US3600159A - Nodular cast iron containing silicon and vanadium - Google Patents

Nodular cast iron containing silicon and vanadium Download PDF

Info

Publication number
US3600159A
US3600159A US712188A US3600159DA US3600159A US 3600159 A US3600159 A US 3600159A US 712188 A US712188 A US 712188A US 3600159D A US3600159D A US 3600159DA US 3600159 A US3600159 A US 3600159A
Authority
US
United States
Prior art keywords
vanadium
cast iron
silicon
carbides
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US712188A
Inventor
William H Moore
Walter E Gruver Jr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEEHANITE WORLDWIDE Corp
WALTER E GRUVER JR
Original Assignee
WALTER E GRUVER JR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WALTER E GRUVER JR filed Critical WALTER E GRUVER JR
Application granted granted Critical
Publication of US3600159A publication Critical patent/US3600159A/en
Assigned to MEEHANITE WORLDWIDE CORPORATION reassignment MEEHANITE WORLDWIDE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MEEHANITE METAL CORPORATION, A MO. CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B7/00Special arrangements or measures in connection with doors or windows
    • E06B7/16Sealing arrangements on wings or parts co-operating with the wings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05CBOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
    • E05C19/00Other devices specially designed for securing wings, e.g. with suction cups
    • E05C19/16Devices holding the wing by magnetic or electromagnetic attraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials

Definitions

  • Our invention relates to a heat resistant cast iron and, more particularly, to a cast iron containing nodular graphite and silicon and vanadium, in combination, to provide new and useful properties at elevated temperatures.
  • Our invention has as an object, the production of a relatively inexpensive cast iron alloy having good high temperature characteristics.
  • a further object is to provide a metal having a high mechanical strength at elevated temperatures in excess of 1200 F.
  • a further object is to provide a metal which is easily machinable at room temperatures and easily castable in conventional foundry molds.
  • a further object is to provide a metal which has superior resistance to oxidation, scaling and growth at elevated temperatures.
  • FIG. 1 is a photomicrograph at 100 diameters, of the alloy of this invention, showing nodular graphite and dispersed carbides in a pearlitic matrix;
  • FIG. 2 is a photomicrograph at 500 diameters, showing the cubic, randomly distributed carbides peculiar to the alloy of this invention.
  • high silicon cast irons are useful for service at elevated temperatures, because of their ability to resist oxidation and scaling and because they exhibit very little dimensional change or growth, when subjected to cyclic heating conditions at elevated temperatures in hostile atmospheric conditions. It is also recognized that these high silicon cast irons containing from 3.50% to 6.50% silicon or more, are extremely brittle at room temperature and, therefore, difficult to cast and fabricate into useful engineering shapes. It has been found that rendering graphite in these cast irons in the nodular form by suitable additions of nodularizing agents such as magnesium, imparts a considerably high degree of mechanical strength, such as, toughness and tensile strength, with additional minor benefits in the ability of the cast iron to perform at elevated temperatures.
  • vanadium renders this cast iron particularly stable, confers a higher tensile strength and hardness at these elevated temperatures, and in no way affects the castability and machinability of parts cast from this alloy.
  • Vanadium in cast iron has been recognized by those skilled in the art as a carbide former and hardener. In this direction, it is approximately two and one-half times more potent than chromium (another well known hardener used particularly where wear resistance is a factor). In lower silicon irons it is very difficult to prevent the formation of massive brittle carbides in cast iron, even where only relatively small quantities of vanadium, such as 25% or .50% are used. Vanadium additions, therefore, have been found to be limited in usefulness, because they can very easily render the cast iron non-machinable. As most industrial engineering components have to be machined as, for example, in the production of metalforming dies and supercharger parts, it has not previously been considered possible to utilize vanadium to any great extent in such engineering cast irons.
  • vanadium may be added to high silicon irons, particularly nodular irons, and that under the conditions set forth herein, excess vanadium is present as randomly distributed carbide particles, which do not affect machinability and which greatly enhance the mechanical properties at elevated temperatures.
  • nodular graphite cast iron of the following composition:
  • the carbon content must not be above 3.80%, because, under these conditions there is a definite tendency to form massive vanadium carbides rather than the dispersed cubic carbides, which are peculiar to the alloy of our invention. Similarly, we do not desire to have the carbon content lower than 2.80%, because of the adverse effect on castability of the alloy. Silicon content, for the purposes of good heat resistance, must be above 3.50% and to prevent excessive brittleness in the final product, we prefer to keep to a maximum silicon content of 5.00%.
  • vanadium contents in excess of 2% tend to produce more massive and uncontrolled carbides and serve no useful purpose in further improvement of the heat resistance for engineering cast irons.
  • test bars containing .75% vanadium at the same temperatures namely, 1200 F., 1400 F. and 1600 F., showed tensile strengths of 18,500 p.s.i., 12,500 p.s.i., and 6,300 p.s.i., respectively.
  • vanadium in amounts sufficient to produce the cubical carbides, give an increase of to 100% in Brinell hardnesses at elevated temperatures and it is probable that the increase in service behavior of dies made from this material, is associated with its improved hot hardness characteristics. Similar tests have been run using vanadium in conjunction with small quantities of molybdenum and tungsten and the same improved results have been found.
  • vanadium in the manufacture of the cast iron of our invention, we prefer to add vanadium as a vanadium carbon-bearing ferro alloy, because vanadium has an extremely high melting point and is difiicult to incorporate into the melt, if it does not contain carbon.
  • An improved heat resistant cast iron having a composition consisting essentially of 3.80% to 2.80% carbon, 3.50% to 5.00% silicon, 0.70% to 2.00% vanadium, a small but effective amount of a nodularizing agent and the balance iron; excess carbon being in the form of nodular graphite and randomly distributed, cubically shaped carbides, in a pearlitic matrix.
  • An improved heat resistant cast iron having a composition of 3.80% to 2.80% carbon, 3.50% to 5.00% silicon, 0.70% to 2.00% vanadium, a small but effective amount of a nodularizing agent and the balance iron; excess carbon being in the form of nodular graphite and randomly distributed, cubically shaped carbides, in a pearlitic matrix.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

AN IMPROVED CAST IRON PARTICULARLY ADAPTED FOR USE IN ARTICLES OCCUPYING A HIGH TEMPERATURE ENVIRONMENT AND COMPRISING ABOUT 3.50% TO 5.00% SILICON; ABOUT 0.70% TO 2.00% VANADIUM; AND ABOUT 2.80% TO 3.80% CARBON; THE GRAPHITE IN THE NODULAR FORM AND THE EXCESS CARBIDES ARE IN THE FORM OF RANDOMLY DISTRIBUTED, GENERALLY CUBICAL SHAPES, IN A PEARLITIC MATRIX.

Description

. w. H. MOORE ETIAL 3,600,159
Aug. 17, 1971 MODULAR CAST IRON CONTAINING SILICON AND VANADIUM Filed March 11, 1968 FIG. I
INVENTORS FIG United States Patent 015cc 3,600,159 Patented Aug. 17, 1971 US. Cl. 75--123 2 Claims ABSTRACT OF THE DISCLOSURE An improved cast iron particularly adapted for use in articles occupying a high temperature environment and comprising about 3.50% to 5.00% silicon; about 0.70% to 2.00% vanadium; and about 2.80% to 3.80% carbon; the graphite is in the nodular form and the excess carbides are in the form of randomly distributed, generally cubical shapes, in a pearlitic matrix.
Our invention relates to a heat resistant cast iron and, more particularly, to a cast iron containing nodular graphite and silicon and vanadium, in combination, to provide new and useful properties at elevated temperatures.
Industrial engineering machinery is being increasingly subject to more exacting service conditions. In metal forming of such exotic metals as titanium, for example, it is necessary to provide dies which can be used at temperatures ranging from 1200 to 2000 F., as titanium can only be worked effectively in this temperature range. In parts such as supercharges for combustion engines, turboengines, and the like, parts have to withstand heavy mechanical loads at elevated temperatures and must be resistant to thermal creep. This need has led to the development of many heavily alloyed cast irons and steels, which are extremely difficult to cast and to machine and which are very expensive to use.
Our invention has as an object, the production of a relatively inexpensive cast iron alloy having good high temperature characteristics.
A further object is to provide a metal having a high mechanical strength at elevated temperatures in excess of 1200 F.
A further object is to provide a metal which is easily machinable at room temperatures and easily castable in conventional foundry molds.
A further object is to provide a metal which has superior resistance to oxidation, scaling and growth at elevated temperatures.
Other objects of this invention will be apparent on reading the specification and drawings, in which:
FIG. 1 is a photomicrograph at 100 diameters, of the alloy of this invention, showing nodular graphite and dispersed carbides in a pearlitic matrix; and
FIG. 2 is a photomicrograph at 500 diameters, showing the cubic, randomly distributed carbides peculiar to the alloy of this invention.
It is a well known fact that high silicon cast irons are useful for service at elevated temperatures, because of their ability to resist oxidation and scaling and because they exhibit very little dimensional change or growth, when subjected to cyclic heating conditions at elevated temperatures in hostile atmospheric conditions. It is also recognized that these high silicon cast irons containing from 3.50% to 6.50% silicon or more, are extremely brittle at room temperature and, therefore, difficult to cast and fabricate into useful engineering shapes. It has been found that rendering graphite in these cast irons in the nodular form by suitable additions of nodularizing agents such as magnesium, imparts a considerably high degree of mechanical strength, such as, toughness and tensile strength, with additional minor benefits in the ability of the cast iron to perform at elevated temperatures.
We have discovered that the addition of vanadium to high silicon cast iron containing nodular graphite, produces a new and unexpected metallurgical structure and new and unexpected improvement in the ability of this iron to perform satisfactorily at temperatures in the range of 1200 F. to 2000 F. We have found that vanadium renders this cast iron particularly stable, confers a higher tensile strength and hardness at these elevated temperatures, and in no way affects the castability and machinability of parts cast from this alloy.
Vanadium in cast iron has been recognized by those skilled in the art as a carbide former and hardener. In this direction, it is approximately two and one-half times more potent than chromium (another well known hardener used particularly where wear resistance is a factor). In lower silicon irons it is very difficult to prevent the formation of massive brittle carbides in cast iron, even where only relatively small quantities of vanadium, such as 25% or .50% are used. Vanadium additions, therefore, have been found to be limited in usefulness, because they can very easily render the cast iron non-machinable. As most industrial engineering components have to be machined as, for example, in the production of metalforming dies and supercharger parts, it has not previously been considered possible to utilize vanadium to any great extent in such engineering cast irons.
We have found that vanadium may be added to high silicon irons, particularly nodular irons, and that under the conditions set forth herein, excess vanadium is present as randomly distributed carbide particles, which do not affect machinability and which greatly enhance the mechanical properties at elevated temperatures. We
prefer to use a nodular graphite cast iron of the following composition:
Percent Total carbon 2.803.80 Silicon 3.505.00 Manganese 0.20-1.50 Sulphur .025 Phosphorus 10 Vanadium 0.702.00
We do not wish to be limited to any particular composition, with respect to elements such as manganese, sulphur, and phosphorus, which are in the limits normal for cast iron; however, it is natural that, in the case of a nodular cast iron, sulphur content will be low and, in the case of an iron to be used for heat resistance, the phosphorus content will be kept similarly low, to avoid melting out of low melting point phosphides under service conditions. Also, elements such as nickel, copper, tungsten, molybdenum, etc., may be used where certain special effects are desired.
The important feature of our alloy is that the carbon content must not be above 3.80%, because, under these conditions there is a definite tendency to form massive vanadium carbides rather than the dispersed cubic carbides, which are peculiar to the alloy of our invention. Similarly, we do not desire to have the carbon content lower than 2.80%, because of the adverse effect on castability of the alloy. Silicon content, for the purposes of good heat resistance, must be above 3.50% and to prevent excessive brittleness in the final product, we prefer to keep to a maximum silicon content of 5.00%.
We have found that vanadium contents of less than .70%, while useful to heat resistance, do not produce the preferred metallurgical structure containing dispersed cubic carbides, which we feel go hand-in-hand with the improved behavior at high temperatures of the alloy of our invention. We do not know the reason why these carbides are beneficial, except perhaps that, like any carbides they do increase the overall hardness of the metal at high temperatures and their peculiar shape has no effect on either machinability or impact strength, which are both important considerations. It is also very likely that the presence of these carbides indicates a matrix fully saturated with vanadium and having a much higher yield, tensile strength and hardnessparticularly at elevated temperatures. We have found that vanadium contents in excess of 2% tend to produce more massive and uncontrolled carbides and serve no useful purpose in further improvement of the heat resistance for engineering cast irons. The effect of a higher vanadium content on reducing machinability and providing a tendency for brittleness, and the additional high cost of such an alloy, make it impractical to use in amounts above 2%.
As an example of the product of our invention, we prepared a heat having the following analysis:
Percent Total carbon 3.00 Silicon 4.06 Manganese .47 Phosphorus .03 Sulphur .015 Magnesium .035 Vanadium 0.75
The presence of magnesium was necessary for nodularization and the melt was cast into test bars, which were subsequently machined and tested for tensile strength at elevated temperatures.
At the same time we cast a similar alloy having the same bath composition, but without any vanadium being present. The test bars without vanadium were tested for tensile strength on a short-time basis at 1200 F., 1400 F. and 1600 F. These strengths were 9,600 p.s.i., 6,000 p.s.i. and 4,500 p.s.i.
The test bars containing .75% vanadium at the same temperatures; namely, 1200 F., 1400 F. and 1600 F., showed tensile strengths of 18,500 p.s.i., 12,500 p.s.i., and 6,300 p.s.i., respectively.
This shows the remarkable effect of vanadium in increasing tensile strength at elevated temperatures. The structure of the alloy containing the .75 vanadium comprised a fully pearlitic matrix with nodular graphite and contained small cubic particles of vanadium carbide, as illustrated in FIG. 1 of the specification. These results of our alloy containing .75% vanadium compare very favorably with more expensive heat resistant steels and expensive, highly alloyed cast irons containing nickel contents above 14%. A similar cast was made into a die for hot-forming titanium. This die machined very readily and, when placed into service, gave a improved life over high silicon cast iron not containing vanadium, previously used for the same purpose.
We have also found that the presence of vanadium in amounts sufficient to produce the cubical carbides, give an increase of to 100% in Brinell hardnesses at elevated temperatures and it is probable that the increase in service behavior of dies made from this material, is associated with its improved hot hardness characteristics. Similar tests have been run using vanadium in conjunction with small quantities of molybdenum and tungsten and the same improved results have been found. In the manufacture of the cast iron of our invention, we prefer to add vanadium as a vanadium carbon-bearing ferro alloy, because vanadium has an extremely high melting point and is difiicult to incorporate into the melt, if it does not contain carbon.
We find that no essential difference in behavior of our alloy occurs when the nodularity is produced by different means, such as adding nickel, magnesium; magnesium ferrosilicon; injecting pure magnesium; using cerium magnesium calcium alloy, etc. We feel that the improved properties of our alloy are essentially due to the presence of vanadium in the matrix in combination with a silicon content of above 3.50% and the presence also of excess vanadium in the form of small, cubical, randomly distributed carbides in the matrix.
Although we have described our invention in its preferred form with a ceratin degree of particularity, it is understood that the present disclosure of the preferred form has been made only by way of example and that numerous changes in the details of the process, modifications in the steps undertaken, and variations in the materials used, may be resorted to, without departing from the spirit and the scope of the invention as hereinafter claimed.
What is claimed is:
1. An improved heat resistant cast iron having a composition consisting essentially of 3.80% to 2.80% carbon, 3.50% to 5.00% silicon, 0.70% to 2.00% vanadium, a small but effective amount of a nodularizing agent and the balance iron; excess carbon being in the form of nodular graphite and randomly distributed, cubically shaped carbides, in a pearlitic matrix.
2. An improved heat resistant cast iron having a composition of 3.80% to 2.80% carbon, 3.50% to 5.00% silicon, 0.70% to 2.00% vanadium, a small but effective amount of a nodularizing agent and the balance iron; excess carbon being in the form of nodular graphite and randomly distributed, cubically shaped carbides, in a pearlitic matrix.
References Cited UNITED STATES PATENTS 2,158,105 5/1939 Burgess 123R 2,781,284 2/1957 Borneman 75l23R 3,411,957 11/1968 Kiyoshi Takashi 75-123R HYLAND BIZOT, Primary Examiner US. Cl. X.R. 75123
US712188A 1968-03-11 1968-03-11 Nodular cast iron containing silicon and vanadium Expired - Lifetime US3600159A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US71218868A 1968-03-11 1968-03-11

Publications (1)

Publication Number Publication Date
US3600159A true US3600159A (en) 1971-08-17

Family

ID=24861100

Family Applications (1)

Application Number Title Priority Date Filing Date
US712188A Expired - Lifetime US3600159A (en) 1968-03-11 1968-03-11 Nodular cast iron containing silicon and vanadium

Country Status (12)

Country Link
US (1) US3600159A (en)
BE (1) BE722918A (en)
CH (1) CH513985A (en)
DE (1) DE1911552B2 (en)
DK (1) DK120462B (en)
ES (1) ES359978A1 (en)
FI (1) FI50256C (en)
FR (1) FR1603522A (en)
GB (1) GB1196550A (en)
NL (1) NL149545B (en)
NO (1) NO123158B (en)
SE (1) SE338442B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4982514A (en) * 1972-12-16 1974-08-08
US4435226A (en) 1981-12-01 1984-03-06 Goetze Ag Wear resistant cast iron alloy with spheroidal graphite separation and manufacturing method therefor
WO1984002925A1 (en) * 1983-01-24 1984-08-02 Ford Werke Ag Method of making ductile cast iron with improved strength
US4484953A (en) * 1983-01-24 1984-11-27 Ford Motor Company Method of making ductile cast iron with improved strength
US6342181B1 (en) 2000-03-17 2002-01-29 The Curators Of The University Of Missouri Corrosion resistant nickel-based alloy
CN102688993A (en) * 2012-06-19 2012-09-26 西峡县众德汽车部件有限公司 Application of Sb element in high-strength nodular cast iron tile cover
DE10252240B4 (en) * 2001-05-16 2014-03-27 Aisin Takaoka Co., Ltd. Ferrite nodular cast iron and its use in an exhaust system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9200615A (en) * 1992-02-18 1993-08-24 Cofap NODULAR CAST IRON AND PROCESS OF OBTAINING NODULAR CAST IRON

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4982514A (en) * 1972-12-16 1974-08-08
JPS5343126B2 (en) * 1972-12-16 1978-11-17
US4435226A (en) 1981-12-01 1984-03-06 Goetze Ag Wear resistant cast iron alloy with spheroidal graphite separation and manufacturing method therefor
WO1984002925A1 (en) * 1983-01-24 1984-08-02 Ford Werke Ag Method of making ductile cast iron with improved strength
US4484953A (en) * 1983-01-24 1984-11-27 Ford Motor Company Method of making ductile cast iron with improved strength
US6342181B1 (en) 2000-03-17 2002-01-29 The Curators Of The University Of Missouri Corrosion resistant nickel-based alloy
DE10252240B4 (en) * 2001-05-16 2014-03-27 Aisin Takaoka Co., Ltd. Ferrite nodular cast iron and its use in an exhaust system
DE10252240C5 (en) * 2001-05-16 2019-04-18 Aisin Takaoka Co., Ltd. Ferrite nodular cast iron and its use in an exhaust system
CN102688993A (en) * 2012-06-19 2012-09-26 西峡县众德汽车部件有限公司 Application of Sb element in high-strength nodular cast iron tile cover

Also Published As

Publication number Publication date
DE1911552A1 (en) 1969-10-09
FI50256C (en) 1976-01-12
NL149545B (en) 1976-05-17
ES359978A1 (en) 1970-10-01
CH513985A (en) 1971-10-15
BE722918A (en) 1969-04-01
GB1196550A (en) 1970-06-24
SE338442B (en) 1971-09-06
NL6902042A (en) 1969-09-15
FR1603522A (en) 1971-05-03
DE1911552B2 (en) 1977-03-24
NO123158B (en) 1971-10-04
DK120462B (en) 1971-06-01
FI50256B (en) 1975-09-30

Similar Documents

Publication Publication Date Title
US2485761A (en) Gray cast iron having improved properties
US2485760A (en) Cast ferrous alloy
US4414027A (en) Method for obtaining iron-based alloys allowing in particular their mechanical properties to be improved by the use of lanthanum, and iron-based alloys obtained by the said method
US3901690A (en) Wear resistant alloy steels containing cb and one of ti, hf or zr
US3600159A (en) Nodular cast iron containing silicon and vanadium
US3834950A (en) Ferrous alloys
US2762705A (en) Addition agent and process for producing magnesium-containing cast iron
US4071354A (en) Master alloy for powders
US1910034A (en) Pearlitic cast iron and method of producing the same
US2516524A (en) White cast iron
US2610912A (en) Steel-like alloy containing spheroidal graphite
CA1229508A (en) Method of making high strength ferritic ductile iron parts
US2749238A (en) Method for producing cast ferrous alloy
US3198631A (en) Medium duty, wear resistant machine element
US2244517A (en) Alloy
US2970902A (en) Ductile iron
Alabi et al. Production of Austempered Ductile Iron with Optimum Sulphur level for effective Mechanical Properties
US3623922A (en) Alloy white cast iron
US3282683A (en) Superior white cast iron
US3677744A (en) Age hardening stainless steel
US2038639A (en) Method of producing castings
US2438221A (en) Method of making a hard facing alloy
JPH09157805A (en) High strength iron base sintered alloy
US1357549A (en) Apparatus for high-temperature uses
US2761801A (en) Gray cast iron and cylinder sleeve composed thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEEHANITE WORLDWIDE CORPORATION, SOUTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEEHANITE METAL CORPORATION, A MO. CORP.;REEL/FRAME:004651/0769

Effective date: 19861212

Owner name: MEEHANITE WORLDWIDE CORPORATION, 112 CAROLINA COVE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MEEHANITE METAL CORPORATION, A MO. CORP.;REEL/FRAME:004651/0769

Effective date: 19861212