US3603041A - Block-grinding apparatus - Google Patents
Block-grinding apparatus Download PDFInfo
- Publication number
- US3603041A US3603041A US818657A US3603041DA US3603041A US 3603041 A US3603041 A US 3603041A US 818657 A US818657 A US 818657A US 3603041D A US3603041D A US 3603041DA US 3603041 A US3603041 A US 3603041A
- Authority
- US
- United States
- Prior art keywords
- block
- bed
- abrasive material
- belt
- grinding apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000001815 facial effect Effects 0.000 claims abstract description 43
- 239000003082 abrasive agent Substances 0.000 claims abstract description 26
- 239000012530 fluid Substances 0.000 claims abstract description 7
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 7
- 230000001788 irregular Effects 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B21/00—Machines or devices using grinding or polishing belts; Accessories therefor
- B24B21/04—Machines or devices using grinding or polishing belts; Accessories therefor for grinding plane surfaces
- B24B21/12—Machines or devices using grinding or polishing belts; Accessories therefor for grinding plane surfaces involving a contact wheel or roller pressing the belt against the work
Definitions
- a first facial surface of the block is forced against a planar support and the planar abrasive surface engages and grinds the opposing facial surface of the block, producing a precisely shaped concrete building block.
- the present invention relates to a grinding apparatus and more particularly to a grinding apparatus for abrading a facial surface of a block and affords control of the grinding depth and accommodation to varying geometric shapes of said block in order to control the required grinding depth over said facial surface to permit all portions of said facial surface to be abraded to at least a predetermined grinding depth.
- the facial surface is ground to a sufficient depth to reveal the more colorful composition of the block and the ground depth longitudinally along said facial surface is controlled to minimize the removal of material from the entire facial surface of said block.
- the block is composed of a concrete-aggregate mixture
- the minimization of facial surface removal results in displaying the colorful aggregate for satisfying decorative effects at an economically feasible cost.
- blocks of other compositions may be similarly finished.
- FIG. 1 is a side elevational view, partly cut away, of the block-grinding apparatus
- FIG. 2 is a front view of the apparatus of FIG. I with parts cut away;
- FIG. 3 is an enlarged fragmentary vertical sectional view taken along line 3-3 of FIG. 2 showing a concrete block partially abraded;
- FIG. 4 is a top sectional view taken along line 4-4 of FIG.
- FIG. 5 is a transverse sectional view taken along line 55 of FIG. 1;
- FIG. 6 is a diagrammatic side elevational view of the apparatus of FIG. 1;
- FIG. 7 illustrates a convex facial surface of a concrete block
- FIG. 8 illustrates a concave facial surface of a concrete block.
- the portion of the apparatus to the right-hand side of F IG. 1 is the front portion of the apparatus whereas the opposite portion therefrom is the back or rear portion of the'apparatus.
- the side of the apparatus, in FIG. 1, nearest the viewer is the first side whereas the opposite side therefrom is the second side of the apparatus.
- concrete blocks normally enter at the back portion of the apparatus, are advanced through the abrading assembly, and are ejected at the front portion of the apparatus.
- the block-grinding apparatus 10 of FIG. 1 comprises a frame 12, conveyor means 20 to move the block 11 to be abraded along a predetermined longitudinal path from the back portion of the apparatus to the front portion, an abrading assembly 35 supported by said frame 12 and located adjacent to said conveyor means 20 along said predetermined path, a constant load means 50 pivotably supported by said frame 12 and located along said predetermined path opposite said abrading assembly 35 for affording a predetermined loading force 72 on said block 11 in transverse line contact against said abrading assembly 35 to control the grinding depth and for affording accommodation to varying geometric shapes of said block 11 in order to control the grinding depth over the facial surface 19 and thus minimize the removal of material required to permit all portions of said facial surface 19 to be abraded to at least a predetermined grinding depth, and holding means 60 secured to said constant load means 50 and spaced from said abrading assembly 35 to restrain tipping movement of said block 11 about itself caused by engagement with said abrading assembly 35.
- the frame 12 as most clearly shown in FIGS. 1, 2 and 4, includes a first side frame 13, a second side frame 14, an end brace 15, a top brace 16, block supports 17 and a block chute 18.
- the conveyor means 20, as most clearly shown in FIGS. 1 and 4, may comprise any apparatus which will move a block 11 alongv a predetermined longitudinal path past said abrading assembly 35 and is illustrated in the preferred embodiment as including a drive roll assembly 21, a driven roll assembly 26 and a conveyor belt 34.
- the drive roll assembly as more clearly shown in FIGS. 2 and 4, includes a drive shaft 22 rotatably mounted on bearings (not shown) in each side frame l3, 14, a drive roll 23 rigidly secured to the drive shaft 22 and motor means, e.g. a motor 24, secured to the first side frame 13 and the drive shaft 22 for rotating the drive roll 23 at about 15 surface feet per minute.
- the driven roll assembly 26 as shown in FIGS.
- each slack and guide adjuster 28 includes a spring 32, a threaded shaft 30, and a self-locking nut 31 for increasing or decreasing the spring force between the end brace and the nut 31.
- the adjuster 28 adjacent the second side may be adjusted to remove any slack in the conveyor belt 34 and to guide or track the conveyor belt 34.
- the rubberlike conveyor belt 34 which extends about the drive and the driven roll assemblies 21, 26, includes cleats 33 extending across the lateral direction of the conveyor belt 34 to provide positive engagement between the belt and the concrete block 11 to be abraded.
- the motion of the concrete block 1 1, relative to the abrading assembly 35 should be maintained at a set speed, e.g., 15 feet per minute. A nonuniform speed of the block 11 past the abrading assembly 35 would cause uneven abrading of the facial surface 19.
- the abrading assembly 35 includes a contact drum assembly 37 having a fixed axis of rotation extending transverse to said predetermined longitudinal path, an idler drum assembly 42, and abrasive material, e.g. an abrasive belt 45, supported by the contact drum 39 for abrading the facial surface 19 of a concrete block 11.
- the contact drum assembly 37 includes a supporting shaft 38 rotatably mounted on bearings (not shown) in each side frame 13, 14, a contact drum 39 having a substantially rigid cylindrical surface, e.g. steel, and rigidly secured to the shaft 38, and drive means, eg a drive motor 40, most clearly shown in FIG.
- the idler drum assembly 42 includes a support shaft 43 slidably secured to the slide guides by the slack and guide adjusters 44, see FIGS. 1 and 2, and bearings (not shown) within an idler drum 46 to permit the drum 46 to revolve about the support shaft 43.
- Each slack and guide adjuster 44 is constructed and functions similarly to the adjusters 28, described previously in connection with the conveyor means 20, for removing any excessive slack in the abrasive belt 45 and for guiding or tracking the belt 45.
- the constant load means 50 pivotably supported by said side frames l3, l4 and located along said predetermined path on a side of the conveyor belt 34 opposite said abrading assembly, as more clearly shown in FIGS. 1, 4 and 5, includes a movable substantially flat bed 51 connected at a first end, to an end of the block support 17 by universally pivotable means, e. g. a ball-and-socket connection 52, and supported by pivotal connections on a constant force means 53 located removed from said pivotable means.
- the substantially flat bed 51 receives a concrete block 11 and upon engagement between the block 11 and the abrading assembly 35, the ball-andsocket 52 affords the bed 51 to pivot about a longitudinal axis to accommodate the bed 51 to a transverse taper of either or both opposed facial surfaces 19, 19a of block 11.
- the block 1 1 is rotated about a longitudinal axis to orient and align the transverse portion of the facial surface 19 adjacent to contact drum 39 substantially parallel to the transverse axis of the drum 39.
- a block 11 having a longitudinal convex or concave shape as shown in FIGS.
- the ball-and-socket 5.2 affords the bed 51 to pivot about a transverse axis to accommodate the bed 51 to longitudinal variations on the facial surface 19 of said block I l.
- the bed 51 as shown in the drawings, is oriented with the blocks 11 first contacting the second end portion of the bed 51. adjacent to the constant force means 53, and lastly contacting the first end portion of the bed 51, adjacent the balland-socket 52. This orientation is not controlling and the blocks 11 could travel in the opposite direction across the bed 51 with little appreciable difference in the performance of the constant load means 50.
- the constant force means 53 which is shown as comprising fluid cylinders 54, air cylinders in the preferred embodiment, could be located at any practical distance from the ball-andsocket 52 and is shown located at the second end of the bed 51 for obtaining greater mechanical advantage.
- Each air cylinder 54, 54 is pivotably mounted to each side frame 13, 14 via the ball-and-socket connections 55 and pivotably mounted to the bed via the ball-and-socket connections 56.
- the connections 55 and 56 afford free movement of the bed to accommodate irregularly shaped blocks in either a transverse or longitudinal direction.
- a guide pin 57 see FIG. 5, is secured to the bed 51 and slidably engages the slide guide 58 which is secured to the side frames 13, 14..
- pivotable movement of the constant load means 50 about the longitudinal axis serves to maintain line contact of the block with the abrasive material transversely across the facial surface 19. Movement of the bed about the transverse axis affords contact longitudinal of the block as it is moved past the abrasive material.
- the cylinders 54 maintain a constant predetermined loading force 72 on the block 11 against the abrasive material to control the grinding depth.
- the holding means 60 which is supported from said constant load means 50 and spaced from said abrading assembly 35, restrains tipping movement of a block about itself caused by engagement with said abrasive material or belt 45, and includes two shafts 61, 61 fixed to bed 51, two upper stops 62, 62 two lower stops 63, 63, two slidable collars 64, 64 (one on each shaft 61), a transverse shaft 65 extending between and supported by the collars 64, 64, a pinch roll 66, and two springs .67 to force the pinch roll 66 against the block 1 1 being abraded.
- the engaging force between the block 11 and the abrasive belt 45 would tend to tip the block 11 in a counterclockwise direction, as shown in FIG. 3.
- the counterclockwise engaging force is offset by the clockwise reactive force of the holding means 60 against the block 11. If the block was passed through the abrading assembly 35 in a direction from front to rear or if the abrasive material was moved in a direction opposite to arrow 68, then the holding means 60a, which is constructed similarlyto holding means 60, would restrain any tipping of the block 11.
- Each air cylinder 54 includes air lines and a pressure regulator (not shown) for achieving a constant predetermined force 71, see the force diagram of FIG. 6.
- the loading force 72 which is directly proportional to the depth of the grind, is independent of the pinch forces 73 caused by the interference of the block 11 between the pinch rolls 66, 66a and the bed 51.
- the constant predetermined force 71 and the movable bed 51 maintains a constant predetermined loading force 72 in continuous transverse line contact and progressive longitudinal contact between the abrasive material and the facial surface 19 of the block 11 to minimize the removal of material required to permit all portions of said facial surface 19 to be abraded to at least a predetermined grinding depth for aesthetic decorative effects.
- a grinding apparatus block comprising:
- conveyor means movable over said frame for moving a said block along a predetermined longitudinal path;
- abrading assembly supported by said frame and located adjacent to said conveyor means and along said predetermined longitudinal path, including l. a substantially rigid cylindrical surface having a fixed axis of rotation extending transverse to said longitudinal path,
- a load bed located along said predetermined path opposite said abrading assembly and pivotably supported by said frame around a longitudinal axis to accommodate said load bed to a said block having a transverse taper to maintain transverse line contact across a said block;
- constant force means connected to said bed and said frame for forcing said facial surface against said abrasive material and thus afford a uniform grinding depth across said facial surface
- drive means connected to said contact drum for driving said abrasive belt at a relatively high surface speed.
- pivotable means connecting the first end portion of said bed to said frame for permitting rotational movement of said bed about both a transverse and a longitudinal axis to accommodate varying geometric shapes of said block; and wherein c. said constant force means is located removed from said first end portion and pivotably connected to said bed for loading said block at a predetermined force in transverse line contact against said abrasive material to control the grinding depth transversely across the facial surface of said block.
- a grinding apparatus as defined in claim 4 wherein the longitudinal distance between that part of said contact drum nearest said conveyor belt and the upstream end of said fiat bed is at least equal to the length of said block to afford locating of said block on said bed prior to engagement of said block with said abrasive material.
- a grinding apparatus as defined in claim 4 wherein said constant force means includes two fluid cylinders each laterally spaced from said pivotable means to maintain a constant loading force of said block against said abrasive belt.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Grinding Of Cylindrical And Plane Surfaces (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US81865769A | 1969-04-23 | 1969-04-23 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3603041A true US3603041A (en) | 1971-09-07 |
Family
ID=25226080
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US818657A Expired - Lifetime US3603041A (en) | 1969-04-23 | 1969-04-23 | Block-grinding apparatus |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US3603041A (enrdf_load_stackoverflow) |
| DE (1) | DE7015980U (enrdf_load_stackoverflow) |
| GB (1) | GB1302791A (enrdf_load_stackoverflow) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4258506A (en) * | 1979-01-15 | 1981-03-31 | Robinson Charles E | Apparatus for scale and slag removal |
| US4416090A (en) * | 1979-04-25 | 1983-11-22 | Landskrona Produktion Ab | Belt sanding machine |
| US5441437A (en) * | 1993-02-18 | 1995-08-15 | Hulstedt; Bryan A. | Compliant constant-force follower device for surface finishing tool |
| EP0810065A1 (de) * | 1996-05-30 | 1997-12-03 | Faller, Alexander | Ziegel-Schleifvorrichtung für die Herstellung von Planziegeln |
| US5938508A (en) * | 1997-08-11 | 1999-08-17 | Micron Electronics, Inc. | Method for removing marks from integrated circuit devices and devices so processed |
| US5997388A (en) * | 1997-08-11 | 1999-12-07 | Micron Electronics, Inc. | Apparatus for removing marks from integrated circuit devices |
| US6863601B1 (en) * | 2003-10-06 | 2005-03-08 | Wang Tien Wang | Sand-belt finishing machine having lift device |
| WO2009140618A1 (en) * | 2008-05-15 | 2009-11-19 | Fsn, Llc | System and method for precision grinding and self-leveling installation of concrete masonry systems |
| US20120096817A1 (en) * | 2010-10-20 | 2012-04-26 | Siemens Industry, Inc. | Film-Wrapped Bundle Opener |
| FR2989615A1 (fr) * | 2012-04-23 | 2013-10-25 | Quadra 1 | Ensemble pour usiner au moins un bloc de beton a coller et poste de rectification comprenant un tel ensemble |
| US10759021B2 (en) * | 2017-06-26 | 2020-09-01 | Jpw Industries Inc. | Hood for drum sander |
| CN114986340A (zh) * | 2022-06-02 | 2022-09-02 | 武汉数字化设计与制造创新中心有限公司 | 一种力-转速协同控制的全特征砂带磨抛系统及方法 |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AT380198B (de) * | 1984-06-25 | 1986-04-25 | Haeusler Raimund Ing | Verfahren zur herstellung eines hohlbausteines mit zumindest zwei gegenueberliegenden sichtflaechen mit waschbetonstruktureffekt und vorrichtung hiefuer |
| DE19621690A1 (de) * | 1996-05-30 | 1997-12-04 | Jun Alexander Faller | Planziegel-Bandschleifmaschine |
| DE29609533U1 (de) * | 1996-05-30 | 1996-12-12 | Faller jun., Alexander, Dipl.-Wirtsch.-Ing. (FH), 84061 Ergoldsbach | Planziegel-Bandschleifmaschine |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3271909A (en) * | 1964-03-13 | 1966-09-13 | Carborundum Co | Grinding apparatus |
| US3325947A (en) * | 1964-09-15 | 1967-06-20 | Clair Mfg Co | Convertible roll-belt abrading machine |
| US3394501A (en) * | 1965-06-17 | 1968-07-30 | Carborundum Co | System for controlling grinding pressure |
| US3415017A (en) * | 1965-05-13 | 1968-12-10 | Zech Murray Corp | Apparatus for finishing workpieces under controlled pressures |
-
1969
- 1969-04-23 US US818657A patent/US3603041A/en not_active Expired - Lifetime
-
1970
- 1970-04-22 DE DE7015980U patent/DE7015980U/de not_active Expired
- 1970-04-22 GB GB1937570A patent/GB1302791A/en not_active Expired
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3271909A (en) * | 1964-03-13 | 1966-09-13 | Carborundum Co | Grinding apparatus |
| US3325947A (en) * | 1964-09-15 | 1967-06-20 | Clair Mfg Co | Convertible roll-belt abrading machine |
| US3415017A (en) * | 1965-05-13 | 1968-12-10 | Zech Murray Corp | Apparatus for finishing workpieces under controlled pressures |
| US3394501A (en) * | 1965-06-17 | 1968-07-30 | Carborundum Co | System for controlling grinding pressure |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4258506A (en) * | 1979-01-15 | 1981-03-31 | Robinson Charles E | Apparatus for scale and slag removal |
| US4416090A (en) * | 1979-04-25 | 1983-11-22 | Landskrona Produktion Ab | Belt sanding machine |
| US5441437A (en) * | 1993-02-18 | 1995-08-15 | Hulstedt; Bryan A. | Compliant constant-force follower device for surface finishing tool |
| EP0810065A1 (de) * | 1996-05-30 | 1997-12-03 | Faller, Alexander | Ziegel-Schleifvorrichtung für die Herstellung von Planziegeln |
| US5938508A (en) * | 1997-08-11 | 1999-08-17 | Micron Electronics, Inc. | Method for removing marks from integrated circuit devices and devices so processed |
| US5997388A (en) * | 1997-08-11 | 1999-12-07 | Micron Electronics, Inc. | Apparatus for removing marks from integrated circuit devices |
| US6863601B1 (en) * | 2003-10-06 | 2005-03-08 | Wang Tien Wang | Sand-belt finishing machine having lift device |
| WO2009140618A1 (en) * | 2008-05-15 | 2009-11-19 | Fsn, Llc | System and method for precision grinding and self-leveling installation of concrete masonry systems |
| US20120096817A1 (en) * | 2010-10-20 | 2012-04-26 | Siemens Industry, Inc. | Film-Wrapped Bundle Opener |
| US9637263B2 (en) * | 2010-10-20 | 2017-05-02 | Siemens Industry, Inc. | Film-wrapped bundle opener |
| FR2989615A1 (fr) * | 2012-04-23 | 2013-10-25 | Quadra 1 | Ensemble pour usiner au moins un bloc de beton a coller et poste de rectification comprenant un tel ensemble |
| EP2656969A1 (fr) * | 2012-04-23 | 2013-10-30 | Quadra 1 | Ensemble pour usiner au moins un bloc de béton à coller et poste de rectification comprenant un tel ensemble |
| US10759021B2 (en) * | 2017-06-26 | 2020-09-01 | Jpw Industries Inc. | Hood for drum sander |
| CN114986340A (zh) * | 2022-06-02 | 2022-09-02 | 武汉数字化设计与制造创新中心有限公司 | 一种力-转速协同控制的全特征砂带磨抛系统及方法 |
| CN114986340B (zh) * | 2022-06-02 | 2023-10-17 | 武汉数字化设计与制造创新中心有限公司 | 一种力-转速协同控制的全特征砂带磨抛系统及方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| DE7015980U (de) | 1970-08-13 |
| GB1302791A (enrdf_load_stackoverflow) | 1973-01-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3603041A (en) | Block-grinding apparatus | |
| KR200489598Y1 (ko) | 랙바 제조를 위한 냉간 인발 봉강용 사전 연삭기 | |
| US2070944A (en) | Method and apparatus for finishing surfaces | |
| KR101870258B1 (ko) | 무한궤도 방식의 연마장치 | |
| CN212824667U (zh) | 一种抛光设备 | |
| US2269197A (en) | Grinding and polishing apparatus | |
| US4635405A (en) | Continuous arcuate feed assembly | |
| US3269065A (en) | Sanding apparatus | |
| US3570190A (en) | Belt sanding and polishing machine | |
| GB1122483A (en) | Tilted spindle grinder | |
| US3782044A (en) | Wide abrasive belt type lumber planing machine | |
| US2770080A (en) | Apparatus for combining sheets of paper | |
| US2641089A (en) | Method and means for the reproduction by grinding | |
| US3079734A (en) | Vibrator mechanism for belt sander | |
| US3859758A (en) | Wide belt sanding machine | |
| JPH07299512A (ja) | テーブルロール現地補修用ロール研磨装置 | |
| JP3103456B2 (ja) | 平板の研摩装置 | |
| US2579391A (en) | In-place resurfacing of ponderous cylinders | |
| GB804433A (en) | Improvements in and relating to surface finishing apparatus | |
| GB1169150A (en) | A Machine for Finishing the Surfaces of Crankshafts | |
| US2655769A (en) | Lapping machine | |
| JP2002137008A (ja) | オンラインロール研削設備,オンラインロール研削方法,圧延設備及び圧延方法 | |
| US4707944A (en) | Apparatus for honing a cylinder | |
| RU169325U1 (ru) | Устройство для ленточного шлифования | |
| US2801497A (en) | Automotive grinding and polishing apparatus for cylindrical workpieces |