can be used to reduce hflib avalent uranium to tetravalent uranium in an organic solution by forming a dispersion of the organic solution by agitating with a dilute nitric acid solution in the cathode zone of an electrolytic cell separated into an anode zone and a cathode zone by a porous membrane and passing a current through the cell. Tetravalent uranium in the organic solution will be obtained.
- the process can also be used to reduce tetravlaent plutonium to trivalent plutonium in an organic solution and extract the trivalent plutonium from the organic solution by forming a dispersion by agitating the organic solution and a dilute nitric acid solution in the cathode zone of an electrolytic cell and passing a current through the cell.
- the tetravalent plutonium will be reduced to trivalent plutonium which is preferentially soluble in and hence extracted by the dilute nitric acid.
- the organic solution will be depleted in plutonium whereas the aqueous solution will be enriched in plutonium in its trivalent state.
- the process is also suitable for the selective reduction of a tetravalent plutonium to trivalent plutonium in an organic solution containing tetravalent plutonium and hexavalent uranium obtained during the processing of nuclear fuels.
- lPlutonium can be separated from the uranium in such an organic solution by forming a dispersion by agitating the organic solution and a dilute nitric acid solution in the cathode zone of an electrolytic cell and passing a current through the cell.
- the tetravalent plutonium is reduced to trivalent plutonium, which is preferentially soluble in and transfers to the dilute nitric acid solution.
- the plutonium When the organic and aqueous phases are separated, most of the plutonium will be found in the aqueous phase and most of the uranium will remain in the organic phase. Thus, the plutonium can be separated form the uranium rapidly, in a single step without the addition of any reducing agents.
- the process can also be employed in purifying metal solutions.
- Organic solutions containing uranium, plutonium, or both, and metallic impurities in trace quantities, such as ruthenium, zirconium, niobium and the like, can be treated by forming a dispersion with a dilute nitric acid solution in the anode zone of the cell.
- the trace impurities will be found in the aqueous phase.
- the present process can of course also be applied to oxidation reactions by forming a dispersion by agitating an organic solution with an immiscible aqueous solution in the anode compartment of the electrolytic cell and passing a current through the cell.
- an organic solution containing tetravalent plutonium and tetravalent neptunium can be treated to provide an organic solution containing most of the plutonium and an aqueous solution containing most of the neptunium in its pentavalent state.
- Solutions containing from about 5 to percent by weight of an alkyl phosphate, optionally in an organic diluent. are
- the alkyl phosphates can be mono-, di-, or triesters of phosphoric acid derived from alkanols containing one to about eight carbon atoms such as butanol, hexanol, octanol and the like.
- Tributyl phosphate in an amount of from about 20 to 40 percent by weight in a hydrocarbon diluent is generally employed as solvent for metals found in nuclear fuels, i.e., uranium, plutonium and neptunium, due to its high extraction selectivity.
- the diluents can be hydrocarbons such as dodecane, kerosene, gasoline and the like.
- Other organic solvents including ketones, such as hexone or amines such as dioctylamine, the latter in a suitable diluent, can also be employed.
- the aqueous solution must be immiscible with the organic solution and must be an electrolyte. Suitable aqueous solutions are dilute mineral acid or salt solutions, such as nitric acid, sodium nitrate and the like.
- the aqueous solution can also contain a stabilizer, such as hydrazine, to prevent reoxidation of the metals.
- the hydrazine can be present in the aqueous solution in an amount of from 0.01 to about 0.5 M.
- the electrolytic cell employed in carrying out the present invention is conventional and its exact size, shape, and the like can be varied and does not form part of the invention.
- the cell as further described below is arranged for a reduction operation.
- the cell 1 is divided into an anode zone 2 and acathode zone 3 by a porous membrane 4.
- the membrane 4 can be an inorganic porous membrane such as alumina, or an organic ion exchange membrane. [on exchange membranes are generally available as an anionic or cationic exchange resin in a film forming matrix such as polyethylene or a vinyl resin.
- the anode zone 2 contains an anode 5 and the cathode zone 3 contains a cathode 6.
- the electrodes can be of conventional materials such as platinum, tantalum, niobium, carbon and the like. Platinum is preferred for the electrodes.
- the cell 1 is also fitted with inlet ports, 7, 8 and 9 and exit ports 10 and 111.
- the cathode zone 3 is also fitted with a stirrer 12 which is adequate to effect and maintain a dispersion ofa mixture of organic and aqueous solutions in the cathode zone 3.
- the cell 1 can also be fitted with means of cooling and/or heating, externally or internally (not shown).
- the anode zone 2 contains an aqueous solution of an electrolyte and the cathode zone is partially filled with the same or a different electrolyte.
- the ratio by volume of organic to electrolyte solutions through which a current can be effectively passed varies somewhat depending on the degree of dispersion of the immiscible phases.
- the electrolyte must be maintained as the continuous phase during the process. It will be understood that when a reduction is to be carried out, the roles of the anode and the cathode zones are reversed.
- the aqueous solution can be recycled to the cell and contacted with a fresh batch of the organic solution, either in a batch or semicontinuous manner, to increase the concentration of the metal in the aqueous phase.
- an internal reduction oxidation (redox) agent can be added to the system.
- redox agent is reduced or oxidized by the passage of a current through the cell.
- the redox agent is reduced, in turn reduces the metal whose valence is to be reduced, and is itself oxidized back to its original valence state.
- concentration of this agent will remain substantially constant.
- the addition of an internal redox agent is particularly effective when added to dilute solutions of tetravalent plutonium.
- uranyl nitrate [UO (NO) is generally added to the organic solution as the redox agent.
- UO uranyl nitrate
- the hexavalent uranium is reduced to tetravalent uranium, which reduces the tetravalent plutonium, and is then reoxidized to hexavalent uranium according to the equation:
- EXAMPLE 1 A measured volume of 0.36 M. uranyl nitrate in an organic solution of 30 volume percent of tributyl phosphate in kerosene also containing 0.3 M nitric acid is charged to the cathode zone of an electrolytic cell containing an equal volume of an aqueous solution of 2 M nitric acid and 0.5 M of hydrazine.
- the anode zone is filled with an aqueous solution of 2 M nitric acid.
- the anode zone is fitted with a platinum electrode, sealed into one end.
- the anode zone and the cathode zone are divided by a permeable cation exchange membrane.
- the cathode zone is fitted with a platinum electrode and is also provided with a stirrer and an internal cooling coil.
- the stirrer is turned on to form a dispersion in the cathode zone, and a current density of 0.1 a./sq.cm. at a potential of 7.3 volts is applied to the cell.
- the hexavalent uranium is reduced to tetravalent uranium. After 2 hours 65 percent of the uranium is reduced.
- the proportion of tetravalent uranium in the organic phase increases.
- EXAMPLE 2 An organic solution containing 82 grams per liter of uranyl nitrate and 1 gram per liter of tetravalent plutonium nitrate in 30 volume percent of tributyl phosphate and kerosene is charged to the cathode zone of the electrolytic cell of example 1, containing an equal volume of an aqueous solution of 2.5 M nitric acid and 0.1 M of hydrazine. A dispersion is formed, and
- EXAMPLE 4 An organic solution of 30 volume percent of tributyl phosphate in kerosene containing 6 mg./ml. of tetravalent neptunium is charged to the anode zone of the electrolytic cell of example 1 containing an equal volume of an aqueous solution of l M nitric acid. A dispersion is formed and current density of 0.1 a./sq.cm. at a potential of 11 volts is applied. After 3 hours nearly all of the neptunium is present in the pentavalent state in the aqueous phase.
- EXAMPLE 5 An organic solution containing 6 mg./ml. of tetravalent plutonium and 6 mgJml. of tetravalent neptunium in 30 volume percent of tributyl phosphate in kerosene is charged to the anode zone of the electrolytic cell of example 1 containing an equal volume of an aqueous solution of 2 M nitric acid. The current density applied is 0.1 a./sq.cm. at a potential of 11 volts. After 3 hours almost all of the neptunium is oxidized to the pentavalent state and transfers to the aqueous phase, whereas the concentration of plutonium in the organic phase remains substantially the same.
- a process for changing the valence of a metal of variable valence state in an organic solution which comprises forming a dispersion by agitating the organic solution with an immiscible aqueous solution, as electrolyte, and, while maintaining the electrolyte as the continuous phase, passing an electric current through the dispersion in the cathode zone of an electrolytic cell (if a lower valence state ofthe metal is desired) or in the anode zone of the cell (if a higher valence state of the metal is desired), the cathode and anode zones of the cell being separated by a porous membrane, whereby the valence state of the metal becomes lower or higher.
- organic solution contains uranium and from about 5 to 100 percent by weight of an alkyl phosphate optionally containing a hydrocarbon diluent.
- a process according to claim 2 wherein the aqueous solution is a dilute nitric acid solution.
- a process for extracting a metal of variable valence state from an organic solution containing the metal which comprises forming a dispersion by agitating the organic solution with, as electrolyte, and immiscible aqueous solution which is a preferential solvent for the metal in a lower or higher valence state and, while maintaining the electrolyte as the continuous phase, passing an electric current through the dispersion in the cathode zone of an electrolytic cell (if a lower valence state of the metal is desired or in the anode zone of the cell (if a higher valence state of the metal is desired), the cathode and anode zones of the cell being separated by a porous membrane, whereby the valence state of the metal becomes lower or higher and the metal transfers from the organic solution to the aqueous solution, and seperating the organic solution from the immiscible aqueous solution.
- a process for separating metals of variable valence states in an organic solution which comprises forming a dispersion by agitating the organic solution with, as electrolyte, an immiscible aqueous solution which is a preferential solvent for one of the metals in a lower or higher valence state and, while maintaining the electrolyte as the continuous phase, passing an electric current through the dispersion in the cathode zone of an electrolytic cell (if a lower valence state of said metal is desired) or in the anode zone of the cell (if a higher valence state of said metal is desired), the cathode and anode zones of the cell being separated by a porous membrane, whereby the valence state of said metal becomes higher or lower and said metal transfers from the organic solution to the aqueous solution, and separating the organic solution from the immiscible aqueous solution.
- the organic solution contains hexavalent uranium and tetravalent plutonium and from about 20 to about 40 percent by weight of an alkyl phosphate in a hydrocarbon diluent
- the immiscible aqueous solution is a dilute nitric acid solution
- the dispersion is charged to the cathode zone of the cell, whereby the uranium remains in the organic solution and the plutonium is reduced to trivalent plutonium which transfers :to the aqueous solution.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrolytic Production Of Metals (AREA)
- Extraction Or Liquid Replacement (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US81571469A | 1969-04-14 | 1969-04-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3616276A true US3616276A (en) | 1971-10-26 |
Family
ID=25218617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US815714A Expired - Lifetime US3616276A (en) | 1969-04-14 | 1969-04-14 | Process for changing the valence of a metal of variable valence in an organic solution |
Country Status (8)
Country | Link |
---|---|
US (1) | US3616276A (enrdf_load_stackoverflow) |
JP (1) | JPS4915549B1 (enrdf_load_stackoverflow) |
BE (1) | BE748151A (enrdf_load_stackoverflow) |
CA (1) | CA974476A (enrdf_load_stackoverflow) |
DE (2) | DE2016506B2 (enrdf_load_stackoverflow) |
FR (1) | FR2041169B1 (enrdf_load_stackoverflow) |
GB (1) | GB1301376A (enrdf_load_stackoverflow) |
NL (1) | NL7003805A (enrdf_load_stackoverflow) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3755114A (en) * | 1971-04-14 | 1973-08-28 | Hooker Chemical Corp | Decreasing the metallic content of liquids by an electrochemical technique |
US3770612A (en) * | 1970-08-24 | 1973-11-06 | Allied Chem | Apparatus for electrolytic oxidation or reduction, concentration, and separation of elements in solution |
US3957615A (en) * | 1972-12-28 | 1976-05-18 | Gesellschaft Fur Kernforschung M.B.H. | Apparatus for conducting electrolytic reactions |
US4129481A (en) * | 1976-02-13 | 1978-12-12 | Commissariat A L'energie Atomique | Uranium isotopic enrichment |
US4243494A (en) * | 1979-04-19 | 1981-01-06 | Kerr-Mcgee Corporation | Process for oxidizing a metal of variable valence by controlled potential electrolysis |
US4279705A (en) * | 1980-02-19 | 1981-07-21 | Kerr-Mcgee Corporation | Process for oxidizing a metal of variable valence by constant current electrolysis |
US4341602A (en) * | 1978-08-17 | 1982-07-27 | Rhone-Poulenc Industries | Extraction of uranium using electrolytic oxidization and reduction in bath compartments of a single cell |
US4371505A (en) * | 1979-02-28 | 1983-02-01 | Rhone-Poulenc Industries | Process for the recovery of uranium contained in an impure phosphoric acid |
US4741810A (en) * | 1983-12-14 | 1988-05-03 | Kernforschugszentrum Karlsruhe Gmbh | Process for reductive plutonium stripping from an organic reprocessing solution into an aqueous, nitric acid solution by use of an electrolytic current |
US5069827A (en) * | 1987-10-13 | 1991-12-03 | Commissariat A L'energie Atomique | Process for reducing and dissolving puo2 |
US5071516A (en) * | 1988-05-13 | 1991-12-10 | Nagakazu Furuya | Process for converting ionic valence number |
CN113293390A (zh) * | 2021-04-26 | 2021-08-24 | 西北工业大学 | 一种在水溶液中电化学还原制备五价铀的方法、装置及其应用 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS517736U (enrdf_load_stackoverflow) * | 1974-07-04 | 1976-01-20 | ||
JPS5367939U (enrdf_load_stackoverflow) * | 1976-11-10 | 1978-06-07 | ||
DE2929122A1 (de) * | 1979-07-18 | 1981-02-05 | Alkem Gmbh | Verfahren zur elektrochemischen einstellung der pu (vi)-oxidationsstufe |
JP7362439B2 (ja) * | 2019-11-14 | 2023-10-17 | 株式会社東芝 | 電解抽出装置および電解抽出方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2733200A (en) * | 1956-01-31 | Kunin | ||
FR90703E (fr) * | 1964-06-19 | 1968-02-02 | Commissariat Energie Atomique | Procédé de purification et de concentration simultanées du plutonium et plutonium obtenu selon ce procédé |
-
1969
- 1969-04-14 US US815714A patent/US3616276A/en not_active Expired - Lifetime
-
1970
- 1970-03-17 NL NL7003805A patent/NL7003805A/xx unknown
- 1970-03-24 FR FR707010493A patent/FR2041169B1/fr not_active Expired
- 1970-03-26 CA CA078,514A patent/CA974476A/en not_active Expired
- 1970-03-27 BE BE748151D patent/BE748151A/xx not_active IP Right Cessation
- 1970-04-07 DE DE2016506A patent/DE2016506B2/de not_active Ceased
- 1970-04-07 DE DE19702065152 patent/DE2065152A1/de active Pending
- 1970-04-13 GB GB1301376D patent/GB1301376A/en not_active Expired
- 1970-04-14 JP JP45031273A patent/JPS4915549B1/ja active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3770612A (en) * | 1970-08-24 | 1973-11-06 | Allied Chem | Apparatus for electrolytic oxidation or reduction, concentration, and separation of elements in solution |
US3755114A (en) * | 1971-04-14 | 1973-08-28 | Hooker Chemical Corp | Decreasing the metallic content of liquids by an electrochemical technique |
US3957615A (en) * | 1972-12-28 | 1976-05-18 | Gesellschaft Fur Kernforschung M.B.H. | Apparatus for conducting electrolytic reactions |
US4129481A (en) * | 1976-02-13 | 1978-12-12 | Commissariat A L'energie Atomique | Uranium isotopic enrichment |
US4341602A (en) * | 1978-08-17 | 1982-07-27 | Rhone-Poulenc Industries | Extraction of uranium using electrolytic oxidization and reduction in bath compartments of a single cell |
US4371505A (en) * | 1979-02-28 | 1983-02-01 | Rhone-Poulenc Industries | Process for the recovery of uranium contained in an impure phosphoric acid |
US4243494A (en) * | 1979-04-19 | 1981-01-06 | Kerr-Mcgee Corporation | Process for oxidizing a metal of variable valence by controlled potential electrolysis |
US4279705A (en) * | 1980-02-19 | 1981-07-21 | Kerr-Mcgee Corporation | Process for oxidizing a metal of variable valence by constant current electrolysis |
US4741810A (en) * | 1983-12-14 | 1988-05-03 | Kernforschugszentrum Karlsruhe Gmbh | Process for reductive plutonium stripping from an organic reprocessing solution into an aqueous, nitric acid solution by use of an electrolytic current |
US5069827A (en) * | 1987-10-13 | 1991-12-03 | Commissariat A L'energie Atomique | Process for reducing and dissolving puo2 |
US5071516A (en) * | 1988-05-13 | 1991-12-10 | Nagakazu Furuya | Process for converting ionic valence number |
CN113293390A (zh) * | 2021-04-26 | 2021-08-24 | 西北工业大学 | 一种在水溶液中电化学还原制备五价铀的方法、装置及其应用 |
Also Published As
Publication number | Publication date |
---|---|
GB1301376A (enrdf_load_stackoverflow) | 1972-12-29 |
JPS4915549B1 (enrdf_load_stackoverflow) | 1974-04-16 |
FR2041169B1 (enrdf_load_stackoverflow) | 1973-07-13 |
FR2041169A1 (enrdf_load_stackoverflow) | 1971-01-29 |
CA974476A (en) | 1975-09-16 |
BE748151A (fr) | 1970-08-31 |
DE2016506A1 (de) | 1972-01-13 |
DE2016506B2 (de) | 1980-06-04 |
NL7003805A (enrdf_load_stackoverflow) | 1970-10-16 |
DE2065152A1 (de) | 1972-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3616276A (en) | Process for changing the valence of a metal of variable valence in an organic solution | |
US3922231A (en) | Process for the recovery of fission products from waste solutions utilizing controlled cathodic potential electrolysis | |
US3770612A (en) | Apparatus for electrolytic oxidation or reduction, concentration, and separation of elements in solution | |
US3878060A (en) | Process for the electrolytic reduction of fissionable elements | |
US3361651A (en) | Electrolytic reduction of uranyl solutions | |
SU1205778A3 (ru) | Способ извлечени урана из фосфорной кислоты | |
Brown et al. | Protactinium | |
US4693795A (en) | Production of uranium tetrafluoride | |
US3616275A (en) | Process for concentrating a metal of variable valence in aqueous solution | |
US2739934A (en) | Electrolytic purification of uranium | |
US2733200A (en) | Kunin | |
JPS5940490B2 (ja) | ウラニウムアイソト−プ濃縮法 | |
US4591488A (en) | Process for selective separation of plutonium from uranium and other metals | |
US4341602A (en) | Extraction of uranium using electrolytic oxidization and reduction in bath compartments of a single cell | |
JPH0443846B2 (enrdf_load_stackoverflow) | ||
Hirai et al. | Electro-reductive stripping of vanadium in solvent extraction process for separation of vanadium and molybdenum using tri-n-octylmethylammonium chloride | |
US3038844A (en) | Separations by electrodialysis | |
US2903402A (en) | Recovery of valuable material from graphite bodies | |
US3030175A (en) | Preparation of high purity uf4 | |
Higgins et al. | The Excer Process. Preparing Uranium Tetrafluoride by Ion Exchange and Electrolysis | |
GB2152951A (en) | Process for reductive plutonium stripping from an organic reprocessing solution into an aqueous, nitric acid solution by use of electrolytic current | |
KR840001065B1 (ko) | 유기상에 포함되어 있는 우라늄의 회수방법 | |
US3000697A (en) | Transuranic element, composition thereof, and methods for producing, separating and purifying same | |
Yamana et al. | Stepwise reduction of samarium and ytter bium in the polarographic reduction process in the presence of 1, 4, 7, 10, 13, 16-hexaoxacyclooctadecane. | |
US3065045A (en) | Process for the production of uranium tetrafluoride from uranium raw material |