US3561219A - Textile mat for industrial use in the field of civil engineering - Google Patents
Textile mat for industrial use in the field of civil engineering Download PDFInfo
- Publication number
- US3561219A US3561219A US720234A US3561219DA US3561219A US 3561219 A US3561219 A US 3561219A US 720234 A US720234 A US 720234A US 3561219D A US3561219D A US 3561219DA US 3561219 A US3561219 A US 3561219A
- Authority
- US
- United States
- Prior art keywords
- sand
- mat
- woven mat
- portions
- woven
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004753 textile Substances 0.000 title description 21
- 239000004576 sand Substances 0.000 abstract description 71
- 238000011049 filling Methods 0.000 abstract description 16
- 239000002689 soil Substances 0.000 abstract description 5
- 230000006641 stabilisation Effects 0.000 abstract description 5
- 238000011105 stabilization Methods 0.000 abstract description 5
- 239000004744 fabric Substances 0.000 description 64
- 239000000463 material Substances 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 239000002245 particle Substances 0.000 description 17
- 239000002002 slurry Substances 0.000 description 16
- 238000010276 construction Methods 0.000 description 10
- 229920002994 synthetic fiber Polymers 0.000 description 8
- 238000009958 sewing Methods 0.000 description 5
- 239000012209 synthetic fiber Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000003014 reinforcing effect Effects 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- MXBCYQUALCBQIJ-RYVPXURESA-N (8s,9s,10r,13s,14s,17r)-13-ethyl-17-ethynyl-11-methylidene-1,2,3,6,7,8,9,10,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-17-ol;(8r,9s,13s,14s,17r)-17-ethynyl-13-methyl-7,8,9,11,12,14,15,16-octahydro-6h-cyclopenta[a]phenanthrene-3,17-diol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1.C1CC[C@@H]2[C@H]3C(=C)C[C@](CC)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 MXBCYQUALCBQIJ-RYVPXURESA-N 0.000 description 1
- 240000000491 Corchorus aestuans Species 0.000 description 1
- 235000011777 Corchorus aestuans Nutrition 0.000 description 1
- 235000010862 Corchorus capsularis Nutrition 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 108010061309 E021 Proteins 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- -1 polyacrylic Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B3/00—Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
- E02B3/04—Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
- E02B3/12—Revetment of banks, dams, watercourses, or the like, e.g. the sea-floor
- E02B3/122—Flexible prefabricated covering elements, e.g. mats, strips
- E02B3/127—Flexible prefabricated covering elements, e.g. mats, strips bags filled at the side
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D25/00—Woven fabrics not otherwise provided for
Definitions
- a fabric mat for soil stabilization has continuous bands of single ply fabric alternating with intervening continuous bands of two-ply fabric forming between the two plies continuous hollow tubelike containers which are filled with sand, gravel or the like. One end of the tubelike containers is closed before filling and the other after filling.
- the mats may have selvages along opposite side edges which are secured to selvages of like mats to connect a plurality of mats together.
- the present invention relates to a textile mat for industrial use in the field of civil engineering, more particularly to a woven mat provided with a plurality of hollowed portions for containing sand or gravel and which can be used as a material for reclamation in the field of civil engineering.
- the principal object of the present invention is to provide a practical woven mat having a plurality of hollowed portions for containing sand or gravel which can be used as a material for reclamation in the field of civil engineering.
- Another object of the present invention is to make possible economical reclamation by using a textile mat of the invention in the same field.
- Further object of the present invention is to make reclamation work easy by using a textile mat of the invention in the same field.
- the textile mat of the present invention comprises a plurality of hollowed portions consisting of hollowed cloth, and a plurality of connecting portions between the hollowed portions without using any connecting sewing threads.
- the hollowed portions are arranged in a parallel condition to each other, further, it is preferable to close M1ce one end of the hollowed portions of the textile mat of the invention before using as a material for reclamation.
- the textile mat of the present invention can be easily manufactured by power looms but it is necessary to have some particular design of the Iwoven cloth for the present purpose and also consideration must be given regarding selection of the textile yarns for manufacturing the textile mat of the invention.
- the textile mat of the invention (hereinafter called the woven mat) is lled with sand or gravel by pouring a slurry composed of ⁇ water and insoluble matters such as sand, gravel, etc., into its hollowed portions, while water passes through the numerous line intervened spaces between the textile yarns of the woven mat (hereinafter called mes Consequently, it is very easy to make a compact material of sand or gravel for reclamation in the field of the civil engineering.
- mes numerous line intervened spaces between the textile yarns of the woven mat
- FIG. 1 is a perspective view of an embodiment of the woven mat according to the invention
- FIG. 2 is an enlarged view of the cross section of the hollowed portion of the woven mat shown in FIG. 1,
- FIG. 3 is an enlarged plan view of the hollowed portion of the woven mat shown in FIG. 1,
- FIG. 4 is an explanatory diagram for showing the relation between the accumulated frequency in percent and particle size in mm. of sand contained in an experimental slurry poured into the woven mat according to the invention
- FIGS. 5 and 6 are diagrams of results obtained by experiments for showing the relation between the size of fine spaces existing in the woven mat and the maximum particle size of sand which passes through the spaces when slurry containing water and sand is poured into a hollow portion of the woven mat of the invention
- FIG. 7 is a perspective view of another embodiment of the woven mat provided Iwith a plurality of hollow portions having particular yarn density, according to the invention.
- FIG. 8 is an enlarged plan view of the woven mat shown in FIG. 7,
- FIG. 9 is a plan view of another embodiment of the woven mat of the invention.
- FIG. l0 is an explanatory section view, taken along line X-X in FIG. 9,
- FIG. ll is an explanatory drawing for showing the variable yarn density of the hollow portion of another embodiment of the woven mat, according to the invention.
- FIG. l2 is also an explanatory perspective view of the woven mat provided with reinforced edge portion, according to the invention.
- FIG. 13 is an explanatory skeleton sketch showing a method for carrying the woven mat of the invention which is filled with sand or gravel,
- FIGS. 14 and l5 are explanatory diagrams showing examples of end uses of the woven mat according to the invention.
- an embodiment of the woven mat of the invention is composed of a plurality of portions 1 having so-called hollow-cloth structure and a plurality of intervened portions 2 between the adjacent portions 1.
- the intervened portions 2 form a single sheet, and these portions 1 and 2 are arranged in a parallel condition to each other.
- the portions 1 and 2 may extend along the warp yarn or weft yarn of the woven mat of the invention, for instance, if the hollowed portions 1 extend along the weft yarn 4, the direction of the hollowed portions 1 is perendicular to the direction of the warp yarn 3, as shown in FIGS. 1 and 2.
- some chemical agent for improving the resistance of the synthetic fiber material to ultraviolet rays or abrasion may be used for coating the woven mat in such a way that the porosity of the woven mat is maintained.
- synthetic resin such as acrylic, vinyl chloride or polyamide resin or bituminous agent can be used for the above-mentioned purpose.
- the conventional synthetic fiber materials such as polyester, polyamide, polyacrylic, polyvinyl and polyolefine fiber materials can be used for manufacturing the woven mat of the present invention.
- synthetic fiber materials having high tenacity and high resistance against alkali and containing some stabilizer against ultraviolet rays is preferably used for the present purpose.
- a slurry composed of water and sand or gravel is poured into the hollowed portions of the woven mat of the invention when the material for reclamation is made by using a suitable mechanical means such as a pump.
- the efficiency of the above-mentioned lling operation mainly depends on the porosity of the woven mat, in other words, if the size of the unit mesh of the woven mat is so large that a large quantity of sand passes through the woven mat together with water or if the size of the unit mesh of the woven mat is so small that it becomes difficult for water to pass without application of a higher pressure, the working efficiency s lowered. Experiments were performed in order to nd the most preferable unit size of the mesh. Referring to FIG.
- the particle size of the sand contained in the experimental slurry varies and the amount of the sand having different gain size also varies as shown in FIG. 4, wherein the ordinate represents the accumulated frequency in percent and the abscissa represents the particle size of the sand contained in the slurry, where the particle size of the sand is represented by the minimum thickness of the respective particles of sand.
- Table 1 shows the structure of experimental test pieces having different meshes. The text was performed under the following condition: Composition of slurry usedwater 70%, sand 30%. Vacuumcorresponds to 50 cm. water column.
- the filling of sand or gravel in the hollowed portions of the woven mat of the invention is carried out under a reduced pressure using a vacuum pump in the range of 50 cm. to 200 cm. water column, therefore the maximum particle size of the sand which can pass through the mesh of the woven mat varies in accordance with the vacuum condition of the pump.
- T represents the time for completion of the filtration of the slurry poured on the test piece
- M represents the maximum particle size of the sand which passes through the woven mat in mm.
- Table 3 shows the results obtained by the above-mentioned test, where X represents size of unit mesh a/particle size of sand which is desired to be accumulated in the bag, Rt represents amount of sand accumulated in the bag/ amount of sand supplied to the bag in percent, when a slurry composed of water and sand with a theoretical mixing ratio of 72 and 28 percent.
- the opened end portions of the woven mat are closed by a suitable method such as stitching with threads, etc., and then carried to the 'work site by some mechanical means.
- the sand or gravel contained in the woven mat of the invention sometimes contain water, therefore, it is necessary to use woven yarns having sufficient strength to prevent breakage of the woven mat while carrying it.
- the thickness of the yarn for manufacturing the woven mat of the invention must be chosen so as to conform with requirements which can be decided from the required mechanical properties such as tensile strength and abrasion resistance, filtration, etc.
- the tensile ⁇ strength of the woven mat it is preferable for the tensile ⁇ strength of the woven mat to be more than 100 kg./cm., and the thickness of the single woven yarn more than 200 denier.
- the size of the woven mat varies in accordance to the practical end use. From our experimental test, it was found that a woven mat of m. x 20 m. filled with sand is preferable for reclaiming in the field of the civil engineering. f
- the above-mentioned slip between the warp yarns and the weft yarns of the woven mat can be prevented by fixing the crossing of the warp yarns with the weft yarn.
- the fixing of the crossing of the Warp yarns with the weft yarns can be carried out by the so-called heat-set treatment of the woven-mat, or fixing the crossed portions of the warp yarn with the weft yarns of the woven mat by a certain synthetic bonding agent. Further, the above-mentioned slip between the warp yarn and the weft yarn can also be prevented by using a particular structure of the woven mat.
- the woven mat comprises holA lowed portions 1 composed of hollowed cloth and connecting portions 2 between the adjacent hollowed portions 1.
- the warp density of the connecting portions 2 and of the side portions 1 of the hollowed portions 1 are more dense than the main portion of the hollowed portions 1. It was observed that when the warp density of the connecting portions 2 and of the side portions 1' is 1.2 times larger than the main portion of the hollowed portions 1, slip between the warp yarns 3 and weft yarns 4 can be eectively prevented, and a width of the connecting portions 2 of 2 cm. was effective for the present purpose.
- the length of the hollowed portion of the woven mat of the invention is desirable to have the length of the hollowed portion of the woven mat of the invention more than 5 meters.
- the unit woven mat there is certain limitation to the number of hollowed portion of the woven mat manufactured by a power loom (hereinafter called the unit woven mat), in other words, if it is required to supply woven mat having a certain number of hollowed portions which is larger than the number of hollowed portion of unit woven mat manufactured with a power loom, the woven mat is manufactured by connecting a plurality of the unit woven mats by sewing them together.
- the woven mat formed by combing a plurality of unit woven mats is hereinafter called a combined woven mat.
- warp yarns particularly the warp yarns of the connecting portions between th adjacent unit woven mats frequently slide on the weft yarns by lateral force caused by filling of sand or gravel into the hollowed portions of the woven mat.
- the unit woven mat of an embodiment of the invention comprises a pair of hollowed portions 1 and connecting portion 2 between the hollowed portions 1 and a pair of selvage 8.
- the woven structure of the selvage 8 is different from the other portions of the unit woven mat for example in FIG.
- weft yarns 12, 15, 16 19, 20 are interlaced with the warp yarns 9 of the selvage y8 while weft yarns 13, 14, 17 and 18 are not interlaced with the warp yarns 9 ⁇ of the selvage 8
- weft yarns 12, 13, 16 and 17 are interlaced with warp yarns 10 of the selvage 8 while weft yarns 14, 15, 18 and 19 are not interlaced with the warp yarns 10 of the selvage 8.
- weft yarns 12, 13, 16 and 17 are interlaced with warp yarns 10 of the selvage 8 while weft yarns 14, 15, 18 and 19 are not interlaced with the warp yarns 10 of the selvage 8.
- weft yarns there are two kinds of weft yarns, one interlaces with the warp yarns of the selvage while the other do not interlace.
- the order of picks of the interlacing of the weft yarn with the warp yarn of the selvage may be designed in any desired manner.
- the width of the selvage is preferably 10-30' mm.
- the woven mat of this embodiment comprises a woven structure similar to the woven mat shown in FIG. 1 except for the variation of the density of the weft yarn in the hollowed portion 1.
- the density of the weft yarn in the hollowed portion 1 varies with three groups, that is, supposing one end of the hollowed portions 1 are closed by a suitable means, and the portions including the closed end of the hollowed portions 1 are called the third portions 7, and the portions including the opened end of the hollowed portions 1 are called the first portions 5, and the portions between the first and the third portions are called the second portions ⁇ 6, the density of the weft yarn is increased from the first portion to the third portion, in other words, the density of the weft yarn in the first portion is the lowest, while that of the third portion is the highest. It was also disclosed that the efficiency for filling sand, gravel into the hollowed portions of the woven mat was remarkably improved by using the abovementioned modified embodiment of the woven mat, as shown in the following example.
- a standard bag was made with a plain weave cloth of warp yarn 840 denier, weft yarn 840 denier, warp density l/cm. weft density 15/cm. The size of the bag was 30 cm. diameter x 10 m. length.
- a test bag according to the invention was made with a woven hollow cloth of warp yarn 840 denier and weft yarn 840 denier. The size of the test bag was the same as the standard bag.
- the yarn density of the woven hollow cloth was designed as follows; in the first portion of 3.3 m. in length warp cm. x weft l2/cm.; in the second portion 3.3 m. in length warp l5/cm.
- the open end portion 11 of the hollowed portions 1 is firmly closed by a certain way such as sewing by threads or by strands, and then carried to the work site.
- the woven mat filled with sand or gravel was frequently broken at the connected portions 2 while carrying because both sides of the connected portions 2 receive unexpected lateral load caused by shock or excess weight of sand or gravel containing water. Consequently, when the sides of the connecting portions 2 is broken, the woven structure of the hollowed portions is broken and the sand or gravel filled in the hollowed portions fiows out. To prevent the above-mentioned trouble, it is desirable to reinforce the side of the connecting portions 2.
- FIG. 12 One method for reinforcing the side of the connecting portions 2 is shown in FIG. 12, wherein the side portion 21 of the connecting portion 2 is cut and the cut portions are folded and sewn by thread 22.
- a piece of cloth 23 is attached to an inside end of the cut portion 21 by sewing to the connecting portion 1 as shown in the drawing.
- a certain synthetic resin may be used for reinforcing the side .end portion or the connecting portions 2 of the woven mat by the coating method.
- FIGS. 13, 14 and 15 examples of using and carrying the woven mat of the invention are shown,
- the woven mat 23 filled with sand or gravel is attached with a plurality of hanging ropes 25 and lifted by a hanger 26 of a conventional crane 27 installed on a base 28, and transported to the site in the water 29. Therefore, it is very easy to perform the reclamation work by using the woven mat according to the invention with high working efiiciency and at low cost.
- the woven mat 23 filled with sand or gravel according to the invention has a flexible construction, consequently the woven mat 23 filled with sand or gravel conforms very well to the irregular surface of the ground 30 or 31 and a construction block 32 can be stably set on the woven mat 23, as shown in FIGS. 14 and l5.
- a fabric mat for soil stabilization comprising alternating continuous bands of single ply fabric and intervening continuous bands of two-ply fabric forming between said two plies continuous hollow tubelike containers for sand, gravel or like material, said continuous bands of single ply fabric joining said bands of two-ply fabric and bounding said tubelike containers along opposite longitudinally extending sides, and means closing one end of said tubelike containers along one boundary of said fabric mat, said fabric being formed of strands of at least mainly synthetic material, said two-ply bands being of mesh fabric with a mesh size to permit passage of water while retaining said sand, gravel or like material, interlacing portions of said strands of said mesh fabric being fixed to each other to maintain the mesh size of said fabric substantially constant, said bands of single ply fabric between said tubelke containers being centrally split in a lengthwise direction for a selected length at the open ends of said tubelike containers and the resulting edges being reinforced.
- a fabric mat according to claim 1 in which the density of strands extending in a lengthwise direction in said bands of single ply fabric and in adjacent portions of said bands of two-ply fabric is at least 1.2 times greater than in the remaining portions of said bands of two-ply fabric.
- a fabric mat according to claim 1 in which the mesh size of said two-ply fabric is from 1.5 to 3 times the granular size of material to be filled in said tubelike containers.
- a fabric mat according to claim 1 in which said fabric is woven and said bands extend in a warp direction, said mat further having a part of opposite selvages extending in a warp direction.
- a fabric mat according to claim 4 in which weft strands of said fabric interlace with warp strands in said selvages once in two successive picks.
- a fabric mat for soil stabilization comprising alternating continuous bands of single ply fabric and intervening continuous bands of two-ply fabric forming between said two plies continuous hollow tubelike containers for sand, gravel or like material, said continuous bands of single ply fabric joining said bands of two-ply fabric and bounding said tubelike containers along opposite longitudinally extending sides, and means closing one end of said tubelike containers along one boundary of said fabric mat, said fabric being formed of strands of at least mainly synthetic material, said two-ply bands being of mesh fabric with a mesh size to permit passage of water while retaining said sand, gravel or like material, interlacing portions of said strands of said mesh fabric being fixed to each other to maintain the mesh size of said fabric substantially constant, said fabric being woven and the density of strands perpendicular to said hollow tubelike containers varying in a direction lengthwise of said containers, being greatest at the closed ends of said containers and least at the open ends of said containers.
- a fabric mat for soil stabilization comprising a unitary continuous fabric having spaced parallel bands of constant width in which said fabric is of two-ply construction and intervening narrower bands of constant width in which said fabric is of single ply construction, said bands of two-ply construction extending the full Width of the fabric and forming continuous hollow tubelike containers of uniform width for sand, gravel or the like joined with one another by said bands of single ply construction, and means joining the opposite plies of said bands of two-ply construction to close one end of said tubelike containers along one boundary of said mat, said fabric being formed of strands of at least mainly synthetic material, the fabric in said bands of two-ply construction being open mesh fabric with a mesh size to permit passage of water while retaining sand, gravel or like material, crossing portions of said strands of said mesh fabric being fixed to each other to maintain the mesh size of said fabric substantially constant and the fabric in said bands of single ply construction being stronger and denser than the fabric in said bands of two-ply construction.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Mechanical Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Textile Engineering (AREA)
- Woven Fabrics (AREA)
- Revetment (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8648267 | 1967-10-13 | ||
JP10551467 | 1967-12-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3561219A true US3561219A (en) | 1971-02-09 |
Family
ID=26427591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US720234A Expired - Lifetime US3561219A (en) | 1967-10-13 | 1968-04-10 | Textile mat for industrial use in the field of civil engineering |
Country Status (3)
Country | Link |
---|---|
US (1) | US3561219A (enrdf_load_html_response) |
GB (1) | GB1208205A (enrdf_load_html_response) |
NL (1) | NL6805837A (enrdf_load_html_response) |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3696623A (en) * | 1968-07-30 | 1972-10-10 | Hoechst Ag | Woven mat |
US3722222A (en) * | 1970-05-11 | 1973-03-27 | Bitumarin Nv | Support means for slope revetments |
US3874177A (en) * | 1973-06-11 | 1975-04-01 | Nicolon Nv | Pocket mat |
US3925994A (en) * | 1973-06-21 | 1975-12-16 | Fodervaevnader Ab | System of armouring earth |
US4102137A (en) * | 1976-12-06 | 1978-07-25 | Mauricio Porraz | Coating and protective device |
US4135843A (en) * | 1976-07-27 | 1979-01-23 | Construction Techniques, Inc. | Erosion control mat |
US4294405A (en) * | 1980-03-03 | 1981-10-13 | Ross Lawrence M | Traction bag |
WO1981003189A1 (en) * | 1980-05-10 | 1981-11-12 | O Larsen | Barrier structure and method of producing and laying it |
DE3043402A1 (de) * | 1979-05-03 | 1982-12-16 | E Nielsen | Safety mat for use in protection of waterwashed areas against erosion and/or undermining |
US4399671A (en) * | 1979-11-19 | 1983-08-23 | Ludvig Svensson (Holland) B.V. | Green-house curtain |
US4405257A (en) * | 1979-05-03 | 1983-09-20 | Daekko Presenning Kompagni A/S | Safety mat for use in protection of waterwashed areas against erosion and/or undermining |
US4449847A (en) * | 1982-09-27 | 1984-05-22 | Nicolon Corporation | Revetment panel |
US4502815A (en) * | 1982-09-27 | 1985-03-05 | Nicolon Corporation | Revetment panel methods |
US4594206A (en) * | 1983-09-21 | 1986-06-10 | Grafton Harry D | Concrete structures for use in shore protection and/or wave control and method of making same |
US4657433A (en) * | 1986-06-05 | 1987-04-14 | Holmberg Dick L | Shoreline erosion control mat and method of use therefor |
US4690585A (en) * | 1985-01-17 | 1987-09-01 | Holmberg Dick L | Erosion control foundation mat and method |
US4693633A (en) * | 1984-11-08 | 1987-09-15 | Louis Giordano | Run-off trough |
US4778309A (en) * | 1987-03-30 | 1988-10-18 | Presto Products, Incorporated | Stackable grid material for soil confinement |
US4813200A (en) * | 1984-10-29 | 1989-03-21 | Kirchner Dietrich A H | Large container for pourable, pasty and sludge-like materials and a method of using the same |
JPH01169018A (ja) * | 1987-12-25 | 1989-07-04 | Mochizuki Henshiyoku Kogyo Kk | のり面の植生工法用土砂注入マット |
US4854773A (en) * | 1988-06-20 | 1989-08-08 | Nicoll James D | Beach carpet |
US4913094A (en) * | 1988-08-08 | 1990-04-03 | Jones Barton G | Artificial reef system |
US4965097A (en) * | 1989-01-11 | 1990-10-23 | Reynolds Consumer Products, Inc. | Texturized cell material for confinement of concrete and earth materials |
US5064313A (en) * | 1990-05-25 | 1991-11-12 | Rothbury Investments Limited | Embankment reinforcing structures |
US5158395A (en) * | 1985-01-17 | 1992-10-27 | Holmberg Dick L | Erosion control foundation mat and method |
US5452968A (en) * | 1993-04-01 | 1995-09-26 | Dlugosz; Leonard T. | Cement-containing construction ropes and applications therefor |
US5595458A (en) * | 1994-06-29 | 1997-01-21 | Grabhorn, Inc. | Biofilter bags for erosion control |
US5795835A (en) * | 1995-08-28 | 1998-08-18 | The Tensar Corporation | Bonded composite knitted structural textiles |
US5842812A (en) * | 1994-07-22 | 1998-12-01 | Revetment Systems Australia (Qld) Pty Ltd. | Type of flexible mat for lining embankments |
US5902070A (en) * | 1997-06-06 | 1999-05-11 | Bradley Industrial Textiles, Inc. | Geotextile container and method of producing same |
US5924820A (en) * | 1997-02-26 | 1999-07-20 | Creter; Richard E. | Anti-scour device and method for scour prevention |
US5951202A (en) * | 1997-05-05 | 1999-09-14 | Brown; Gregory Benn | Shoreline erosion-preventing bank installation |
US5965467A (en) * | 1995-05-12 | 1999-10-12 | The Tensar Corporation | Bonded composite open mesh structural textiles |
US6305876B1 (en) * | 1997-10-31 | 2001-10-23 | Kyowa Kabushiki Kaisha | Material and construction method of prevention of scour for the underwater structure |
EP1149954A3 (de) * | 2000-04-28 | 2002-01-23 | NaBento Vliesstoff GmbH | Dränmatte sowie Verfahren und Vorrichtung zu ihrer Herstellung |
US6428240B1 (en) * | 2001-02-02 | 2002-08-06 | Peter D. Ehrlich | Sectional interlocking sandbags |
US6619884B2 (en) * | 2001-05-04 | 2003-09-16 | Beaver Bags, Inc. | Barrier device and method for building barrier wall |
US20040052584A1 (en) * | 2002-05-08 | 2004-03-18 | Megasecur Inc. | Ballast system |
US20040101368A1 (en) * | 2002-11-21 | 2004-05-27 | Daigle Richard A. | Apparatus for pipeline stabilization and shoreline erosion protection |
US20040184889A1 (en) * | 2003-03-19 | 2004-09-23 | Arlen Rexius | Apparatuses and methods for dispensing materials |
US6832571B2 (en) | 2001-10-30 | 2004-12-21 | Albany International Corp. | Segment formed flexible fluid containment vessel |
US6860218B2 (en) * | 2001-04-11 | 2005-03-01 | Albany International Corp. | Flexible fluid containment vessel |
US20050095070A1 (en) * | 2003-10-31 | 2005-05-05 | Doug Wysong | Portable pneumatic blower |
US7028509B2 (en) | 2004-07-30 | 2006-04-18 | Sara Lee Corporation | Two-ply blank and a method of manufacturing a circularly knitted two-ply blank |
US20060210360A1 (en) * | 2003-07-11 | 2006-09-21 | Slater Steve A | Sectional interlocking barrier bags |
US7357598B1 (en) | 1999-08-05 | 2008-04-15 | Bradley Industrial Textiles, Inc. | Apparatus and method for deploying geotextile tubes |
US20080175662A1 (en) * | 2007-01-24 | 2008-07-24 | Schmalbach Restrepo Ricardo | Portable porous pavement system and methods |
US20090242316A1 (en) * | 2008-03-28 | 2009-10-01 | Rexius Forest By-Products, Inc. | Vehicle having auxiliary steering system |
US20100104367A1 (en) * | 2007-12-20 | 2010-04-29 | Golden-Pow Co., Ltd. | Cellular reinforcement for soil particle confinement |
US20100111606A1 (en) * | 2002-08-02 | 2010-05-06 | Bussey Jr Harry | Drainage Element and apparatus and method for making same |
US7775171B2 (en) | 2003-01-21 | 2010-08-17 | Albany International Corp. | Flexible fluid containment vessel featuring a keel-like seam |
US20100296877A1 (en) * | 2007-12-26 | 2010-11-25 | Afitex International | Product including cells formed by band stapling and method and device for producing a cellular product |
US7896306B2 (en) | 2007-01-24 | 2011-03-01 | Reynolds Consumer Products, Inc. | Clamp device for portable porous pavement system |
US20120027528A1 (en) * | 2010-07-30 | 2012-02-02 | Alfreds Kim L | Retaining Wall Systems and Methods of Constructing Same |
CN102409635A (zh) * | 2010-09-25 | 2012-04-11 | 盟鑫工业股份有限公司 | 具径向加劲的砂肠管袋 |
WO2013076464A3 (en) * | 2011-11-21 | 2013-12-05 | University Of Ulster | Woven formwork for construction |
EP2740845A1 (de) * | 2012-12-04 | 2014-06-11 | Bilfinger Construction GmbH | Verfahren und eine Vorrichtung zur Sanierung eines Kanals |
US20140270960A1 (en) * | 2011-03-15 | 2014-09-18 | Gary Breitenbeck | Device for coastal restoration |
US8950974B2 (en) * | 2012-08-16 | 2015-02-10 | Seabed Technologies Llc | Mat for sea floor installation |
US20150104257A1 (en) * | 2013-10-10 | 2015-04-16 | Watershed Geosynthetics Llc | Formed in place filled structure with synthetic turf |
WO2015129052A1 (en) * | 2014-02-26 | 2015-09-03 | Kyowa Co., Ltd. | Underwater bag-member installation jig and method for installing bag members under water by the same |
WO2017142841A1 (en) * | 2016-02-15 | 2017-08-24 | Boasso Walter | Method and apparatus for erosion control and environmental protection |
US9982406B2 (en) * | 2012-07-06 | 2018-05-29 | Bradley Industrial Textiles, Inc. | Geotextile tubes with porous internal shelves for inhibiting shear of solid fill material |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE793102A (nl) * | 1971-12-20 | 1973-06-20 | Nicolon Nv | Buideldoek |
DE2933551A1 (de) * | 1979-08-18 | 1981-03-26 | Huesker Synthetic Gmbh & Co, 48712 Gescher | Schalungshuelle zum herstellen von betonplatten |
EP0060578A1 (en) * | 1981-03-13 | 1982-09-22 | Akzo N.V. | Method of forming an elevation partially or entirely under water, an elevation formed by this method and a boundary means to be used for the formation of the elevation |
JPH0696815B2 (ja) * | 1989-03-23 | 1994-11-30 | 財団法人鉄道総合技術研究所 | 列車線路のバラスト被覆用シート材料 |
DE9319575U1 (de) * | 1993-12-20 | 1994-02-17 | König, Josef, 83416 Saaldorf | Behältnis-Tandemsack |
GB9606103D0 (en) * | 1996-03-22 | 1996-05-22 | Geofabrics Ltd | Geotextile |
WO2008037972A1 (en) | 2006-09-25 | 2008-04-03 | J. & S. Franklin Ltd. | Cellular confinement systems |
US9453322B2 (en) | 2006-09-25 | 2016-09-27 | J & S Franklin, Ltd. | Cellular confinement systems |
GB0804487D0 (en) | 2008-03-11 | 2008-04-16 | Terram Ltd | Cellular structures |
GB2493007B (en) | 2011-07-21 | 2017-08-30 | Fiberweb Holdings Ltd | Confinement structures for particulate fill materials |
-
1968
- 1968-04-09 GB GB07113/68A patent/GB1208205A/en not_active Expired
- 1968-04-10 US US720234A patent/US3561219A/en not_active Expired - Lifetime
- 1968-04-25 NL NL6805837A patent/NL6805837A/xx unknown
Cited By (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3696623A (en) * | 1968-07-30 | 1972-10-10 | Hoechst Ag | Woven mat |
US3722222A (en) * | 1970-05-11 | 1973-03-27 | Bitumarin Nv | Support means for slope revetments |
US3874177A (en) * | 1973-06-11 | 1975-04-01 | Nicolon Nv | Pocket mat |
US3925994A (en) * | 1973-06-21 | 1975-12-16 | Fodervaevnader Ab | System of armouring earth |
US4135843A (en) * | 1976-07-27 | 1979-01-23 | Construction Techniques, Inc. | Erosion control mat |
US4102137A (en) * | 1976-12-06 | 1978-07-25 | Mauricio Porraz | Coating and protective device |
US4405257A (en) * | 1979-05-03 | 1983-09-20 | Daekko Presenning Kompagni A/S | Safety mat for use in protection of waterwashed areas against erosion and/or undermining |
DE3043402A1 (de) * | 1979-05-03 | 1982-12-16 | E Nielsen | Safety mat for use in protection of waterwashed areas against erosion and/or undermining |
US4399671A (en) * | 1979-11-19 | 1983-08-23 | Ludvig Svensson (Holland) B.V. | Green-house curtain |
US4294405A (en) * | 1980-03-03 | 1981-10-13 | Ross Lawrence M | Traction bag |
WO1981003189A1 (en) * | 1980-05-10 | 1981-11-12 | O Larsen | Barrier structure and method of producing and laying it |
US4449847A (en) * | 1982-09-27 | 1984-05-22 | Nicolon Corporation | Revetment panel |
US4502815A (en) * | 1982-09-27 | 1985-03-05 | Nicolon Corporation | Revetment panel methods |
US4592675A (en) * | 1982-09-27 | 1986-06-03 | Nicolon Corporation | Revetment panel with staggered compartments |
US4594206A (en) * | 1983-09-21 | 1986-06-10 | Grafton Harry D | Concrete structures for use in shore protection and/or wave control and method of making same |
US4813200A (en) * | 1984-10-29 | 1989-03-21 | Kirchner Dietrich A H | Large container for pourable, pasty and sludge-like materials and a method of using the same |
US4693633A (en) * | 1984-11-08 | 1987-09-15 | Louis Giordano | Run-off trough |
US4889446A (en) * | 1985-01-17 | 1989-12-26 | Holmberg Dick L | Erosion control foundation mat and method |
US4690585A (en) * | 1985-01-17 | 1987-09-01 | Holmberg Dick L | Erosion control foundation mat and method |
US5158395A (en) * | 1985-01-17 | 1992-10-27 | Holmberg Dick L | Erosion control foundation mat and method |
US4657433A (en) * | 1986-06-05 | 1987-04-14 | Holmberg Dick L | Shoreline erosion control mat and method of use therefor |
US4778309A (en) * | 1987-03-30 | 1988-10-18 | Presto Products, Incorporated | Stackable grid material for soil confinement |
JPH01169018A (ja) * | 1987-12-25 | 1989-07-04 | Mochizuki Henshiyoku Kogyo Kk | のり面の植生工法用土砂注入マット |
US4854773A (en) * | 1988-06-20 | 1989-08-08 | Nicoll James D | Beach carpet |
US4913094A (en) * | 1988-08-08 | 1990-04-03 | Jones Barton G | Artificial reef system |
US4965097A (en) * | 1989-01-11 | 1990-10-23 | Reynolds Consumer Products, Inc. | Texturized cell material for confinement of concrete and earth materials |
US5064313A (en) * | 1990-05-25 | 1991-11-12 | Rothbury Investments Limited | Embankment reinforcing structures |
US5452968A (en) * | 1993-04-01 | 1995-09-26 | Dlugosz; Leonard T. | Cement-containing construction ropes and applications therefor |
US5595458A (en) * | 1994-06-29 | 1997-01-21 | Grabhorn, Inc. | Biofilter bags for erosion control |
US5842812A (en) * | 1994-07-22 | 1998-12-01 | Revetment Systems Australia (Qld) Pty Ltd. | Type of flexible mat for lining embankments |
US6020275A (en) * | 1995-05-12 | 2000-02-01 | The Tensar Corporation | Bonded composite open mesh structural textiles |
US5965467A (en) * | 1995-05-12 | 1999-10-12 | The Tensar Corporation | Bonded composite open mesh structural textiles |
US6056479A (en) * | 1995-05-12 | 2000-05-02 | The Tensar Corporation | Bonded composite open mesh structural textiles |
US5795835A (en) * | 1995-08-28 | 1998-08-18 | The Tensar Corporation | Bonded composite knitted structural textiles |
US5924820A (en) * | 1997-02-26 | 1999-07-20 | Creter; Richard E. | Anti-scour device and method for scour prevention |
US5951202A (en) * | 1997-05-05 | 1999-09-14 | Brown; Gregory Benn | Shoreline erosion-preventing bank installation |
US5902070A (en) * | 1997-06-06 | 1999-05-11 | Bradley Industrial Textiles, Inc. | Geotextile container and method of producing same |
US6056438A (en) * | 1997-06-06 | 2000-05-02 | Bradley Industrial Textiles, Inc. | Geotextile container and method of producing same |
US6305876B1 (en) * | 1997-10-31 | 2001-10-23 | Kyowa Kabushiki Kaisha | Material and construction method of prevention of scour for the underwater structure |
US7357598B1 (en) | 1999-08-05 | 2008-04-15 | Bradley Industrial Textiles, Inc. | Apparatus and method for deploying geotextile tubes |
EP1149954A3 (de) * | 2000-04-28 | 2002-01-23 | NaBento Vliesstoff GmbH | Dränmatte sowie Verfahren und Vorrichtung zu ihrer Herstellung |
US6428240B1 (en) * | 2001-02-02 | 2002-08-06 | Peter D. Ehrlich | Sectional interlocking sandbags |
US6860218B2 (en) * | 2001-04-11 | 2005-03-01 | Albany International Corp. | Flexible fluid containment vessel |
US6619884B2 (en) * | 2001-05-04 | 2003-09-16 | Beaver Bags, Inc. | Barrier device and method for building barrier wall |
US7024748B2 (en) | 2001-10-30 | 2006-04-11 | Albany International Corp. | Segment formed flexible fluid containment vessel |
US6832571B2 (en) | 2001-10-30 | 2004-12-21 | Albany International Corp. | Segment formed flexible fluid containment vessel |
US20040052584A1 (en) * | 2002-05-08 | 2004-03-18 | Megasecur Inc. | Ballast system |
US20100111606A1 (en) * | 2002-08-02 | 2010-05-06 | Bussey Jr Harry | Drainage Element and apparatus and method for making same |
US9051703B2 (en) | 2002-08-02 | 2015-06-09 | EZflow L.P. | Drainage element and apparatus and method for making same |
US8251611B2 (en) * | 2002-08-02 | 2012-08-28 | Icc Technologies Inc. | Drainage element and apparatus and method for making same |
US7029205B2 (en) * | 2002-11-21 | 2006-04-18 | Daigle Richard A | Apparatus for pipeline stabilization and shoreline erosion protection |
US20040101368A1 (en) * | 2002-11-21 | 2004-05-27 | Daigle Richard A. | Apparatus for pipeline stabilization and shoreline erosion protection |
US7775171B2 (en) | 2003-01-21 | 2010-08-17 | Albany International Corp. | Flexible fluid containment vessel featuring a keel-like seam |
US7275893B2 (en) | 2003-03-19 | 2007-10-02 | Finn Corporation | Apparatuses and methods for dispensing materials |
US20040184889A1 (en) * | 2003-03-19 | 2004-09-23 | Arlen Rexius | Apparatuses and methods for dispensing materials |
US20060210360A1 (en) * | 2003-07-11 | 2006-09-21 | Slater Steve A | Sectional interlocking barrier bags |
US7329069B2 (en) | 2003-07-11 | 2008-02-12 | Slater Steve A | Sectional interlocking barrier bags |
US7125204B2 (en) | 2003-10-31 | 2006-10-24 | Finn Corporation | Portable pneumatic blower |
US20050095070A1 (en) * | 2003-10-31 | 2005-05-05 | Doug Wysong | Portable pneumatic blower |
US7028509B2 (en) | 2004-07-30 | 2006-04-18 | Sara Lee Corporation | Two-ply blank and a method of manufacturing a circularly knitted two-ply blank |
US7544010B2 (en) | 2007-01-24 | 2009-06-09 | Reynolds Consumer Products, Inc. | Portable porous pavement system and methods |
US20080175662A1 (en) * | 2007-01-24 | 2008-07-24 | Schmalbach Restrepo Ricardo | Portable porous pavement system and methods |
US7896306B2 (en) | 2007-01-24 | 2011-03-01 | Reynolds Consumer Products, Inc. | Clamp device for portable porous pavement system |
US20110150571A1 (en) * | 2007-01-24 | 2011-06-23 | Reynolds Consumer Products, Inc. | Clamp device for portable porous pavement system |
US8398046B2 (en) | 2007-01-24 | 2013-03-19 | Reynolds Presto Products, Inc. | Clamp device for portable porous pavement system |
US20100104367A1 (en) * | 2007-12-20 | 2010-04-29 | Golden-Pow Co., Ltd. | Cellular reinforcement for soil particle confinement |
US20100296877A1 (en) * | 2007-12-26 | 2010-11-25 | Afitex International | Product including cells formed by band stapling and method and device for producing a cellular product |
US8100220B2 (en) | 2008-03-28 | 2012-01-24 | Rexius Forest By-Products, Inc. | Vehicle having auxiliary steering system |
US20090242316A1 (en) * | 2008-03-28 | 2009-10-01 | Rexius Forest By-Products, Inc. | Vehicle having auxiliary steering system |
US9175453B2 (en) * | 2010-07-30 | 2015-11-03 | Alfreds & Alfreds, Inc. | Retaining wall systems and methods of constructing same |
US20120027528A1 (en) * | 2010-07-30 | 2012-02-02 | Alfreds Kim L | Retaining Wall Systems and Methods of Constructing Same |
CN102409635A (zh) * | 2010-09-25 | 2012-04-11 | 盟鑫工业股份有限公司 | 具径向加劲的砂肠管袋 |
US20140270960A1 (en) * | 2011-03-15 | 2014-09-18 | Gary Breitenbeck | Device for coastal restoration |
US9745713B2 (en) * | 2011-03-15 | 2017-08-29 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Device for coastal restoration |
WO2013076464A3 (en) * | 2011-11-21 | 2013-12-05 | University Of Ulster | Woven formwork for construction |
US9982406B2 (en) * | 2012-07-06 | 2018-05-29 | Bradley Industrial Textiles, Inc. | Geotextile tubes with porous internal shelves for inhibiting shear of solid fill material |
US8950974B2 (en) * | 2012-08-16 | 2015-02-10 | Seabed Technologies Llc | Mat for sea floor installation |
EP2740845A1 (de) * | 2012-12-04 | 2014-06-11 | Bilfinger Construction GmbH | Verfahren und eine Vorrichtung zur Sanierung eines Kanals |
US9365991B2 (en) * | 2013-10-10 | 2016-06-14 | Watershed Geosynthetics Llc | Formed in place filled structure with synthetic turf |
US20150104257A1 (en) * | 2013-10-10 | 2015-04-16 | Watershed Geosynthetics Llc | Formed in place filled structure with synthetic turf |
WO2015129052A1 (en) * | 2014-02-26 | 2015-09-03 | Kyowa Co., Ltd. | Underwater bag-member installation jig and method for installing bag members under water by the same |
WO2017142841A1 (en) * | 2016-02-15 | 2017-08-24 | Boasso Walter | Method and apparatus for erosion control and environmental protection |
Also Published As
Publication number | Publication date |
---|---|
GB1208205A (en) | 1970-10-07 |
NL6805837A (enrdf_load_html_response) | 1969-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3561219A (en) | Textile mat for industrial use in the field of civil engineering | |
US4837387A (en) | Supporting fabric for bearing bulk material | |
US5108224A (en) | Silt control fabric | |
US4421439A (en) | Supporting fabric for bearing bulk material and a method of building a road, dike or dam embankment | |
KR870001801B1 (ko) | 다층 직물로 된 직물형상 및 직물형상으로 만들어진 복합구조 | |
EP0338829B1 (en) | Multilayer non-woven fabric | |
US5167263A (en) | Industrial high strength webbing | |
KR20170083740A (ko) | 토목용 매트의 원단 연결부위 강도 보강구조 | |
JPH10510336A (ja) | 繊維製の複合材料 | |
WO1998006570A1 (en) | Bonded composite engineered mesh structural textiles | |
CN107366273A (zh) | 一种耐久加筋滤网及其制作方法 | |
JP2013096015A (ja) | 強化織物 | |
US3773606A (en) | Preformed cross-laid fabric | |
CN106968041A (zh) | 一种单向高强机织土工布 | |
CN210062238U (zh) | 一种加强型透气土工布 | |
JP2784451B2 (ja) | 土木用厚織シート | |
CN213006907U (zh) | 一种多层无纺土工布 | |
KR20030097575A (ko) | 내시공성이 우수한 지오텍스타일 및 그의 제조방법 | |
CN210634221U (zh) | 一种带pp中空纤维膜丝结构的高密度织带 | |
CN111305153A (zh) | 一种加筋反滤衬垫型抛石护岸充砂管袋 | |
CN218440977U (zh) | 一种管道防护网组件 | |
CN104073956A (zh) | 阻燃加筋机织土工布及其制造工艺 | |
CN220202141U (zh) | 一种土工布及布袋 | |
CN212835235U (zh) | 一种高强聚丙烯起圈土工管袋 | |
KR102560755B1 (ko) | 우수한 봉합부 보강강도 및 오탁수 누출 방지 기능을 갖는 오탁방지막 |