US3600159A - Nodular cast iron containing silicon and vanadium - Google Patents
Nodular cast iron containing silicon and vanadium Download PDFInfo
- Publication number
- US3600159A US3600159A US712188A US3600159DA US3600159A US 3600159 A US3600159 A US 3600159A US 712188 A US712188 A US 712188A US 3600159D A US3600159D A US 3600159DA US 3600159 A US3600159 A US 3600159A
- Authority
- US
- United States
- Prior art keywords
- vanadium
- cast iron
- silicon
- carbides
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B7/00—Special arrangements or measures in connection with doors or windows
- E06B7/16—Sealing arrangements on wings or parts co-operating with the wings
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/04—Cast-iron alloys containing spheroidal graphite
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/10—Cast-iron alloys containing aluminium or silicon
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05C—BOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
- E05C19/00—Other devices specially designed for securing wings, e.g. with suction cups
- E05C19/16—Devices holding the wing by magnetic or electromagnetic attraction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L3/00—Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
- F01L3/02—Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
Definitions
- Our invention relates to a heat resistant cast iron and, more particularly, to a cast iron containing nodular graphite and silicon and vanadium, in combination, to provide new and useful properties at elevated temperatures.
- Our invention has as an object, the production of a relatively inexpensive cast iron alloy having good high temperature characteristics.
- a further object is to provide a metal having a high mechanical strength at elevated temperatures in excess of 1200 F.
- a further object is to provide a metal which is easily machinable at room temperatures and easily castable in conventional foundry molds.
- a further object is to provide a metal which has superior resistance to oxidation, scaling and growth at elevated temperatures.
- FIG. 1 is a photomicrograph at 100 diameters, of the alloy of this invention, showing nodular graphite and dispersed carbides in a pearlitic matrix;
- FIG. 2 is a photomicrograph at 500 diameters, showing the cubic, randomly distributed carbides peculiar to the alloy of this invention.
- high silicon cast irons are useful for service at elevated temperatures, because of their ability to resist oxidation and scaling and because they exhibit very little dimensional change or growth, when subjected to cyclic heating conditions at elevated temperatures in hostile atmospheric conditions. It is also recognized that these high silicon cast irons containing from 3.50% to 6.50% silicon or more, are extremely brittle at room temperature and, therefore, difficult to cast and fabricate into useful engineering shapes. It has been found that rendering graphite in these cast irons in the nodular form by suitable additions of nodularizing agents such as magnesium, imparts a considerably high degree of mechanical strength, such as, toughness and tensile strength, with additional minor benefits in the ability of the cast iron to perform at elevated temperatures.
- vanadium renders this cast iron particularly stable, confers a higher tensile strength and hardness at these elevated temperatures, and in no way affects the castability and machinability of parts cast from this alloy.
- Vanadium in cast iron has been recognized by those skilled in the art as a carbide former and hardener. In this direction, it is approximately two and one-half times more potent than chromium (another well known hardener used particularly where wear resistance is a factor). In lower silicon irons it is very difficult to prevent the formation of massive brittle carbides in cast iron, even where only relatively small quantities of vanadium, such as 25% or .50% are used. Vanadium additions, therefore, have been found to be limited in usefulness, because they can very easily render the cast iron non-machinable. As most industrial engineering components have to be machined as, for example, in the production of metalforming dies and supercharger parts, it has not previously been considered possible to utilize vanadium to any great extent in such engineering cast irons.
- vanadium may be added to high silicon irons, particularly nodular irons, and that under the conditions set forth herein, excess vanadium is present as randomly distributed carbide particles, which do not affect machinability and which greatly enhance the mechanical properties at elevated temperatures.
- nodular graphite cast iron of the following composition:
- the carbon content must not be above 3.80%, because, under these conditions there is a definite tendency to form massive vanadium carbides rather than the dispersed cubic carbides, which are peculiar to the alloy of our invention. Similarly, we do not desire to have the carbon content lower than 2.80%, because of the adverse effect on castability of the alloy. Silicon content, for the purposes of good heat resistance, must be above 3.50% and to prevent excessive brittleness in the final product, we prefer to keep to a maximum silicon content of 5.00%.
- vanadium contents in excess of 2% tend to produce more massive and uncontrolled carbides and serve no useful purpose in further improvement of the heat resistance for engineering cast irons.
- test bars containing .75% vanadium at the same temperatures namely, 1200 F., 1400 F. and 1600 F., showed tensile strengths of 18,500 p.s.i., 12,500 p.s.i., and 6,300 p.s.i., respectively.
- vanadium in amounts sufficient to produce the cubical carbides, give an increase of to 100% in Brinell hardnesses at elevated temperatures and it is probable that the increase in service behavior of dies made from this material, is associated with its improved hot hardness characteristics. Similar tests have been run using vanadium in conjunction with small quantities of molybdenum and tungsten and the same improved results have been found.
- vanadium in the manufacture of the cast iron of our invention, we prefer to add vanadium as a vanadium carbon-bearing ferro alloy, because vanadium has an extremely high melting point and is difiicult to incorporate into the melt, if it does not contain carbon.
- An improved heat resistant cast iron having a composition consisting essentially of 3.80% to 2.80% carbon, 3.50% to 5.00% silicon, 0.70% to 2.00% vanadium, a small but effective amount of a nodularizing agent and the balance iron; excess carbon being in the form of nodular graphite and randomly distributed, cubically shaped carbides, in a pearlitic matrix.
- An improved heat resistant cast iron having a composition of 3.80% to 2.80% carbon, 3.50% to 5.00% silicon, 0.70% to 2.00% vanadium, a small but effective amount of a nodularizing agent and the balance iron; excess carbon being in the form of nodular graphite and randomly distributed, cubically shaped carbides, in a pearlitic matrix.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Carbon And Carbon Compounds (AREA)
- Manufacture Of Iron (AREA)
- Manufacture And Refinement Of Metals (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US71218868A | 1968-03-11 | 1968-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3600159A true US3600159A (en) | 1971-08-17 |
Family
ID=24861100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US712188A Expired - Lifetime US3600159A (en) | 1968-03-11 | 1968-03-11 | Nodular cast iron containing silicon and vanadium |
Country Status (12)
Country | Link |
---|---|
US (1) | US3600159A (fr) |
BE (1) | BE722918A (fr) |
CH (1) | CH513985A (fr) |
DE (1) | DE1911552B2 (fr) |
DK (1) | DK120462B (fr) |
ES (1) | ES359978A1 (fr) |
FI (1) | FI50256C (fr) |
FR (1) | FR1603522A (fr) |
GB (1) | GB1196550A (fr) |
NL (1) | NL149545B (fr) |
NO (1) | NO123158B (fr) |
SE (1) | SE338442B (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4982514A (fr) * | 1972-12-16 | 1974-08-08 | ||
US4435226A (en) | 1981-12-01 | 1984-03-06 | Goetze Ag | Wear resistant cast iron alloy with spheroidal graphite separation and manufacturing method therefor |
WO1984002925A1 (fr) * | 1983-01-24 | 1984-08-02 | Ford Werke Ag | Procede de production de fonte ductile presentant une resistance amelioree |
US4484953A (en) * | 1983-01-24 | 1984-11-27 | Ford Motor Company | Method of making ductile cast iron with improved strength |
US6342181B1 (en) | 2000-03-17 | 2002-01-29 | The Curators Of The University Of Missouri | Corrosion resistant nickel-based alloy |
CN102688993A (zh) * | 2012-06-19 | 2012-09-26 | 西峡县众德汽车部件有限公司 | Sb元素在高强度球墨铸铁瓦盖中的应用 |
DE10252240B4 (de) * | 2001-05-16 | 2014-03-27 | Aisin Takaoka Co., Ltd. | Kugelgraphitguss auf Ferritbasis und Verwendung desselben in einer Abgasanlage |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR9200615A (pt) * | 1992-02-18 | 1993-08-24 | Cofap | Ferro fundido nodular e processo de obtencao de ferro fundido nodular |
-
1968
- 1968-03-11 US US712188A patent/US3600159A/en not_active Expired - Lifetime
- 1968-10-08 GB GB47570/68A patent/GB1196550A/en not_active Expired
- 1968-10-18 DK DK504068AA patent/DK120462B/da unknown
- 1968-10-25 BE BE722918D patent/BE722918A/xx unknown
- 1968-10-31 FI FI683106A patent/FI50256C/fi active
- 1968-11-07 ES ES359978A patent/ES359978A1/es not_active Expired
- 1968-11-14 FR FR1603522D patent/FR1603522A/fr not_active Expired
- 1968-12-02 SE SE16461/68A patent/SE338442B/xx unknown
- 1968-12-18 CH CH1888868A patent/CH513985A/de not_active IP Right Cessation
-
1969
- 1969-02-10 NL NL696902042A patent/NL149545B/xx unknown
- 1969-02-28 NO NO0870/69A patent/NO123158B/no unknown
- 1969-03-07 DE DE19691911552 patent/DE1911552B2/de not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4982514A (fr) * | 1972-12-16 | 1974-08-08 | ||
JPS5343126B2 (fr) * | 1972-12-16 | 1978-11-17 | ||
US4435226A (en) | 1981-12-01 | 1984-03-06 | Goetze Ag | Wear resistant cast iron alloy with spheroidal graphite separation and manufacturing method therefor |
WO1984002925A1 (fr) * | 1983-01-24 | 1984-08-02 | Ford Werke Ag | Procede de production de fonte ductile presentant une resistance amelioree |
US4484953A (en) * | 1983-01-24 | 1984-11-27 | Ford Motor Company | Method of making ductile cast iron with improved strength |
US6342181B1 (en) | 2000-03-17 | 2002-01-29 | The Curators Of The University Of Missouri | Corrosion resistant nickel-based alloy |
DE10252240B4 (de) * | 2001-05-16 | 2014-03-27 | Aisin Takaoka Co., Ltd. | Kugelgraphitguss auf Ferritbasis und Verwendung desselben in einer Abgasanlage |
DE10252240C5 (de) * | 2001-05-16 | 2019-04-18 | Aisin Takaoka Co., Ltd. | Kugelgraphitguss auf Ferritbasis und Verwendung desselben in einer Abgasanlage |
CN102688993A (zh) * | 2012-06-19 | 2012-09-26 | 西峡县众德汽车部件有限公司 | Sb元素在高强度球墨铸铁瓦盖中的应用 |
Also Published As
Publication number | Publication date |
---|---|
NL6902042A (fr) | 1969-09-15 |
FI50256B (fr) | 1975-09-30 |
GB1196550A (en) | 1970-06-24 |
DE1911552A1 (de) | 1969-10-09 |
DE1911552B2 (de) | 1977-03-24 |
BE722918A (fr) | 1969-04-01 |
NL149545B (nl) | 1976-05-17 |
FI50256C (fi) | 1976-01-12 |
CH513985A (de) | 1971-10-15 |
ES359978A1 (es) | 1970-10-01 |
FR1603522A (fr) | 1971-05-03 |
DK120462B (da) | 1971-06-01 |
SE338442B (fr) | 1971-09-06 |
NO123158B (fr) | 1971-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2485761A (en) | Gray cast iron having improved properties | |
US2485760A (en) | Cast ferrous alloy | |
US4414027A (en) | Method for obtaining iron-based alloys allowing in particular their mechanical properties to be improved by the use of lanthanum, and iron-based alloys obtained by the said method | |
US3901690A (en) | Wear resistant alloy steels containing cb and one of ti, hf or zr | |
US3834950A (en) | Ferrous alloys | |
US3600159A (en) | Nodular cast iron containing silicon and vanadium | |
US2762705A (en) | Addition agent and process for producing magnesium-containing cast iron | |
US4071354A (en) | Master alloy for powders | |
US1910034A (en) | Pearlitic cast iron and method of producing the same | |
US2516524A (en) | White cast iron | |
US2610912A (en) | Steel-like alloy containing spheroidal graphite | |
CA1229508A (fr) | Methode de fabrication de pieces en fonte ductile tres resistante | |
US2749238A (en) | Method for producing cast ferrous alloy | |
US3198631A (en) | Medium duty, wear resistant machine element | |
US2494238A (en) | Method of making gray cast iron | |
US3623922A (en) | Alloy white cast iron | |
US2244517A (en) | Alloy | |
US2970902A (en) | Ductile iron | |
Alabi et al. | Production of Austempered Ductile Iron with Optimum Sulphur level for effective Mechanical Properties | |
US3282683A (en) | Superior white cast iron | |
US3677744A (en) | Age hardening stainless steel | |
US2438221A (en) | Method of making a hard facing alloy | |
US3146090A (en) | Process of producing nodular iron using group iii metal hydride | |
US1357549A (en) | Apparatus for high-temperature uses | |
US2761801A (en) | Gray cast iron and cylinder sleeve composed thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MEEHANITE WORLDWIDE CORPORATION, SOUTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEEHANITE METAL CORPORATION, A MO. CORP.;REEL/FRAME:004651/0769 Effective date: 19861212 Owner name: MEEHANITE WORLDWIDE CORPORATION, 112 CAROLINA COVE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MEEHANITE METAL CORPORATION, A MO. CORP.;REEL/FRAME:004651/0769 Effective date: 19861212 |