US3610805A - Attack and decay system for a digital electronic organ - Google Patents

Attack and decay system for a digital electronic organ Download PDF

Info

Publication number
US3610805A
US3610805A US872598A US3610805DA US3610805A US 3610805 A US3610805 A US 3610805A US 872598 A US872598 A US 872598A US 3610805D A US3610805D A US 3610805DA US 3610805 A US3610805 A US 3610805A
Authority
US
United States
Prior art keywords
note
attack
decay
time interval
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US872598A
Inventor
George A Watson
Ralph Deutsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MUSICCO LLC
Boeing North American Inc
Original Assignee
North American Rockwell Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27582831&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US3610805(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by North American Rockwell Corp filed Critical North American Rockwell Corp
Application granted granted Critical
Publication of US3610805A publication Critical patent/US3610805A/en
Anticipated expiration legal-status Critical
Assigned to MUSICCO, LLC reassignment MUSICCO, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALLEN ORGAN COMPANY
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H7/00Instruments in which the tones are synthesised from a data store, e.g. computer organs
    • G10H7/02Instruments in which the tones are synthesised from a data store, e.g. computer organs in which amplitudes at successive sample points of a tone waveform are stored in one or more memories
    • G10H7/04Instruments in which the tones are synthesised from a data store, e.g. computer organs in which amplitudes at successive sample points of a tone waveform are stored in one or more memories in which amplitudes are read at varying rates, e.g. according to pitch
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/02Digital function generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/02Digital function generators
    • G06F1/03Digital function generators working, at least partly, by table look-up
    • G06F1/0321Waveform generators, i.e. devices for generating periodical functions of time, e.g. direct digital synthesizers
    • G06F1/0328Waveform generators, i.e. devices for generating periodical functions of time, e.g. direct digital synthesizers in which the phase increment is adjustable, e.g. by using an adder-accumulator
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/02Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos
    • G10H1/04Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation
    • G10H1/053Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation during execution only
    • G10H1/057Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation during execution only by envelope-forming circuits
    • G10H1/0575Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation during execution only by envelope-forming circuits using a data store from which the envelope is synthesized
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/18Selecting circuits
    • G10H1/182Key multiplexing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/18Selecting circuits
    • G10H1/20Selecting circuits for transposition

Definitions

  • Cl G10h 1102 division mumplexed signal the time slots f [he mumplexed 0 Search signal being cortured in accordance a desired assign- L23, 1310- 12 ment sequence to correspond to the keys and to be representative thereof for identifying each note capable of being [56] References cued generated by the organ.
  • the appropriate tone is generated digitally in the form 2,918,576 12/ 1959 Munch 84/1.26 X of amplitude samples of a waveform stored in a memory, and 3,007,362 11/1961 Olson eta] 84/l.03 the amplitude samples are subsequently subjected to digital- 3,383,453 5/1968 Sharp 84/ 1.26 to-analog conversion for ultimate production of the audible 3,435,123 3/1969 Schrecongost 84/ 1.26 output of the organ. Attack and decay of the tone, or note, 3,439,569 4/1969 Dodds et al 84/1.26 waveform envelope are simulated by appropriately scaling the 3,446,904 5/ 1969 Brand et al. 84/1.13 amplitude samples at the leading and trailing portions of the 3,465,088 9/1969 Kohls 84/1.26 waveform envelope.
  • Field of the Invention I This invention resides broadly in the field of electronic musical instruments, and is particularly adaptable for use in the electronic organ as a digital selection systemfor calling forth desired tones from those available to be produced by the organ, and for impressing upon the tone envelopes the appropriate attack and decay characteristics.
  • organ is used throughout the specification and claims in a generic sense (as well as in a specific sense) to include any electronic musical instrument having a keyboard such as an electronic organ, an electric piano or accordion, and so forth, and in fact,
  • keyboard is also used in a generic sense, to include depressible levers, actuable on-off switches, touchor proximityresponsive (e.g., capacitanceor inductanceoperated) devices, closable apertures (e.g., a hole in a keyboard of holes which when covered by the musician's finger closes or opens a fluidic circuit to produce a tonal response), and so forth.
  • the tone generators which respond to the incoming multiplexed signal to bring forth the appropriate tones corresponding to those keys that have been actuated, in the order and combination of such actuation, produce digital amplitude samples of a waveform of the desired sound at a frequency corresponding to the desired note frequency.
  • Such an arrangement permits reduction of complexity that is usually found in electronic organs and in particular permits elimination of a substantial number of wires and cables that are usually required between the keyboards and the 'tone generators.
  • the digital electronic organ of the aforementioned Watson application provides assignment in a simple and efficient manner of a smallnumber of tone generators, relative to the number of keys available, to the keys which have actuated, there is a further reduction in complexity of mapping the subset of depressed keys into the available tone generators by means of special wiring arrangements, as in conventional requirements.
  • the digital electronic organ overcomes such difficulties as may occur when a key switch has faulty or dirty contacts, a situation that would ordinarily lead to intermittent elec' i'zal contact and discontinuity of tone.
  • a multipl signal the presence of a pulse in a particular time slot of a repeating signal is sufficient to represent the actuation of the corresponding key, and less than perfect contact is required to produce that pulse.
  • Each of the limited number of tone generators provided in the digital electronic organ of the aforementioned Watson application is associated with generator assignment logic constructed and arranged to assign an available tone generator to an incoming pulse in the multiplexed signal which has not yet captured a tone generator.
  • Each tone generator includes a memory means storing digital representations of amplitudes of the waveshape to be s synthesized at a large number of sample points. When the tone. generator is captured by a pulse, the memory means associated with that tone generator is accessed to read out amplitude samples in accordance with the frequen cy of the tone to be generated.
  • the duration of the attack or decay is controlled by a counter which may be selectively enabled to count timed pulses having a rate independent of the note frequency, or to count cycles or half cycles of the specific note frequency.
  • the counter serves to detennine the abscissa in a graph of amplitude versus time for the attack or decay.
  • the ordinate or amplitude scale of the graph is provided by a plurality of amplitude scale are tors stored in a fixed memory accessed by the counter.
  • the scalefactors are read from the fixed memory as required and supplied to a multiplier which receives as a second input the digital amplitude samples being read from the tone generator memory, the multiplier formingthe product of these two inputs to scale the leading and trailing portions of the note waveform.
  • the count is initiated when the note generator is assigned a pulse and the attack mode is entered. Unless the attack system is disabled,'a positive attack is provided in which the counter is forced to complete the attack regardless of whether or not the key remains depressed. When the key is subsequently released, and the corresponding pulse fails to appear in the multiplexed signal, the count for decay is initiated. If the pulse representative of the same key should reappear during decay, indicating that the latter key has again been actuated, the attack mode is reassumed. However, if the key is again released prior to completion of attack, the system is constructed and arranged such that positive attack is not in effect and the decay mode is reinitiated immediately. This operation simulates that which occurs in a pipe organ.
  • FIG. 1 is a simplified block diagram of a system for producing a time division multiplexed signal containing a recycling sequence of time slots each associated with a particular key' of the organ and in which each time slot containing a pulse is indicative of the actuation of the associated key;
  • FIG. 2 is a circuit diagram of an exemplary decoder for use in the system of FIG. 1';
  • FIG. 3 is a more detailed circuit diagram of the switching array and encoder used in the system of FIG. 1;
  • FIG. 3A is a circuit diagram of an alternative encoder to that shown in FIG. 3, for use in the system of FIG. 1;
  • FIG. 4 is a circuit diagram of the input-output bus connecting means at each intersection of the switching array of FIG. 3;
  • FIG. 5 is illustrative of a multiplex waveform developed by the system of FIG. 1 in response to actuation of selected keys;
  • FIG. 6 is a simplified block diagram of generator assignment and tone generating apparatus for processing the multiplexed signal produced by the system of FIG. I to develop the desired tones as an audible output of the organ;
  • FIGS. 7A and 78 together constitute a circuit diagram of one embodiment of the tone generator assignment logic for the system of FIG. 6;
  • FIG. 8 is a block diagram of a tone generator suitable for synthesizing the frequency of every note capable of being played in the organ, for use with the assignment logic of FIGS. 7A and 7B in the system of FIG. 6;
  • FIG. 9 is illustrative of a complex waveshape of the type produced by a pipe organ, and of the sample points at which amplitude values are taken, for simulation at selected note frequencies;
  • FIG. 10 is a block diagram of a preferred embodiment of an attack and decay control unit for use in an electronic digital musical instrument of the type shown and described with reference to the preceding FIGURES of drawing.
  • the counter be capable of developing a count representative of every key on every keyboard of the organ; however, it may be desirable to provide a counter that can produce a count greater than the number of available keys in order to have available certain redundant counts not associated with any keys. Such redundancy is readily provided by simply utilizing a counter of greater capacity than the minimum required count.
  • Keyboard counter l is divided into three separate sections (or separate counters) designated 2, 3 and 4.
  • the first section (designated 2) is constructed to count modulo 12 so as to designate each of the 12 keys associated with the 12 notes in any octave.
  • the second section (designated 3) is adapted to count modulo 8, to specify each of the eight octaves encompassed by any of the four keyboards.
  • the last section (designated 4) is designed to count modulo 4 to specify each keyboard of the organ. Therefore, the overall keyboard counter is arranged to count modulo 384, in that at the conclusion of every 384 counts, the entire set of keyboards have been covered (scanned) and the count repeats itself.
  • each counter section may be composed of a separate conventional ring counter, the three counters being connected in the typical cascaded configuration such that when section 2 reaches its maximum count it advances the count of countersection 3 by one, and will automatically initiate a repetition of its own count. Similarly, attainment of its maximum count by countersection 3 is accompanied by advancement of the count of section 4 by one.
  • a total of four lines emanate from counter 4, one line connected to each ring counterstage', to permit sensing of the specific keyboard which is presently being scanned.
  • eight lines are connected to the eight ring counterstages, respectively, of octave counter 3 to detect the octave presently being scanned.
  • a total of l2 lines extend from counters 3 and 4, and these 12 lines can carry signals indicative of 32 (8X4) possible states of the keyboard counter.
  • the specific one of the 32 states, representative of a particular octave on a particular keyboard, which is presently being scanned is determined by use of a decoder circuit 7 composed of 32 AND gates designated 8-1, 8-2, 8-3, 8-32 (FIG.
  • the gates are arranged in four groups of eight each, with every gate of a particular group having one of its two input terminals (ports) connected to one of the four lines of counter 4. Distinct and different ones of the eight lines from counter 3 are connected to the other input terminal of respective ones of the eight AND gates of that group.
  • the decoder logic designates every octave of keys in the organ by a respective driver pulse when a count corresponding to that octave is presently contained in the counter.
  • the output pulses deriving from the AND gates (or drivers) of decoder circuit 7 are supplied on respective ones of 32 bus bars (or simply, buses), generally designated by reference numeral 10, to a keyboard switching array 11.
  • array 11 has one input bus 10 for every octave of keys in the organ (including every octave on every keyboard), and that a drive pulse will appear on each input bus approximately 200 times per second, the exemplary rate of scan of the keyboards, as noted above, for obtaining adequate resolution of operation of the keys.
  • Switching array 11 also has 12 output buses, generally designated by reference number 12, each to be associated with a respective one of the 12 notes (and hence, the 12 keys) in any given octave.
  • Array 11 is basically a diode switching matrix, in which spaced input buses 10 and spaced output buses 12 are orthogonally arranged so that an intersection or crossing occurs between each input bus and each output bus (see FIG. 3), for a total of 384 intersections, one for each count of the keyboard counter- 1.
  • the keyboard counter- 1 As is typical in this type of matrix, the
  • a jump diode such as that designated by reference number 13 in FIG. 4, is connected between the input bus 10 and the output bus 12 at each intersection, the diode poled for forward conduction (anode-to-cathode) in the direction from an input bus 10 to an output bus 12.
  • a respective switch 14 Wired in series circuit or series connection with each diode 13 is a respective switch 14 which is normally open circuited and is associated with a distinct respective one of the keys of the organ, such that depression of the associated key produces closure (close circuiting) of the switch 14 whereas release of the associated key results in return of the switch to its open state.
  • each of switches 14 may itself constitute a respective key of the various keyboards of the organ.
  • switch 14 is shown schematically as being of mechanical single-pole, single-throw (SPST) structure, it will be understood that any fonn of switch, electronic, elecapplication of clock pulses thereto from a master clock source tromechanical, electromagnetic, and so forth, may be utilized,
  • Switch 14 is adapted to respond to the particular form of energization or actuation produced upon operation of a key on any keyboard (or, as observed above, may itself constitute the key), to complete the circuit connecting associated diode 13 between a respective input bus and a respective output bus 12 at the intersection of those buses, when the key is depressed, and to open the circuit connecting the diode between respective input and output buses at that intersection when the key is released.
  • Positive pulses occurring at the rate of approximately 200 per second, for example, according to the timing established by master clock 5, are transferred form input bus 10 to output bus 12 via the respective diode 13 and closed switch 14 when the associated key is depressed.
  • the diode While a switch alone (i.e., without the series connected diode) would serve the basic purpose of transferring a signal between the input and output lines of array 11, the diode provides a greater degree of isolation from sources of possible interference (noise) and acts to prevent feedback from output to input lines.
  • the output buses 12 from switching array 11 are connected toan encoder circuit 15 to which are also connected the 12 output lines, generally designated by reference number 16, from keyboard counter section 2.
  • the switches 14 associated with the respective keys are conveniently arranged in a specific sequence in V the switching array 1 1. Assume, for example, that specific output bus 17 of the switching array is to be associated with note A of any octave, a second output bus 18 is to be associated with note B of any octave, and so forth.
  • switches 14 in the row corresponding to output bus 17 in array or matrix 11 are associated with the keys corresponding to the note A in each octave of keys in the organ.
  • the column position of each countersection 2 associated with the ring counterstage designating the count for a particular note (key) in a given octave is connected to the remaining port of an encoder circuit AND gate having as its other input a pulse on the output bus 12 associated with that same note.
  • a similar arrangement is provided for each of the remaining 11 output lines 16 of countersection 2 with respect to the AND gates 20 and the output buses 12.
  • encoder circuit 15 is effective to convert the parallel output of array 11 to a serial output signal in accordance with the scanning of output buses 12 as provided by the advancing and repeating count sensed in the form of pulses, (at a rate of about 200 per second) appearing on output lines 16.
  • TDM time-division multiplex
  • the encoder may have the circuit configuration exemplified by FIG. 3A.
  • the encoder includes a shift register 80 having 12 cascaded stages designated SR1, SR2, SR3, SR12, each connected to arespective output bus 12 of switching matrix 11 to receive a respective output pulse appearing thereon.
  • i 6 shift register stages are loaded in parallel with the data read from switching array 11 on output buses 12, in response to each of the pulses appearing (i.e., each time a pulse appears) Y on one of the l2'output leads 16 of note counter 2. That one output of the note counter which is to supply the load command for all 12 stages of shift register is selected to permit the maximum amount of settling time to elapse between each advance of octave counter 3 and keyboard counter 4 and the loading of the shift register. in other words, it is extremely desirable that the data to be entered into the shift register from the switching array be stabilized to the greatest possible extent, and this is achieved by allowing the counters whose scanning develops this data, to settle at least immediately prior to loading.
  • the first note counterstage or one of the early stages, is selected to provide loacl" pulses to shift register 80.
  • Shift pulses are supplied to the shift register by master clock 5, which also supplies note counter 2, to shift the contents of each shift register stage to the next succeeding stage except during those bit times when I the shift pulse is preempted by a load pulse from the note counter. Accordingly, shift register 80 is parallel loaded, and the date contents of the register are then shifted out of the register in serial format on encoder output line 25 until a l-bit pause occurs when another set of data is parallel loaded into the shift register, followed again by serial readout on line 25.
  • This serial pulse train constitutes the time division multiplexed output signal of encoder 15 just as in the embodiment of FIG. 3, except that with the FIG. 3A configuration, decoder 7 (and the counters 3 and 4 supplying pulses thereto) undergo a greater amount of settling time.
  • this operation constitutes a parallelto-serial conversion of the information onoutput buses 12 to a time-division multiplexed waveform on the output line 25 of encoder 15.
  • each key has a designated time slot in the 384 time slots constituting one complete scan of every keyboard of the organ.
  • the TDM waveform (shown by way of example in FIG. 5) is initiated about 200 times per second.
  • This waveform contains all of the note selection information, in serial digital form on a single output line, that had Theretofore required complex wiring arrangements.
  • This waveform development will be more clearly understood from an example of the operation of the circuitry thus far discussed. It should bev observed first, however, that all of the counter and logic circuitry described up to this point can be accommodated withina very small volume of space by fabrication in integrated circuit form using conventional microelectronic manufacturing techniques.
  • connection between the appropriate input bus 10 and output bus 12 of switching array 11 for the particular octave and keyboard under consideration is effected by the depression and continued operation of the key associated with the switch 14 for that intersection in the array. Since, as previously stated, each switch is associated with a particular note (key) and is positioned in a specific row of the switching array, a signal level is thereby supplied to the appropriate output bus 12 of the switching array arranged to be associated with that note.
  • a second input is provided to the AND gate 20 receiving the signal level on output bus 12, and a pulse is delivered to OR gate 23.
  • the pulse which appears at the output of OR gate 23 always appears in the identical specified time slot in the multiplexed signal for a specific note associated with a particular key on a particular keyboard of the organ.
  • FIG. 5 An example of the multiplex signal waveform thus generated is shown in FIG. 5. While the pulses appearing in the time slots associated with the specific notes mentioned above are in a serial format or sequential order, their appearance is repetitive during the interval in which the respective keys are actuated. Hence, the effect is to produce a simultaneous reproduction of the notes as an audio output of the organ, as will be explained in more detail in connection with the description of operation of the tone generation section.
  • the multiplexed signal arriving from encoder 15 is supplied to generator assignment logic network 26 which functions to assign a tone generator 28 to a depressed key (and hence, to generate a particular note) when the associated pulse first appears in its respective time slot in the multiplexed signal supplied to the assignment logic.
  • generator assignment logic network 26 which functions to assign a tone generator 28 to a depressed key (and hence, to generate a particular note) when the associated pulse first appears in its respective time slot in the multiplexed signal supplied to the assignment logic. If only 12 tone generators 28 are available in the particular organ under consideration, for example, the assignments are to be effected in sequence (order of availability), and once particular pulses have been directed to all of the available generators (i.e., all available tone generators have been captured by respective note assignments), the organ is in a state of saturation. Thereafter, no further assignments can be made until one or more of the tone generators is released.
  • the availability of 12 (or more) tone generators renders it extremely unlikely that the organ would ever reach a state of saturation since it is quite improbable that more than 12 keys would be depressed in any given instant of time during performance of a musical selection.
  • the output waveforms from the captured tone generators at the proper frequencies for the notes being played are supplied as outputs to appropriate waveshaping and amplification networks and thence to the acoustical output speakers of the organ.
  • the tone generators 28 supply a digital representation of the desired waveform, as is the case in one embodiment to be described, then the digital format is supplied to an appropriate digital-to-analog converter, which in turn supplies an output to the waveshaping network.
  • each tone generator 28 may be in only one of three possible states, although the concurrent states of the tone generators may differ from one tone generator to the next. These three states are as follows:
  • the tone generator is presently uncaptured (i.e., un-
  • any number of the tone generators provided (12, in this particular example) may in one or the other of the states designated (1) and (3), above, but that only one of the tone generators can be in state (2) during a given instant of time. That is, one and only one generator is the next generator to be claimed.
  • the specific tone generator in state (2) is claimed by an incoming pulse, the next incoming pulse which is not presently claiming a tone generator is tobe assigned to the generator that has now assumed state (2).
  • tone generator 04 is unavailable to the next incoming pulse, and the privilege of capture must pass to the next tone generator which is not presently in a state of capture. If all of the tone generators are captured, that is, all are in state (1) as described above, then the organ is saturated and no further notes can be played until at least one of the tone generators is released. As previously observed, however, the saturation of an organ having 12 (or more) tone generators is highly unlikely.
  • Generator assignment system 26 is utilized to implement the logic leading to the desired assignment of the tone generators 28, and thus to the three states of operation described above.
  • An exemplary embodiment of the generator assignment logic is shown in FIGS. 7A and 73.
  • a ring counter 30, or a 12-bit recirculating shift register in which one and only one bit position is a logical 1" at any one time is used to introduce a claim selection, i.e., to initiate the capture, of the next available tone generator in the set of tone generators 28 provided in the organ.
  • a shift signal appearing on line 32 advances the 1" bit from one register or counterstage to the next, i.e., shifts the l to the next bit position.
  • Each bit position is associated with and corresponds to a particular tone generator, so that the presence of the logical l in a particular bit position indicates selection of the tone generator to be claimed next, provided that it is not already claimed.
  • a "claim select" signal appears on the respective output line 34 associated with the stage.
  • This claim select signal is supplied in parallel to one input of a respective one of AND gates 35, on line 36, and to further logic circuitry (to be described presently with reference to FIG. 78), on line 37.
  • the output line of each of AND gates 35 is connected to a separate and distinct input line of an OR gate 40 which, in turn, supplies an input to an AND gate 42 whose other input constitutes pulses from the master clock 5.
  • shift register stage 02 contains the logical 1. That stage therefore supplies claim select 2" signal to the respectively associated AND gate 35 and, as well, to further logic circuitry on line 37. if this further logic circuitry determines that the associated note generator may be claimed, a claimed signal is applied as the second input to the respectively associated AND gate 35. Since both inputs of that AND gate are now true, an output pulse is furnished via OR gate 40 to the synchronization gate 42. The latter gate produces a shift pulse on line 32 upon simultaneous occurrence of the output pulse from OR gate 40 and a clock pulse from master clock 5.
  • each tone generator also has associated therewith a respective portion of the generator assignment logic as shown in that FIGURE.
  • the circuitry of FIG. 78 is associated with the ith tone generator (wheretpl', 2, 3, l2), and since each of these portions of the assignment logic is identical, a single showing and description will suffice for all.
  • An AND gate 50 has three inputs, one of which is the multiplexed signal deriving from encoder (this being supplied in parallel to the AND gates 50 of the remaining identical portions of the assignment logic for the other tone generators, as well), a second of which is the claim select" signal appearing on line 37 associated with the ith stage of shift register 30 (FIG.
  • a modulo 384 counter 55 is employed to permit recognition by the respective portion of the generator assignment logic of the continued existence in the multiplexed signal of the pulse (time slot) which resulted in the capture of the associated tone generator.
  • counter 55 is synchronized with keyboard counter l"(also a modulo 384 counter) by simultaneous application thereto of clock pulses from master clock 5.
  • the count of each counter 55 associated with an uncaptured tone generator is maintained in synchronism with the count of keyboard counter 1 by application of a reset signal to an AND gate 58 each time the keyboard counter assumes a zero count; i.e., each time the count of the keyboard counter repeats.
  • that reset signal is effective to reset counter 55 only if the associated tone generator is uncaptured.
  • the latter information is provided by the state of flip-flop 53, i.e., a not claimed" signal is supplied as a second input to AND gate 58 whenever flip-flop 53 is in the unclaimed state.
  • the flip-flop (and hence, the associated tone generator) is claimed, however, it is desirable to indicate the time slot occupied by the pulse which effected the capture, and for that reason a reset signal is applied to counter 55 at any time that an output signal is derived from AND gate 50.
  • a reset signal is applied to counter 55 at any time that an output signal is derived from AND gate 50.
  • the zero count of counter 55 occurs with each repetition of the capturing" pulse in the TDM waveform.
  • Such information is valuable for a variety of reasons; for example, to prevent capture of an already captured tone generatorwhen the zero count continues to appear simultaneously with a pulse in the TDM waveform, and to prolonger accompanied by a pulse in the TDM waveform.
  • Capture prevention is efi'ected by feeding a signal representative of zero count from counter 55 to the appropriate input terminal of an OR gate 60 associated with all of the tone generators and their respective generator assignment logic.
  • the logi cal l supplied to OR gate 60 is inverted so that simultaneous identical logical inputs cannot be presented to AND gate 50.
  • a key release" indication is obtained by supplying the zero count signal to an AND gate 62 to which is also supplied any signal deriving from an inverter 63 connected to receive inputs from the TDM signal.
  • the inversion of the latter pulse prevents an output from AND gate 62, and this is proper because the coincidence of the zero count and the TDM pulse is indicative of continuing depression of the key which has captured the tone generator. Lack of coincidence is indicative that the key has been released, and results in the key release" signal. Scanning of the keyboards is sufficiently rapid that any delay which might exist between actual key release and initiation of the key release" signal is negligible, and in any event is undetectable by the human senses. Furthermore, the generation of a false key release" signal when the tone generator is presently unclaimed, as.
  • the key release" signal deriving from AND gate 62 is supplied to attach decay logicof the tone generator to initiate the decay of the generated tone.
  • the set claim signal output of AND gate 50 that occurs with the simultaneous appearance of the three input signals to that gate is utilized to provide a key depressed indication to the attack/decay circuitry of the tone generator (and to percussive controls, if desired), as well as to provide its previously recited functions of setting flip-flop 53 and resetting" counter 55.
  • the assignment logic embodiment of FIGS. 7A and 78 may be associated with only a small number of tone gene rators'( l2, in the example previously given), the exact number being selected in view of the cost limitations and the likely maximum number of keys that normally may be actuated simultaneously. In that case, each tone generator must supply every desired frequency corresponding to every note in every octave that may be played on the electronic organ. To that end, a digital tone generator of the exemplary configuration shown in block diagrammatic form in FIG. 8 is employed.
  • sample points are preferably uniformly spaced because such a format permits the most direct analysis, and therefore the most direct synthesis, of the desired waveform.
  • the uniform spacing of sample points may be such that there is vide a key released indication when the zero count is no provided an integral number of samples per cycle for each note frequency to be generated.
  • Such a technique requires a sampling rate that varies directly with the frequency.
  • the samples maybe spaced uniformly in time, in which case the phase angle between samples points varies with the frequency of the note to be generated.
  • the preferred frequency synthesis technique is that in which the phase angle between the sample points synthesis technique is that in which the phase angle between the sample points varies with frequency, i.e., in which the sampling rate is fixed for all note frequencies to be generated, and the various generated note frequencies are produced as a result of the different phase angles.
  • FIG. 8 shows, in block diagram form, a specific exemplary structure of a tone generator for generating the required note frequencies of the organ from a memory containing amplitude samples of the desired waveform obtained at uniformly spaced points in time.
  • the sample points are accessed at a fixed, single clock frequency for all note frequencies to be generated and the phase angle between the sample points thereby varies with the frequency of the note to be generated.
  • the tone generator includes, as basic components, a phase angle calculator 100, a phase angle register 101, a sample point address register 102, a read-only memory 103, an address decoder 1034, an accumulator 104, a sampling clock 105, and a comparator 107.
  • the phase angle calculator 100 and the read-only memory 103 may be shared by all of the tone generators 28.
  • each tone generator is addressed or accessed individually and in sequence and thus once in each cycle of addressing all tone generators.
  • the sampling clock 105 may comprise a clock rate provided by a master sampling clock, successive clock pulses of which are directed to the series of tone generators.
  • the sampling clock addressed to a given tone generator is thus at a rate comprising the pulse repetition rate of the master sampling clock divided by the number of tone generators provided in the system.
  • the accumulator 104 may be a composite structure associated with appropriate gating circuitry related to each tone generator for accumulating the information read from the memory 103 in response to accessing thereof by a given tone generator.
  • phase angle calculator 100 When a claim flip-flop of the tone generator assignment logic, such as flip-flop 53 (FIG. 7B), is switched to the claimed state in accordance with capturing of a pulse in the incoming multiplexed waveform by a given tone generator 28, the phase angle calculator 100 is instructed to determine the appropriate phase angle for the frequency of the note to be reproduced as identified by the captured pulse. A determination of the value of the phase angle constant, and hence, of the particular note corresponding to the key that has been actuated, is initiated by supplying both the count from the main keyboard counter 1 and the count of the modulo 384 counter 55 (e.g., of FIG. 78) associated with the captured flip-flop, and which is reset to zero upon that capture, to a count comparator 107.
  • Comparator 107 subtracts the count of counter 55 from the count of the keyboard counter l and supplies a number representative of the difference, and hence, representative of the time slot position corresponding to a particular note (i.e., that note which captured the flip-flop), to phase angle calculator 100.
  • the difference computed by comparator 107 will always be positive, or zero, because the computation is elicited from the comparator only when the associated flipflop 53 is captured and at that moment counter 55 is reset to zero, whereas the keyboard counter probably has some greater count or contains a least count, i.e., zero.
  • calculator 100 On the basis of the difference count supplied by comparator 107, calculator 100 is informed as to the note for which the phase angle calculation is to be performed, i.e., the note and thus the frequency to be produced by the tone generator.
  • the calculator 100 may compute the phase angle as a function of the frequency of the note to be reproduced and of the number of memory sampling points of the waveform in storage and thus as approximately equal to the phase angle of the fundamental between adjacent memory '.sampling points for the frequency to be produced.
  • An alternative embodiment of the phase angle calculator is a conventional storage unit with look-up capabilities, or simply a memory from which the correct phase angle is extracted when the memory is suitably addressed with the identification of the count of the captured pulse.
  • a combination of a memory with look-up capabilities and of a calculator capable of computation for determination of the phase angles may be employed.
  • the synthesis of note frequencies in accordance with the digitally stored waveform sample points may be arbitrarily as accurate as desired and, in'effect, provides a true equally tempered scale of the synthesized note frequencies wherein the notes within the scale differ by the power of 2"".
  • the degree of accuracy in a practical system must be realized within a finite maximum information content and thus the stored phase angles are quantized and rounded off. 7
  • phase angle thus developed is supplied to and stored in the phase angle register 101.
  • a command control means such as flip-flop 53 which establishes the captured state of the tone generator controls the operation of the comparator 107 and, in turn, the
  • phase angle detennination function of the phase angle calculator 100 for the given note frequency to be generated for supply of that phase angle to the register 101. Since this operation must precede the addressing function, a delay may be provided (as by use of a delay multivibrator 106) to actuate a switch 108 for passage of pulses from the sampling clock source (which may be an appropriately gated pulse from a master sampling clock source) to the registers 10] and 102.
  • the sampling clock source which may be an appropriately gated pulse from a master sampling clock source
  • the sample point address register 102 may be cleared when claim flip flop 53 reverts to a noncaptured state, so that it is prepared for entry of information from the phase angle register 101 upon each calculation.
  • the rate at which the value of register 102 increases and not the absolute value thereof which is significant in the control of the rate of read out of the memory 103 and thus the cyclic frequency of read out of the memory and, ultimately, the frequency of the note reproduced by the given tone generator.
  • phase angle value stored in phase angle register 101 is added to the previously stored value of the sample point address register 102.
  • An address decoder 103a decodes preselected bit positions of the count established in register 102 to effect accessing, or addressing,
  • the transfer from the register 101 to the register 102 is a nondestructive transfer such that the phase angle value is maintained in the register 101 as long as that tone generator is captured by a given pulse.
  • the phase angle register value comprising a digital binary word
  • the memory location corresponding to the sample point address then existing in the register 102 is accessed.
  • the registers such as 101 and 102 must be of a finite, practical length. In particular, the length of the phase angle register 101 is determined by the accuracy with which the frequency of the note is to be generated. The frequency actually produced will be exactly the value of the phase angle in register 101 times the memory sampling rate.
  • the sample point address register 102 must be sufficiently long to accept data from the phase angle register 101.
  • the register 102 preferably includes additional bit positions which are not used, or not used at all times, for accessing the memory.
  • one bit position in the register 102 is scaled at one cycle of the fundamental of the frequency of the note to be generated.
  • a set of next successive less significant bits may therefore specify-the sample point address in accordance with the function of the decoder 103a.
  • the more significant bits of the register 102 may be used to count numbers of cycles of the waveform for various control functions not here pertinent.
  • the frequency of the note reproduced may be readily adjusted to different octaves.
  • a l-bit positional shift constitutes division or multiplication by two, depending upon direction of shift. For example, if the most significant bit is numbered 1 and thus bit positions 2 through 6 comprise the sample point address bits normally used for an 8 foot voice, then a 16 foot voice can be obtained by using bits 1 through as the sample point address source. Correspondingly, a 4 foot voice can be obtained by using bits 3 through 7 as the sample point address bits.
  • the read-only memory 103 contains digital amplitude values of a single cycle of the complex periodic waveform to be reproduced. for all note frequencies. That is to say, the same complex periodic waveform is to be reproduced for each note played, the only difference being the frequency at which the complex waveform is reproduced.
  • the wave may be sampled at a multiplicity of points
  • the data accessed is the actual amplitude of the output waveform at the respective sample points (i.e., with respect to a zero level at time axis 111). In that event, the digital amplitude data successively read from the niemory may be applied directly to an appropriate digital-toanalog conversion system.
  • incremental amplitude information i.e., simply the difference in amplitude between the present sample and the immediately preceding sample
  • the data accessed must be added to an accumulator (e.g., 104 in FIG. 8) to provide the absolute amplitude information at each sample point prior to digital-to-analog conversion.
  • Each of the sample points of the memory 103 may comprise a digital word of approximately 7 or 8 bits.
  • the digital words thus read out from the memory 103 are supplied to the accumulator 104 which provides a digital representation of the waveform at selected sample points over a cycle of the waveform and at a frequency corresponding to the note to be reproduced.
  • this digital waveform representation may itself be operated upon for waveshape control, e.g., attack and decay, and subsequently is supplied to a digital-to-analog converter for producing an analog signal suitable for driving the acoustical output means, such as audio speakers, of the organ.
  • Memory 103 maybe a microminiature diode array of the type disclosed by R. M. Ashby et al. in US. Pat. No. 3,377,513, issued Apr. 9, 1968, and assigned to the same assignee as is the present invention.
  • the array may, for example, contain an amplitude representation of the desired waveform in the form of an 8-bit binary word at each of 48 or more sample points.
  • Such a capacity permits the storage of up to 128 amplitude levels in addition to a polarity (algebraic sign) bit. In any event, the capacity of memory 103 should be sufficient to allow faithful reproduction of note frequencies.
  • each increment can be read out only once during each cycle of the waveform. This is because an accumulation of incremental values is required, and repetition will produce asignificant error in the accumulation and the ultimate waveform to be generated, regardless of the note frequency. Since the same sample point may be read out of memory 103 several times in succession depending upon the note frequency to be produced, just as in the whole value sample point case noted above, for incremental values all but one readout for each sample point must be inhibited to prevent repetitive application to accumulator 104. To that end, a gate 103b (shown dotted in FIG. 8) is positioned in the output line of memory 103 preceding accumulator 104 if incremental values are utilized.
  • Gate 103 is preferably enabled to pass the sample value being read from the memory only when the least significant bit in address register 102 changes. Since such change occurs upon a carry" into that position, indicating advancement to the next memory address, a bit change sensor 102a may be used to detect the change and to enable gate l03b at each advancement to a new address. The same sample point may still be accessed several times in succession, but only one such value will be read out" (i.e., will be passed by the gate since it is disabled at all other times).
  • phase angle calculations should be such that the highest note playable is that note for which a sample point value is read out each time the memory is addressed. Since the ratio between adjacent notes on the equally tempered musical scale is an irrational number, it is preferable that the largest number in the phase angle register be slightly smaller than the least significant bit in the address register. if the phase angle number were larger, it would be necessary to occasionally skip a sample point and this would lead to inconsistency in the note frequency, whereas if the phase angle number were equal to the least significant bit in the address register the note frequency would be slightly higher (i.e., about one-half of a halftone higher),than the highest note that can be played. By requiring the phase angle number to be slightly smaller, the highest note capability of the instrument will not be exceeded.
  • the same read-only memory 103 may be shared by all of the tone generators 28 if the data words (amplitude values of samread therefrom are gated to respective waveshapers in synchronism with the addressing of the memory for the respective notes being played. ln other words, simultaneous or concurrent play of two or more notes requires that these be distinguished as separate sets of sample points, if a single memory is to be shared for all tone generators.
  • each tone generator has its own memory (and, incidentally, memories composed of microminiature diode arrays of the type disclosed in the aforementioned Ashby et a1.
  • patent are readily fabricated with more than 5,000 diode elements per square inch), which supplies its digital output to a respectively associated attack and decay control unit.
  • the binary-valued amplitude samples are applied directly to the attack and decay circuitry if each sample is a whole value, or may be applied via an accumulator 104 if each sample is an incremental value. Alternatively, accumulation of incremental values may be performed after shaping, if desired.
  • an embodiment of the attack and decay unit associated with each tone generator includes a multiplier to which the sample values from memory 103 are applied for multiplication by an appropriate scale factor to control the leading and trailing portions of the note waveform envelope.
  • a multiplier to which the sample values from memory 103 are applied for multiplication by an appropriate scale factor to control the leading and trailing portions of the note waveform envelope.
  • attack and decay controls may be avoided entirely, or the scale factor supplied to multiplier 120, and with which the amplitude samples are to be multiplied, may be set at unity. More often, however, attack and/or decay are desirable for or in conjunction with special effects, such as percussion, sustain, and so forth.
  • the multiplying scale factor is varied as a function of time to correspondingly vary the magnitude of the digital samples, with which it is multiplied, on a progressive basis to simulate attack and/or decay.
  • the total time duration and the time constant(s) for the attack or decay are controlled by a counter 122 which may be selectively supplied with uniformly timed pulses that are independent of the specific note frequency under consideration, such as pulses obtained or derived from the master clock, or with pulses having a repetition rate representative of or proportional to the note frequency.
  • the counter 122 may e considered as determining the abscissa of a graph of envelope amplitude versus time and representative of the attack or decay.
  • the ordinate or amplitude scale of the graph is represented by the series of scale factors stored in a read-only memory 125 to be accessed by the counter itself, or by an address decoder 126 which addresses the memory for readout of scale factors on the basis of each count (or timed, separated counts) of counter 122.
  • the counter may be of the reversible, up-down (forwardbackward) type in which it is responsive to incoming pulses to count upwardly when its up" (here, attack) terminal is activated, and to count downwardly when its down" (here, decay) terminal is activated.
  • the attack mode of the overall control unit is entered when the associated tone generator is captured by a hitherto unclaimed note pulse in the multiplexed signal.
  • the capture of a tone generator is accompanied by a signal indicative of a key having been depressed (see H6. 78), from the assignment logic, and it is this signal which initiates the attack count of counter 122.
  • the first key depressed signal (and possibly the only one) that occurs upon capture of a tone generator 28 is effective to produce a count in the first stage of ring counter 128, thereby supplying a trigger signal from that stage to a monostable delay multivibrator 130 which is set to have an ON time (delay time) of sufficient duration to ensure that the attack is completed despite release of the key prior to the normal end of the attack interval. It has been found that a delay time equal to or greater than approximately the time occupied by seven cycles (i.e., seven periods) of the lowest frequency note is quite adequate for multivibrator 130 to ensure this positive attack.
  • the up" control of counter 122 is activated by the quasi-stable state of multivibrator 130 and the counter continues to count incoming pulses until the multivibrator spontaneously returns to its stable state, or until the note envelope reaches the full desired intensity (magnitude), if earlier.
  • This full intensity value may be preset into the attack/decay control logic or it may be determined by logic circuitry responsive to such factors as the force with which the respective key is struck (i.e., to velocity-responsive or touchresponsive device outputs).
  • the former arrangement is utilized in which a maximum desired count is set into a fixed counter 131 for continuous comparison in comparator 133 with the preset count of up down counter 122. If the latter exceeds the former, a "disable" command is applied to the counter to terminate the attack.
  • Pulses to be counted by counter 122 may be obtained at a rate which is a function of note frequency, as by supplying the output of phase angle calculator 100 to a phase-to-frequency converter 135, or at a rate based on the master clock rate, whichever is desired. Selection of either rate is accomplished by appropriately setting a switch 136 coupled to an associated switch or key on or adjacent to one of the keyboards.
  • the pulses to be counted appear at the input of counter 122 but no count is initiated until a key is depressed and the associated pulse in the multiplexed signal from the keyboard results in the capture of a tone generator 28.
  • the key depress" signal from the generator assignment logic initiates a count in ring counter 128, which had been reset by completion of decay the immediately preceding time the attack/decay control unit had been used.
  • the latter reset signal is obtained upon switching of the claim flip-flop 53 in the assignment logic 26 to the not claimed" (decay complete)'state.
  • the up count of counter 122 is thereby enabled and continues through completion of attack regardless of whether or not the key remains depressed. If the count pulses are a function of note frequency, the duration of attack is based upon note frequency as well; otherwise, the positive attack interval is fixed regardless of note frequency.
  • address decoder 126 With each count of counter 122 (or less frequently, by use of suitably timed enabling commands), address decoder 126 develops a related address code for accessing a digital scale factor stored in the appropriate address of read-only memory unit 125, to be combined as a product in multiplier with the amplitude samples being read from tone generator 28 of FIG. 8.
  • address decoder 126 By presetting memory 125 such that the scale factors stored therein are logarithmically increasing (up to the equivalent of unity) with addresses decoded according to progressively increasing count in counter 122 (up to the maximum desired count, representing full note intensity), a logarithmic attack is provided in the note being played. Furthermore, since the initial attack is positive, i.e., continues to completion regardless of the present condition of the key which was struck to produce the attack, the logarithmic rise at the leading edge of the note waveform continues smoothly to full intensity of the note.
  • a key release" signal is applied from AND gate 62 of assignment logic 26 (H0. 78) to a flipflop 138 to initiate the decay mode of the attack/decay control unit by enabling the decay" (down) count of counter 122.
  • incoming pulses to the counter are counted downwardly from the count representative of full intensity, until a zero count is obtained unless decay is terminated earlier.
  • the count in counter 122 is periodically decoded (e.g., once each count) by unit 126 for addressing of memory 125, thereby supplying logarithmically decreasing scale factors, from unity to zero, for multiplication with amplitude samples from the tone generator in multiplier 120. This produces the desired fall in note intensity at the trailing portion of the note waveform.
  • scaler control logic may be implemented to signal completion of the decay mode.
  • a second key depress signal is applied to ring counter 128 thus increasing the count therein to the second stage and switching flip-flop 138 from the decay state to its other state, which reintroduces the attack mode. Since decay is incomplete in this particular instance, the count of counter 122 now proceeds upward from the minimum count which had been attained when decay was interrupted. If, however, the key is again released, prior to completion of attack, positive attack is no longer in effect and the flip-flop 138 reverts immediately to the decay state by virtue of application of the key release" signal thereto.
  • flip-flop 138 may be switched to its attackf state upon full completion of decay, by the not claimed" signal of flip-flop 53 in the assignment logic unit which produced capture of the associated tone generator. Concurrent operation of flip-flop 138 in the attack" state and MV 130 in the quasi-stable state will not affect I another note.
  • the decay complete' signal may be supplied by the zero count of counter 122 or by any conventional detector for sensing the absence of further output from multiplier 120.
  • said scale factor storing means comprises a read-only memory containing a plurality of digital scale factors for sealing the amplitude of said selected digital samples read from said digital sample storing means.
  • said weighting means includes means for selectively establishing the time interval of the attack or the decay.
  • time interval establishing means is responsive to the frequency of the note associated with the actuated switch to establish the duration of the time interval in relation to the frequency of the selected note.
  • time interval establishing means is responsive to a fixed time reference to establish the duration of the time interval of attack or decay, independent of the frequency of the selected note.
  • An electronic musical instrument comprising a a plurality of keys individually actuable to cause the production of sounds corresponding to related notes of the musical scale, anddeactuable to cause the cessation of the respective sounds, means for sequentially and repetitively scanning said keys to detect the actuation or deactuation of any one or more thereof,
  • attack and decay control means selectively responsive to the initiation and removal of note assignments in said digital signal for correspondingly weighting the samples appearing at the beginning and end of the note waveform envelope to effect attack and decay of the note in accordance with theactuation and deactuation, respectively, of the key.
  • attack and decay controlling means further includes means for selecting the time of the attack and the decay.
  • duration-selecting means sets the duration as a fixed time interval independent of the frequency of the selected note.
  • a digital electronic musical instrument having switches selectively operate to bring forth respective notes of the musical scale, comprising means assigning each of said switches to a distinct and different time slot in a sequence of cyclically repeated time slots of a digital signal,
  • controllable tone generating means for producing a digital representation of a waveform at a selectable frequency
  • attack and decay control means selectively responsive to the initiation and removal of note assignments in said digital signal for correspondingly weighting the samples appearing at the beginning and end of the note waveform envelope to effect attack and decay of the note in accordance with the actuation and deactuation, respectively, of the key.
  • attack and decay control means comprises:
  • attack and decay means comprises means for maintaining the attack for the duration of the attack time interval regardless of release of a switch prior to completion of that attack time interval.
  • a system for simulating attack and decay of notes generated by an electronic musical instrument comprising:
  • a plurality of keys individually actuable to produce notes at selectively corresponding frequencies
  • means responsive to actuation of a key for producing an electrical representation of a note to be produced at the corresponding frequency and for maintaining that representation in a sustain mode during continuous actuation of the key, means defining a succession of time periods wherein each period is not substantially longer in duration than the period of the lowest note frequency to be produced,
  • said combining means combining the succession of scale factors with said electrical representation of said time interval of decay to produce a decay of the note following the sustain mode thereof. 17.
  • said time interval defining means comprises:
  • counting means for counting said time periods, means for storing a predetermined count in accordance with the duration of each said time period for defining the desired time intervals of attack and decay, and
  • comparison means for comparing the count of said time periods with said predetermined count for terminating further attack and decay of each note when said counts are equal.
  • a set of next successive less significant bits may therefore specify the sample point address in accordance with the function of the decoder 1030.
  • the more significant bits of the register 102 may be used to count numbcrs of cycles of the waveform for various control functions not here pertinent.
  • the frequency of the note reproduced may be readily adjusted to different octaves. That ,is, a 1-bit positional shift constitutes division or multiplication by two, depending upon direction of shift. For example, if the most significant bit is numbered 1 and thus bit positions 2 through 6 comprise the sample point address bits normally used for an 8 foot voice, then a 16 foot voice can he obtained by using bits 1 through as the sample point address source. correspondingly, a 4 foot voice can be obtained by using bits 3 through 7 as the sample point address bits.
  • the read-only memory .103 contains digital amplitude values' of a single cycle of the complex periodic waveform to be reproduced for all note frequencies. That is to say, the same complex periodic waveform is to be reproduced for each note played,'the only difference being the frequency at which the complex waveform is reproduced.
  • the wave may be sampled at a multiplicity of points, shown as vertical lines in the Figure, to provide the amplitude data for storage in memory 103.
  • ll absolute amplitude data is stored in memory 103, then the data accessed is the actual amplitude of the output waveform at the respective sample points (i.e., with respect to a zero level at time axis 111).
  • the digital amplitude data successively read from the memory may be applied directly to an appropriate digital-toanalog conversion system.
  • each of the sample points of the memory 103 may comprise a digital word of approximately 7 or 8 bits.
  • the digital words thus read out from the memory 103 are supplied to the accumulator 104 which provides a digital representation of the waveform at selected sample points over a cycle of the waveform and at a frequency corresponding to the note to be reproduced.
  • this digital wavefomt representation may itself be operated upon for waveshape control, e.g., attack and decay, and subsequently is supplied to a digital-to-analog converter for producing an analog signal suitable for driving the acoustical output means, such as audio speakers, of the organ.
  • Memory 103 may be a microminiature diode array of the type disclosed by R. M. Ashby et al. in US. Pat. No. 3,377,5 l 3, issued Apr. 9, 1%8, and assigned to the same assignee as is the present invention.
  • the array may, for example, contain an amplitude representation of the desired waveform in the form of an 8-bit binary word at each of 48 or more sample points.
  • Such a capacity permits the storage of up to 128 amplitude levels in addition to a polarity (algebraic sign) bit. ln any event, the capacity of memory 103 should be sufficient to allow faithful reproduction of note frequencies.
  • each increment can be read out only once during each cycle of the waveform. This is because an accumulation of incremental values is required, and repetition will produce a significant error in the accumulation and the ultimate waveform to be generated, regardless of the note frequency. Since the same sample point may be read out of memory 103 several times in succession depending upon the note frequency to be produced, just as in the whole value sample point case noted above, for incremental values all but one readout for each sample point must be inhibited to prevent repetitive application to accumulator 104. To that end, a gate 10% (shown dotted in FIG. 8) is positioned in the output line of memory 103 preceding accumulator 104 if incremental values are utilized.
  • Gate 103k is preferably enabled to pass the sample value being read from the memory oiily when the least significant bit in address register 102 changes. Since such change occurs upon a carry into that position, indicating advancement to the next memory address. a bit change sensor 102a may be used to detect the change and to enable gate 103! at each advancement to a new address. The same sample point may still be accessed several times in succession, but only one such value will be read out" (i.e., will be passed by the gate since it is disabled at all other times).
  • phase angle calculations should be such that the highest note playable is that note for which a sample point value is read out each time the memory is addressed. Since the ratio between adjacent notes on the equally tempered musical scale is an irrational number, it is preferable that the largest number in the phase angle register be slightly smaller than the least significant bit in the address register. if the phase angle number were larger, it would be necessary to occasionally skip a sample point and this would lead to inconsistency in the note frequency, whereas if the phase angle number were equal to the least significant bit in the address register the note frequency would be slightly higher (i.e., about one-half of a halftone higher) than the highest note that can be played. By requiring the phase angle number to be slightly smaller, the highest note capability of the instrument will not be exceeded.
  • the same read-only memory 103 may be shared by all of the tone generators 28 if the data words (amplitude values of sample points) read therefrom are gated to respective waveshapers in synchronism with the addressing of the memory for the respective notes being played. In other words, simultaneous or concurrent play of two or more notes requires that these be distinguished as separate sets of sample points, it a single memory is to be shared for all tone generators.
  • each tone generator has its own memory (and, incidentally, memories composed of microminiature diode arrays of the type disclosed in the aforementioned Ashby et al. patent are readily fabricated with more than 5,000 diode elements per square inch), which supplies its digital output to a respectively associated attack and decay control unit.
  • the binary-valued amplitude samples are applied directly to the attack and decay circuitry if each sample is a whole value, or may be applied via an accumulator 104 if each sample is an incremental value. Alternatively, accumulation of incremental values may be performed after shaping, if desired.
  • an embodiment of the attack and decay unit associated with each tone generator includes a multiplier to which the sample values from memory 103 are applied for multiplication by an appropriate scale factor to control the leading and trailing portions of the note waveform envelope.
  • a multiplier to which the sample values from memory 103 are applied for multiplication by an appropriate scale factor to control the leading and trailing portions of the note waveform envelope.
  • attack and decay controls may be avoided entirely, or the scale factor supplied to multiplier 120, and with which the amplitude samples are to be multiplied, may be set at unity. More often, however, attack and/or decay are desirable for or in conjunction with special effects, such as percussion, sustain, and so forth.
  • the multiplying scale factor is varied as a function of time to correspondingly vary the magnitude of the digital samples, with which it is multiplied, on a progressive basis to simulate attack and/or decay.
  • the total time duration and the time constant(s) for the attack or decay are controlled by a counter 122 which may be selectively sup plied with uniformly timed pulses that are independent of the specific note frequency under consideration. such as pulses obtained or derived from the master clock, or with pulses haviug a repetition rate representative of or proportional to the note frequency.
  • the counter 122 may e considered as determining the abscissa of a graph of envelope amplitude versus time and representative of the attack or'decay.
  • the ordinate or amplitude scale of the graph is represented by the series of scale factors stored in a read-only memory 125 to be accessed by the counter itself, or by an address decoder 126 which addresses the memory for readout of scale factors on the basis of each count (or timed, separated counts) of counter 122.
  • the counter may be of the reversible, up down (forwardbackward) type in which it is responsive to incoming pulses to count upwardly when. its "up” (here. attack) terminal is activated, and to count downwardly when its "down (here, decay) terminal is activated.
  • the attack mode of the overall control unit is entered when the associated tone generator is captured by a hitherto unclaimed note pulse in the mul tiplexed signal.
  • the capture of a tone generator is accompanied by a signal indicative of a key having been depressed (see FIG. 78), from the assignment logic, and it is this signal which initiates the attack count of counter 122.
  • the first "key depressed" signal (and possibly the only one) that occurs upon capture of a tone generator 28 is effective to produce a count in the first stage of ring counter 128, thereby supplying a trigger signal from that stage to a monostable delay multivibrator 130 which is set to have an 0N time (delay time) of sufficient duration to ensure that the attack is completed despite release of the key prior to the normal end of the attack interval. It has been found that a delay time equal to or greater titan approximately the time occupied by seven cycles (i.e., seven periods) of the lowest frequency note is quite adequate for multivibrator 130 to ensure this positive attack.
  • the "up" control of counter 122 is activated by the quasi-stable state of multivibrator 130 and the counter continues to count incoming pulses until the multivibrator spontaneously returns to its stable state, or until the note envelope reaches the full desired intensity (magnitude), if earlier.
  • This full intensity value may be preset into the attack/decay control logic or it may be determined by logic circuitry responsive to such factors as the force with which the respective key is struck (i.e., to velocity-responsive or touchresponsive device outputs).
  • the former arrangement is utilized in which a maximum desired count is set into a fixed counter 131 for continuous comparison in comparator 133 with the preset count of updown counter 122. If the latter exceeds the former, a disable" command is applied to the counter to terminate the attack.
  • Pulses to be counted by counter 122 may be obtained at a rate which is a function of note frequency, as by supplying the output of phase angle calculator 100 to a phase-to-frequency converter 135, or at a rate based on the master clock rate, whichever is desired. Selection of either rate is accomplished by appropriately setting a switch 136 coupled to an associated ewiwh nr krrv on or adiacent to one of the kevboards.
  • the pulses to be counted appear at the input of counter 122 but no count is initiated until a key is depressed and the associated pulse in the multiplexed signal from the keyboard results in the capture of a tone generator 28.
  • the "key depress" signal from the generator assignment logic initiates a count in ring counter 128, which had been'reset by completion of decay the immediately preceding time the attack/decay control unit had been used.
  • the latter reset signal is obtained upon switching of the claim flip-flop 53 in the assignment logic 26 to the not claimed" (decay complete) state.
  • the up count of counter 122 is thereby enabled and continues through completion of attack regardless of whether or not the key remains depressed. If the count pulses are a function of note frequency, the duration of attack is based upon note frequency as well; otherwise, the positive attack interval is fixed regardless of note frequency.
  • address decoder 126 With each count of counter 122 (or less frequently, by use of suitably timed "enabling" commands), address decoder 126 develops a related address code for accessing a digital scale factor stored in the appropriate address of read-only memory unit 125, to be combined as a product in multiplier with the amplitude samples being read from tone generator 28 of FIG. 8.
  • address decoder 126 By prcsetting memory such that the scale factors stored therein are logarithmically increasing (up to the equivalent of unity) with addresses decoded according to progressively increasing count in counter 122 (up to the maximum desired count, representing full note intensity), a logarithmic attack is provided in the note being played. Furthermore, since the initial attack is positive, i.e., continues to completion regardless of the present condition of the key which was struck to produce the attack, the logarithmic rise at the leading edge of the note waveform continues smoothly to full intensity of the note.
  • a "key release" signal is applied from AND gate 62 of assignment logic 26 (FIG. 78) to a flipflop 138 to initiate the decay mode ofthe attack/decay control unit by enabling the decay" (down) count of counter 122. Accordingly, incoming pulses to the counter are counted downwardly from the count representative of full intensity, until a zero count is obtained unless decay is terminated earlier.
  • the count in counter 122 is periodically decoded (e.g., once each count) by unit I26 for addressing of memory 125, thereby supplying logarithmically decreasing scale factors, from unity to zero, for multiplication with amplitude samples from the tone generator in multiplier 120. This produces the desired fall in note intensity at the trailing portion of the note waveform.
  • scaler control logic may be implemented to signal completion of the decay mode.
  • flip-flop 138 may be switched to its "attack state upon full completion of decay, by the "not claimed” signal of flip-flop 53 in the assignment logic unit which produced capture of the mociated tone generator. Concurrent operation of flip-flop 138 in the attack" state and MV 130 in the ouasi-stahle state will not affect

Abstract

In an electronic organ, the actuation of keys in accordance with corresponding audible tones to be reproduced effects the gating of pulses into time slots of a time division multiplexed signal, the time slots of the multiplexed signal being structured in accordance with a desired assignment sequence to correspond to the keys and to be representative thereof for identifying each note capable of being generated by the organ. A set of note, or tone, generators with availability assignment control means for capturing a pulse in the multiplexed signal are each rendered responsive to a given captured pulse for generating the tone represented by that pulse. The appropriate tone is generated digitally in the form of amplitude samples of a waveform stored in a memory, and the amplitude samples are subsequently subjected to digital-to-analog conversion for ultimate production of the audible output of the organ. Attack and decay of the tone, or note, waveform envelope are simulated by appropriately scaling the amplitude samples at the leading and trailing portions of the waveform envelope.

Description

United States Patent [72] Inventors George A. Watson Re.'26,521 2/1969 I m A I I 8f1LI .Q3 Tustin; 3,358,068 12/1967 Campbell. 84/1.03 x Ralph Deutsch, Sherman Oa s, both of 3,482,027 12/ 1 969 Okamoto..... 84/ l .03 Calif. 3,515,792 -5/ 1970 Deutsch 84/1.03 [21] Appl. No. 872,598 3,518,352 6/1970 Plunkett... 84/I.03 [22] lliil d d 3 2 2,900,861 8/1959 Davis 84/1.28" [45] atente ct. Prima E ry xammer-Mrlton O. Hrrshfield [73] Asslgnee North American Rockwell Corporation Assistant Examiner stanley J. witkowski Attorneys-L. Lee l-lumphries, H. Fredrick Hamann and [54] ATTACK AND DECAY SYSTEM FOR A DIGITAL Edward Dugas ELECTRONIC ORGAN 22 Clams 12 Drawmg Flgs' ABSTRACT: In an electronic organ, the actuation of keys in U.S. accordance corresponding audible tones to be 84/1-28 reproduced effects the gating of pulses into time slots of a time [51] Int. Cl G10h 1102 division mumplexed signal the time slots f [he mumplexed 0 Search signal being tructured in accordance a desired assign- L23, 1310- 12 ment sequence to correspond to the keys and to be representative thereof for identifying each note capable of being [56] References cued generated by the organ. A set of note, or tone, generators with UNITED STATES PATENTS availability assignment control means for capturing a pulse in 2,401,372 6/1946 Rienstra 84/ 1.01 X the multiplexed signal are each rendered responsive to a given 2,601,265 6/ 1952 Davis 84/ 1.28 captured pulse for generating the tone represented by that 2,855,816 10/1958 Olson et a1. 84/1.03 pulse. The appropriate tone is generated digitally in the form 2,918,576 12/ 1959 Munch 84/1.26 X of amplitude samples of a waveform stored in a memory, and 3,007,362 11/1961 Olson eta] 84/l.03 the amplitude samples are subsequently subjected to digital- 3,383,453 5/1968 Sharp 84/ 1.26 to-analog conversion for ultimate production of the audible 3,435,123 3/1969 Schrecongost 84/ 1.26 output of the organ. Attack and decay of the tone, or note, 3,439,569 4/1969 Dodds et al 84/1.26 waveform envelope are simulated by appropriately scaling the 3,446,904 5/ 1969 Brand et al. 84/1.13 amplitude samples at the leading and trailing portions of the 3,465,088 9/1969 Kohls 84/1.26 waveform envelope.
KE DEPRESS I I I WHOLE VALUE 0R INCREMENTAL i AMPLITUDE I I we. I 130 II-I5 F F I38 I35 1 FROM PHASE I 1:235 t p I ANGLE cAtcrooI CONVERTER ATTACK W I55 J UP DOWN /l22 I CLOCK COUNTER DISABLE ALE I33- I I I git? gf -vuuwutn I I j MEMORY I20 1 I COMPARATOR DDR5 I MAX I26 I couur I ATTACK/ DECAY CONTROL UNIT I SCALED AMPLITUDE Park VALUES PATENTED ET' 5l97l 3.610.805
SHEET 1 UF 6 KEYBOARD COUNTER MASTER A CLOCK 4 KEYBOARD OCTAVE NOTE(KEY) l l l llllllll IHIHIIIIII W4 (l2 LINES) DECODER 1 (FIG. 2)
l0 (32 [|ME) '1 2 H swncnms MumPLExEO ARRAY ENCODYERI SIGNAL FROM ONE STAGE OF FROM EIGHT STAGES OF KEYBOARD SECTION 4 JOCITAVE SECTION 3 DECODER 7 (MOM INVI ZNTOIIH GEORGE A. WATSON RALPH DEUTSCH ATTORNEYS PATENTED BET l 3.610.805
SHEET 2 OF 6 FROM 32AND GATES 8 FROM l2 STAGES OF NOTE F DEc ER 7 SECTIIQN 2 (KEYBOARD COUNTER I) |o l F/6'.3
FI 2b$ 'T v -l0 l I l I g 23 g I MULTIPLEXED i i E TSIGNAL l 25 l i 520-3 l l ENCODER I I8 l I E A w, I I k I SWITCHING ARRAY L. J NOTE COUNTER MASTER IIIIIIII'III CLOCK r isAa-"zm f SRI sR2 SR3 ao ENCODER l5 (FIG.|)
OUTPUT BUSES FROM 4 MULTIPLEXED SWITCHING ARRAY SIGNAL F 5R" mvsu'mas RALPH DEUTSCH .J
BY Md 1:12AM
ATTORNEYS PATENTED'QEI s [9H SHEET 3 0F 6 I KEY CONTACT :4 l2 k l2 2 Z MULTIPLEXED WAVEFORM (PULSES CORRESPONDING T0 v 5 5 5 NOTES PLAYED) l fuirf W W RESET TIME COUNTER ZERO "1 GENERATOR TONE I Qfi ASSIGNMENT i GENERATORS OUTPUTS LOGIC (|-|2) 2 i Z I l t (SAMPLE POINTS) INVINTOIS GEORGE A. WATSON RALPH DEUTSCH 2 g M01 3cm ATTORNEYS PATENTED um 5:91:
SHEET- u 0F 6 FIG. 74
ZERO COUNT i KEY RELEASE mvsmons GEORGE A. WATSON RALPH DEUTSCH MED MOD 384 COUNTER M SELECTIZ LA MASTER CLOCK CLAIM SELECT| D RESET KEYBOARD COUNTER RESET INVERT SET CLAIM i CLAIMED i TO TONE GEN 26i NOT CLATMED MU LEXED SIGN FIG. 75'
ZERO COUNT DETECTOR BY 1? -Ml 13mm ATTORN EYS PATENTED BET 5l97l 3,610,805
SHEET 6 [1F 6 KEY KEY DEPRESS R F WH0l VALUE 0R I INCREMENTAL DELAY MONO F F I35 FROM PHASE I PHASE T0 ANGLE CALQIOO ATTACK DECAY 5 FREQ. UP-DOWN l22 CLOCK TIME COUNTER DISABLE READ $0M MULTIPLIER A ONLY Y MEMORY ADDRESS ADDRE COMPARATOR DECODER A l3l MAX coum ATTACK/DECAY CONTROL UNIT J SCALED AMPLITUDE vALuEs INVINTQM! GEORGE A. WATSON RALPH DEUTSCH BY Rww, and Cam:
BACKGROUND OF THE INVENTION 1. Field of the Invention I This invention resides broadly in the field of electronic musical instruments, and is particularly adaptable for use in the electronic organ as a digital selection systemfor calling forth desired tones from those available to be produced by the organ, and for impressing upon the tone envelopes the appropriate attack and decay characteristics. The term organ is used throughout the specification and claims in a generic sense (as well as in a specific sense) to include any electronic musical instrument having a keyboard such as an electronic organ, an electric piano or accordion, and so forth, and in fact,
the principles of the present invention are applicable to any musical instrument in which musical sounds are generated in response to the actuation of key switches, regardless of whether the switches are actuated directly, i.e., by the musicians fingers, or indirectly, e.g., by the plucking of strings. The term "key is also used in a generic sense, to include depressible levers, actuable on-off switches, touchor proximityresponsive (e.g., capacitanceor inductanceoperated) devices, closable apertures (e.g., a hole in a keyboard of holes which when covered by the musician's finger closes or opens a fluidic circuit to produce a tonal response), and so forth.
1 2. Description of the Prior Art The function of an electronic organ is to faithfully reproduce, or to simulate by electronic means, the sounds or tones developed by a true pipe organ upon selection of notes andother special effects by the organist. In order to provide other than an abrupt start and an abrupt end of the tone envelope generated when a particular key is depressed and released, respectively, it is desirable to simulate attack and decay of the tone by gradually increasing the tone envelope at the leading edge and gradually decreasing the envelope at the trailing edge. In conventional electronic organs, desired attack and decay may be conveniently handled by use of circuits having the necessary time constants or whose time constants may be adjusted according to the desired rise and fall of the waveform at the leading and trailing edges. Resistancecapacitance networks are commonly employed for such purpose.
In the copending application of G. A. Watson entitled Multiplexing System For Selection Of Notes And Voices In An Electronic Musical Instrument, filed on even date herewith, and assigned to the same assignee as the present invention, there is described an electronic organ in which every key of every keyboard is scanned in cyclic sequence. The actuation of a key or keys on any keyboard is entered as information in a parallel digital format developed by the scanning of the keyboards, the information indicating the order and combination, as well as each individual one, of the keys that have been actuated and deactuated. This parallel format is continuously convened to a serial format to provide information regarding key actuation in the form of pulses in appropriate time slots 'of the time division multiplexed signal which is supplied to the tone generating section of the organ. Each time slot of the multiplexed signal is representative of a specific key to permit identification of the notes associated with the respective 'keys and thereby to result in the appropriate sounds being generated in response to the playing of the keys.
The tone generators which respond to the incoming multiplexed signal to bring forth the appropriate tones corresponding to those keys that have been actuated, in the order and combination of such actuation, produce digital amplitude samples of a waveform of the desired sound at a frequency corresponding to the desired note frequency.
Such an arrangement permits reduction of complexity that is usually found in electronic organs and in particular permits elimination of a substantial number of wires and cables that are usually required between the keyboards and the 'tone generators. Furthermore, since the digital electronic organ of the aforementioned Watson application provides assignment in a simple and efficient manner of a smallnumber of tone generators, relative to the number of keys available, to the keys which have actuated, there is a further reduction in complexity of mapping the subset of depressed keys into the available tone generators by means of special wiring arrangements, as in conventional requirements. Still further, the digital electronic organ overcomes such difficulties as may occur when a key switch has faulty or dirty contacts, a situation that would ordinarily lead to intermittent elec' i'zal contact and discontinuity of tone. By use of a multipl signal, the presence of a pulse in a particular time slot of a repeating signal is sufficient to represent the actuation of the corresponding key, and less than perfect contact is required to produce that pulse.
Each of the limited number of tone generators provided in the digital electronic organ of the aforementioned Watson application is associated with generator assignment logic constructed and arranged to assign an available tone generator to an incoming pulse in the multiplexed signal which has not yet captured a tone generator. Each tone generator includes a memory means storing digital representations of amplitudes of the waveshape to be s synthesized at a large number of sample points. When the tone. generator is captured by a pulse, the memory means associated with that tone generator is accessed to read out amplitude samples in accordance with the frequen cy of the tone to be generated.
It is a principal object of the present invention to provide an attack and decay simulation system by which the amplitude of the leading and trailing portions of the note envelope of a digital electronic organ are appropriately scaled.
SUMMARY OF THE INVENTION Briefly, according to the present invention, the duration of the attack or decay is controlled by a counter which may be selectively enabled to count timed pulses having a rate independent of the note frequency, or to count cycles or half cycles of the specific note frequency. In essence, the counter serves to detennine the abscissa in a graph of amplitude versus time for the attack or decay. The ordinate or amplitude scale of the graph is provided by a plurality of amplitude scale are tors stored in a fixed memory accessed by the counter. The scalefactors are read from the fixed memory as required and supplied to a multiplier which receives as a second input the digital amplitude samples being read from the tone generator memory, the multiplier formingthe product of these two inputs to scale the leading and trailing portions of the note waveform.
In a preferred embodiment of the invention, the count is initiated when the note generator is assigned a pulse and the attack mode is entered. Unless the attack system is disabled,'a positive attack is provided in which the counter is forced to complete the attack regardless of whether or not the key remains depressed. When the key is subsequently released, and the corresponding pulse fails to appear in the multiplexed signal, the count for decay is initiated. If the pulse representative of the same key should reappear during decay, indicating that the latter key has again been actuated, the attack mode is reassumed. However, if the key is again released prior to completion of attack, the system is constructed and arranged such that positive attack is not in effect and the decay mode is reinitiated immediately. This operation simulates that which occurs in a pipe organ.
BRIEF DESCRIPTION OF THE DRAWINGS In describing the present invention, reference will be made to the accompanying FIGURES of the drawings in which:
FIG. 1 is a simplified block diagram of a system for producing a time division multiplexed signal containing a recycling sequence of time slots each associated with a particular key' of the organ and in which each time slot containing a pulse is indicative of the actuation of the associated key;
FIG. 2 is a circuit diagram of an exemplary decoder for use in the system of FIG. 1';
FIG. 3 is a more detailed circuit diagram of the switching array and encoder used in the system of FIG. 1;
FIG. 3A is a circuit diagram of an alternative encoder to that shown in FIG. 3, for use in the system of FIG. 1;
FIG. 4 is a circuit diagram of the input-output bus connecting means at each intersection of the switching array of FIG. 3;
FIG. 5 is illustrative of a multiplex waveform developed by the system of FIG. 1 in response to actuation of selected keys;
FIG. 6 is a simplified block diagram of generator assignment and tone generating apparatus for processing the multiplexed signal produced by the system of FIG. I to develop the desired tones as an audible output of the organ;
FIGS. 7A and 78 together constitute a circuit diagram of one embodiment of the tone generator assignment logic for the system of FIG. 6;
FIG. 8 is a block diagram of a tone generator suitable for synthesizing the frequency of every note capable of being played in the organ, for use with the assignment logic of FIGS. 7A and 7B in the system of FIG. 6;
FIG. 9 is illustrative of a complex waveshape of the type produced by a pipe organ, and of the sample points at which amplitude values are taken, for simulation at selected note frequencies; and
FIG. 10 is a block diagram of a preferred embodiment of an attack and decay control unit for use in an electronic digital musical instrument of the type shown and described with reference to the preceding FIGURES of drawing.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIG. 1, the keyboard multiplexing system or note selection system includes a keyboard counter l which is implemented to provide a specified count for each key of each keyboard (including manuals and pedal divisions) of the organ. If, for example, the electronic organ in which the multiplexing system is used has four keyboards, such as three manuals and apedal board, each encompassing up to eight octaves, then keyboard counter 1 should have the capability of generating 4X8 l2=384 separate counts (digital words). It is essential that the counter be capable of developing a count representative of every key on every keyboard of the organ; however, it may be desirable to provide a counter that can produce a count greater than the number of available keys in order to have available certain redundant counts not associated with any keys. Such redundancy is readily provided by simply utilizing a counter of greater capacity than the minimum required count.
Keyboard counter l is divided into three separate sections (or separate counters) designated 2, 3 and 4. The first section (designated 2) is constructed to count modulo 12 so as to designate each of the 12 keys associated with the 12 notes in any octave. The second section (designated 3) is adapted to count modulo 8, to specify each of the eight octaves encompassed by any of the four keyboards. The last section (designated 4) is designed to count modulo 4 to specify each keyboard of the organ. Therefore, the overall keyboard counter is arranged to count modulo 384, in that at the conclusion of every 384 counts, the entire set of keyboards have been covered (scanned) and the count repeats itself. To that end, each counter section may be composed of a separate conventional ring counter, the three counters being connected in the typical cascaded configuration such that when section 2 reaches its maximum count it advances the count of countersection 3 by one, and will automatically initiate a repetition of its own count. Similarly, attainment of its maximum count by countersection 3 is accompanied by advancement of the count of section 4 by one.
Advancement of the count o'f-rcount r 2 is accomplished by 5 which delivers clock pulses at a sufficiently rapid repetition rate (frequency) to ensure resolution of depression (actuation) and release (deactuation) of any key on any keyboard, i.e., to supply a pulse at the instant of either of these events. Scanning of all keyboards of the organ at a rate of 200 or more times a second is deemed quite adequate to obtain this desirable resolution. For the exemplary keyboard counter set forth above, this is equivalent to a minimum of 200 384=76,800 counts per second, so that a master clock delivering clock pulses at a rate of 100 kc./s. is quite suitable.
A total of four lines emanate from counter 4, one line connected to each ring counterstage', to permit sensing of the specific keyboard which is presently being scanned. Similarly, eight lines are connected to the eight ring counterstages, respectively, of octave counter 3 to detect the octave presently being scanned. Thus, a total of l2 lines extend from counters 3 and 4, and these 12 lines can carry signals indicative of 32 (8X4) possible states of the keyboard counter. The specific one of the 32 states, representative of a particular octave on a particular keyboard, which is presently being scanned is determined by use of a decoder circuit 7 composed of 32 AND gates designated 8-1, 8-2, 8-3, 8-32 (FIG. 2), each with two input terminals and an output terminal. The gates are arranged in four groups of eight each, with every gate of a particular group having one of its two input terminals (ports) connected to one of the four lines of counter 4. Distinct and different ones of the eight lines from counter 3 are connected to the other input terminal of respective ones of the eight AND gates of that group. A corresponding situation exists for each group of AND gates, with the only difference being that each group is associated with a different output line of counter section 4. Using this arrangement, the decoder logic designates every octave of keys in the organ by a respective driver pulse when a count corresponding to that octave is presently contained in the counter.
The output pulses deriving from the AND gates (or drivers) of decoder circuit 7 are supplied on respective ones of 32 bus bars (or simply, buses), generally designated by reference numeral 10, to a keyboard switching array 11. From the preceding description, then, it will be clear that array 11 has one input bus 10 for every octave of keys in the organ (including every octave on every keyboard), and that a drive pulse will appear on each input bus approximately 200 times per second, the exemplary rate of scan of the keyboards, as noted above, for obtaining adequate resolution of operation of the keys. Switching array 11 also has 12 output buses, generally designated by reference number 12, each to be associated with a respective one of the 12 notes (and hence, the 12 keys) in any given octave.
Array 11 is basically a diode switching matrix, in which spaced input buses 10 and spaced output buses 12 are orthogonally arranged so that an intersection or crossing occurs between each input bus and each output bus (see FIG. 3), for a total of 384 intersections, one for each count of the keyboard counter- 1. As is typical in this type of matrix, the
crossed lines or buses are not directly interconnected. Instead, a jump diode, such as that designated by reference number 13 in FIG. 4, is connected between the input bus 10 and the output bus 12 at each intersection, the diode poled for forward conduction (anode-to-cathode) in the direction from an input bus 10 to an output bus 12. Wired in series circuit or series connection with each diode 13 is a respective switch 14 which is normally open circuited and is associated with a distinct respective one of the keys of the organ, such that depression of the associated key produces closure (close circuiting) of the switch 14 whereas release of the associated key results in return of the switch to its open state. Alternatively, each of switches 14 may itself constitute a respective key of the various keyboards of the organ.
While switch 14 is shown schematically as being of mechanical single-pole, single-throw (SPST) structure, it will be understood that any fonn of switch, electronic, elecapplication of clock pulses thereto from a master clock source tromechanical, electromagnetic, and so forth, may be utilized,
the exact nature of the switch depending primarily upon the nature of the energization produced upon operation of the associated key. Switch 14, then, is adapted to respond to the particular form of energization or actuation produced upon operation of a key on any keyboard (or, as observed above, may itself constitute the key), to complete the circuit connecting associated diode 13 between a respective input bus and a respective output bus 12 at the intersection of those buses, when the key is depressed, and to open the circuit connecting the diode between respective input and output buses at that intersection when the key is released. Positive pulses occurring at the rate of approximately 200 per second, for example, according to the timing established by master clock 5, are transferred form input bus 10 to output bus 12 via the respective diode 13 and closed switch 14 when the associated key is depressed. While a switch alone (i.e., without the series connected diode) would serve the basic purpose of transferring a signal between the input and output lines of array 11, the diode provides a greater degree of isolation from sources of possible interference (noise) and acts to prevent feedback from output to input lines.
In FIG. 3, the output buses 12 from switching array 11 are connected toan encoder circuit 15 to which are also connected the 12 output lines, generally designated by reference number 16, from keyboard counter section 2. To produce an orderly arrangement in which each key of the organ is assigned a distinct and different time slot in a time-division multiplex waveform, the switches 14 associated with the respective keys are conveniently arranged in a specific sequence in V the switching array 1 1. Assume, for example, that specific output bus 17 of the switching array is to be associated with note A of any octave, a second output bus 18 is to be associated with note B of any octave, and so forth. Then switches 14 in the row corresponding to output bus 17 in array or matrix 11 are associated with the keys corresponding to the note A in each octave of keys in the organ. The column position of each countersection 2 associated with the ring counterstage designating the count for a particular note (key) in a given octave is connected to the remaining port of an encoder circuit AND gate having as its other input a pulse on the output bus 12 associated with that same note. A similar arrangement is provided for each of the remaining 11 output lines 16 of countersection 2 with respect to the AND gates 20 and the output buses 12. Thus, for example, if output bus 17 (associated with the row of switches 14 in matrix 1 1 for note A) is connected to one input terminal of AND gate 20-1, then output line 22 from the stage of counter 2 designating the count associated with note A is connected to the remaining input terminal of gate 20-1. The output terminal of each of AND gates 20 is connected to a respective input terminal of OR gate 23, the output of the OR gate constituting the output signal of the encoder circuit. By virtue of its structure, encoder circuit 15 is effective to convert the parallel output of array 11 to a serial output signal in accordance with the scanning of output buses 12 as provided by the advancing and repeating count sensed in the form of pulses, (at a rate of about 200 per second) appearing on output lines 16. The end result of this circuitry is the production of a time-division multiplex (TDM) signal on a single conductor 25 emanating from encoder 15.
As an alternative to the specific logic construction shown for encoder 15 in FIG. 3, the encoder may have the circuit configuration exemplified by FIG. 3A. Referring to the latter FIGURE, the encoder includes a shift register 80 having 12 cascaded stages designated SR1, SR2, SR3, SR12, each connected to arespective output bus 12 of switching matrix 11 to receive a respective output pulse appearing thereon. The
i 6 shift register stages are loaded in parallel with the data read from switching array 11 on output buses 12, in response to each of the pulses appearing (i.e., each time a pulse appears) Y on one of the l2'output leads 16 of note counter 2. That one output of the note counter which is to supply the load command for all 12 stages of shift register is selected to permit the maximum amount of settling time to elapse between each advance of octave counter 3 and keyboard counter 4 and the loading of the shift register. in other words, it is extremely desirable that the data to be entered into the shift register from the switching array be stabilized to the greatest possible extent, and this is achieved by allowing the counters whose scanning develops this data, to settle at least immediately prior to loading. Thus, the first note counterstage, or one of the early stages, is selected to provide loacl" pulses to shift register 80.
Shift pulses are supplied to the shift register by master clock 5, which also supplies note counter 2, to shift the contents of each shift register stage to the next succeeding stage except during those bit times when I the shift pulse is preempted by a load pulse from the note counter. Accordingly, shift register 80 is parallel loaded, and the date contents of the register are then shifted out of the register in serial format on encoder output line 25 until a l-bit pause occurs when another set of data is parallel loaded into the shift register, followed again by serial readout on line 25. This serial pulse train constitutes the time division multiplexed output signal of encoder 15 just as in the embodiment of FIG. 3, except that with the FIG. 3A configuration, decoder 7 (and the counters 3 and 4 supplying pulses thereto) undergo a greater amount of settling time.
It will be observed that this operation constitutes a parallelto-serial conversion of the information onoutput buses 12 to a time-division multiplexed waveform on the output line 25 of encoder 15.
In the TDM signal, each key has a designated time slot in the 384 time slots constituting one complete scan of every keyboard of the organ. In the specific example of the time base provided by master clock 5, the TDM waveform (shown by way of example in FIG. 5) is initiated about 200 times per second. This waveform contains all of the note selection information, in serial digital form on a single output line, that had Theretofore required complex wiring arrangements. This waveform development will be more clearly understood from an example of the operation of the circuitry thus far discussed. It should bev observed first, however, that all of the counter and logic circuitry described up to this point can be accommodated withina very small volume of space by fabrication in integrated circuit form using conventional microelectronic manufacturing techniques.
when the main power switch for-the electronic organ is turned on, all components are energized to an operational state, the master clock delivering pulses to keyboard counter l at the aforementioned rate. Upon depression of a key on any keyboard of the organ, including the manualsand pedal divisions, a respective switch 14 associated in series connection with a diode 13 at the intersection between the appropriate input bus 10 and output bus 12 of the switching array 11 is closed, therebyconnecting the two buses to supply pulses appearing on a given bus 10 from decoder 7, to the appropriately connected output bus 12 for application to encoder 15. if, for example, the key that was depressed is associated with note C in the second octave, C, appears in the appropriate time slot of the multiplexed signal emanating from encoder 15 and will repetitively appear in that time slot in each scan of the keyboards of the organ as long as that key is depressed. That is to say, a pulse appears onoutput line 10 of decoder 7 associated with the second octave in the manual being played, in accordance with the scan provided by master clock 5, as the counterstage associated with that octave is energized in keyboard counter octave section 3 andthe counterstage associated with that manual is energized in section 40f the keyboard counter. The connection between the appropriate input bus 10 and output bus 12 of switching array 11 for the particular octave and keyboard under consideration is effected by the depression and continued operation of the key associated with the switch 14 for that intersection in the array. Since, as previously stated, each switch is associated with a particular note (key) and is positioned in a specific row of the switching array, a signal level is thereby supplied to the appropriate output bus 12 of the switching array arranged to be associated with that note. Each time the specified note, here the note C, is scanned in the sequence of count in the note section 2 of the keyboard counter, a second input is provided to the AND gate 20 receiving the signal level on output bus 12, and a pulse is delivered to OR gate 23. By virtue of this operation, the pulse which appears at the output of OR gate 23 always appears in the identical specified time slot in the multiplexed signal for a specific note associated with a particular key on a particular keyboard of the organ.
If more than one key is depressed, regardless of whether one or more keyboards is involved, operation corresponding to that described above for a single depressed key is effected for every operated key. Thus, for example, assume that the key associated with note C is played on one manual, the note B is played on a second manual, and the notes D E and G are played on a third manual, the associated keys being depressed substantially simultaneously to produce desired simultaneous reproduction of all notes as the audio output of the organ, Under these conditions, the associated switches 14 in the switching array 11 are closed to provide through connections between the respective input buses and output buses 12 for the specific octaves and manuals involved. As the appropriate AND gates in encoder 15 are supplied with gating signals from the sequentially energized counterstages of note section 2, during the scanning operation provided by that keyboard counter section, pulse levels appearing on output buses 12 for which switches 14 have been closed are gated in the appropriate time slots of the multiplex signal on the output lead 25 from OR gate 23 of encoder 15, for the specific notes involved.
An example of the multiplex signal waveform thus generated is shown in FIG. 5. While the pulses appearing in the time slots associated with the specific notes mentioned above are in a serial format or sequential order, their appearance is repetitive during the interval in which the respective keys are actuated. Hence, the effect is to produce a simultaneous reproduction of the notes as an audio output of the organ, as will be explained in more detail in connection with the description of operation of the tone generation section.
Referring now to FIG. 6, the multiplexed signal arriving from encoder 15 is supplied to generator assignment logic network 26 which functions to assign a tone generator 28 to a depressed key (and hence, to generate a particular note) when the associated pulse first appears in its respective time slot in the multiplexed signal supplied to the assignment logic. If only 12 tone generators 28 are available in the particular organ under consideration, for example, the assignments are to be effected in sequence (order of availability), and once particular pulses have been directed to all of the available generators (i.e., all available tone generators have been captured by respective note assignments), the organ is in a state of saturation. Thereafter, no further assignments can be made until one or more of the tone generators is released. The availability of 12 (or more) tone generators, however, renders it extremely unlikely that the organ would ever reach a state of saturation since it is quite improbable that more than 12 keys would be depressed in any given instant of time during performance of a musical selection. The output waveforms from the captured tone generators at the proper frequencies for the notes being played, are supplied as outputs to appropriate waveshaping and amplification networks and thence to the acoustical output speakers of the organ. lf the tone generators 28 supply a digital representation of the desired waveform, as is the case in one embodiment to be described, then the digital format is supplied to an appropriate digital-to-analog converter, which in turn supplies an output to the waveshaping network.
At any given instant of time, each tone generator 28 may be in only one of three possible states, although the concurrent states of the tone generators may differ from one tone generator to the next. These three states are as follows:
1 a particular note represented by a specific pulse in the multiplexed signal has captured (i.e., claimed) the tone generator;
2 the tone generator is presently uncaptured (i.e., un-
claimed or available), but will be captured by the next in-- coming pulse in the multiplexed signal associated with a note which is not presently a tone generator captor; and 3 the tone generator is presently available, and will not be captured by the next incoming pulse. It should be apparent from this delineation of possible states that any number of the tone generators provided (12, in this particular example) may in one or the other of the states designated (1) and (3), above, but that only one of the tone generators can be in state (2) during a given instant of time. That is, one and only one generator is the next generator to be claimed. When the specific tone generator in state (2) is claimed by an incoming pulse, the next incoming pulse which is not presently claiming a tone generator is tobe assigned to the generator that has now assumed state (2). For example, if the third tone generator (03) of the 12 generators is captured by an incoming pulse (note representation) and the fourth generator (04) was and still is captured by a previous note selection, then tone generator 04 is unavailable to the next incoming pulse, and the privilege of capture must pass to the next tone generator which is not presently in a state of capture. If all of the tone generators are captured, that is, all are in state (1) as described above, then the organ is saturated and no further notes can be played until at least one of the tone generators is released. As previously observed, however, the saturation of an organ having 12 (or more) tone generators is highly unlikely.
Generator assignment system 26 is utilized to implement the logic leading to the desired assignment of the tone generators 28, and thus to the three states of operation described above. An exemplary embodiment of the generator assignment logic is shown in FIGS. 7A and 73. Referring to FIG. 7A, a ring counter 30, or a 12-bit recirculating shift register in which one and only one bit position is a logical 1" at any one time, is used to introduce a claim selection, i.e., to initiate the capture, of the next available tone generator in the set of tone generators 28 provided in the organ. A shift signal appearing on line 32 advances the 1" bit from one register or counterstage to the next, i.e., shifts the l to the next bit position. Each bit position is associated with and corresponds to a particular tone generator, so that the presence of the logical l in a particular bit position indicates selection of the tone generator to be claimed next, provided that it is not already claimed.
Each time the logical l appears in a stage of shift register 30, a "claim select" signal appears on the respective output line 34 associated with the stage. This claim select signal is supplied in parallel to one input of a respective one of AND gates 35, on line 36, and to further logic circuitry (to be described presently with reference to FIG. 78), on line 37. The output line of each of AND gates 35 is connected to a separate and distinct input line of an OR gate 40 which, in turn, supplies an input to an AND gate 42 whose other input constitutes pulses from the master clock 5.
In operation of the portion of the generator assignment logic shown in FIG. 7A, assume that shift register stage 02 contains the logical 1. That stage therefore supplies claim select 2" signal to the respectively associated AND gate 35 and, as well, to further logic circuitry on line 37. if this further logic circuitry determines that the associated note generator may be claimed, a claimed signal is applied as the second input to the respectively associated AND gate 35. Since both inputs of that AND gate are now true, an output pulse is furnished via OR gate 40 to the synchronization gate 42. The latter gate produces a shift pulse on line 32 upon simultaneous occurrence of the output pulse from OR gate 40 and a clock pulse from master clock 5. Accordingly, the logical l ,claim select" signal appearing as the other input to that gate by virtue of stage 03 containing the single logical 1, another shift pulse isimmediately generated on line 32 to advance the logical 1" to stage 04 of the shift register. Similar advancement of bit position of the l continues until an unclaimed tone generator is selected. If it should happen that no note is presently being selected on a keyboard of the organ at the time when an unclaimed tone generator is selected, the l bit remains in the shift register stage associated with the selected tone generator until such time as a claimed signal is concurrently applied to the respective AND gate 35, i.e., until the selected tone generator is claimed, because until that time no further shift signals can occur.
Referring now to FIG. 7B, each tone generator also has associated therewith a respective portion of the generator assignment logic as shown in that FIGURE. In other words, the circuitry of FIG. 78, with minor exceptions to be noted in the ensuing description, is associated with the ith tone generator (wheretpl', 2, 3, l2), and since each of these portions of the assignment logic is identical, a single showing and description will suffice for all. An AND gate 50has three inputs, one of which is the multiplexed signal deriving from encoder (this being supplied in parallel to the AND gates 50 of the remaining identical portions of the assignment logic for the other tone generators, as well), a second of which is the claim select" signal appearing on line 37 associated with the ith stage of shift register 30 (FIG. 7A), and the third of which is a signal, on line 52, indicating that the pulse in the multiplexed signal has not captured any tone generator as yet. Of coprse, thesesignals are not present unless the respective events which produce them are actually occurring but if all three signals are simultaneously presented as inputs to AND respectively associated tone generator 28.
A modulo 384 counter 55 is employed to permit recognition by the respective portion of the generator assignment logic of the continued existence in the multiplexed signal of the pulse (time slot) which resulted in the capture of the associated tone generator. To that end, counter 55 is synchronized with keyboard counter l"(also a modulo 384 counter) by simultaneous application thereto of clock pulses from master clock 5. The count of each counter 55 associated with an uncaptured tone generator is maintained in synchronism with the count of keyboard counter 1 by application of a reset signal to an AND gate 58 each time the keyboard counter assumes a zero count; i.e., each time the count of the keyboard counter repeats. However, that reset signal is effective to reset counter 55 only if the associated tone generator is uncaptured. The latter information is provided by the state of flip-flop 53, i.e., a not claimed" signal is supplied as a second input to AND gate 58 whenever flip-flop 53 is in the unclaimed state.
When the flip-flop (and hence, the associated tone generator) is claimed, however, it is desirable to indicate the time slot occupied by the pulse which effected the capture, and for that reason a reset signal is applied to counter 55 at any time that an output signal is derived from AND gate 50. Thus, in the captured state, the zero count of counter 55 occurs with each repetition of the capturing" pulse in the TDM waveform. Such information is valuable for a variety of reasons; for example, to prevent capture of an already captured tone generatorwhen the zero count continues to appear simultaneously with a pulse in the TDM waveform, and to prolonger accompanied by a pulse in the TDM waveform. Capture prevention is efi'ected by feeding a signal representative of zero count from counter 55 to the appropriate input terminal of an OR gate 60 associated with all of the tone generators and their respective generator assignment logic. The logi cal l supplied to OR gate 60 is inverted so that simultaneous identical logical inputs cannot be presented to AND gate 50. On the other hand, when the zero count is merely synchronized with the zero count of the keyboard counter and is not the result of capture of the associated tone generator it does not interfere with subsequent capture of that tone generator since it does not occur simultaneously with a pulse in the TDM signal. A key release" indication is obtained by supplying the zero count signal to an AND gate 62 to which is also supplied any signal deriving from an inverter 63 connected to receive inputs from the TDM signal. If the zero 'count coincides with a pulse in the multiplexed signal, the inversion of the latter pulse prevents an output from AND gate 62, and this is proper because the coincidence of the zero count and the TDM pulse is indicative of continuing depression of the key which has captured the tone generator. Lack of coincidence is indicative that the key has been released, and results in the key release" signal. Scanning of the keyboards is sufficiently rapid that any delay which might exist between actual key release and initiation of the key release" signal is negligible, and in any event is undetectable by the human senses. Furthermore, the generation of a false key release" signal when the tone generator is presently unclaimed, as. a result of the occurrence of a zero count from counter '55 synchronized with the zero count of the keyboard counter and the simultaneous absence of a pulse in the TDM signal, can have no effect on the audio output of the organ since the associated tone generator is not captured and is therefore not generating any tone. In any case, the key release" signal deriving from AND gate 62 is supplied to attach decay logicof the tone generator to initiate the decay of the generated tone..
The set claim signal output of AND gate 50 that occurs with the simultaneous appearance of the three input signals to that gate is utilized to provide a key depressed indication to the attack/decay circuitry of the tone generator (and to percussive controls, if desired), as well as to provide its previously recited functions of setting flip-flop 53 and resetting" counter 55.
The assignment logic embodiment of FIGS. 7A and 78 may be associated with only a small number of tone gene rators'( l2, in the example previously given), the exact number being selected in view of the cost limitations and the likely maximum number of keys that normally may be actuated simultaneously. In that case, each tone generator must supply every desired frequency corresponding to every note in every octave that may be played on the electronic organ. To that end, a digital tone generator of the exemplary configuration shown in block diagrammatic form in FIG. 8 is employed.
Before describing the cooperative structural and functional relationships between the elements of the tone generator shown in FIG. 8, it is instructive to consider some of the available alternatives in the construction and operation:.-of digital tone generators for ultimately generating a desired audiofrequency for a pote corresponding to an actuated key. When a key is depressed on any keyboard of the digital electronic organ, a waveform is to be generated with a periodicity corresponding to the desired note frequency in the audible range. The waveform is computed in digital format consisting of a series of numbers (digital words) which represent the magnitude of the waveform at a series, or sequence, of uniformly spaced samp e points. The digital sample point values thus generated are subsequently converted to analog form.
The sample points are preferably uniformly spaced because such a format permits the most direct analysis, and therefore the most direct synthesis, of the desired waveform. If desired, the uniform spacing of sample points may be such that there is vide a key released indication when the zero count is no provided an integral number of samples per cycle for each note frequency to be generated. Such a technique requires a sampling rate that varies directly with the frequency. Alternatively, the samples maybe spaced uniformly in time, in which case the phase angle between samples points varies with the frequency of the note to be generated. Although the synthesis of a multiplicity of note frequencies can be implemented for either technique, using a single clock frequency, the preferred frequency synthesis technique is that in which the phase angle between the sample points synthesis technique is that in which the phase angle between the sample points varies with frequency, i.e., in which the sampling rate is fixed for all note frequencies to be generated, and the various generated note frequencies are produced as a result of the different phase angles.
FIG. 8 shows, in block diagram form, a specific exemplary structure of a tone generator for generating the required note frequencies of the organ from a memory containing amplitude samples of the desired waveform obtained at uniformly spaced points in time. The sample points are accessed at a fixed, single clock frequency for all note frequencies to be generated and the phase angle between the sample points thereby varies with the frequency of the note to be generated. The tone generator includes, as basic components, a phase angle calculator 100, a phase angle register 101, a sample point address register 102, a read-only memory 103, an address decoder 1034, an accumulator 104, a sampling clock 105, and a comparator 107. As will be apparent hereafter, the phase angle calculator 100 and the read-only memory 103 may be shared by all of the tone generators 28. In addition, each tone generator is addressed or accessed individually and in sequence and thus once in each cycle of addressing all tone generators. For that reason, the sampling clock 105 may comprise a clock rate provided by a master sampling clock, successive clock pulses of which are directed to the series of tone generators. The sampling clock addressed to a given tone generator is thus at a rate comprising the pulse repetition rate of the master sampling clock divided by the number of tone generators provided in the system. Further, since the same read-only memory may be addressed by all tone generators, the accumulator 104 may be a composite structure associated with appropriate gating circuitry related to each tone generator for accumulating the information read from the memory 103 in response to accessing thereof by a given tone generator.
When a claim flip-flop of the tone generator assignment logic, such as flip-flop 53 (FIG. 7B), is switched to the claimed state in accordance with capturing of a pulse in the incoming multiplexed waveform by a given tone generator 28, the phase angle calculator 100 is instructed to determine the appropriate phase angle for the frequency of the note to be reproduced as identified by the captured pulse. A determination of the value of the phase angle constant, and hence, of the particular note corresponding to the key that has been actuated, is initiated by supplying both the count from the main keyboard counter 1 and the count of the modulo 384 counter 55 (e.g., of FIG. 78) associated with the captured flip-flop, and which is reset to zero upon that capture, to a count comparator 107. Comparator 107 subtracts the count of counter 55 from the count of the keyboard counter l and supplies a number representative of the difference, and hence, representative of the time slot position corresponding to a particular note (i.e., that note which captured the flip-flop), to phase angle calculator 100. The difference computed by comparator 107 will always be positive, or zero, because the computation is elicited from the comparator only when the associated flipflop 53 is captured and at that moment counter 55 is reset to zero, whereas the keyboard counter probably has some greater count or contains a least count, i.e., zero.
On the basis of the difference count supplied by comparator 107, calculator 100 is informed as to the note for which the phase angle calculation is to be performed, i.e., the note and thus the frequency to be produced by the tone generator. The calculator 100 may compute the phase angle as a function of the frequency of the note to be reproduced and of the number of memory sampling points of the waveform in storage and thus as approximately equal to the phase angle of the fundamental between adjacent memory '.sampling points for the frequency to be produced. An alternative embodiment of the phase angle calculator is a conventional storage unit with look-up capabilities, or simply a memory from which the correct phase angle is extracted when the memory is suitably addressed with the identification of the count of the captured pulse. Alternatively, a combination of a memory with look-up capabilities and of a calculator capable of computation for determination of the phase angles may be employed. The synthesis of note frequencies in accordance with the digitally stored waveform sample points may be arbitrarily as accurate as desired and, in'effect, provides a true equally tempered scale of the synthesized note frequencies wherein the notes within the scale differ by the power of 2"". The degree of accuracy in a practical system, however, must be realized within a finite maximum information content and thus the stored phase angles are quantized and rounded off. 7
The phase angle thus developed is supplied to and stored in the phase angle register 101. Thus, upon capture of a given tone generator, a command control means such as flip-flop 53 which establishes the captured state of the tone generator controls the operation of the comparator 107 and, in turn, the
phase angle detennination function of the phase angle calculator 100 for the given note frequency to be generated, for supply of that phase angle to the register 101. Since this operation must precede the addressing function, a delay may be provided (as by use of a delay multivibrator 106) to actuate a switch 108 for passage of pulses from the sampling clock source (which may be an appropriately gated pulse from a master sampling clock source) to the registers 10] and 102.
If desired, the sample point address register 102 may be cleared when claim flip flop 53 reverts to a noncaptured state, so that it is prepared for entry of information from the phase angle register 101 upon each calculation. However, it is important to note that during accessing of the memory it is the rate at which the value of register 102 increases and not the absolute value thereof which is significant in the control of the rate of read out of the memory 103 and thus the cyclic frequency of read out of the memory and, ultimately, the frequency of the note reproduced by the given tone generator.
Once each sampling clock time as determined by the sampling clock source 105, the phase angle value stored in phase angle register 101 is added to the previously stored value of the sample point address register 102. An address decoder 103a decodes preselected bit positions of the count established in register 102 to effect accessing, or addressing,
of the memory 103. The transfer from the register 101 to the register 102 is a nondestructive transfer such that the phase angle value is maintained in the register 101 as long as that tone generator is captured by a given pulse.
Thus, once each clock time, the phase angle register value, comprising a digital binary word, is added to the sample point address register value and correspondingly, for each such clock time, the memory location corresponding to the sample point address then existing in the register 102 is accessed. As a practical matter, only a relatively small, finite set of amplitudes can be stored in the memory 103, because of practical limitations on its capacity, and thus only a finite number of addresses are available. Furthermore, the registers such as 101 and 102 must be of a finite, practical length. In particular, the length of the phase angle register 101 is determined by the accuracy with which the frequency of the note is to be generated. The frequency actually produced will be exactly the value of the phase angle in register 101 times the memory sampling rate. The sample point address register 102, on the other hand, must be sufficiently long to accept data from the phase angle register 101. The register 102, however, preferably includes additional bit positions which are not used, or not used at all times, for accessing the memory. In this respect, it will be apparent that one bit position in the register 102 is scaled at one cycle of the fundamental of the frequency of the note to be generated. A set of next successive less significant bits may therefore specify-the sample point address in accordance with the function of the decoder 103a. The more significant bits of the register 102 may be used to count numbers of cycles of the waveform for various control functions not here pertinent. In addition, by selecting appropriate bit positions by means of decoder 103a, the frequency of the note reproduced may be readily adjusted to different octaves. That is, a l-bit positional shift constitutes division or multiplication by two, depending upon direction of shift. For example, if the most significant bit is numbered 1 and thus bit positions 2 through 6 comprise the sample point address bits normally used for an 8 foot voice, then a 16 foot voice can be obtained by using bits 1 through as the sample point address source. Correspondingly, a 4 foot voice can be obtained by using bits 3 through 7 as the sample point address bits.
The read-only memory 103 contains digital amplitude values of a single cycle of the complex periodic waveform to be reproduced. for all note frequencies. That is to say, the same complex periodic waveform is to be reproduced for each note played, the only difference being the frequency at which the complex waveform is reproduced.
Referring to FIG. 9, illustrating a typical complex waveshape 110 of the type that may be produced by a pipe organ, the wave may be sampled at a multiplicity of points,
shown as yertical lines in the Figure, to provide the amplitude data for storage in memory 103. If absolute amplitude data is stored in memory 103, then the data accessed is the actual amplitude of the output waveform at the respective sample points (i.e., with respect to a zero level at time axis 111). In that event, the digital amplitude data successively read from the niemory may be applied directly to an appropriate digital-toanalog conversion system. On the other hand, if incremental amplitude information (i.e., simply the difference in amplitude between the present sample and the immediately preceding sample) is stored in memory 103, then the data accessed must be added to an accumulator (e.g., 104 in FIG. 8) to provide the absolute amplitude information at each sample point prior to digital-to-analog conversion. Each of the sample points of the memory 103 may comprise a digital word of approximately 7 or 8 bits.
The digital words thus read out from the memory 103 are supplied to the accumulator 104 which provides a digital representation of the waveform at selected sample points over a cycle of the waveform and at a frequency corresponding to the note to be reproduced. As above-described, this digital waveform representation may itself be operated upon for waveshape control, e.g., attack and decay, and subsequently is supplied to a digital-to-analog converter for producing an analog signal suitable for driving the acoustical output means, such as audio speakers, of the organ.
Memory 103 maybe a microminiature diode array of the type disclosed by R. M. Ashby et al. in US. Pat. No. 3,377,513, issued Apr. 9, 1968, and assigned to the same assignee as is the present invention. The array may, for example, contain an amplitude representation of the desired waveform in the form of an 8-bit binary word at each of 48 or more sample points. Such a capacity permits the storage of up to 128 amplitude levels in addition to a polarity (algebraic sign) bit. In any event, the capacity of memory 103 should be sufficient to allow faithful reproduction of note frequencies.
If whole values of amplitude levels at the sample points of the waveform are read from memory 103 in the embodiment of FIG. 8, the same sample point may be addressed several times in succession. This is the result of the requirement that the memory be accessed at a fixed rate for every note frequency, a requirement which implies that for decreasing note frequencies an increasing number of sample points must be read out during each cycle; and since the number of sample points is fixed and no sample points can be skipped regardless of note frequency, this simply means repetition of the same sample point possibly several tines in succession. This does not undesirably affect the ultimate waveform generated, however,
ple points) because there is consistent plural sampling of each point of the stored waveform.
On the other hand, if incremental values of the waveform have been stored in memory 103, each increment can be read out only once during each cycle of the waveform. This is because an accumulation of incremental values is required, and repetition will produce asignificant error in the accumulation and the ultimate waveform to be generated, regardless of the note frequency. Since the same sample point may be read out of memory 103 several times in succession depending upon the note frequency to be produced, just as in the whole value sample point case noted above, for incremental values all but one readout for each sample point must be inhibited to prevent repetitive application to accumulator 104. To that end, a gate 103b (shown dotted in FIG. 8) is positioned in the output line of memory 103 preceding accumulator 104 if incremental values are utilized. Gate 103!) is preferably enabled to pass the sample value being read from the memory only when the least significant bit in address register 102 changes. Since such change occurs upon a carry" into that position, indicating advancement to the next memory address, a bit change sensor 102a may be used to detect the change and to enable gate l03b at each advancement to a new address. The same sample point may still be accessed several times in succession, but only one such value will be read out" (i.e., will be passed by the gate since it is disabled at all other times).
The phase angle calculations should be such that the highest note playable is that note for which a sample point value is read out each time the memory is addressed. Since the ratio between adjacent notes on the equally tempered musical scale is an irrational number, it is preferable that the largest number in the phase angle register be slightly smaller than the least significant bit in the address register. if the phase angle number were larger, it would be necessary to occasionally skip a sample point and this would lead to inconsistency in the note frequency, whereas if the phase angle number were equal to the least significant bit in the address register the note frequency would be slightly higher (i.e., about one-half of a halftone higher),than the highest note that can be played. By requiring the phase angle number to be slightly smaller, the highest note capability of the instrument will not be exceeded.
The same read-only memory 103 may be shared by all of the tone generators 28 if the data words (amplitude values of samread therefrom are gated to respective waveshapers in synchronism with the addressing of the memory for the respective notes being played. ln other words, simultaneous or concurrent play of two or more notes requires that these be distinguished as separate sets of sample points, if a single memory is to be shared for all tone generators.
In the present embodiment, however, it is assumedthat each tone generator has its own memory (and, incidentally, memories composed of microminiature diode arrays of the type disclosed in the aforementioned Ashby et a1. patent are readily fabricated with more than 5,000 diode elements per square inch), which supplies its digital output to a respectively associated attack and decay control unit. The binary-valued amplitude samples are applied directly to the attack and decay circuitry if each sample is a whole value, or may be applied via an accumulator 104 if each sample is an incremental value. Alternatively, accumulation of incremental values may be performed after shaping, if desired.
Referring to FIG. 10, an embodiment of the attack and decay unit associated with each tone generator includes a multiplier to which the sample values from memory 103 are applied for multiplication by an appropriate scale factor to control the leading and trailing portions of the note waveform envelope. As is well known, the faithful similation of true pipe organ sounds by an electronic organ requires that the latter be provided with the capability to shape each tone envelope to produce other than an abrupt rise and fall. Without special attack and decay control, the note waveform produced by an electronic organ normally rises sharply to full intensity immediately upon depression of the respective key, and ceases abruptly when that key is released. At times, this may be a desirable effect to maintain during the play of a musical selection. in those cases, the attack and decay controls may be avoided entirely, or the scale factor supplied to multiplier 120, and with which the amplitude samples are to be multiplied, may be set at unity. More often, however, attack and/or decay are desirable for or in conjunction with special effects, such as percussion, sustain, and so forth.
The multiplying scale factor is varied as a function of time to correspondingly vary the magnitude of the digital samples, with which it is multiplied, on a progressive basis to simulate attack and/or decay. ln the embodiment of FIG. 10, the total time duration and the time constant(s) for the attack or decay are controlled by a counter 122 which may be selectively supplied with uniformly timed pulses that are independent of the specific note frequency under consideration, such as pulses obtained or derived from the master clock, or with pulses having a repetition rate representative of or proportional to the note frequency. In this respect, the counter 122 may e considered as determining the abscissa of a graph of envelope amplitude versus time and representative of the attack or decay. The ordinate or amplitude scale of the graph is represented by the series of scale factors stored in a read-only memory 125 to be accessed by the counter itself, or by an address decoder 126 which addresses the memory for readout of scale factors on the basis of each count (or timed, separated counts) of counter 122.
v The counter may be of the reversible, up-down (forwardbackward) type in which it is responsive to incoming pulses to count upwardly when its up" (here, attack) terminal is activated, and to count downwardly when its down" (here, decay) terminal is activated. The attack mode of the overall control unit is entered when the associated tone generator is captured by a hitherto unclaimed note pulse in the multiplexed signal. The capture of a tone generator is accompanied by a signal indicative of a key having been depressed (see H6. 78), from the assignment logic, and it is this signal which initiates the attack count of counter 122. In particular, the first key depressed signal (and possibly the only one) that occurs upon capture of a tone generator 28 is effective to produce a count in the first stage of ring counter 128, thereby supplying a trigger signal from that stage to a monostable delay multivibrator 130 which is set to have an ON time (delay time) of sufficient duration to ensure that the attack is completed despite release of the key prior to the normal end of the attack interval. It has been found that a delay time equal to or greater than approximately the time occupied by seven cycles (i.e., seven periods) of the lowest frequency note is quite adequate for multivibrator 130 to ensure this positive attack. During that interval, the up" control of counter 122 is activated by the quasi-stable state of multivibrator 130 and the counter continues to count incoming pulses until the multivibrator spontaneously returns to its stable state, or until the note envelope reaches the full desired intensity (magnitude), if earlier. This full intensity value may be preset into the attack/decay control logic or it may be determined by logic circuitry responsive to such factors as the force with which the respective key is struck (i.e., to velocity-responsive or touchresponsive device outputs). 1n the embodiment shown in FIG. 10, the former arrangement is utilized in which a maximum desired count is set into a fixed counter 131 for continuous comparison in comparator 133 with the preset count of up down counter 122. If the latter exceeds the former, a "disable" command is applied to the counter to terminate the attack.
Pulses to be counted by counter 122 may be obtained at a rate which is a function of note frequency, as by supplying the output of phase angle calculator 100 to a phase-to-frequency converter 135, or at a rate based on the master clock rate, whichever is desired. Selection of either rate is accomplished by appropriately setting a switch 136 coupled to an associated switch or key on or adjacent to one of the keyboards.
In operation of the attack/decay control unit of FIG. 10, after switch 136 has been set at the desired position, the pulses to be counted appear at the input of counter 122 but no count is initiated until a key is depressed and the associated pulse in the multiplexed signal from the keyboard results in the capture of a tone generator 28. The key depress" signal from the generator assignment logic initiates a count in ring counter 128, which had been reset by completion of decay the immediately preceding time the attack/decay control unit had been used. Preferably, the latter reset signal is obtained upon switching of the claim flip-flop 53 in the assignment logic 26 to the not claimed" (decay complete)'state. The up count of counter 122 is thereby enabled and continues through completion of attack regardless of whether or not the key remains depressed. If the count pulses are a function of note frequency, the duration of attack is based upon note frequency as well; otherwise, the positive attack interval is fixed regardless of note frequency.
With each count of counter 122 (or less frequently, by use of suitably timed enabling commands), address decoder 126 develops a related address code for accessing a digital scale factor stored in the appropriate address of read-only memory unit 125, to be combined as a product in multiplier with the amplitude samples being read from tone generator 28 of FIG. 8. By presetting memory 125 such that the scale factors stored therein are logarithmically increasing (up to the equivalent of unity) with addresses decoded according to progressively increasing count in counter 122 (up to the maximum desired count, representing full note intensity), a logarithmic attack is provided in the note being played. Furthermore, since the initial attack is positive, i.e., continues to completion regardless of the present condition of the key which was struck to produce the attack, the logarithmic rise at the leading edge of the note waveform continues smoothly to full intensity of the note.
When the key is released, a key release" signal is applied from AND gate 62 of assignment logic 26 (H0. 78) to a flipflop 138 to initiate the decay mode of the attack/decay control unit by enabling the decay" (down) count of counter 122.
Accordingly, incoming pulses to the counter are counted downwardly from the count representative of full intensity, until a zero count is obtained unless decay is terminated earlier. As in the case of the attack mode, the count in counter 122 is periodically decoded (e.g., once each count) by unit 126 for addressing of memory 125, thereby supplying logarithmically decreasing scale factors, from unity to zero, for multiplication with amplitude samples from the tone generator in multiplier 120. This produces the desired fall in note intensity at the trailing portion of the note waveform. Alternatively to relying on zero count, scaler control logic may be implemented to signal completion of the decay mode.
If during decay the same note pulse should reappear in the multiplexed keyboard signal, indicating depression of the associated key virtually immediately after release thereof, a second key depress signal is applied to ring counter 128 thus increasing the count therein to the second stage and switching flip-flop 138 from the decay state to its other state, which reintroduces the attack mode. Since decay is incomplete in this particular instance, the count of counter 122 now proceeds upward from the minimum count which had been attained when decay was interrupted. If, however, the key is again released, prior to completion of attack, positive attack is no longer in effect and the flip-flop 138 reverts immediately to the decay state by virtue of application of the key release" signal thereto.
To prevent flip-flop 138 from being in the decay" state when the initial attack condition is established in counter 122 (by the quasi-stable state of delay MV 130), flip-flop 138 may be switched to its attackf state upon full completion of decay, by the not claimed" signal of flip-flop 53 in the assignment logic unit which produced capture of the associated tone generator. Concurrent operation of flip-flop 138 in the attack" state and MV 130 in the quasi-stable state will not affect I another note. The decay complete' signal may be supplied by the zero count of counter 122 or by any conventional detector for sensing the absence of further output from multiplier 120.
We claim:
1. In an electronic musical instrument, the combination comprising:
means for storing digital samples of a waveform,
a plurality of switches associated with notes of the musical scale and selectively operable to call forth the related notes,
means responsive to actuation of each of said switches for reading out selected ones of said digital samples from said storing means at a rate to produce said waveform at the related note frequency,
means for storing a plurality of predetermined scale factors corresponding to desired attack and decay effects,
means defining a succession of time periods over a time interval corresponding to a desired rate of attack and decay,
further means responsive to actuation and release of each of .saidswitches and to said time interval defining means for addressing said scale factor storing means in said succession of time periods over said time interval to derive therefrom a corresponding succession of selected ones of said predetermined scale factors, and
: means for combining said selected digital samples read from said digital sample storing means with said predetermined attack and decay scale factors derived from said scale factor storing means over said time interval upon actuation and release of each of said switches to simulate attack and of the waveform at the related note said scale factors in succession from said scale factor storing means and said digital samples from said digital sample storing means and effecting a multiplication thereof to produce a succession of weighted digital samples at the related note frequencysimulating attack and decay, respectively of the waveform over the predetermined time interval.
3. The combination according to claim 1 wherein there is further provided means responsive to initial actuation of a switch to initiate and maintain the attack effect by said combining means for the duration of said time interval regardless of subsequent deactuation of that switch during the said time interval of attack.
4. The combination according to claim 3 wherein there is further provided means responsive to subsequent actuation of the last-named switch during decay of the waveform in said time interval of decay for reinstituting the attack.
5. The combination according to claim 1 wherein said scale factor storing means comprises a read-only memory containing a plurality of digital scale factors for sealing the amplitude of said selected digital samples read from said digital sample storing means.
6. The combination according to claim 1 wherein said weighting means includes means for selectively establishing the time interval of the attack or the decay.
7. The combination according to claim 6 wherein said time interval establishing means is responsive to the frequency of the note associated with the actuated switch to establish the duration of the time interval in relation to the frequency of the selected note.
all
8. The combination according to claim 6 wherein said time interval establishing means is responsive to a fixed time reference to establish the duration of the time interval of attack or decay, independent of the frequency of the selected note. 7
9. An electronic musical instrument, comprising a a plurality of keys individually actuable to cause the production of sounds corresponding to related notes of the musical scale, anddeactuable to cause the cessation of the respective sounds, means for sequentially and repetitively scanning said keys to detect the actuation or deactuation of any one or more thereof, I
means responsive to actuation of one or more of said keys as detected by said scanning means to generate a digital signal containing assignments of the notes associated with the respective actuated keys, and responsive to deactuation of a key for removing the respective note assignment,
means for storing digital samples of a waveform of a musical note, means responsive to note assignments in said digital signal for selectively retrieving digital samples of said waveform from said storing means at a rate to produce said waveform at the corresponding note frequencies, and
attack and decay control means selectively responsive to the initiation and removal of note assignments in said digital signal for correspondingly weighting the samples appearing at the beginning and end of the note waveform envelope to effect attack and decay of the note in accordance with theactuation and deactuation, respectively, of the key.
10. The instrument according to claim 9 wherein said attack and decay controlling means further includes means for selecting the time of the attack and the decay.
11. The instrument according to claim 10 wherein said duration-selecting means sets the duration as a function of the frequency of the selected note.
12. The instrument according to claim 10 wherein said duration-selecting means sets the duration as a fixed time interval independent of the frequency of the selected note.
13. A digital electronic musical instrument having switches selectively operate to bring forth respective notes of the musical scale, comprising means assigning each of said switches to a distinct and different time slot in a sequence of cyclically repeated time slots of a digital signal,
means responsive to selective operation of a switch to provide a signal representative of such operation of said switch in the respective assigned time slot for that switch in each cycle of repetition of said sequence of time slots during which said switch is operated,
controllable tone generating means for producing a digital representation of a waveform at a selectable frequency,
means synchronized with said cyclically repeating sequence of time slots to which said switches are assigned and responsive to a signal appearing in any time slot for controlling said tone generating means to produce said digital waveform representation at a frequency corresponding to the frequency of the respective note for that time slot, and
attack and decay control means selectively responsive to the initiation and removal of note assignments in said digital signal for correspondingly weighting the samples appearing at the beginning and end of the note waveform envelope to effect attack and decay of the note in accordance with the actuation and deactuation, respectively, of the key.
14. The instrument defined by claim 13 wherein said attack and decay control means comprises:
means for storing a plurality of scale factors,
means responsive to the appearance or removal of a sign in each time slot for selective accessing of said scale factor storing means to derive corresponding, selected scale L factors therefrom over a desired time interval of attack and decay, respectively, and
means for weighting said digital samples with said scale factors to vary the magnitudes of selected portions of said digital waveform representation in synchronism with the production thereof from said tone generating means.
15. The instrument defined by claim 13 wherein said attack and decay means comprises means for maintaining the attack for the duration of the attack time interval regardless of release of a switch prior to completion of that attack time interval.
16. A system for simulating attack and decay of notes generated by an electronic musical instrument, comprising:
a plurality of keys individually actuable to produce notes at selectively corresponding frequencies, means responsive to actuation of a key for producing an electrical representation of a note to be produced at the corresponding frequency and for maintaining that representation in a sustain mode during continuous actuation of the key, means defining a succession of time periods wherein each period is not substantially longer in duration than the period of the lowest note frequency to be produced,
means for establishing a predetermined number of successive time periods for defining desired time intervals of attack and decay,
means for storing a plurality of scale factors,
means responsive to initial actuation and subsequent release of a key and to said time period defining means to effect selective addressing of said scale factor storing means in successive time periods to derive therefrom a succession of scale factors over said time intervals of attack and decay, respectively,
means for combining each said electrical representation with the succession of said scale factors thus derived upon initial actuation of a key to effect attack of the note produced over said time interval of attack prior to the sustain mode thereof, and
means for maintaining the electrical representation of the note for said time interval of decay following release of the corresponding key, said combining means combining the succession of scale factors with said electrical representation of said time interval of decay to produce a decay of the note following the sustain mode thereof. 17. A system as recited in claim 16 wherein said time interval defining means comprises:
counting means for counting said time periods, means for storing a predetermined count in accordance with the duration of each said time period for defining the desired time intervals of attack and decay, and
comparison means for comparing the count of said time periods with said predetermined count for terminating further attack and decay of each note when said counts are equal.
18. A system as recited in claim 17 wherein said counting means is responsive to a fixed clock frequency for defining said time periods.
19. A system as recited in claim 17 wherein said counting means is responsive to the frequency of the note to be produced to define each said time period in accordance with the time period of that note frequency.
20. A system as recited in claim 16 wherein there is further provided means responsive to a successive actuation of a key during the time interval of decay of the corresponding note continuing form a prior actuation of that key to reinitiate the attack mode for that note.
21. A system as recited in claim 16 wherein there is further provided means for maintaining the electrical representation of a note for the time interval of attack despite release of the corresponding key within that time interval.
22. A system as recited in claim 16 wherein said electronic musical instrument comprises an electronic sa s a said time interval defining means and said scale factors stored in said scale factor memory are selected to simulate attack and decay effects of a pipe organ.
UNITED STATES PATENT OFFICE Certificate of Correction Patent No. 3,610,805 October 5, 1971 George A. WVetson et a1.
It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below.
In the grant (only) insert Columns 13, 14, 15 and 16:
of the note to be generated. A set of next successive less significant bits may therefore specify the sample point address in accordance with the function of the decoder 1030. The more significant bits of the register 102 may be used to count numbcrs of cycles of the waveform for various control functions not here pertinent. In addition, by selecting appropriate bit positions by means of decoder 103a, the frequency of the note reproduced may be readily adjusted to different octaves. That ,is, a 1-bit positional shift constitutes division or multiplication by two, depending upon direction of shift. For example, if the most significant bit is numbered 1 and thus bit positions 2 through 6 comprise the sample point address bits normally used for an 8 foot voice, then a 16 foot voice can he obtained by using bits 1 through as the sample point address source. correspondingly, a 4 foot voice can be obtained by using bits 3 through 7 as the sample point address bits.
The read-only memory .103 contains digital amplitude values' of a single cycle of the complex periodic waveform to be reproduced for all note frequencies. That is to say, the same complex periodic waveform is to be reproduced for each note played,'the only difference being the frequency at which the complex waveform is reproduced.
Referring to FIG. 9, illustrating a typical complex waveshape l of the type that may be produced by a pipe organ, the wave may be sampled at a multiplicity of points, shown as vertical lines in the Figure, to provide the amplitude data for storage in memory 103. ll absolute amplitude data is stored in memory 103, then the data accessed is the actual amplitude of the output waveform at the respective sample points (i.e., with respect to a zero level at time axis 111). In that event, the digital amplitude data successively read from the memory may be applied directly to an appropriate digital-toanalog conversion system. On the other hand, if incremental amplitude information (i.e., simply the difference in amplitude between the present sample and the immediately preceding sample) is stored in memory 103, then the data accessed must be added to an accumulator (e.g., 104 in FIG. 8) to provide the absolute amplitude information at each sample point prior to digital-to-anmog conversion. Each of the sample points of the memory 103 may comprise a digital word of approximately 7 or 8 bits.
The digital words thus read out from the memory 103 are supplied to the accumulator 104 which provides a digital representation of the waveform at selected sample points over a cycle of the waveform and at a frequency corresponding to the note to be reproduced. As above-described, this digital wavefomt representation may itself be operated upon for waveshape control, e.g., attack and decay, and subsequently is supplied to a digital-to-analog converter for producing an analog signal suitable for driving the acoustical output means, such as audio speakers, of the organ.
Memory 103 may be a microminiature diode array of the type disclosed by R. M. Ashby et al. in US. Pat. No. 3,377,5 l 3, issued Apr. 9, 1%8, and assigned to the same assignee as is the present invention. The array may, for example, contain an amplitude representation of the desired waveform in the form of an 8-bit binary word at each of 48 or more sample points. Such a capacity permits the storage of up to 128 amplitude levels in addition to a polarity (algebraic sign) bit. ln any event, the capacity of memory 103 should be sufficient to allow faithful reproduction of note frequencies.
lf whole values of amplitude levels ,at the sample points of the waveform are read from memory 103 in the embodiment of FIG. 8, the same sample point may be addressed several times in succession. This is the 'result of the requirement that the memory be accessed at a fixed rate for'every note frequency, a requirement which implies that for decreasing note frequencies an increasing number of sample points must be read out during each cycle; and since the number of sample points is fixed and no sample points can be skipped regardless of note frequency, this simply means repetition of the same sample point possibly several tines in succession. This does not .....t...=...\.i.. e r-s... luaulrirrmtr' waveform enerated. however.
because there is consistent plural sampling of each point of the stored waveform.
On the other hand, if incremental values of the waveform have been stored in memory 103, each increment can be read out only once during each cycle of the waveform. This is because an accumulation of incremental values is required, and repetition will produce a significant error in the accumulation and the ultimate waveform to be generated, regardless of the note frequency. Since the same sample point may be read out of memory 103 several times in succession depending upon the note frequency to be produced, just as in the whole value sample point case noted above, for incremental values all but one readout for each sample point must be inhibited to prevent repetitive application to accumulator 104. To that end, a gate 10% (shown dotted in FIG. 8) is positioned in the output line of memory 103 preceding accumulator 104 if incremental values are utilized. Gate 103k is preferably enabled to pass the sample value being read from the memory oiily when the least significant bit in address register 102 changes. Since such change occurs upon a carry into that position, indicating advancement to the next memory address. a bit change sensor 102a may be used to detect the change and to enable gate 103!) at each advancement to a new address. The same sample point may still be accessed several times in succession, but only one such value will be read out" (i.e., will be passed by the gate since it is disabled at all other times).
The phase angle calculations should be such that the highest note playable is that note for which a sample point value is read out each time the memory is addressed. Since the ratio between adjacent notes on the equally tempered musical scale is an irrational number, it is preferable that the largest number in the phase angle register be slightly smaller than the least significant bit in the address register. if the phase angle number were larger, it would be necessary to occasionally skip a sample point and this would lead to inconsistency in the note frequency, whereas if the phase angle number were equal to the least significant bit in the address register the note frequency would be slightly higher (i.e., about one-half of a halftone higher) than the highest note that can be played. By requiring the phase angle number to be slightly smaller, the highest note capability of the instrument will not be exceeded.
The same read-only memory 103 may be shared by all of the tone generators 28 if the data words (amplitude values of sample points) read therefrom are gated to respective waveshapers in synchronism with the addressing of the memory for the respective notes being played. In other words, simultaneous or concurrent play of two or more notes requires that these be distinguished as separate sets of sample points, it a single memory is to be shared for all tone generators.
In the present embodiment however, it is assumed that each tone generator has its own memory (and, incidentally, memories composed of microminiature diode arrays of the type disclosed in the aforementioned Ashby et al. patent are readily fabricated with more than 5,000 diode elements per square inch), which supplies its digital output to a respectively associated attack and decay control unit. The binary-valued amplitude samples are applied directly to the attack and decay circuitry if each sample is a whole value, or may be applied via an accumulator 104 if each sample is an incremental value. Alternatively, accumulation of incremental values may be performed after shaping, if desired.
Referring to FIG. 10, an embodiment of the attack and decay unit associated with each tone generator includes a multiplier to which the sample values from memory 103 are applied for multiplication by an appropriate scale factor to control the leading and trailing portions of the note waveform envelope. As is well known, the faithful similation of true pipe organ sounds by an electronic organ requires that the latter be provided with the capability to shape each tone envelope to produce other than an abrupt rise and fall. Without special attack and decay control, the note waveform produced by an electronic organ normally rises sharply to full intensity immediately upon depression of the respective key, and ceases abruptly when that key is released. At times, this may be a desirable effect to maintain during the play of a musical selection. In those cases, the attack and decay controls may be avoided entirely, or the scale factor supplied to multiplier 120, and with which the amplitude samples are to be multiplied, may be set at unity. More often, however, attack and/or decay are desirable for or in conjunction with special effects, such as percussion, sustain, and so forth.
The multiplying scale factor is varied as a function of time to correspondingly vary the magnitude of the digital samples, with which it is multiplied, on a progressive basis to simulate attack and/or decay. ln the embodiment of FIG. 10, the total time duration and the time constant(s) for the attack or decay are controlled by a counter 122 which may be selectively sup plied with uniformly timed pulses that are independent of the specific note frequency under consideration. such as pulses obtained or derived from the master clock, or with pulses haviug a repetition rate representative of or proportional to the note frequency. In this respect, the counter 122 may e considered as determining the abscissa of a graph of envelope amplitude versus time and representative of the attack or'decay. The ordinate or amplitude scale of the graph is represented by the series of scale factors stored in a read-only memory 125 to be accessed by the counter itself, or by an address decoder 126 which addresses the memory for readout of scale factors on the basis of each count (or timed, separated counts) of counter 122.
The counter may be of the reversible, up down (forwardbackward) type in which it is responsive to incoming pulses to count upwardly when. its "up" (here. attack) terminal is activated, and to count downwardly when its "down (here, decay) terminal is activated. The attack mode of the overall control unit is entered when the associated tone generator is captured by a hitherto unclaimed note pulse in the mul tiplexed signal. The capture of a tone generator is accompanied by a signal indicative of a key having been depressed (see FIG. 78), from the assignment logic, and it is this signal which initiates the attack count of counter 122. In particular, the first "key depressed" signal (and possibly the only one) that occurs upon capture of a tone generator 28 is effective to produce a count in the first stage of ring counter 128, thereby supplying a trigger signal from that stage to a monostable delay multivibrator 130 which is set to have an 0N time (delay time) of sufficient duration to ensure that the attack is completed despite release of the key prior to the normal end of the attack interval. It has been found that a delay time equal to or greater titan approximately the time occupied by seven cycles (i.e., seven periods) of the lowest frequency note is quite adequate for multivibrator 130 to ensure this positive attack. During that interval, the "up" control of counter 122 is activated by the quasi-stable state of multivibrator 130 and the counter continues to count incoming pulses until the multivibrator spontaneously returns to its stable state, or until the note envelope reaches the full desired intensity (magnitude), if earlier. This full intensity value may be preset into the attack/decay control logic or it may be determined by logic circuitry responsive to such factors as the force with which the respective key is struck (i.e., to velocity-responsive or touchresponsive device outputs). in the embodiment shown in FIG. 10, the former arrangement is utilized in which a maximum desired count is set into a fixed counter 131 for continuous comparison in comparator 133 with the preset count of updown counter 122. If the latter exceeds the former, a disable" command is applied to the counter to terminate the attack.
Pulses to be counted by counter 122 may be obtained at a rate which is a function of note frequency, as by supplying the output of phase angle calculator 100 to a phase-to-frequency converter 135, or at a rate based on the master clock rate, whichever is desired. Selection of either rate is accomplished by appropriately setting a switch 136 coupled to an associated ewiwh nr krrv on or adiacent to one of the kevboards.
In operation of the attack/decay control unit of FIG. 10, after switch 136 has been set at the desired position, the pulses to be counted appear at the input of counter 122 but no count is initiated until a key is depressed and the associated pulse in the multiplexed signal from the keyboard results in the capture of a tone generator 28. The "key depress" signal from the generator assignment logic initiates a count in ring counter 128, which had been'reset by completion of decay the immediately preceding time the attack/decay control unit had been used. Preferably, the latter reset signal is obtained upon switching of the claim flip-flop 53 in the assignment logic 26 to the not claimed" (decay complete) state. The up count of counter 122 is thereby enabled and continues through completion of attack regardless of whether or not the key remains depressed. If the count pulses are a function of note frequency, the duration of attack is based upon note frequency as well; otherwise, the positive attack interval is fixed regardless of note frequency.
With each count of counter 122 (or less frequently, by use of suitably timed "enabling" commands), address decoder 126 develops a related address code for accessing a digital scale factor stored in the appropriate address of read-only memory unit 125, to be combined as a product in multiplier with the amplitude samples being read from tone generator 28 of FIG. 8. By prcsetting memory such that the scale factors stored therein are logarithmically increasing (up to the equivalent of unity) with addresses decoded according to progressively increasing count in counter 122 (up to the maximum desired count, representing full note intensity), a logarithmic attack is provided in the note being played. Furthermore, since the initial attack is positive, i.e., continues to completion regardless of the present condition of the key which was struck to produce the attack, the logarithmic rise at the leading edge of the note waveform continues smoothly to full intensity of the note.
When the key is released, a "key release" signal is applied from AND gate 62 of assignment logic 26 (FIG. 78) to a flipflop 138 to initiate the decay mode ofthe attack/decay control unit by enabling the decay" (down) count of counter 122. Accordingly, incoming pulses to the counter are counted downwardly from the count representative of full intensity, until a zero count is obtained unless decay is terminated earlier. As in the case of the attack mode, the count in counter 122 is periodically decoded (e.g., once each count) by unit I26 for addressing of memory 125, thereby supplying logarithmically decreasing scale factors, from unity to zero, for multiplication with amplitude samples from the tone generator in multiplier 120. This produces the desired fall in note intensity at the trailing portion of the note waveform. Alternatively to relying on zero count, scaler control logic may be implemented to signal completion of the decay mode.
lf-during decay the same note pulse should reappear in the multiplexed keyboard signaL-indicating depression of the associated key virtually immediately after release thereof, a second key depress signal is applied to ring counter [28 thus increasing the count therein to the second stage and switching flip-flop 138 from the decay state to its other state, which reintroduces the attack mode. Since decay is incomplete in this particular instance, the count of counter 122 now proceeds upward from the minimum count which had been attained when decay was interrupted. If, however,-thc key is again released, prior to completion of attack, positive attack is no longer in effect and the flip-flop 138 reverts immediately to the decay state by virtue of application of the "key release signal thereto.
To prevent flip-flop 138 from being in the "decay" state when the initial attack condition is established in counter 122 (by the quasi-stable state of delay MV 130), flip-flop 138 may be switched to its "attack state upon full completion of decay, by the "not claimed" signal of flip-flop 53 in the assignment logic unit which produced capture of the mociated tone generator. Concurrent operation of flip-flop 138 in the attack" state and MV 130 in the ouasi-stahle state will not affect

Claims (22)

1. In an electronic musical instrument, the combination comprising: means for storing digital samples of a waveform, a plurality of switches associated with notes of the musical scale and selectively operable to call forth the related notes, means responsive to actuation of each of said switches for reading out selected ones of said digital samples from said storing means at a rate to produce said waveform at the related note frequency, means for storing a plurality of predetermined scale factors corresponding to desired attack and decay effects, means defining a succession of time periods over a time interval corresponding to a desired rate of attack and decay, further means responsive to actuation and release of each of said switches and to said time interval defining means for addressing said scale factor storing means in said succession of time periods over said time interval to derive therefrom a corresponding succession of selected ones of said predetermined scale factors, and means for combining said selected digital samples read from said digital sample storing means with said predetermined attack and decay scale factors derived from said scale factor storing means over said time interval upon actuation and release of each of said switches to simulate attack and decay, respectively, of the waveform at the related note frequency.
2. The combination according to claim 1 wherein said combining means comprises a multiplier, said multiplier receiving said scale factors in succession from said scale factor storing means and said digital samples from said digital sample storing means and effecting a multiplication thereof to produce a succession of weighted digital samples at the related note frequency simulating attack and decay, respectively of the waveform over the predetermined time interval.
3. The combination according to claim 1 wherein there is further provided means responsive to initial actuation of a switch to initiate and maintain the attack effect by said combining means for the duration of said time interval regardless of subsequent deactuation of that switch during the said time interval of attack.
4. The combination according to claim 3 wherein there is further provided means responsive to subsequent actuation of the last-named switch during decay of the waveform in said time interval of decay for reinstituting the attack.
5. The combination according to claim 1 wherein said scale factor storing means comprises a read-only memory containing a plurality of digital scale factors for scaling the amplitude of said selected digital samples read from said digital sample storing means.
6. The combination according to claim 1 wherein said weighting means includes means for selectively establishing the time interval of the attack or the decay.
7. The combination according to claim 6 wherein said time interval establishing means is responsive to the frequency of the note associated with the actuated switch to establish the duration of the time interval in relation to the frequency of the selected note.
8. The combination according to claim 6 wherein said time interval establishing means is responsive to a fixed time reference to establish thE duration of the time interval of attack or decay, independent of the frequency of the selected note.
9. An electronic musical instrument, comprising a plurality of keys individually actuable to cause the production of sounds corresponding to related notes of the musical scale, and deactuable to cause the cessation of the respective sounds, means for sequentially and repetitively scanning said keys to detect the actuation or deactuation of any one or more thereof, means responsive to actuation of one or more of said keys as detected by said scanning means to generate a digital signal containing assignments of the notes associated with the respective actuated keys, and responsive to deactuation of a key for removing the respective note assignment, means for storing digital samples of a waveform of a musical note, means responsive to note assignments in said digital signal for selectively retrieving digital samples of said waveform from said storing means at a rate to produce said waveform at the corresponding note frequencies, and attack and decay control means selectively responsive to the initiation and removal of note assignments in said digital signal for correspondingly weighting the samples appearing at the beginning and end of the note waveform envelope to effect attack and decay of the note in accordance with the actuation and deactuation, respectively, of the key.
10. The instrument according to claim 9 wherein said attack and decay controlling means further includes means for selecting the time of the attack and the decay.
11. The instrument according to claim 10 wherein said duration-selecting means sets the duration as a function of the frequency of the selected note.
12. The instrument according to claim 10 wherein said duration-selecting means sets the duration as a fixed time interval independent of the frequency of the selected note.
13. A digital electronic musical instrument having switches selectively operate to bring forth respective notes of the musical scale, comprising means assigning each of said switches to a distinct and different time slot in a sequence of cyclically repeated time slots of a digital signal, means responsive to selective operation of a switch to provide a signal representative of such operation of said switch in the respective assigned time slot for that switch in each cycle of repetition of said sequence of time slots during which said switch is operated, controllable tone generating means for producing a digital representation of a waveform at a selectable frequency, means synchronized with said cyclically repeating sequence of time slots to which said switches are assigned and responsive to a signal appearing in any time slot for controlling said tone generating means to produce said digital waveform representation at a frequency corresponding to the frequency of the respective note for that time slot, and attack and decay control means selectively responsive to the initiation and removal of note assignments in said digital signal for correspondingly weighting the samples appearing at the beginning and end of the note waveform envelope to effect attack and decay of the note in accordance with the actuation and deactuation, respectively, of the key.
14. The instrument defined by claim 13 wherein said attack and decay control means comprises: means for storing a plurality of scale factors, means responsive to the appearance or removal of a signal in each time slot for selective accessing of said scale factor storing means to derive corresponding, selected scale factors therefrom over a desired time interval of attack and decay, respectively, and means for weighting said digital samples with said scale factors to vary the magnitudes of selected portions of said digital waveform representation in synchronism with the production thereof from said tone generating means.
15. The instrument defined by claim 13 wherein said attack and decay mEans comprises means for maintaining the attack for the duration of the attack time interval regardless of release of a switch prior to completion of that attack time interval.
16. A system for simulating attack and decay of notes generated by an electronic musical instrument, comprising: a plurality of keys individually actuable to produce notes at selectively corresponding frequencies, means responsive to actuation of a key for producing an electrical representation of a note to be produced at the corresponding frequency and for maintaining that representation in a sustain mode during continuous actuation of the key, means defining a succession of time periods wherein each period is not substantially longer in duration than the period of the lowest note frequency to be produced, means for establishing a predetermined number of successive time periods for defining desired time intervals of attack and decay, means for storing a plurality of scale factors, means responsive to initial actuation and subsequent release of a key and to said time period defining means to effect selective addressing of said scale factor storing means in successive time periods to derive therefrom a succession of scale factors over said time intervals of attack and decay, respectively, means for combining each said electrical representation with the succession of said scale factors thus derived upon initial actuation of a key to effect attack of the note produced over said time interval of attack prior to the sustain mode thereof, and means for maintaining the electrical representation of the note for said time interval of decay following release of the corresponding key, said combining means combining the succession of scale factors with said electrical representation of said time interval of decay to produce a decay of the note following the sustain mode thereof.
17. A system as recited in claim 16 wherein said time interval defining means comprises: counting means for counting said time periods, means for storing a predetermined count in accordance with the duration of each said time period for defining the desired time intervals of attack and decay, and comparison means for comparing the count of said time periods with said predetermined count for terminating further attack and decay of each note when said counts are equal.
18. A system as recited in claim 17 wherein said counting means is responsive to a fixed clock frequency for defining said time periods.
19. A system as recited in claim 17 wherein said counting means is responsive to the frequency of the note to be produced to define each said time period in accordance with the time period of that note frequency.
20. A system as recited in claim 16 wherein there is further provided means responsive to a successive actuation of a key during the time interval of decay of the corresponding note continuing form a prior actuation of that key to reinitiate the attack mode for that note.
21. A system as recited in claim 16 wherein there is further provided means for maintaining the electrical representation of a note for the time interval of attack despite release of the corresponding key within that time interval.
22. A system as recited in claim 16 wherein said electronic musical instrument comprises an electronic organ and said time interval defining means and said scale factors stored in said scale factor memory are selected to simulate attack and decay effects of a pipe organ.
US872598A 1969-10-30 1969-10-30 Attack and decay system for a digital electronic organ Expired - Lifetime US3610805A (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US87259969A 1969-10-30 1969-10-30
US87260069A 1969-10-30 1969-10-30
US87259869A 1969-10-30 1969-10-30
US87259769A 1969-10-30 1969-10-30
US87517869A 1969-11-10 1969-11-10
US17099271A 1971-08-11 1971-08-11
GB3994671 1971-08-25
AU32776/71A AU449757B2 (en) 1969-10-30 1971-08-26 Method and apparatus for addressing a memory at selectively controlled rates
NLAANVRAGE7112290,A NL174997C (en) 1969-10-30 1971-09-07 DEVICE FOR ADDRESSING A MEMORY WITH SELECTIVELY CONTROLLED SPEEDS.
FR7133790A FR2153149B1 (en) 1969-10-30 1971-09-20
DE2149104A DE2149104C3 (en) 1969-10-30 1971-09-28 Process for generating electrical vibrations
CH1505971A CH559956A5 (en) 1969-10-30 1971-10-15

Publications (1)

Publication Number Publication Date
US3610805A true US3610805A (en) 1971-10-05

Family

ID=27582831

Family Applications (6)

Application Number Title Priority Date Filing Date
US872600A Expired - Lifetime US3610806A (en) 1969-10-30 1969-10-30 Adaptive sustain system for digital electronic organ
US872597A Expired - Lifetime US3610799A (en) 1969-10-30 1969-10-30 Multiplexing system for selection of notes and voices in an electronic musical instrument
US872598A Expired - Lifetime US3610805A (en) 1969-10-30 1969-10-30 Attack and decay system for a digital electronic organ
US872599A Expired - Lifetime US3610800A (en) 1969-10-30 1969-10-30 Digital electronic keyboard instrument with automatic transposition
US875178A Expired - Lifetime US3639913A (en) 1969-10-30 1969-11-10 Method and apparatus for addressing a memory at selectively controlled rates
US00170992A Expired - Lifetime US3743755A (en) 1969-10-30 1971-08-11 Method and apparatus for addressing a memory at selectively controlled rates

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US872600A Expired - Lifetime US3610806A (en) 1969-10-30 1969-10-30 Adaptive sustain system for digital electronic organ
US872597A Expired - Lifetime US3610799A (en) 1969-10-30 1969-10-30 Multiplexing system for selection of notes and voices in an electronic musical instrument

Family Applications After (3)

Application Number Title Priority Date Filing Date
US872599A Expired - Lifetime US3610800A (en) 1969-10-30 1969-10-30 Digital electronic keyboard instrument with automatic transposition
US875178A Expired - Lifetime US3639913A (en) 1969-10-30 1969-11-10 Method and apparatus for addressing a memory at selectively controlled rates
US00170992A Expired - Lifetime US3743755A (en) 1969-10-30 1971-08-11 Method and apparatus for addressing a memory at selectively controlled rates

Country Status (8)

Country Link
US (6) US3610806A (en)
AU (1) AU449757B2 (en)
BE (1) BE772689A (en)
CH (1) CH559956A5 (en)
DE (1) DE2149104C3 (en)
FR (1) FR2153149B1 (en)
GB (1) GB1317385A (en)
NL (1) NL174997C (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819844A (en) * 1971-11-18 1974-06-25 Nippon Musical Instruments Mfg Electronic musical instrument keying system with envelope sample memorizing voltage dividers
US3844379A (en) * 1971-12-30 1974-10-29 Nippon Musical Instruments Mfg Electronic musical instrument with key coding in a key address memory
US3854366A (en) * 1974-04-26 1974-12-17 Nippon Musical Instruments Mfg Automatic arpeggio
US3854365A (en) * 1971-07-31 1974-12-17 Nippon Musical Instruments Mfg Electronic musical instruments reading memorized waveforms for tone generation and tone control
US3859884A (en) * 1971-12-15 1975-01-14 Dillon Ross Grable Tone generator
US3882751A (en) * 1972-12-14 1975-05-13 Nippon Musical Instruments Mfg Electronic musical instrument employing waveshape memories
US3903775A (en) * 1973-03-08 1975-09-09 Nippon Musical Instruments Mfg Electronic musical instrument
US3908504A (en) * 1974-04-19 1975-09-30 Nippon Musical Instruments Mfg Harmonic modulation and loudness scaling in a computer organ
US3910150A (en) * 1974-01-11 1975-10-07 Nippon Musical Instruments Mfg Implementation of octave repeat in a computor organ
US3913442A (en) * 1974-05-16 1975-10-21 Nippon Musical Instruments Mfg Voicing for a computor organ
US3930429A (en) * 1973-06-08 1976-01-06 Arp Instruments, Inc. Digital music synthesizer
JPS5172319A (en) * 1974-12-18 1976-06-23 Nippon Musical Instruments Mfg
US4014238A (en) * 1974-08-13 1977-03-29 C.G. Conn, Ltd. Tone signal waveform control network for musical instrument keying system
US4079650A (en) * 1976-01-26 1978-03-21 Deutsch Research Laboratories, Ltd. ADSR envelope generator
US4083285A (en) * 1974-09-27 1978-04-11 Nippon Gakki Seizo Kabushiki Kaisha Electronic musical instrument
US4119005A (en) * 1973-03-10 1978-10-10 Nippon Gakki Seizo Kabushiki Kaisha System for generating tone source waveshapes
US4145946A (en) * 1976-08-09 1979-03-27 Kawai Musical Instrument Mfg. Co., Ltd. Sustained repeat control digital polyphonic synthesizer
US4178826A (en) * 1976-10-08 1979-12-18 Nippon Gakki Seizo Kabushiki Kaisha Envelope generator
US4183275A (en) * 1977-10-26 1980-01-15 Nippon Gakki Seizo Kabushiki Kaisha Electronic musical instrument
US4185532A (en) * 1976-09-29 1980-01-29 Nippon Gakki Seizo Kabushiki Kaisha Envelope generator
US4189970A (en) * 1977-04-14 1980-02-26 Allen Organ Company Method and apparatus for achieving timbre modulation in an electronic musical instrument
US4194426A (en) * 1978-03-13 1980-03-25 Kawai Musical Instrument Mfg. Co. Ltd. Echo effect circuit for an electronic musical instrument
US4201109A (en) * 1977-08-15 1980-05-06 Kabushiki Kaisha Kawai Gakki Seisakusho Envelope waveform generator for electronic musical instruments
US4212221A (en) * 1978-03-30 1980-07-15 Allen Organ Company Method and apparatus for note attack and decay in an electronic musical instrument
FR2447112A1 (en) * 1979-01-22 1980-08-14 Thomson Csf Signal frequency generator for musical instrument - uses single oscillator and memory controlled dividers
US4287805A (en) * 1980-04-28 1981-09-08 Norlin Industries, Inc. Digital envelope modulator for digital waveform
EP0042555A1 (en) * 1980-06-24 1981-12-30 Matth. Hohner AG Method of digitally controlling the envelope in a polyphonic musical synthesis instrument, and circuits to put this method into practice
USRE30906E (en) * 1976-10-08 1982-04-20 Nippon Gakki Seizo Kabushiki Kaisha Envelope generator
US4352312A (en) * 1981-06-10 1982-10-05 Allen Organ Company Transient harmonic interpolator for an electronic musical instrument
US4366739A (en) * 1980-05-21 1983-01-04 Kimball International, Inc. Pedalboard encoded note pattern generation system
FR2517450A1 (en) * 1981-11-30 1983-06-03 Sedatelec Real-time operation musical note generator - has memory for sample complex waveform, characteristic of partic. instrument and instantaneous amplitude memory both supplying multiplier
US4444082A (en) * 1982-10-04 1984-04-24 Allen Organ Company Modified transient harmonic interpolator for an electronic musical instrument
USRE31648E (en) * 1973-03-10 1984-08-21 Nippon Gakki Seizo Kabushiki Kaisha System for generating tone source waveshapes
US4483229A (en) * 1980-02-20 1984-11-20 Matsushita Electric Industrial Co., Ltd. Electronic musical instrument
US4967635A (en) * 1976-04-06 1990-11-06 Yamaha Corporation Electronic musical instrument
US20090078477A1 (en) * 2007-09-21 2009-03-26 Hon Hai Precision Industry Co., Ltd. Electronic device with sound prompt function

Families Citing this family (233)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3610806A (en) * 1969-10-30 1971-10-05 North American Rockwell Adaptive sustain system for digital electronic organ
US3733593A (en) * 1970-10-09 1973-05-15 Rockwell International Corp Capture combination system
US3696201A (en) * 1970-11-12 1972-10-03 Wurlitzer Co Digital organ system
JPS5040932B1 (en) * 1970-12-26 1975-12-27
US3752898A (en) * 1971-04-05 1973-08-14 Kawai Musical Instr Mfg Co Electronic musical instrument
JPS5117414B1 (en) * 1971-05-11 1976-06-02
US4365533A (en) * 1971-06-01 1982-12-28 Melville Clark, Jr. Musical instrument
US3968717A (en) * 1971-06-01 1976-07-13 Melville Clark, Jr. Musical instrument with means for scanning keys
US3968716A (en) * 1971-06-01 1976-07-13 Melville Clark, Jr. Musical instrument with means for scanning keys
US3969969A (en) * 1971-06-01 1976-07-20 Melville Clark, Jr. Musical instrument with means for scanning keys
US3969968A (en) * 1971-06-01 1976-07-20 Melville Clark, Jr. Musical instrument with means for scanning keys
USH1970H1 (en) * 1971-07-19 2001-06-05 Texas Instruments Incorporated Variable function programmed system
US3743756A (en) * 1971-08-12 1973-07-03 Philips Corp Method of producing tones of a preferably substantially equal-tempered scale
US3763364A (en) * 1971-11-26 1973-10-02 North American Rockwell Apparatus for storing and reading out periodic waveforms
US3755608A (en) * 1971-12-06 1973-08-28 North American Rockwell Apparatus and method for selectively alterable voicing in an electrical instrument
US3794748A (en) * 1971-12-06 1974-02-26 North American Rockwell Apparatus and method for frequency modulation for sampled amplitude signal generating system
US3740450A (en) * 1971-12-06 1973-06-19 North American Rockwell Apparatus and method for simulating chiff in a sampled amplitude electronic organ
US3811003A (en) * 1971-12-13 1974-05-14 Baldwin Co D H Rhythm accompaniment system
JPS5115972B2 (en) * 1972-02-22 1976-05-20
JPS5115973B2 (en) * 1972-02-22 1976-05-20
US3746773A (en) * 1972-02-04 1973-07-17 Baldwin Co D H Electronic organ employing time position multiplexed signals
US3916750A (en) * 1972-02-04 1975-11-04 Baldwin Co D H Electronic organ employing time position multiplexed signals
AU459101B2 (en) * 1972-02-10 1975-03-20 Matsushita Electric Industrial Co., Ltd. Samplling modulation system for an electronic misical instrument
US3809786A (en) * 1972-02-14 1974-05-07 Deutsch Res Lab Computor organ
US3971282A (en) * 1972-04-20 1976-07-27 Kabushiki Kaisha Kawai Gakki Seisakusho Electronic musical instrument capable of transposition
JPS5121565B2 (en) * 1972-04-20 1976-07-03
JPS5121564B2 (en) * 1972-04-20 1976-07-03
US3749837A (en) * 1972-05-02 1973-07-31 J Doughty Electronic musical tone modifier for musical instruments
USRE28999E (en) * 1972-06-16 1976-10-12 C. G. Conn, Ltd. Automatic rhythm system providing drum break
US3764722A (en) * 1972-06-16 1973-10-09 Conn Ltd C G Automatic rhythm system providing drum break
US3789719A (en) * 1972-08-28 1974-02-05 J Maillet Tape activated piano and organ player
US3810106A (en) * 1972-10-05 1974-05-07 Apm Corp System for storing tone patterns for audible retrieval
JPS5217411B2 (en) * 1972-10-12 1977-05-16
US3809788A (en) * 1972-10-17 1974-05-07 Nippon Musical Instruments Mfg Computor organ using parallel processing
US3842182A (en) * 1972-10-17 1974-10-15 Baldwin Co D H Arpeggio system
US3809884A (en) * 1972-11-15 1974-05-07 Honeywell Inf Systems Apparatus and method for a variable memory cycle in a data processing unit
JPS4974924A (en) * 1972-11-17 1974-07-19
US3809789A (en) * 1972-12-13 1974-05-07 Nippon Musical Instruments Mfg Computor organ using harmonic limiting
JPS5231729B2 (en) * 1972-12-14 1977-08-17
JPS5231732B2 (en) * 1972-12-14 1977-08-17
US4011784A (en) * 1972-12-19 1977-03-15 Pioneer Electronic Corporation Transposition apparatus for an electronic musical instrument
JPS4984635A (en) * 1972-12-20 1974-08-14
US3809792A (en) * 1973-01-05 1974-05-07 Nippon Musical Instruments Mfg Production of celeste in a computor organ
GB1435363A (en) * 1973-01-12 1976-05-12 Chicago Musical Instr Co Electronic musical instruments
US3902397A (en) * 1973-01-12 1975-09-02 Chicago Musical Instr Co Electronic musical instrument with variable amplitude time encoded pulses
US3809790A (en) * 1973-01-31 1974-05-07 Nippon Musical Instruments Mfg Implementation of combined footage stops in a computor organ
US3828643A (en) * 1973-02-20 1974-08-13 Chicago Musical Instr Co Scanner for electronic musical instrument
JPS566559B2 (en) * 1973-03-10 1981-02-12
US3885489A (en) * 1973-03-14 1975-05-27 Kenju Sangyo Kabushiki Kaisha Electronic musical instrument having keyboards
JPS568360B2 (en) * 1973-04-14 1981-02-23
JPS5840199B2 (en) * 1973-04-14 1983-09-03 ヤマハ株式会社 Denshigatsuki
US3800060A (en) * 1973-04-27 1974-03-26 J Hallman Keynote selector apparatus for electronic organs
US3839592A (en) * 1973-04-30 1974-10-01 A Freeman Plural mode automatic bass system with pedal sustain
US3842184A (en) * 1973-05-07 1974-10-15 Chicago Musical Instr Co Musical instrument having automatic arpeggio system
US3955459A (en) * 1973-06-12 1976-05-11 Nippon Gakki Seizo Kabushiki Kaisha Electronic musical instrument
JPS6012638B2 (en) * 1973-06-12 1985-04-02 ヤマハ株式会社 Automatic performance device for electronic musical instruments
JPS5037422A (en) * 1973-08-03 1975-04-08
US3899951A (en) * 1973-08-09 1975-08-19 Nippon Musical Instruments Mfg Key switch scanning and encoding system
NL164149C (en) * 1973-10-06 1980-11-17 Philips Nv CIRCUIT FOR TRANSPOSING AND FORMING AGREEMENTS.
US3902395A (en) * 1973-10-11 1975-09-02 William L Avant Stringed musical instrument with electronic time division multiplexing circuitry
US3929051A (en) * 1973-10-23 1975-12-30 Chicago Musical Instr Co Multiplex harmony generator
JPS5081527A (en) * 1973-11-20 1975-07-02
US3878750A (en) * 1973-11-21 1975-04-22 Charles A Kapps Programmable music synthesizer
JPS5084230A (en) * 1973-11-24 1975-07-08
US3894463A (en) * 1973-11-26 1975-07-15 Canadian Patents Dev Digital tone generator
US3871247A (en) * 1973-12-12 1975-03-18 Arthur R Bonham Musical instrument employing time division multiplexing techniques to control a second musical instrument
US3915047A (en) * 1974-01-02 1975-10-28 Ibm Apparatus for attaching a musical instrument to a computer
US3926088A (en) * 1974-01-02 1975-12-16 Ibm Apparatus for processing music as data
US3953835A (en) * 1974-01-18 1976-04-27 Honeywell Information Systems, Inc. Method and apparatus for adapting a data processing port to receive and transmit different frequency signals
US3889568A (en) * 1974-01-31 1975-06-17 Pioneer Electric Corp Automatic chord performance apparatus for a chord organ
US3905267A (en) * 1974-02-04 1975-09-16 Raymond A Vincent Electronic player piano with record and playback feature
US3898905A (en) * 1974-03-04 1975-08-12 Hammond Corp Monophonic electronic musical instrument
US3978755A (en) * 1974-04-23 1976-09-07 Allen Organ Company Frequency separator for digital musical instrument chorus effect
US3929053A (en) * 1974-04-29 1975-12-30 Nippon Musical Instruments Mfg Production of glide and portamento in an electronic musical instrument
US4026180A (en) * 1974-05-31 1977-05-31 Nippon Gakki Seizo Kabushiki Kaisha Electronic musical instrument
US3979996A (en) * 1974-05-31 1976-09-14 Nippon Gakki Seizo Kabushiki Kaisha Electronic musical instrument
CA1041325A (en) * 1974-06-03 1978-10-31 Wurlitzer Company (The) Electronic musical instrument using integrated circuit components
JPS5345131B2 (en) * 1974-06-06 1978-12-04
JPS50156418A (en) * 1974-06-06 1975-12-17
JPS5917433B2 (en) * 1974-06-06 1984-04-21 株式会社河合楽器製作所 Sound source waveform forming device for electronic musical instruments
US3956960A (en) * 1974-07-25 1976-05-18 Nippon Gakki Seizo Kabushiki Kaisha Formant filtering in a computor organ
JPS5116015A (en) * 1974-07-31 1976-02-09 Matsushita Electric Ind Co Ltd
US3937115A (en) * 1974-08-01 1976-02-10 The Wurlitzer Company Electronic piano circuit arrangement
US4041826A (en) * 1974-08-07 1977-08-16 Nippon Gakki Seizo Kabushiki Kaisha Electronic musical instrument
JPS5615519B2 (en) * 1974-08-12 1981-04-10
US3943811A (en) * 1974-08-12 1976-03-16 Coles Donald K Keyboard type musical instrument
US4134320A (en) * 1974-08-19 1979-01-16 Nippon Gakki Seizo Kabushiki Kaisha Key assigner for use in electronic musical instrument
US3875842A (en) * 1974-08-23 1975-04-08 Nat Semiconductor Corp Multiplexing system for selection of notes in an electronic musical instrument
US3943814A (en) * 1974-08-26 1976-03-16 Henry Wemekamp Electric organ tone generating system
GB1518951A (en) * 1974-09-05 1978-07-26 Nippon Musical Instruments Mfg Key assigner
US3973460A (en) * 1974-09-18 1976-08-10 Coles Donald K Keyboard type musical instrument
US3972259A (en) * 1974-09-26 1976-08-03 Nippon Gakki Seizo Kabushiki Kaisha Production of pulse width modulation tonal effects in a computor organ
FR2286552A1 (en) * 1974-09-30 1976-04-23 Roche Bernard DIGITAL GENERATOR OF MULTI-FREQUENCY CODE SIGNALS
JPS5143121A (en) * 1974-10-11 1976-04-13 Nippon Musical Instruments Mfg Denshigatsukino torankeetokairo
US4041825A (en) * 1974-10-15 1977-08-16 Pascetta Armand N Keyboard assignment system for a polyphonic electronic musical instrument
US3990339A (en) * 1974-10-23 1976-11-09 Kimball International, Inc. Electric organ and method of operation
US3951028A (en) * 1974-10-23 1976-04-20 Kimball International, Inc. Electronic organ and method of operation
US3952623A (en) * 1974-11-12 1976-04-27 Nippon Gakki Seizo Kabushiki Kaisha Digital timing system for an electronic musical instrument
JPS5441497B2 (en) * 1974-11-14 1979-12-08
JPS5441498B2 (en) * 1974-11-15 1979-12-08
JPS5194909A (en) * 1974-11-15 1976-08-20
JPS5158320A (en) * 1974-11-18 1976-05-21 Matsushita Electric Ind Co Ltd
JPS5441499B2 (en) * 1974-11-18 1979-12-08
JPS5158322A (en) * 1974-11-18 1976-05-21 Matsushita Electric Ind Co Ltd
JPS5158928A (en) * 1974-11-19 1976-05-22 Matsushita Electric Ind Co Ltd
JPS5158927A (en) * 1974-11-19 1976-05-22 Matsushita Electric Ind Co Ltd
JPS5158929A (en) * 1974-11-19 1976-05-22 Matsushita Electric Ind Co Ltd
JPS5158931A (en) * 1974-11-20 1976-05-22 Matsushita Electric Ind Co Ltd
JPS5158938A (en) * 1974-11-20 1976-05-22 Matsushita Electric Ind Co Ltd
JPS5158932A (en) * 1974-11-20 1976-05-22 Matsushita Electric Ind Co Ltd
JPS5160515A (en) * 1974-11-22 1976-05-26 Matsushita Electric Ind Co Ltd
JPS5160517A (en) * 1974-11-22 1976-05-26 Matsushita Electric Ind Co Ltd
US3986423A (en) * 1974-12-11 1976-10-19 Oberheim Electronics Inc. Polyphonic music synthesizer
US3955460A (en) * 1975-03-26 1976-05-11 C. G. Conn Ltd. Electronic musical instrument employing digital multiplexed signals
US4108038A (en) * 1975-04-04 1978-08-22 Nippon Gakki Seizo Kabushiki Kaisha Time shared tone keying system in electronic musical instrument
JPS51124415A (en) * 1975-04-23 1976-10-29 Nippon Gakki Seizo Kk Electronic musical instrument
GB1543958A (en) * 1975-04-23 1979-04-11 Nippon Musical Instruments Mfg Electronic musical instrument
US4133241A (en) * 1975-05-27 1979-01-09 Nippon Gakki Seizo Kabushiki Kaisha Electronic musical instrument utilizing recursive algorithm
US4058042A (en) * 1975-06-20 1977-11-15 D. H. Baldwin Company Key transposing electronic organ
GB1558280A (en) * 1975-07-03 1979-12-19 Nippon Musical Instruments Mfg Electronic musical instrument
US4108036A (en) * 1975-07-31 1978-08-22 Slaymaker Frank H Method of and apparatus for electronically generating musical tones and the like
US4046047A (en) * 1975-08-11 1977-09-06 Warwick Electronics Inc. Note selector circuit for electronic musical instrument
US4031786A (en) * 1975-08-11 1977-06-28 Warwick Electronics Inc. Tone selector circuit with multiplexed tone data transfer
JPS5917835B2 (en) * 1975-08-20 1984-04-24 ヤマハ株式会社 Key-off judgment circuit in key switch device
JPS5224518A (en) * 1975-08-20 1977-02-24 Nippon Gakki Seizo Kk Key switch detection processing unit
USRE31931E (en) * 1975-08-20 1985-07-02 Nippon Gakki Seizo Kabushiki Kaisha Channel processor
JPS5224517A (en) * 1975-08-20 1977-02-24 Nippon Gakki Seizo Kk Channel processor
US4148241A (en) * 1975-08-26 1979-04-10 Norlin Music, Inc. Electronic musical instrument with means for automatically generating chords and harmony
US4023454A (en) * 1975-08-28 1977-05-17 Kabushiki Kaisha Dawai Gakki Seisakusho Tone source apparatus for an electronic musical instrument
US4038896A (en) * 1975-09-05 1977-08-02 Faulkner Alfred H Electronic organ with multi-pitch note generators
JPS5237028A (en) * 1975-09-17 1977-03-22 Nippon Gakki Seizo Kk Electronical music instrument
US4186636A (en) * 1975-10-21 1980-02-05 Thomas International Corporation Digital chord generation for electronic musical instruments
FR2344907A1 (en) * 1976-03-16 1977-10-14 Deforeit Christian POLYPHONIC ELECTRONIC MUSICAL INSTRUMENT
GB1580690A (en) * 1976-04-28 1980-12-03 Nat Res Dev Digital generator for musical notes
US4178821A (en) * 1976-07-14 1979-12-18 M. Morell Packaging Co., Inc. Control system for an electronic music synthesizer
US4108039A (en) * 1976-08-09 1978-08-22 Kawai Musical Instrument Mfg. Co., Ltd. Switch selectable harmonic strength control for a tone synthesizer
US4463647A (en) * 1976-08-16 1984-08-07 Melville Clark, Jr. Musical instrument
US4177706A (en) * 1976-09-08 1979-12-11 Greenberger Alan J Digital real time music synthesizer
JPS5842479B2 (en) * 1976-10-18 1983-09-20 ヤマハ株式会社 Wave generator for electronic musical instruments
US4198889A (en) * 1977-01-07 1980-04-22 Groeschel Charles R Modulation circuitry for use in a music encoding system
US4114496A (en) * 1977-01-10 1978-09-19 Kawai Musical Instrument Mfg. Co., Ltd. Note frequency generator for a polyphonic tone synthesizer
US4126070A (en) * 1977-01-31 1978-11-21 Hill Jeremy R Keyboard musical instrument
US4119006A (en) * 1977-02-24 1978-10-10 Allen Organ Company Continuously variable attack and decay delay for an electronic musical instrument
US4085643A (en) * 1977-03-03 1978-04-25 Nippon Gakki Seizo Kabushiki Kaisha Truncated decay system
JPS5319821A (en) * 1977-03-28 1978-02-23 Nippon Gakki Seizo Kk Electronic musical instrument
US4134321A (en) * 1977-04-14 1979-01-16 Allen Organ Company Demultiplexing audio waveshape generator
US4279185A (en) * 1977-06-07 1981-07-21 Alonso Sydney A Electronic music sampling techniques
US4177708A (en) * 1977-06-17 1979-12-11 Rochelle Pinz Combined computer and recorder for musical sound reproduction
US4240316A (en) * 1977-06-17 1980-12-23 Kabushiki Kaisha Kawai Gakki Seisakusho Keyboard type electronic musical instrument
JPS5316616A (en) * 1977-06-24 1978-02-15 Nippon Gakki Seizo Kk Electronic musical instrument
US4240317A (en) * 1977-09-09 1980-12-23 National Semiconductor Corporation Electronic musical instrument
US4186637A (en) * 1977-09-22 1980-02-05 Norlin Industries, Inc. Tone generating system for electronic musical instrument
US4282785A (en) * 1977-10-17 1981-08-11 Kabushiki Kaisha Kawai Gakki Seisakusho Electronic musical instrument
US4495846A (en) * 1977-11-14 1985-01-29 Williams S Keith Electronic musical instrument
US4184403A (en) * 1977-11-17 1980-01-22 Allen Organ Company Method and apparatus for introducing dynamic transient voices in an electronic musical instrument
JPS5935037B2 (en) * 1977-12-14 1984-08-25 ヤマハ株式会社 electronic musical instruments
JPS5489720A (en) * 1977-12-27 1979-07-17 Nippon Gakki Seizo Kk Electronic musical instrument
US4198890A (en) * 1978-01-04 1980-04-22 Alito Paul N Keyboard system for musical instruments
US4202239A (en) * 1978-01-09 1980-05-13 C. G. Conn, Ltd. Tone generator keyer control system
US4227432A (en) * 1978-02-23 1980-10-14 Marmon Company Electronic musical instrument having multiplexed keying
DE2954065C2 (en) * 1978-03-18 1985-09-19 Casio Computer Co., Ltd., Tokio/Tokyo Electronic musical instrument
DE2954066C2 (en) * 1978-03-18 1985-09-26 Casio Computer Co., Ltd., Tokio/Tokyo Electronic musical instrument
GB2017376B (en) 1978-03-18 1983-03-16 Casio Computer Co Ltd Electronic musical instrument
DE2818083C2 (en) * 1978-04-25 1985-10-31 National Research Development Corp., London Digital music tone generator
GB1601749A (en) * 1978-05-25 1981-11-04 Kazmin E V Digital computing device
US4192007A (en) * 1978-05-30 1980-03-04 Lorain Products Corporation Programmable ringing generator
US4256002A (en) * 1978-06-20 1981-03-17 The Wurlitzer Company Large scale integrated circuit generator chip for electronic organ
US4253366A (en) * 1978-06-20 1981-03-03 The Wurlitzer Company Large scale integrated circuit chip for an electronic organ
US4203337A (en) * 1978-06-20 1980-05-20 The Wurlitzer Company Large scale integrated circuit chip for an electronic organ
JPS5526560A (en) * 1978-08-16 1980-02-26 Kawai Musical Instr Mfg Co Electronic musical instrument
DE2837114C2 (en) * 1978-08-25 1982-09-02 Matth. Hohner Ag, 7218 Trossingen Musical instrument
GB2032159B (en) * 1978-09-28 1982-11-24 Rca Gmbh Electronic tone generator
US4176573A (en) * 1978-10-13 1979-12-04 Kawai Musical Instrument Mfg. Co. Ltd. Intrakeyboard coupling and transposition control for a keyboard musical instrument
GB2032162B (en) * 1978-10-18 1982-11-17 Ellen L W Recording of signals characterising the playing of a musical instrument
FR2442485A1 (en) * 1978-11-21 1980-06-20 Deforeit Christian Polyphonic digitally controlled musical synthesiser - has memory bank forming virtual keyboard between keyboard manuals and synthesising circuits
FR2452145A2 (en) * 1979-03-23 1980-10-17 Deforeit Christian Polyphonic digitally controlled musical synthesiser - has memory bank forming virtual keyboard between keyboard manuals and synthesising circuits
US4279186A (en) * 1978-11-21 1981-07-21 Deforeit Christian J Polyphonic synthesizer of periodic signals using digital techniques
DE2850652C2 (en) * 1978-11-22 1984-06-28 Siemens AG, 1000 Berlin und 8000 München Digital semiconductor circuit
US4245542A (en) * 1978-11-27 1981-01-20 Allen Organ Company Method and apparatus for timbre control in an electronic musical instrument
US4215619A (en) * 1978-12-22 1980-08-05 Cbs Inc. System for recording and automatic playback of a musical performance
US4244260A (en) * 1978-12-28 1981-01-13 Norlin Industries, Inc. Footage volume control circuit
US4228714A (en) * 1979-01-02 1980-10-21 Kimball International, Inc. Multiplex chime generator
US4338844A (en) * 1979-02-17 1982-07-13 Kabushiki Kaisha Kawai Gakki Seisakusho Tone source circuit for electronic musical instruments
JPS55134898A (en) * 1979-04-05 1980-10-21 Sony Corp Digital waveform gneration circuit
JPS55140892A (en) * 1979-04-19 1980-11-04 Nippon Musical Instruments Mfg Musical tone controller for electronic musical instrument
FR2459524A1 (en) * 1979-06-15 1981-01-09 Deforeit Christian POLYPHONIC DIGITAL SYNTHEIZER OF PERIODIC SIGNALS AND MUSICAL INSTRUMENT COMPRISING SUCH A SYNTHESIZER
US4256003A (en) * 1979-07-19 1981-03-17 Kawai Musical Instrument Mfg. Co., Ltd. Note frequency generator for an electronic musical instrument
JPS5950072B2 (en) * 1979-09-13 1984-12-06 カシオ計算機株式会社 Auto power off device
US4242936A (en) * 1979-09-14 1981-01-06 Norlin Industries, Inc. Automatic rhythm generator
DE3000704C2 (en) * 1980-01-10 1983-12-01 Reinhard 5401 Emmelshausen Franz Transposition arrangement for the tone generator of an electronic musical instrument
US4320683A (en) * 1980-01-14 1982-03-23 Allen Organ Company Asynchronous interface for keying electronic musical instruments using multiplexed note selection
US4380184A (en) * 1980-04-17 1983-04-19 Matsushita Electrical Industrial Co., Ltd. Electronic musical instrument
DE3023580C2 (en) * 1980-06-24 1982-04-01 Matth. Hohner Ag, 7218 Trossingen Method for phase synchronization of digitally synthesized tones of a musical instrument and circuit arrangement for carrying out the method
US4470333A (en) * 1980-07-03 1984-09-11 The Wurlitzer Company Generation of musical tones from multiplexed serial data
JPS5754995A (en) * 1980-09-20 1982-04-01 Nippon Musical Instruments Mfg Electronic musical instrument
US4351219A (en) * 1980-09-25 1982-09-28 Kimball International, Inc. Digital tone generation system utilizing fixed duration time functions
US4446770A (en) * 1980-09-25 1984-05-08 Kimball International, Inc. Digital tone generation system utilizing fixed duration time functions
JPS5792398A (en) * 1980-12-01 1982-06-08 Nippon Musical Instruments Mfg Electronic musical instrument
US4318326A (en) * 1980-12-29 1982-03-09 Kimball International, Inc. Plural manual organ having transposer
US4357851A (en) * 1981-03-11 1982-11-09 Allen Organ Company Method and apparatus for producing mixture tones in an electronic musical instrument
US4375178A (en) * 1981-03-20 1983-03-01 Allen Organ Company Dynamic frequency modulation controller for an electronic musical instrument
US4619174A (en) * 1981-04-15 1986-10-28 Nippon Gakki Seizo Kabushiki Kaisha Electronic musical instrument
US4429604A (en) 1981-06-22 1984-02-07 Kimball International, Inc. Fill note generation system for microcomputer controlled organ
US4403536A (en) * 1981-06-22 1983-09-13 Kimball International, Inc. Microcomputer interfaced electronic organ
DE3204787C2 (en) * 1982-02-11 1985-02-14 Reinhard 5401 Emmelshausen Franz Circuit arrangement for displaying the actuation of a large number of individually actuatable pushbutton switches of a function selector
US4475428A (en) * 1982-09-28 1984-10-09 Kimball International, Inc. Pedal capture keyer system
GB2136170A (en) * 1983-03-03 1984-09-12 Electronic Automation Ltd Method and apparatus for accessing a memory system
JPS59195283A (en) * 1983-04-20 1984-11-06 ヤマハ株式会社 Electronic musical instrument
JPS59226391A (en) * 1983-06-08 1984-12-19 ヤマハ株式会社 Electronic musical apparatus
FR2579390A1 (en) * 1985-03-22 1986-09-26 Enertec DIGITAL WAVEFORM GENERATOR AND METHOD THEREOF
JPH06100912B2 (en) * 1985-07-25 1994-12-12 ヤマハ株式会社 Electronic musical instrument
EP0235538B1 (en) * 1986-01-31 1992-04-22 Casio Computer Company Limited Waveform generator for electronic musical instrument
US4722259A (en) * 1986-03-31 1988-02-02 Kawai Musical Instruments Mfg. Co., Ltd. Keyswitch actuation detector for an electronic musical instrument
JPH0740195B2 (en) * 1986-10-04 1995-05-01 株式会社河合楽器製作所 Electronic musical instrument
US4969385A (en) * 1988-01-19 1990-11-13 Gulbransen, Inc. Reassignment of digital oscillators according to amplitude
JP2525853B2 (en) * 1988-03-17 1996-08-21 ローランド株式会社 Continuous hit processing device for electronic musical instruments
JPH0239099A (en) * 1988-07-28 1990-02-08 Ricoh Co Ltd Musical sound generator
US5159141A (en) * 1990-04-23 1992-10-27 Casio Computer Co., Ltd. Apparatus for controlling reproduction states of audio signals recorded in recording medium and generation states of musical sound signals
JP2545008B2 (en) * 1991-11-21 1996-10-16 ソニー・テクトロニクス株式会社 Variable frequency signal generation method
JP2722907B2 (en) * 1991-12-13 1998-03-09 ヤマハ株式会社 Waveform generator
US5457455A (en) * 1992-09-22 1995-10-10 Rockwell International Corporation Real time keyboard scanner
EP1011091B1 (en) * 1995-09-29 2004-04-28 Yamaha Corporation Musical tone-generating method and musical tone-generating apparatus
JP3180708B2 (en) * 1997-03-13 2001-06-25 ヤマハ株式会社 Sound source setting information communication device
JP3777923B2 (en) * 1999-12-16 2006-05-24 ヤマハ株式会社 Music signal synthesizer
US8083499B1 (en) 2003-12-01 2011-12-27 QuaLift Corporation Regenerative hydraulic lift system
WO2006037221A2 (en) * 2004-10-01 2006-04-13 Novelorg Inc. Proportional electromagnet actuator and control system
DE602006000117T2 (en) * 2005-06-17 2008-06-12 Yamaha Corporation, Hamamatsu musical sound
US8735706B2 (en) * 2010-05-19 2014-05-27 Sydney Mathews Musical instrument keyboard having identically shaped black and white keys
FR2982054B1 (en) * 2011-10-28 2014-06-20 Ingenico Sa METHOD AND DEVICE FOR MANAGING A KEY MATRIX, COMPUTER PROGRAM PRODUCT, AND CORRESPONDING STORAGE MEDIUM
US8847051B2 (en) * 2012-03-28 2014-09-30 Michael S. Hanks Keyboard guitar including transpose buttons to control tuning
US10157602B2 (en) 2016-03-22 2018-12-18 Michael S. Hanks Musical instruments including keyboard guitars
EP3260977B1 (en) * 2016-06-21 2019-02-20 Stichting IMEC Nederland A circuit and a method for processing data
WO2018027011A1 (en) * 2016-08-03 2018-02-08 Mercurial Modulation, LLC Modulating keyboard with relative transposition mechanism for electronic keyboard musical instruments

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2401372A (en) * 1942-12-31 1946-06-04 Bell Telephone Labor Inc Electronic musical instrument
US2601265A (en) * 1947-06-06 1952-06-24 Davis Merlin Electronic musical instrument
US2855816A (en) * 1951-12-26 1958-10-14 Rca Corp Music synthesizer
US2900861A (en) * 1947-06-06 1959-08-25 Davis Merlin Electronic musical instruments
US2918576A (en) * 1956-11-13 1959-12-22 Baldwin Piano Co Percussive circuit and assembly
US3007362A (en) * 1954-10-05 1961-11-07 Rca Corp Combination random-probability system
US3358068A (en) * 1964-06-26 1967-12-12 Seeburg Corp Automatic rhythm device
US3383453A (en) * 1965-06-28 1968-05-14 Electro Music Percussion circuit for electronic organs
USRE26521E (en) * 1967-08-08 1969-02-11 Automatic repetitive rhythm instrument ttmino circuitry
US3435123A (en) * 1965-05-24 1969-03-25 Hammond Corp Electrical musical instrument keying system
US3439569A (en) * 1965-06-24 1969-04-22 Warwick Electronics Inc Electrical musical instrument
US3446904A (en) * 1968-01-04 1969-05-27 Warwick Electronics Inc Key system for electrical musical instrument
US3465088A (en) * 1966-05-31 1969-09-02 Hammond Corp Musical instrument percussive keyer with variable signal decay
US3482027A (en) * 1965-04-30 1969-12-02 Nippon Columbia Automatic rhythm instrument
US3515792A (en) * 1967-08-16 1970-06-02 North American Rockwell Digital organ
US3518352A (en) * 1967-06-30 1970-06-30 Warwick Electronics Inc Rhythm generating circuit for musical instrument

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2989885A (en) * 1955-04-14 1961-06-27 Paul A Pearson Electronic musical instrument and method
US3006228A (en) * 1957-11-14 1961-10-31 White James Paul Circuit for use in musical instruments
IN69632B (en) * 1958-08-29 1900-01-01
NL245097A (en) * 1958-11-07
US3255296A (en) * 1961-03-02 1966-06-07 Richard H Peterson Player controlled dynamic variation of pitch and/or timbre
US3184716A (en) * 1961-04-20 1965-05-18 Bendix Corp Guarded tone signalling
GB995739A (en) * 1961-09-29 1965-06-23 Elektronische Rechenmasch Ind An arrangement for the operation of information stores
US3267433A (en) * 1962-08-24 1966-08-16 Ibm Computing system with special purpose index registers
US3297812A (en) * 1963-06-21 1967-01-10 Warwick Electronics Inc Gated function switches in electric organ
US3316341A (en) * 1963-11-29 1967-04-25 Columbia Records Distrib Corp Electrical musical instruments
US3337852A (en) * 1964-06-05 1967-08-22 Honeywell Inc Information handling apparatus
US3383452A (en) * 1964-06-26 1968-05-14 Seeburg Corp Musical instrument
US3328770A (en) * 1964-06-26 1967-06-27 Ibm Address register
US3417188A (en) * 1965-06-23 1968-12-17 Baldwin Co D H Preference circuit for electronic musical instrument utilizing pulse amplitude discrimination and zero-crossing detector
GB1173747A (en) * 1966-01-08 1969-12-10 Eliana D Agata A Device for Composing and Playing Musical Motifs
US3478633A (en) * 1966-02-07 1969-11-18 Seeburg Corp Counter resetting arrangement for rhythm accompaniment starting
US3476864A (en) * 1966-03-09 1969-11-04 Baldwin Co D H Electronic organ reiteration system utilizing a zero-crossing preference circuit
US3417378A (en) * 1966-09-13 1968-12-17 Burroughs Corp Multiple frequency data handling system
US3519723A (en) * 1966-12-20 1970-07-07 James A Wiest Sustain tone device for electrical musical instrument
US3516318A (en) * 1968-01-02 1970-06-23 Baldwin Co D H Frequency changer employing opto-electronics
US3544693A (en) * 1968-11-29 1970-12-01 Robert W Tripp Electronic control system for musical instrument
US3610806A (en) * 1969-10-30 1971-10-05 North American Rockwell Adaptive sustain system for digital electronic organ
US3696201A (en) * 1970-11-12 1972-10-03 Wurlitzer Co Digital organ system
US3697661A (en) * 1971-10-04 1972-10-10 North American Rockwell Multiplexed pitch generator system for use in a keyboard musical instrument
US3700781A (en) * 1972-01-03 1972-10-24 Kawai Musical Instr Mfg Co Electronic musical instrument

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2401372A (en) * 1942-12-31 1946-06-04 Bell Telephone Labor Inc Electronic musical instrument
US2601265A (en) * 1947-06-06 1952-06-24 Davis Merlin Electronic musical instrument
US2900861A (en) * 1947-06-06 1959-08-25 Davis Merlin Electronic musical instruments
US2855816A (en) * 1951-12-26 1958-10-14 Rca Corp Music synthesizer
US3007362A (en) * 1954-10-05 1961-11-07 Rca Corp Combination random-probability system
US2918576A (en) * 1956-11-13 1959-12-22 Baldwin Piano Co Percussive circuit and assembly
US3358068A (en) * 1964-06-26 1967-12-12 Seeburg Corp Automatic rhythm device
US3482027A (en) * 1965-04-30 1969-12-02 Nippon Columbia Automatic rhythm instrument
US3435123A (en) * 1965-05-24 1969-03-25 Hammond Corp Electrical musical instrument keying system
US3439569A (en) * 1965-06-24 1969-04-22 Warwick Electronics Inc Electrical musical instrument
US3383453A (en) * 1965-06-28 1968-05-14 Electro Music Percussion circuit for electronic organs
US3465088A (en) * 1966-05-31 1969-09-02 Hammond Corp Musical instrument percussive keyer with variable signal decay
US3518352A (en) * 1967-06-30 1970-06-30 Warwick Electronics Inc Rhythm generating circuit for musical instrument
USRE26521E (en) * 1967-08-08 1969-02-11 Automatic repetitive rhythm instrument ttmino circuitry
US3515792A (en) * 1967-08-16 1970-06-02 North American Rockwell Digital organ
US3515792B1 (en) * 1967-08-16 1987-08-18
US3446904A (en) * 1968-01-04 1969-05-27 Warwick Electronics Inc Key system for electrical musical instrument

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3854365A (en) * 1971-07-31 1974-12-17 Nippon Musical Instruments Mfg Electronic musical instruments reading memorized waveforms for tone generation and tone control
US3819844A (en) * 1971-11-18 1974-06-25 Nippon Musical Instruments Mfg Electronic musical instrument keying system with envelope sample memorizing voltage dividers
US3859884A (en) * 1971-12-15 1975-01-14 Dillon Ross Grable Tone generator
US3844379A (en) * 1971-12-30 1974-10-29 Nippon Musical Instruments Mfg Electronic musical instrument with key coding in a key address memory
US3882751A (en) * 1972-12-14 1975-05-13 Nippon Musical Instruments Mfg Electronic musical instrument employing waveshape memories
US3903775A (en) * 1973-03-08 1975-09-09 Nippon Musical Instruments Mfg Electronic musical instrument
US4119005A (en) * 1973-03-10 1978-10-10 Nippon Gakki Seizo Kabushiki Kaisha System for generating tone source waveshapes
USRE31648E (en) * 1973-03-10 1984-08-21 Nippon Gakki Seizo Kabushiki Kaisha System for generating tone source waveshapes
US3930429A (en) * 1973-06-08 1976-01-06 Arp Instruments, Inc. Digital music synthesizer
US3910150A (en) * 1974-01-11 1975-10-07 Nippon Musical Instruments Mfg Implementation of octave repeat in a computor organ
US3908504A (en) * 1974-04-19 1975-09-30 Nippon Musical Instruments Mfg Harmonic modulation and loudness scaling in a computer organ
US3854366A (en) * 1974-04-26 1974-12-17 Nippon Musical Instruments Mfg Automatic arpeggio
US3913442A (en) * 1974-05-16 1975-10-21 Nippon Musical Instruments Mfg Voicing for a computor organ
US4014238A (en) * 1974-08-13 1977-03-29 C.G. Conn, Ltd. Tone signal waveform control network for musical instrument keying system
US4083285A (en) * 1974-09-27 1978-04-11 Nippon Gakki Seizo Kabushiki Kaisha Electronic musical instrument
JPS5172319A (en) * 1974-12-18 1976-06-23 Nippon Musical Instruments Mfg
US4079650A (en) * 1976-01-26 1978-03-21 Deutsch Research Laboratories, Ltd. ADSR envelope generator
US4967635A (en) * 1976-04-06 1990-11-06 Yamaha Corporation Electronic musical instrument
US4145946A (en) * 1976-08-09 1979-03-27 Kawai Musical Instrument Mfg. Co., Ltd. Sustained repeat control digital polyphonic synthesizer
US4185532A (en) * 1976-09-29 1980-01-29 Nippon Gakki Seizo Kabushiki Kaisha Envelope generator
USRE32726E (en) * 1976-09-29 1988-08-09 Nippon Gakki Seizo Kabushiki Kaisha Envelope generator
USRE30906E (en) * 1976-10-08 1982-04-20 Nippon Gakki Seizo Kabushiki Kaisha Envelope generator
US4178826A (en) * 1976-10-08 1979-12-18 Nippon Gakki Seizo Kabushiki Kaisha Envelope generator
US4189970A (en) * 1977-04-14 1980-02-26 Allen Organ Company Method and apparatus for achieving timbre modulation in an electronic musical instrument
US4201109A (en) * 1977-08-15 1980-05-06 Kabushiki Kaisha Kawai Gakki Seisakusho Envelope waveform generator for electronic musical instruments
US4183275A (en) * 1977-10-26 1980-01-15 Nippon Gakki Seizo Kabushiki Kaisha Electronic musical instrument
USRE30834E (en) * 1977-10-26 1981-12-29 Nippon Gakki Seizo Kabushiki Kaisha Electronic musical instrument
US4194426A (en) * 1978-03-13 1980-03-25 Kawai Musical Instrument Mfg. Co. Ltd. Echo effect circuit for an electronic musical instrument
US4212221A (en) * 1978-03-30 1980-07-15 Allen Organ Company Method and apparatus for note attack and decay in an electronic musical instrument
FR2447112A1 (en) * 1979-01-22 1980-08-14 Thomson Csf Signal frequency generator for musical instrument - uses single oscillator and memory controlled dividers
US4483229A (en) * 1980-02-20 1984-11-20 Matsushita Electric Industrial Co., Ltd. Electronic musical instrument
US4287805A (en) * 1980-04-28 1981-09-08 Norlin Industries, Inc. Digital envelope modulator for digital waveform
US4366739A (en) * 1980-05-21 1983-01-04 Kimball International, Inc. Pedalboard encoded note pattern generation system
EP0042555A1 (en) * 1980-06-24 1981-12-30 Matth. Hohner AG Method of digitally controlling the envelope in a polyphonic musical synthesis instrument, and circuits to put this method into practice
US4352312A (en) * 1981-06-10 1982-10-05 Allen Organ Company Transient harmonic interpolator for an electronic musical instrument
FR2517450A1 (en) * 1981-11-30 1983-06-03 Sedatelec Real-time operation musical note generator - has memory for sample complex waveform, characteristic of partic. instrument and instantaneous amplitude memory both supplying multiplier
US4444082A (en) * 1982-10-04 1984-04-24 Allen Organ Company Modified transient harmonic interpolator for an electronic musical instrument
US20090078477A1 (en) * 2007-09-21 2009-03-26 Hon Hai Precision Industry Co., Ltd. Electronic device with sound prompt function

Also Published As

Publication number Publication date
NL174997C (en) 1984-04-02
US3639913A (en) 1972-02-01
NL7112290A (en) 1973-03-09
DE2149104B2 (en) 1980-10-09
DE2149104C3 (en) 1981-06-11
FR2153149B1 (en) 1975-08-29
US3610799A (en) 1971-10-05
AU449757B2 (en) 1974-06-20
DE2149104A1 (en) 1973-04-12
US3610806A (en) 1971-10-05
US3610800A (en) 1971-10-05
GB1317385A (en) 1973-05-16
BE772689A (en) 1972-01-17
CH559956A5 (en) 1975-03-14
FR2153149A1 (en) 1973-05-04
AU3277671A (en) 1973-03-01
US3743755A (en) 1973-07-03
NL174997B (en) 1984-04-02

Similar Documents

Publication Publication Date Title
US3610805A (en) Attack and decay system for a digital electronic organ
US4105864A (en) Stereo and spaciousness reverberation system using random access memory and multiplex
US4539884A (en) Electronic musical instrument of waveshape memory type with expression control
US4231276A (en) Electronic musical instrument of waveshape memory type
US4018125A (en) Electronic musical instrument
US4080862A (en) Electronic musical instrument having octave slide effect
US4573389A (en) Musical tone generation device of waveshape memory type
US4160399A (en) Automatic sequence generator for a polyphonic tone synthesizer
JPH0760310B2 (en) Touch control device
US5354948A (en) Tone signal generation device for generating complex tones by combining different tone sources
US4194426A (en) Echo effect circuit for an electronic musical instrument
US4166405A (en) Electronic musical instrument
US4122743A (en) Electronic musical instrument with glide
US4178822A (en) Musical synthesis envelope control techniques
US4238984A (en) Electronic musical instrument
US4171658A (en) Electronic musical instrument
JP2538809B2 (en) Musical sound generator
US4145946A (en) Sustained repeat control digital polyphonic synthesizer
US4178825A (en) Musical tone synthesizer for generating a marimba effect
US4411185A (en) Touch responsive keyboard electronic musical instrument
US5144876A (en) Electronic musical instrument capable of performing a tone control responsive to an after-touch operation
JP2701177B2 (en) Tone generator
US4018123A (en) Automatic rhythm performing apparatus capable of expressing stressed and relaxed beats of rhythm
US4489637A (en) Percussive voice generator for an electronic musical instrument
JPS5819592Y2 (en) electronic musical instruments

Legal Events

Date Code Title Description
AS Assignment

Owner name: MUSICCO, LLC, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALLEN ORGAN COMPANY;REEL/FRAME:018194/0822

Effective date: 20060901