US3597297A - Synthetic turf material and method of making same - Google Patents
Synthetic turf material and method of making same Download PDFInfo
- Publication number
- US3597297A US3597297A US739788A US3597297DA US3597297A US 3597297 A US3597297 A US 3597297A US 739788 A US739788 A US 739788A US 3597297D A US3597297D A US 3597297DA US 3597297 A US3597297 A US 3597297A
- Authority
- US
- United States
- Prior art keywords
- base layer
- fabric
- fibers
- turf
- surfacing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title description 21
- 238000004519 manufacturing process Methods 0.000 title 1
- 239000004744 fabric Substances 0.000 abstract description 43
- 239000000835 fiber Substances 0.000 abstract description 29
- 239000000853 adhesive Substances 0.000 abstract description 16
- 230000001070 adhesive effect Effects 0.000 abstract description 16
- 229920002635 polyurethane Polymers 0.000 abstract description 13
- 239000004814 polyurethane Substances 0.000 abstract description 13
- 239000000758 substrate Substances 0.000 abstract description 13
- 238000011084 recovery Methods 0.000 abstract description 9
- 230000006835 compression Effects 0.000 abstract description 6
- 238000007906 compression Methods 0.000 abstract description 6
- 239000007787 solid Substances 0.000 abstract description 6
- 238000007373 indentation Methods 0.000 abstract description 5
- 239000011541 reaction mixture Substances 0.000 description 17
- 239000000945 filler Substances 0.000 description 15
- -1 chlorophenylene 2,4-diisocyanate Chemical compound 0.000 description 13
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 11
- 239000000203 mixture Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 229920001971 elastomer Polymers 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 229920005862 polyol Polymers 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 5
- 239000000806 elastomer Substances 0.000 description 5
- 229920001778 nylon Polymers 0.000 description 5
- 229920001281 polyalkylene Polymers 0.000 description 5
- 239000005056 polyisocyanate Substances 0.000 description 5
- 229920001228 polyisocyanate Polymers 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000004677 Nylon Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000010426 asphalt Substances 0.000 description 4
- 230000000386 athletic effect Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- 239000004816 latex Substances 0.000 description 4
- 229920000126 latex Polymers 0.000 description 4
- 150000003077 polyols Chemical class 0.000 description 4
- 229920003225 polyurethane elastomer Polymers 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229920000768 polyamine Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 239000010451 perlite Substances 0.000 description 2
- 235000019362 perlite Nutrition 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- XTFIVUDBNACUBN-UHFFFAOYSA-N 1,3,5-trinitro-1,3,5-triazinane Chemical compound [O-][N+](=O)N1CN([N+]([O-])=O)CN([N+]([O-])=O)C1 XTFIVUDBNACUBN-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- AKCRQHGQIJBRMN-UHFFFAOYSA-N 2-chloroaniline Chemical compound NC1=CC=CC=C1Cl AKCRQHGQIJBRMN-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229920001875 Ebonite Polymers 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DJOWTWWHMWQATC-KYHIUUMWSA-N Karpoxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1(O)C(C)(C)CC(O)CC1(C)O)C=CC=C(/C)C=CC2=C(C)CC(O)CC2(C)C DJOWTWWHMWQATC-KYHIUUMWSA-N 0.000 description 1
- 208000018982 Leg injury Diseases 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical class [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- BJXXCOMGRRCAGN-CLFAGFIQSA-N [2,2-bis(hydroxymethyl)-3-[(z)-octadec-9-enoyl]oxypropyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(CO)(CO)COC(=O)CCCCCCC\C=C/CCCCCCCC BJXXCOMGRRCAGN-CLFAGFIQSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000015496 breakfast cereal Nutrition 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000021384 green leafy vegetables Nutrition 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- MSYUMXXVCSLXMR-UHFFFAOYSA-N phenylmercury;hydrate Chemical compound O.[Hg]C1=CC=CC=C1 MSYUMXXVCSLXMR-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000009732 tufting Methods 0.000 description 1
- 229940124543 ultraviolet light absorber Drugs 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000001052 yellow pigment Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C13/00—Pavings or foundations specially adapted for playgrounds or sports grounds; Drainage, irrigation or heating of sports grounds
- E01C13/08—Surfaces simulating grass ; Grass-grown sports grounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/23907—Pile or nap type surface or component
- Y10T428/23979—Particular backing structure or composition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249986—Void-containing component contains also a solid fiber or solid particle
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2922—Nonlinear [e.g., crimped, coiled, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31554—Next to second layer of polyamidoester
Definitions
- This invention relates to novel very soft elastomeric materials containing large voids, to synthetic turf material utilizing the same as an integral component thereof, and to a method for preparing the same. More particularly the invention relates to synthetic turf materials which utilize very low durometer polyurethane elastomers containing voids, which may be formed by crushing of relatively large frangible fillers contained therein as a base layer.
- Such constructions suffer from several shortcomings, one of which is difficulty of adhesion to many substrates, particularly natural soils or gravel; the most serious shortcoming is the stiffness or hardness of the surface, even though covered by tufted fibers.
- the problem is particularly severe where outdoor surfacing is desired because, in order to minimize absorption of water, the base foam is disclosed as being of a closed cell structure.
- Chemically blown closed cell foams of this type have a stiffness which is unwanted in the base layer of a turf type surfacing. Because of the difficulty of applying the base layers to asphalt or other substrates by means of Water or solvent based adhesives, it has become the actual practice to mechanically hold the surfacing in place. This is usually done by fastening the edges of the surfacing into trenches along the edges of the field to hold the surfacing tightly over the field.
- turf type surfacing is provided with an extremely soft yet resilient 3,597,297 Patented ug. 3, 1971 elastomeric base layer of a crosslinked polyurethane having Shore A2 durometers in the range of 5 to 40.
- These base materials are capable of being pushed down to onethird or less of their original volume by finger pressures, and exhibit a gradual but substantially full recovery over a period of 2 to 20 seconds and preferably 5 to l5 seconds after the application of such pressure.
- the resilient base layer is formed from a castable liquid material ⁇ which can be poured and cured in place on any suitable substrate such as concrete, asphalt, conventional flooring materials, and the like.
- the reaction mixture contains a frangible preferably hollow filler which is crushed after cure of the reaction mixture.
- the finished turf surfaced material is formed by coating the soft base layer with additional liquid polyurethane material which functions as an adhesive to secure a top turf type surfacing to the base.
- the turf surfacing is a stretchable open fabric which may be either a woven, non-woven, or preferably a knitted backing to which fibers are secured. Knitted fabrics which are stretchable by virtue of their construction are prferred, but fabrics formed from elastic bers can be substituted.
- the open backed pile fabric is pressed into the reaction mixture while it is still liquid so that the reaction mixture penetrates the fabric portion of the pile material. The porous fabric and the lower ends of the pile fibers thus become embedded in the curing polyurethane mixture.
- the finished synthetic turf has an improved softness such that it is possible t0 jump with the full weight of ones body on the knees without shock or injury to the knees or legs.
- the synthetic turf of this invention minimizes leg injuries, which have become an increasing problem for athletes.
- the finished surfacing is very soft, it is durable and can withstand the action of cleated or spiked shoes during rough athletic play in addition to being weather resistant. Because of the dead soft or slow recovery characteristic of the substrate layer, a quality similar to natural, which yields and receives a permanent impression, is provided.
- Synthetic turfs having a truly elastic recovery tend to be too rubbery to the extent that they work back against the action of cleats or shoes, thus producing an unwanted springiness.
- the substrate of this invention has the ability to yield a great amount and remain deformed for a period of time, thus resembling natural soils, but also has the ability to gradually recover its original shape over a period of seconds.
- FIG. 1 is a cross-sectional view illustrating the crushing step in the preferred mode of forming the base layer 0f this invention.
- FIG. 2 is a cross-sectional view of the finished synthetic turf construction of this invention.
- a base layer 10 preferably formed by pouring a liquid polyurethane-forming reaction mixture onto a solid substrate 12, which is preferably asphalt or concrete, and curing the same in situ to a solid state.
- Base layer 10 contains a frangible filler 14 which is crushed by means of any suitable device 16 for applying high localized pressures to the base layer. After crushing of the filler 14, voids 18 are provided in the base layer.
- the finished surface is provided by adhering a pile fabric 20 to the top of the base layer 10.
- Pile fabric 20 consists of an open base fabric 22 and a pile fabric 24 which simulates natural turf.
- the pile fabric 20 is adhered to base layer 10 by means of an adhesive 26 which uniformly coats the base layer 10 and penetrates the backing fabric 22 and preferably also surrounds the lower ends of the fibers 24.
- the resilient base layer for the surfacing of the present invention is formed from pourable liquid reaction mixtures of organic polyisocyanates and coreactive materials which contain active hydrogen atoms (as determined by the well-known Zerewitinoff method), said coreactants being preferably organic polyols or blends of organic polyols and organic polyamines which contain a catalyst, if necessary, so that the reaction mixture will harden from a liquid state to a solid elastomeric state under ambient temperatures and pressures.
- the reaction mixtures contain approximately equivalent quantities, i.e., 0.7:l to about 1.2:1 of isocyanate groups to active hydrogens.
- the preferred reaction mixtures react rapidly at ambient temperatures so that within an hour or less the liquid mixture has cured to a slump resistant state.
- the reaction mixture is mixed shortly before casting.
- Known proportioning and mixing equipment is preferably used for mixng the components and dispensing the reaction mixture.
- the preferred polyisocyanates are aromatic diisocyanates such as toluene diisocyanate, diphenylmethane diisocyanate, or chlorophenylene 2,4-diisocyanate. It will be apparent to those skilled in the art, however, that aliphatic, cycloaliphatic, or heterocyclic polyisocyanates or mixtures thereof can be substituted.
- the preferred coreactant for the polyisocyanate is a polyalkylene ether polyol, preferably a polypropylene ether glycol either alone or mixed with an aromatic polyamine such as 4,4methylene bis 2-chloroaniline (MOCA).
- aromatic polyamine such as 4,4methylene bis 2-chloroaniline (MOCA).
- Small amounts of other polyols such as polyester polyols or polyether ester polyols can be substituted, but these are not preferred because of the greater hydrolyzin'g tendencies of the resulting polymers.
- the preferred catalysts are soluble metal compounds, for example, mercury, lead, or tin salts of carboxylic acids or organo tin compounds.
- the preferred catalysts are organo rnercuric compounds such as phenyl mercurio acetate or phenyl mercuric hydroxide.
- the reaction mixture preferably contains at least 0.05% by weight of such a catalyst, or more as desired to produce the desired rapid ambient temperature cure rate.
- the hardness of the rubber is controlled within the 5 to 40 Shore A-2 durometer range by adding to the reaction mixture predetermined amounts of a chain terminating agent such as butyl Cellulose (mono-butyl ether of ethylene glycol), butyl carbitol (mono-butyl ether of diethylene glycol), oleyl alcohol, ethylene glycol monoethyl ether, or similar mono-functional alcohols.
- a chain terminating agent such as butyl Cellulose (mono-butyl ether of ethylene glycol), butyl carbitol (mono-butyl ether of diethylene glycol), oleyl alcohol, ethylene glycol monoethyl ether, or similar mono-functional alcohols.
- a chain terminating agent such as butyl Cellulose (mono-butyl ether of ethylene glycol), butyl carbitol (mono-butyl ether of diethylene glycol), oleyl alcohol, ethylene glycol monoethyl
- the preferred frangible filler for forming the voidcontaining base layer is perlite.
- Other suitable materials are frangible hollow glass or plastic beads, expanded vermiculite, or even breakfast cereals.
- inorganic low density frangible llers are preferred in order to optimize the weather stability and fungal resistance of the structure.
- 'Ihe frangible filler preferably is a diameter range between about 1&6 and 1A, inch.
- the elastomer can also in addition contain some voids of a smaller size if desired. In practice such voids usually result from the entrainment of air with ya crushable filler, from CO2 generation due to moisture in the reaction mixture, or both.
- the finished base layer should contain between about and 75 percent by volume of voids. Optimum results have been obtained in the to 45 percent range.
- the optimum void fraction will vary slightly among various systems of the invention depending on the size distribution of the voids, and the deformation characteristics of the elastomer. It appears that voids which are partially or slightly interconnected so that a bellows-type effect is achieved during localized compression of the elastomer are preferable because this bellows effect seems to contribute to the slow regain characteristic of the material by damping of the elastic recovery speed of the elastomer.
- a device which produces suicient localized pressure to cause thorough crushing of the filler can be used.
- hammering or rolling devices can be employed so long as the polymer is not torn or otherwise injured.
- One suitable device is a weighted machine resemblng an agricultural disc in which the discs are blunt edged rather than sharp.
- the polymer When the voids are made in the material by means of a frangible filler, it is preferred that the polymer contain an anti-settling agent.
- agents include finely divided materials, for example, finely divided silica or clays commercially available for this purpose, but we prefer to use small diameter, short asbestos fibers. Such agents provide thixotropy to the system and thus prevent floating of .the filler in the resin and assure a uniform distribution of voids in the base layer.
- the tufted fabric ⁇ applied to form the top surface should also be of a highly stretchable nature.
- the fabric backing to which the fibers are attached must be capable of fiexing with the substrate.
- the preferred backing fabric is a circular knit polyester (preferably polyethylene terephthalate) fabric to which the grass simulating fibers are secured, preferably by looping.
- Other fibers or yarns can be used for forming the knitted fabric.
- nylon, polypropylene, rayon, or other fabrics can be substituted.
- the projecting fibers should be formed from durable weather resistant fibers, such as nylon, polypropylene, polyesters, or similar tough fibers can be used.
- the fibers are crimped to provide resilience and matting resistance to the tufted surface.
- the fibers can be dyed any desired color, but green is usually preferred to simulate grass. It will Ibe apparent that any dyes used should be color fast under weather exposure conditions. Ultraviolet light absorbers may also be added to the fibers as needed.
- the fabric backing for the pile material be capable of stretching at least 50% in any direction. Most of this stretchability is provided by the manner in which the fabric is knitted.
- the preferred fabrics are capable of elongation of at least in at least one direction. Fabrics which do not elongate suitably have a tendency to act like a tightly stretched trarnpoline, and thus would lower the shock absorbing effect of the base layer.
- the pile fibers be apparently unoriented in the pile fabric, as fibers which are arranged in a regular or directional pattern tend to give an unwanted directionality to the response of the surface to balls, etc., bouncing or rolling thereon. Even distribution of crimped fibers of circular cross section has been found to provide such apparently unoriented piles.
- the base layer should have a thickness of no less than 1A inch, and preferably ⁇ at least 1/2 inch.
- the quality that appears unique about the base layers of the present invention is that they are Visco-elastic in that they provide a retardation to impulse which is not purely elastic (Le. proportional to deformation), but which is also partly viscous (i.e. proportional also to the rate of deformation).
- the base layer provides a deceleration rate which is much more nearly uniform than that provided by elastic substrates.
- the base layers of this invention have a coefficient of restitution in the range of 0.05 to 0.3 when using a 1 oz. steel weight dropped from a 16-inch drop height onto the surface.
- the coeflicient of restitution is a measure of the amount of energy returned to a falling object when it strikes the material. A coeicient of 1.00 would indicate 100% of the energy was returned and 0.00 would indicate no energy was returned. A preferred balance of strength and kinetic properties has been found to occur in materials which have a coefiicient of restitution between 0.1 to 0.2, although the noted broader range is generally useful.
- the room temperature Shore A2 hardness of the base layer resin (without voids or fillers) material should be in the extremely low range of 5 to 40. The optimum hardness range has been found to be about a Shore A2 hardness of to 25.
- the polymer used to bond the fabric to the base layer is preferably also a two-part polyurethane resin system of the type described above. It may be preferable to add an organic polyamine such as MOCA to improve the toughness and cut growth resistance of the polymer.
- Latex or solvent type adhesive can be substituted for applications where the surfacing is not anticipated to undergo severe use, but the two part solventfree systems are greatly preferred for athletic surfacing.
- the adhesive should be applied as a continuous impermeable layer. Because of the somewhat porous nature of the base layer, the adhesive serves as a sealant for the top of the base layer in addition to functioning as an adhesive to secure the pile fabric to the base layer.
- the surfacing can be prepared by in-plant formation of a composite base layer to which the pile fabric is adhered as described above.
- Such a lcomposite. can later be applied to the rigid substrate by casting a relatively thin layer of adhesive, preferably a 100% solids urethane reaction mixture of the same type from which the base layer is formed.
- This alternative procedure is particularly advantageous when the surfacing is applied to relatively small areas, for example golf greens or tee areas, patios, or the like, where it would be impractical to utilize bulky crushing equipment.
- the crushing step can be accomplished in the r suppliers plant.
- pile fabric as used herein we mean to include fabrics to which upstanding fibers are secured by looping, ocking, tufting, etc.
- Asbestos fibers 10 to 35 mesh (Rotap screen analysis) 25,500 cm.2/ gm. surface area by Dyckerhoff system 0.25 Ethylene glycol monoethylene ether (ethyl Cellosolve) 2.10 Phenyl mercurio acetate 0.15
- Part B The following ingredients, designated as Part B were mixed separately:
- a mixture of eleven parts B and one hundred parts A to be used as an adhesive was then spread over the cured, soft base at a rate of grams per square foot.
- the fiber pile top fabric was pressed into place so that the curing elastomer mixture wetted the backing fabric and that portion of the pile fibers in contact with the backing, thus providing a secure, tenacious bond upon completion of curing.
- the fiber pile top fabric consisted of a cut crimped nylon pile, 1/2 inch in height, placed into a knitted polyester backing having a total weight of approximately 2.2 pounds per square yard.
- the individual nylon bers were 2 inches long, circular in cross section, heat set crimped with 8 crimps per inch, so that their length after crimping was about 1 inch, weather resistant, and approximately 50 denier.
- the backing is made from 440 denier filament polyethylene terephthalate which is circularly knitted on a Wildman Co. knitting machine modified so as to include pile liber in the stitches.
- the nylon fibers were looped around the backing fibers with each end forming part of the pile.
- the pile fabric was lightly coated. on the back side with an acrylic latex to improve the dimensional stability and handleability of the fabric. The coating was light enough to just coat the fibers of the backing without closing off the spaces between the bers.
- the physical properties of the construction were tested and found to have the following values:
- the base was found to have an elongation at break according to ASTM Test D-41261T of 137%, a compression modulus measured according to ASTM Test D-575-46 at a strain rate of 20 inches per minute of 3.17 p.s.i. for 10% compres sion and 40 p.s.i. for 50% compression, a coefficient of restitution as previously described of 0.13, and was found not to support the growth of fungi.
- the completed surfacing was tested by means of a National Bureau of Standards machine described in volume 29 of the Journal of Research which was modified to simulate the action of football shoes.
- One pulley was used having 50 cleats mounted thereon in three circumferential rows.
- Each cleat was made of a hard rubber and had a rounded point of 3/16 inch radius, which flares out to a radius of 3/8 inch at its base..
- the topped base distance is three-quarter inch.
- the surfacing was subjected to 30,000 turntable revolutions. Negligible fiber loss was observed. The fibers were slightly matted in the direction of rotation, but gentle hand brushing restored the pile to substantially its original height. No loss of adhesion between the base and top was observed, and no damage was observed in the base layer after 30,000 revolutions.
- An improved synthetic turf comprising a soft elastomeric polyurethane base layer containing from about 15 to 75% voids by volume and a top layer of liexible pile fabric, an elastomeric adhesive securing said top layer and said base layer to one another, said base layer having Visco-elastic properties, being capable of slow,
- a method for forming a synthetic turf which comprises (a) forming a base layer of soft Visco-elastic polyurethane elastomer containing from to 75% by volume of frangible particulate ller, (b) subjecting the base layer to compressive forces crushing said filler, and
- polyurethane elastomer is a cross-linked polyalkylene ether based polyurethane.
- An improved synthetic turf comprising a soft elastomeric cross-linked polyalkylene ether based polyurethane base layer containing from about 15 to 75% voids by volume and a top layer of flexible pile fabric capable of limited stretching in any direction, an elastomeric adhesive securing said top layer and said base layer to one another, said base layer having Visco-elastic properties, being capable of slow, gradual and substantially complete recovery from indentation under 4finger pressure in a period of about 2 to 20 seconds, and having a Shore A2 scale durometer in the range of 5 to 40 with a coecient of restitution in the range of 0.05 t0 0.3 when a l-ounce steel weight is dropped thereon from a 16-inch height.
- An improved synthetic turf comprising a soft elastomeric cross-linked polyalkylene ether based polyurethane base layer containing from about 15 to 75 voids by volume and a top layer of flexible pile fabric capable of limited stretching in any direction, an elastomeric polyurethane adhesive securing said top layer and said base layer to one another, said base layer having Visco-elastic properties, being capable of slow, gradual and substantially complete recovery from indentation under nger pressure in a period of about 2 to 20 seconds, and having a Shore A2 scale durometer in the range of 5 to 40 with a coecient of restitution in the range of 0.05 to 0.3 when a l-ounce steel weight is dropped thereon from a l6-inch height.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Civil Engineering (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Road Paving Structures (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US73978868A | 1968-06-25 | 1968-06-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3597297A true US3597297A (en) | 1971-08-03 |
Family
ID=24973779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US739788A Expired - Lifetime US3597297A (en) | 1968-06-25 | 1968-06-25 | Synthetic turf material and method of making same |
Country Status (9)
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3816197A (en) * | 1969-10-17 | 1974-06-11 | Energy Conversion Devices Inc | Film deposited semiconductor devices |
US3833454A (en) * | 1972-05-11 | 1974-09-03 | Northern Fibre Prod Co | Reinforced foam plastic seat bun and method of molding same |
US4042743A (en) * | 1970-06-11 | 1977-08-16 | Uniroyal, Inc. | Compressible offset printing blanket |
US4112176A (en) * | 1974-07-08 | 1978-09-05 | U.S. Rubber Reclaiming Co., Inc. | Ground rubber elastomeric composite useful in surfacings and the like, and methods |
US4218505A (en) * | 1976-04-01 | 1980-08-19 | Toyo Cloth Co., Ltd. | Production of polyurethane-split leather laminate |
US4268551A (en) * | 1979-10-24 | 1981-05-19 | Cavalier Carpets | Artificial grass surface and method of installation |
US4347844A (en) * | 1980-01-10 | 1982-09-07 | Kao Soap Co., Ltd. | Porous sheet and process for preparation thereof |
US4810560A (en) * | 1987-12-08 | 1989-03-07 | Jox Corporation | Batting box |
US5356344A (en) * | 1991-05-24 | 1994-10-18 | Top Golf, Inc. | Synthetic turf, method of making thereof, border strip for small size golf and understructure for artificial large size golf |
US6602113B2 (en) | 1999-12-08 | 2003-08-05 | 2752-3273 Quebec Inc. | Method for forming synthetic turf game surfaces |
US6740387B1 (en) | 1998-06-09 | 2004-05-25 | 2752-3273 Quebec Inc. | Synthetic turf game surface |
US20050129906A1 (en) * | 2003-12-12 | 2005-06-16 | John Knox | Synthetic sports turf having improved playability and wearability |
US20050281963A1 (en) * | 2004-06-16 | 2005-12-22 | Charles Cook | Transition synthetic sports turf |
US20060013989A1 (en) * | 2004-07-19 | 2006-01-19 | Barrier-Bac, Inc. | Synthetic turf and method for applying adhesive |
US20070248772A1 (en) * | 2006-04-25 | 2007-10-25 | Charles Cook | Inlaying process for installing features in a synthetic sports field |
US20080104914A1 (en) * | 2001-01-15 | 2008-05-08 | Alain Lemieux | Resilient Floor Surface |
US20090172970A1 (en) * | 2007-12-28 | 2009-07-09 | Dow Global Technologies Inc. | Pe-based crosslinked elastomeric foam with high filler loadings for making shockpads and articles used in footwear and flooring applications |
US20090310060A1 (en) * | 2008-06-13 | 2009-12-17 | Sony Corporation | Optical package, method of manufacturing the same, backlight, and liquid crystal display |
US20100101678A1 (en) * | 2006-04-10 | 2010-04-29 | Sportexe Construction Services, Inc. | Method of Producing a Woven Artificial Turf |
US20100279032A1 (en) * | 2007-09-24 | 2010-11-04 | Dow Global Technologies Inc. | Synthetic turf with shock absorption layer |
US20170058464A1 (en) * | 2015-09-02 | 2017-03-02 | Tarkett Inc. | Protective binding layer |
US20170130404A1 (en) * | 2015-10-28 | 2017-05-11 | Adhesive Technologies, Llc | Synthetic Turf Seaming and System with Adhesive Mesh Inlay components |
US20170138053A1 (en) * | 2015-11-12 | 2017-05-18 | Industrial Waterproof Systems Ltd. | Inverted roofing system and method |
CN107108936A (zh) * | 2015-01-16 | 2017-08-29 | 博优国际集团公司 | 覆盖面板以及制造覆盖面板的方法 |
US9855682B2 (en) | 2011-06-10 | 2018-01-02 | Columbia Insurance Company | Methods of recycling synthetic turf, methods of using reclaimed synthetic turf, and products comprising same |
WO2019245755A1 (en) * | 2018-06-20 | 2019-12-26 | Dow Global Technologies Llc | Polypropylene bonding adhesive and process |
US20200199886A1 (en) * | 2017-07-13 | 2020-06-25 | Beaulieu International Group Nv | Covering Panel and Process of Producing Covering Panels |
US20210222376A1 (en) * | 2020-01-18 | 2021-07-22 | Reed J. Seaton | Roll up artificial turf |
WO2021214229A1 (en) | 2020-04-23 | 2021-10-28 | Basf Se | Artificial turf |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH550014A (de) * | 1970-03-26 | 1974-06-14 | Bayer Ag | Sportbelagsbahn oder -vlies fuer freiluftsportstaetten. |
FR2254212A6 (en) * | 1973-09-13 | 1975-07-04 | Masquelier Henri | Drainage system for sandy ground - has open cell granules in trenches connecting to drain trenches |
FR2244356A5 (en) * | 1973-09-13 | 1975-04-11 | Masquelier Henri | Drainage system for sports fields - includes expanded material in channels and mixed with loam |
US6338885B1 (en) * | 1997-03-10 | 2002-01-15 | Fieldturf Inc. | Synthetic turf |
CA2206295A1 (fr) * | 1997-06-09 | 1998-12-09 | Alain Lemieux | Gazon synthetique, de composition specifique, faite par un procede au jet de sable, jumele a une base en polypropylene servant de coussin d'absorption, ainsi qu'un procede de traitement au jet de sable de cette surface de gazon synthetique |
NL1021171C2 (nl) | 2002-07-29 | 2004-01-30 | Hugo De Vries | Werkwijze voor het aanleggen van een begaanbaar oppervlak, bijvoorbeeld een speelveld en zo gevormd oppervlak. |
WO2015182382A1 (ja) | 2014-05-30 | 2015-12-03 | 富士フイルム株式会社 | 細胞評価装置および方法並びにプログラム |
-
1968
- 1968-06-25 US US739788A patent/US3597297A/en not_active Expired - Lifetime
-
1969
- 1969-06-19 SE SE8820/69A patent/SE344544B/xx unknown
- 1969-06-20 ES ES368603A patent/ES368603A1/es not_active Expired
- 1969-06-24 FR FR6921142A patent/FR2011666A1/fr active Pending
- 1969-06-24 DE DE1933048A patent/DE1933048C3/de not_active Expired
- 1969-06-24 GB GB31899/69A patent/GB1277963A/en not_active Expired
- 1969-06-24 CH CH965169A patent/CH565575A5/xx not_active IP Right Cessation
- 1969-06-24 BR BR210099/69A patent/BR6910099D0/pt unknown
- 1969-06-24 JP JP4941669A patent/JPS5333635B1/ja active Pending
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3816197A (en) * | 1969-10-17 | 1974-06-11 | Energy Conversion Devices Inc | Film deposited semiconductor devices |
US4042743A (en) * | 1970-06-11 | 1977-08-16 | Uniroyal, Inc. | Compressible offset printing blanket |
US3833454A (en) * | 1972-05-11 | 1974-09-03 | Northern Fibre Prod Co | Reinforced foam plastic seat bun and method of molding same |
US4112176A (en) * | 1974-07-08 | 1978-09-05 | U.S. Rubber Reclaiming Co., Inc. | Ground rubber elastomeric composite useful in surfacings and the like, and methods |
US4218505A (en) * | 1976-04-01 | 1980-08-19 | Toyo Cloth Co., Ltd. | Production of polyurethane-split leather laminate |
US4268551A (en) * | 1979-10-24 | 1981-05-19 | Cavalier Carpets | Artificial grass surface and method of installation |
US4347844A (en) * | 1980-01-10 | 1982-09-07 | Kao Soap Co., Ltd. | Porous sheet and process for preparation thereof |
US4810560A (en) * | 1987-12-08 | 1989-03-07 | Jox Corporation | Batting box |
US5356344A (en) * | 1991-05-24 | 1994-10-18 | Top Golf, Inc. | Synthetic turf, method of making thereof, border strip for small size golf and understructure for artificial large size golf |
US5373667A (en) * | 1991-05-24 | 1994-12-20 | Top Golf, Inc. | Synthetic turf, method of making thereof, border strip for small size golf and understructure for artificial large size golf |
US6740387B1 (en) | 1998-06-09 | 2004-05-25 | 2752-3273 Quebec Inc. | Synthetic turf game surface |
US6602113B2 (en) | 1999-12-08 | 2003-08-05 | 2752-3273 Quebec Inc. | Method for forming synthetic turf game surfaces |
US20080104914A1 (en) * | 2001-01-15 | 2008-05-08 | Alain Lemieux | Resilient Floor Surface |
US7189445B2 (en) | 2003-12-12 | 2007-03-13 | Generalsports Turf, Llc | Synthetic sports turf having improved playability and wearability |
US20050129906A1 (en) * | 2003-12-12 | 2005-06-16 | John Knox | Synthetic sports turf having improved playability and wearability |
US20050281963A1 (en) * | 2004-06-16 | 2005-12-22 | Charles Cook | Transition synthetic sports turf |
US8329265B2 (en) | 2004-06-16 | 2012-12-11 | Astroturf, Llc | Transition synthetic sports turf |
US20060013989A1 (en) * | 2004-07-19 | 2006-01-19 | Barrier-Bac, Inc. | Synthetic turf and method for applying adhesive |
US20080020174A1 (en) * | 2004-07-19 | 2008-01-24 | Stull Thomas E | Synthetic turf |
US20100101678A1 (en) * | 2006-04-10 | 2010-04-29 | Sportexe Construction Services, Inc. | Method of Producing a Woven Artificial Turf |
US7874320B2 (en) * | 2006-04-10 | 2011-01-25 | Shaw Contract Flooring Services, Inc. | Method of producing a woven artificial turf |
US20070248772A1 (en) * | 2006-04-25 | 2007-10-25 | Charles Cook | Inlaying process for installing features in a synthetic sports field |
US20100279032A1 (en) * | 2007-09-24 | 2010-11-04 | Dow Global Technologies Inc. | Synthetic turf with shock absorption layer |
US9115252B2 (en) | 2007-12-28 | 2015-08-25 | Dow Global Technologies Llc | PE-based crosslinked elastomeric foam with high filler loadings for making shockpads and articles used in footwear and flooring applications |
US20090172970A1 (en) * | 2007-12-28 | 2009-07-09 | Dow Global Technologies Inc. | Pe-based crosslinked elastomeric foam with high filler loadings for making shockpads and articles used in footwear and flooring applications |
US20090310060A1 (en) * | 2008-06-13 | 2009-12-17 | Sony Corporation | Optical package, method of manufacturing the same, backlight, and liquid crystal display |
US9855682B2 (en) | 2011-06-10 | 2018-01-02 | Columbia Insurance Company | Methods of recycling synthetic turf, methods of using reclaimed synthetic turf, and products comprising same |
US10753102B2 (en) * | 2015-01-16 | 2020-08-25 | Beaulieu International Group Nv | Covering panel and process of producing covering panels |
CN107108936A (zh) * | 2015-01-16 | 2017-08-29 | 博优国际集团公司 | 覆盖面板以及制造覆盖面板的方法 |
US20180002932A1 (en) * | 2015-01-16 | 2018-01-04 | Beaulieu International Group | Covering Panel and Process of Producing Covering Panels |
US20170058464A1 (en) * | 2015-09-02 | 2017-03-02 | Tarkett Inc. | Protective binding layer |
US20170130404A1 (en) * | 2015-10-28 | 2017-05-11 | Adhesive Technologies, Llc | Synthetic Turf Seaming and System with Adhesive Mesh Inlay components |
US10081946B2 (en) * | 2015-11-12 | 2018-09-25 | Industrial Waterproof Systems Ltd. | Inverted roofing system and method |
US20190048591A1 (en) * | 2015-11-12 | 2019-02-14 | Industrial Waterproof Systems Ltd. | Inverted roofing system and method |
US20170138053A1 (en) * | 2015-11-12 | 2017-05-18 | Industrial Waterproof Systems Ltd. | Inverted roofing system and method |
US20200199886A1 (en) * | 2017-07-13 | 2020-06-25 | Beaulieu International Group Nv | Covering Panel and Process of Producing Covering Panels |
US11091918B2 (en) * | 2017-07-13 | 2021-08-17 | Beaulieu International Group Nv | Covering panel and process of producing covering panels |
WO2019245755A1 (en) * | 2018-06-20 | 2019-12-26 | Dow Global Technologies Llc | Polypropylene bonding adhesive and process |
CN112996832A (zh) * | 2018-06-20 | 2021-06-18 | Ddp特种电子材料美国有限责任公司 | 粘结聚丙烯的粘合剂和方法 |
US20210222376A1 (en) * | 2020-01-18 | 2021-07-22 | Reed J. Seaton | Roll up artificial turf |
WO2021214229A1 (en) | 2020-04-23 | 2021-10-28 | Basf Se | Artificial turf |
Also Published As
Publication number | Publication date |
---|---|
CH565575A5 (enrdf_load_stackoverflow) | 1975-08-29 |
DE1933048A1 (de) | 1970-01-15 |
ES368603A1 (es) | 1971-10-16 |
DE1933048B2 (enrdf_load_stackoverflow) | 1974-04-25 |
BR6910099D0 (pt) | 1973-01-02 |
FR2011666A1 (enrdf_load_stackoverflow) | 1970-03-06 |
DE1933048C3 (de) | 1974-12-05 |
SE344544B (enrdf_load_stackoverflow) | 1972-04-24 |
JPS5333635B1 (enrdf_load_stackoverflow) | 1978-09-14 |
GB1277963A (en) | 1972-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3597297A (en) | Synthetic turf material and method of making same | |
US3801421A (en) | Resilient composite useful as surfacing for athletics | |
US4112176A (en) | Ground rubber elastomeric composite useful in surfacings and the like, and methods | |
US3900656A (en) | Synthetic structure for covering a surface | |
CA1182485A (en) | Simulated grass playing field surface | |
AU744064B2 (en) | Turf-simulating device | |
US6299959B1 (en) | Filled synthetic grass | |
AU742420B2 (en) | Synthetic turf game surface | |
US4497853A (en) | Synthetic turf carpet game playing surface | |
US6527889B1 (en) | Method for making stabilized artificial turf | |
US3978263A (en) | Water-permeable floor covering boards | |
US5352158A (en) | Court surface | |
US4501420A (en) | Playing surfaces sports | |
EP0168545A1 (en) | Unitary shock-absorbing polymeric pad for artificial turf | |
US6740387B1 (en) | Synthetic turf game surface | |
US20240060248A1 (en) | Artificial turf infill with natural fiber and rubber granulate | |
EP4047131A1 (en) | Infill granule for use in an aritificial turf system | |
WO2002009825A1 (en) | A synthetic grass surface | |
US3846364A (en) | Resilient oil extended polyurethane surfaces | |
US20220056648A1 (en) | Playing surface with a mixture of stones and elastic granules | |
NZ203964A (en) | Artificial playing surface | |
ES2727720T3 (es) | Método para la fabricación de productos de recubrimiento de suelo de espuma de poliuretano con fibras de alfombra posteriores al consumo | |
JP2851241B2 (ja) | 人工芝生の製造方法 | |
JPS59213805A (ja) | 弾性舗装材組成物 | |
CA2294096C (en) | Synthetic turf game surface |