US3575534A - Constant torque hydraulic pump - Google Patents
Constant torque hydraulic pump Download PDFInfo
- Publication number
- US3575534A US3575534A US796795A US3575534DA US3575534A US 3575534 A US3575534 A US 3575534A US 796795 A US796795 A US 796795A US 3575534D A US3575534D A US 3575534DA US 3575534 A US3575534 A US 3575534A
- Authority
- US
- United States
- Prior art keywords
- pressure
- swashplate
- hydraulic pump
- regulating valve
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000001105 regulatory effect Effects 0.000 claims abstract description 23
- 239000012530 fluid Substances 0.000 claims abstract description 6
- 238000006073 displacement reaction Methods 0.000 claims description 5
- 230000007935 neutral effect Effects 0.000 claims description 2
- 230000010349 pulsation Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000036461 convulsion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B1/00—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
- F04B1/12—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
- F04B1/26—Control
- F04B1/28—Control of machines or pumps with stationary cylinders
- F04B1/29—Control of machines or pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
- F04B1/295—Control of machines or pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block by changing the inclination of the swash plate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B1/00—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
- F04B1/12—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
- F04B1/14—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/08—Regulating by delivery pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H23/00—Wobble-plate gearings; Oblique-crank gearings
- F16H23/02—Wobble-plate gearings; Oblique-crank gearings with adjustment of throw by changing the position of the wobble-member
Definitions
- the hydraulic control piston is mounted within the support for modifying the inclination of the swashplate, and a regulating valve is in fluid communication with an outlet orifice of the pump and is coaxially located with respect to the axis.
- a calibrated orifice assembly is located adjacent to the swashplate, and a spring bearing is located between the regulating valve and the calibrated orifice assembly for enabling inclination of the swashplate in accordance with the pressure at the outlet orifice to maintain a substantially constant driving torque for the pump.
- the present invention relates to a hydraulic pump comprising an internal control member such that the driving torque of the pump remains constant.
- Such a pump is particularly advantageous when it is coupled firstly to a heat engine, which drives it and secondly to a jack which it supplies and which is subject to variable forces, thus for example a jack actuating the arm of an excavating shovel.
- a heat engine which drives it
- a jack which it supplies and which is subject to variable forces, thus for example a jack actuating the arm of an excavating shovel.
- the present invention relates to a pump of this type, comprising means enabling the inclination of the swashplate to be varied in accordance with a law, such that the driving torque of the said plate remains constant.
- Flt l is a longitudinal sectional view of a pump according to the present invention.
- FIG. 2 is a cross section along BB of HG. l;
- H6. 3 is a view to a larger scale showing a detail of FIG. ll.
- the body of the pump is formed of two parts l and 2.
- a first plurality of pistons 3 slide in cylinders d, drilled in the body 2, and are supported by springs 5.
- the cylinder bores d are connected in known manner to an outlet orifice 29, with interposition for each bore i of a nonreturn valve l'.
- Rotating in the other part 1 of the pump body, by means of roller bearing s, is a shaft 7 which is fast with an element h serving as support for a swashplate it, mounted on the said support 8 by means of a pivot lb.
- the support h and the swashplate rotate in a chamber 30 connected to the tank by the orifice Lida.
- a hollow hydraulic control piston R2 Formed inside the support d is a cylinder it, in which slides a hollow hydraulic control piston R2.
- the spherical head 16 of the piston l2 bears against the rear face db of the swashplate by means of a movable contact block l7 as known per se.
- the spherical head to of the piston i2 is held in contact with the block 17 by means ofaspring M.
- a second piston 22 of small diameter slides in a cylinder 21 formed in an element l fast with the part 2 of the pump body; and the spherical head of said piston bears against the fore face he of the swashplate 9, by means of a movable contract block as known per se.
- the pistons l2 and 22 are coaxial with the shaft 7 and communicate with one another through the plate 9 by means of a drilled passage W.
- a calibrated orifice assembly that includes an annular chamber lb and then an annular calibrated passage Rh disposed to the rear of the cylindrical bore 2t, which servm to guide the piston 22; extending through the piston 22 is a conduit 23 which opens into the annular chamber id.
- the piston 22 is supported by a spring bearing 24 which bears on a dished member 25, against which rests the rear end of the piston 22.
- the spring 24 is disposed inside a cylindrical bore 26 which is formed inside the part 2 of the pump body.
- a regulating valve 26 Disposed at the lower end of the said bore 26 is a regulating valve 26), of which the valve member 27 is held at one end by the spring 24 and at the other end by a spring 28.
- the valve 20 is connected to the outlet pressure by a passage M. This pressure is directed inside the valve 20, firstly to the rear of the valve member 27 and secondly to an orifice 32.
- the valve member 27 closes the passage 32 for admission of pressure and also the return passage 33 to the tank, and depending on the direction of its movements, it uncovers one or other of these orifices.
- the purpose of the spring 24 is to stop forcing back the valve member 27, in order to return it to its balanced position when the flow passing through the calibrated passage 18' tends toward zero.
- the curve which is characteristic of the spring 2d is determined experimentally. For this purpose, there is established experimentally for each value of the angle a, the pressure P which is necessary in order to have the required value of the torque C; it is then possible to determine, point by point, the law of increase of P as a function of tan a.
- the spring 24 has been represented as a band spring with variable spiral pitch, but it is quite evident that the invention is not limited to this particular embodiment and that the spring 24 can be formed by any other equivalent means, for example, by an assembly of springs which become operative in succession.
- valve member 27 If the pressure P decreases, the valve member 27 uncovers the orifice 33.
- the pressure obtaining in the bore 26 decreases, and this more especially as the flow passing through the calibrated passage 18 is large, and this brakes the movement of the valve member 27 in a manner similar to that which has been previously described.
- a safety valve 36 is arranged in the pump.
- This valve comprises a valve member 37 which is subjected on one of its faces to the pressure P and is supported at its other face by a ring 38, having a predetermined calibration as a function of the maximum value which P can reach.
- the valve 36 communicates at one end with the passages 35 and 3S and at the other end with a passage 33.
- This passage 39 ends in an annular chamber 40, surrounding the valve 36, this annular chamber communicating with a bore 41 which, through a nonretum valve 42, communicates by way of a passage 43 with one of the bores 4.
- the pressure obtaining at 43 is the intake pressure, and during the other half revolution, it is the pressure P; the annular chamber 40 thus receives a pulsatory premure equal to P.
- the pump comprises an odd number 2n+l of pistons 3 a.
- the pressure obtaining in the cylinder ll and acting on the piston 12 sometimes balances r: pistons and sometimes n+1 pistons; as with each revolutions the change from n pistons to n+1 pistons takes place 4n+2 times, if the pump is rotating at l5 revolutions per second, the pressure acting on the piston 12 and on the valve member 27 oscillates imperceptibly at a frequency of 150 c./sec. for a 5-piston pump, this having the effect of suppressing the friction threshold of the valve, which is thus extremely sensitive.
- a hydraulic pump comprising:
- a housing assembly having input and output orifices
- a swashplate of variable inclination pivotally mounted on said support and rotatable about said predetermined axis;
- a hydraulic control piston mounted within the support for modifying the inclination of said swashplate
- a regulating valve in fluid communication with said outlet orifice and coaxially located with respect to said axis;
- a calibrated orifice assembly located in adjacent relationship with said swashplate
- a spring bearing located between said regulating valve and said calibrated orifice assembly for enabling inclination of said swashplate in accordance with the pressure at said outlet orifice to maintain a substantially constant driving torque for said pump; and said calibrated orifice assembly cooperating with sard spring bearing to determine forces acting against said regulating valve in a direction along said predetermined axis.
- a hydraulic pump according to claim 2 in which said intermediate pressure prevails in an intermediate chamber communicating with the control piston acting on the plate by way of a calibrated opening in said orifice assembly and in such a way that the pressure obtained in the chamber is a function of the speed of displacement of the said control piston, said pressure thus having a corrective action on the displacement of said regulating valve.
- a hydraulic pump according to claim 2 in which said spring bearing acting upon said regulating valve is located within said intermediate chamber.
- a hydraulic pump according to claim 6 in which the resilient characteristics of said spring hearing are determined so that a distinct angle a of the plate with said axis corresponds to each outlet pressure P, and thus the driving torque of the pump remains constant.
- a hydraulic pump according to claim 2 further including an odd number of first pistons located to successively subject the swashplate to the action of a variable number of said first pistons to cause a pressure pulsation which suppresses the friction threshold.
- a hydraulic pump comprising: a calibrated spring and a safety valve having a valve member held in a neutral position by said calibrated spring, said valve member causing said intermediate chamber to communicate with the outlet of one of said first pistons of the pump when the pressure exceeds a predetermined valve, so that as soon as this pressure is reached, the control piston of the swashplate acts on this latter in order to bring the said angle a back to zero.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Reciprocating Pumps (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR138941 | 1968-02-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3575534A true US3575534A (en) | 1971-04-20 |
Family
ID=8645647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US796795A Expired - Lifetime US3575534A (en) | 1968-02-07 | 1969-02-05 | Constant torque hydraulic pump |
Country Status (5)
Country | Link |
---|---|
US (1) | US3575534A (enrdf_load_stackoverflow) |
JP (1) | JPS4940244B1 (enrdf_load_stackoverflow) |
DE (1) | DE1906226A1 (enrdf_load_stackoverflow) |
FR (1) | FR1563864A (enrdf_load_stackoverflow) |
GB (1) | GB1260203A (enrdf_load_stackoverflow) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3873240A (en) * | 1972-06-16 | 1975-03-25 | Gerard Leduc | Hydraulic swash plate pump |
US4037993A (en) * | 1976-04-23 | 1977-07-26 | Borg-Warner Corporation | Control system for variable displacement compressor |
US4137013A (en) * | 1977-09-22 | 1979-01-30 | The Bendix Corporation | Variable displacement piston pump |
US4145887A (en) * | 1974-11-06 | 1979-03-27 | U.S. Philips Corporation | Swashplate compensation mechanism |
US4149830A (en) * | 1977-05-16 | 1979-04-17 | The Bendix Corporation | Variable displacement piston pump |
JPS5946378A (ja) * | 1982-08-02 | 1984-03-15 | 株式会社ボッシュオートモーティブ システム | 可変容量圧縮機 |
WO2002044563A1 (en) * | 2000-11-28 | 2002-06-06 | Ingersoll-Rand Company | Direct drive variable displacement pump |
EP1435457A1 (en) * | 2003-01-03 | 2004-07-07 | Lavorwash S.p.A. | Swash plate pump with automatically variable flow rate |
US20060013700A1 (en) * | 2002-08-28 | 2006-01-19 | Torvec, Inc. | Long piston hydraulic machines |
US20090077959A1 (en) * | 2005-06-15 | 2009-03-26 | Torvec, Inc. | Orbital transmission with geared overdrive |
US20140294614A1 (en) * | 2013-03-29 | 2014-10-02 | Kabushiki Kaisha Toyota Jidoshokki | Double-headed piston swash plate type compressor |
US9657561B1 (en) | 2016-01-06 | 2017-05-23 | Isodrill, Inc. | Downhole power conversion and management using a dynamically variable displacement pump |
US9816498B2 (en) | 2013-03-29 | 2017-11-14 | Kabushiki Kaisha Toyota Jidoshokki | Variable displacement swash-plate compressor |
CN112483343A (zh) * | 2019-08-22 | 2021-03-12 | 陈南南 | 一种单向输出且流量从零可调的低脉动轴向柱塞泵 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS512037U (enrdf_load_stackoverflow) * | 1974-06-19 | 1976-01-08 | ||
GB1568946A (en) * | 1977-05-09 | 1980-06-11 | Bendix Corp | Variable displacement piston pump |
US4182365A (en) * | 1977-09-26 | 1980-01-08 | The Bendix Corporation | Control valve for use with variable displacement piston pump |
US4175915A (en) * | 1978-04-27 | 1979-11-27 | General Motors Corporation | Drive shaft lug for variable displacement compressor |
JPS60175782A (ja) * | 1984-02-21 | 1985-09-09 | Sanden Corp | 容量可変型揺動式圧縮機 |
JPS6341677A (ja) * | 1986-08-08 | 1988-02-22 | Sanden Corp | 容量可変圧縮機 |
BR8704487A (pt) * | 1986-09-02 | 1988-04-19 | Nippon Denso Co | Compressor do tipo de placa oscilante de deslocamento variavel |
JPH0223829Y2 (enrdf_load_stackoverflow) * | 1987-05-19 | 1990-06-28 | ||
DE4210038A1 (de) * | 1992-03-27 | 1993-09-30 | Teves Gmbh Alfred | Drehzahlabhängige Nockenwellen-Verstelleinrichtung |
JPH05312144A (ja) * | 1992-05-08 | 1993-11-22 | Sanden Corp | 可変容量斜板式圧縮機 |
CN106382215A (zh) * | 2016-12-13 | 2017-02-08 | 荆门市召铭液压科技有限公司 | 一种单控制活塞斜盘式轴向柱塞泵 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2283321A (en) * | 1937-04-15 | 1942-05-19 | Waterbury Tool Co | Power transmission |
US2915985A (en) * | 1957-06-20 | 1959-12-08 | New York Air Brake Co | Pump |
FR1221317A (fr) * | 1958-03-15 | 1960-06-01 | Pompe à débit automatiquement variable | |
US3010403A (en) * | 1957-01-10 | 1961-11-28 | Gen Motors Corp | Variable pressure fluid pump |
US3062020A (en) * | 1960-11-18 | 1962-11-06 | Gen Motors Corp | Refrigerating apparatus with compressor output modulating means |
US3067693A (en) * | 1958-12-24 | 1962-12-11 | United Aircraft Corp | Control means for variable delivery pump |
US3099218A (en) * | 1962-05-04 | 1963-07-30 | Weatherhead Co | Constant horsepower pump |
US3165068A (en) * | 1960-06-27 | 1965-01-12 | American Brake Shoe Co | Fluid power apparatus |
US3250227A (en) * | 1963-08-09 | 1966-05-10 | American Brake Shoe Co | Torque control apparatus for hydraulic power units |
US3254604A (en) * | 1961-04-26 | 1966-06-07 | Faisandier Jacques | Self-regulation device for variable discharge pumps |
-
1968
- 1968-02-07 FR FR138941A patent/FR1563864A/fr not_active Expired
-
1969
- 1969-02-05 US US796795A patent/US3575534A/en not_active Expired - Lifetime
- 1969-02-07 DE DE19691906226 patent/DE1906226A1/de not_active Withdrawn
- 1969-02-07 GB GB6866/69A patent/GB1260203A/en not_active Expired
- 1969-02-07 JP JP44008800A patent/JPS4940244B1/ja active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2283321A (en) * | 1937-04-15 | 1942-05-19 | Waterbury Tool Co | Power transmission |
US3010403A (en) * | 1957-01-10 | 1961-11-28 | Gen Motors Corp | Variable pressure fluid pump |
US2915985A (en) * | 1957-06-20 | 1959-12-08 | New York Air Brake Co | Pump |
FR1221317A (fr) * | 1958-03-15 | 1960-06-01 | Pompe à débit automatiquement variable | |
US3067693A (en) * | 1958-12-24 | 1962-12-11 | United Aircraft Corp | Control means for variable delivery pump |
US3165068A (en) * | 1960-06-27 | 1965-01-12 | American Brake Shoe Co | Fluid power apparatus |
US3062020A (en) * | 1960-11-18 | 1962-11-06 | Gen Motors Corp | Refrigerating apparatus with compressor output modulating means |
US3254604A (en) * | 1961-04-26 | 1966-06-07 | Faisandier Jacques | Self-regulation device for variable discharge pumps |
US3099218A (en) * | 1962-05-04 | 1963-07-30 | Weatherhead Co | Constant horsepower pump |
US3250227A (en) * | 1963-08-09 | 1966-05-10 | American Brake Shoe Co | Torque control apparatus for hydraulic power units |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3873240A (en) * | 1972-06-16 | 1975-03-25 | Gerard Leduc | Hydraulic swash plate pump |
US4145887A (en) * | 1974-11-06 | 1979-03-27 | U.S. Philips Corporation | Swashplate compensation mechanism |
US4037993A (en) * | 1976-04-23 | 1977-07-26 | Borg-Warner Corporation | Control system for variable displacement compressor |
US4149830A (en) * | 1977-05-16 | 1979-04-17 | The Bendix Corporation | Variable displacement piston pump |
US4137013A (en) * | 1977-09-22 | 1979-01-30 | The Bendix Corporation | Variable displacement piston pump |
JPS5946378A (ja) * | 1982-08-02 | 1984-03-15 | 株式会社ボッシュオートモーティブ システム | 可変容量圧縮機 |
WO2002044563A1 (en) * | 2000-11-28 | 2002-06-06 | Ingersoll-Rand Company | Direct drive variable displacement pump |
US6443705B1 (en) | 2000-11-28 | 2002-09-03 | Ingersoll-Rand Company | Direct drive variable displacement pump |
US7635255B2 (en) * | 2002-08-28 | 2009-12-22 | Torvec, Inc. | Long piston hydraulic machines |
US20060013700A1 (en) * | 2002-08-28 | 2006-01-19 | Torvec, Inc. | Long piston hydraulic machines |
EP1435457A1 (en) * | 2003-01-03 | 2004-07-07 | Lavorwash S.p.A. | Swash plate pump with automatically variable flow rate |
US20090077959A1 (en) * | 2005-06-15 | 2009-03-26 | Torvec, Inc. | Orbital transmission with geared overdrive |
US20140294614A1 (en) * | 2013-03-29 | 2014-10-02 | Kabushiki Kaisha Toyota Jidoshokki | Double-headed piston swash plate type compressor |
US9803628B2 (en) * | 2013-03-29 | 2017-10-31 | Kabushiki Kaisha Toyota Jidoshokki | Compressor with drive and tilt mechanisms located on the same side of a swash plate |
US9816498B2 (en) | 2013-03-29 | 2017-11-14 | Kabushiki Kaisha Toyota Jidoshokki | Variable displacement swash-plate compressor |
US9657561B1 (en) | 2016-01-06 | 2017-05-23 | Isodrill, Inc. | Downhole power conversion and management using a dynamically variable displacement pump |
CN112483343A (zh) * | 2019-08-22 | 2021-03-12 | 陈南南 | 一种单向输出且流量从零可调的低脉动轴向柱塞泵 |
Also Published As
Publication number | Publication date |
---|---|
DE1906226A1 (de) | 1969-10-02 |
JPS4940244B1 (enrdf_load_stackoverflow) | 1974-11-01 |
GB1260203A (en) | 1972-01-12 |
FR1563864A (enrdf_load_stackoverflow) | 1969-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3575534A (en) | Constant torque hydraulic pump | |
US3877839A (en) | Torque limiting means for variable displacement pumps | |
US2957421A (en) | Fuel supply pump for prime movers | |
US2945449A (en) | Hydraulic control pump | |
US3891354A (en) | Regulating system for pumps | |
US2429005A (en) | Liquid fuel pump governor | |
US3190232A (en) | Hydraulic apparatus | |
US2583656A (en) | Hydraulic automatic selective transmission, including tilt plates | |
US3834836A (en) | Override control for a variable displacement pump | |
US3221660A (en) | Automatic control for variable displacement pump | |
US3694108A (en) | Hydraulic apparatus for regulating the flow of one or more pumps | |
US3463087A (en) | Control response valve for hydrostatic transmission | |
US4115033A (en) | Control device for a hydraulic system having at least two pumps | |
US2749844A (en) | Pump | |
US4149830A (en) | Variable displacement piston pump | |
US4034564A (en) | Piston pump assembly having load responsive controls | |
US3508847A (en) | Pump control system | |
US3376822A (en) | Variable-delivery hydraulic pump | |
US3747477A (en) | Variable volume hydraulic apparatus | |
US2429011A (en) | Pump | |
US3700356A (en) | Fluid system | |
US3064583A (en) | Variable displacement pump | |
US3726609A (en) | Load controller | |
US2982218A (en) | Rotary swash-plate type pump | |
US2848954A (en) | Wobbler type multiple piston pump |