US3537513A - Three-fluid heat exchanger - Google Patents
Three-fluid heat exchanger Download PDFInfo
- Publication number
- US3537513A US3537513A US711987A US3537513DA US3537513A US 3537513 A US3537513 A US 3537513A US 711987 A US711987 A US 711987A US 3537513D A US3537513D A US 3537513DA US 3537513 A US3537513 A US 3537513A
- Authority
- US
- United States
- Prior art keywords
- disposed
- plates
- fluid
- heat exchanger
- buffer fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 title description 80
- 239000000446 fuel Substances 0.000 description 24
- 125000006850 spacer group Chemical group 0.000 description 18
- 239000002826 coolant Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 241001417524 Pomacanthidae Species 0.000 description 2
- 239000012809 cooling fluid Substances 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000003351 stiffener Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
- F28D9/0043—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
- F28D9/0043—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
- F28D9/0056—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another with U-flow or serpentine-flow inside conduits; with centrally arranged openings on the plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0093—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/025—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
- F28F3/027—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/007—Auxiliary supports for elements
- F28F9/0075—Supports for plates or plate assemblies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D21/0001—Recuperative heat exchangers
- F28D21/0003—Recuperative heat exchangers the heat being recuperated from exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2250/00—Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
- F28F2250/10—Particular pattern of flow of the heat exchange media
- F28F2250/102—Particular pattern of flow of the heat exchange media with change of flow direction
Definitions
- heat exchangers are generally of the plate type comprising an assembly of flat platelike elements which are situated in spaced parallel relationship. Adjacent plate elements are separated at two opposite edges by spacer elements to define a plurality of crisscross passageways. Each passageway consists of two rectangular plate elements with two spacer elements disposed at opposite edges. Alternate passageways communicate with a first manifold and the remaining passageways communicate with a second manifold. The coolant fluid is fed'into the first manifold and the fluid to be cooled is fed into the second manifold.
- the two fluids would be disposed on opposite sides of the plate elements, and if any defects or leaks appear in the heat exchanger the two fluids would mix. Mixing of the fluids is undesirable and dangerous, especially if one fluid is hot engine bleed or ram air, which is to be cooled with liquid fuel, as could be encountered in the ventilation systems on supersonic aircrafts. In addition, if the heat exchangers of the prior art should break down, fuel leaking into the hot air passages would ignite making an inferno out of the passenger cabin.
- an object of this invention is to provide a fluid chamber between the coolant fluid of the heat exchanger and the fluid to be cooled, which fluid chamber is preferably pressurized above the level of the others.
- Another object of this invention is to provide a buffer fluid in a heat exchanger to reduce severity of structural temperature gradients and thermal stresses which, in turn, prevent leakage.
- Another object is to prevent flash heating of the fuel, which is also the coolant, during momentary stoppage of the fuel flow.
- Another object of this invention is to prevent leakage and intermixing of the coolant and the fluid to be cooled.
- Another objective is to prevent any external surface of the heat exchanger, including the hot air inlet duct, from reaching potential fuel ignition temperature.
- the invention provides parallel-spaced, plate elements shaped, for example, rectangular.
- hollow tubular members or headers preferably along thelonger edges to form passageways for the hot fluid.
- hollow headers along the shorter edges so that all plate elements are fastened together in a stack. Therefore, between the hot fluid passageways additional passageways are formed which communicate with manifolds disposed on opposite ends forming a closed vessel for the buffer fluid.
- a flat compartment is disposed within each passageway that communicates between the manifolds. The flat compartments are spaced from the plate elements and headers so that the buffer fluid completely surrounds the flat compartments. Each flat compartment has an inlet means and an outlet means so the coolant fluid passes through the flat compartment.
- suitable holes areformed in the hollow headers so that the buffer fluids flow freely in and out of the headers.
- FIG. 1 is a pictorial view of a portion of the novel exchanger with portions broken sway;
- FIG. 2 is a small scale side elevation of the heat exchanger shown in FIG. 1;
- FIG. 3 is a section of a portion of the heat exchanger taken on line 33 in FIG. 2;
- FIG. 4 is a section of a portion of the heat exchanger taken on line 4-4 on FIG. 2;
- FIG. 5 is a partial elevation showing the air inlet of the heat exchanger with portions broken away to show the internal structure
- FIG. 6 is the side elevation of the heat exchanger with the side plate removed and portions broken away to show the internal structure.
- FIG. I a pictorial view of a portion of the novel heat exchanger is shown
- the heat exchanger has a rectangular inlet flange 11 for the fluid to be cooled, for example, hot bleed air from a jet engine of a supersonic aircraft, and has a rectangular outlet flange 12 that forms the outlet for the cooled bleed air.
- Suitable ducting could be bolted to flanges 11 and 12 to feed the hot air into and to guide the cooled air from the exchanger, respectively.
- a compartment flrewall (not shown) could be placed between the inlet duct and flange 11 for reasons that will be hereinafter explained.
- the air leaving the exchanger has been cooled, for example, by relatively cold fuel, entering the exchanger through a fuel inlet 13 and leaving through a fuel outlet 14.
- the fuel inlet and outlet extend through a side plate l6 that extends from and is brazed to flange l1 and to flange 12.
- a similar side plate 17 (FIG. 5) is disposed on the other side of the exchanger and parallel to the side plate 16.
- a semicylindrical plate 18 (FIG. 1) is disposed on the top of the exchanger and suitably welded to side plates 16 and 17 and flanges 32d on members 32, disposed at the inlet and outlet, to form a buffer fluid manifold at the top thereof.
- Another semicylindrical plate 19 (FIG. 6) is disposed on the bottom of the exchanger and welded to side plates 16 and 17 and flanges 33d (FIG.
- FIG. 6 There is disposed between the side plates 16 and 17 a plurality of heat transfer plates 21 in parallel relationship and spaced apart from each other. Plates 21 are preferably rectangular, and within alternate spaces formed therebctween and along both vertical edges are disposed vertical hollow headers or spacers 22 to form passageways extending vertically as viewed in FIG. 1. Top horizontal hollow headers or spacers 23 and bottom hollow horizontal headers or spacers 24 (FIG. 5) are disposed in the other interplate spaces along the top and the bottom edges, respectively, of plates 21 to form passageways extending right to left as viewed in FIG. 1. Horizontal and vertical passageways are thus formed between the plates 21.
- vertical hollow headers or spacers 22a are disposed between the side plate 16 and the adjacent heat transfer plate 21 and between the side plate 17 and its adjacent heat transfer plate 21 to form vertical passageways.
- Both vertical and horizontal spacers 22, 22a, 23 and 24 are rectangularly shaped tubes, to allow a buffer fluid to flow therethrough.
- Top and bottom spacers 23 and 24 have their ends sealed with suitable plugs 25 (FIGS. 1 and 5), and therefore to allow buffer fluid to flow therein, holes 27 are formed only on the top surface of top spacers 23 and only on the bottom surface of bottom spacer 24 (FIG. 3).
- the hot bleed air enters the heat exchanger through flange l1, and the vertical headers 22 and 22a limit the passage of air to alternate horizontal passageways formed between the plates 21.
- suitable offset corrugations 31 FIG. I are placed between the respective plates 21 in the bleed air passages.
- Stiffener members 32 and 33 are preferably extruded sections having three flanges such as flanges 32b, 32c and 32d as shown on member 32. As mentioned above, flanges 32 don both the inlet and outlet are butt-welded to top plate 18 as shown in FIG.
- flanges 32c extend downward over the plugged end of headers 23 and are brazed thereto; and flanges 32b are welded to flanges 11 and 12 of the heat exchanger.
- the sharp corner is eliminated between flanges 32b and 32c by suitable fillet radius.
- the respective flanges on members 33 are butt-welded to bottom plate 19, brazed to the bottom plugged end of the spacers 24, and welded to the flanges I1 and 12.
- Each member 32 and 33 has aligned spaced lugs 37 (more clearly shown in FIG. 6) disposed parallel to flanges 32c and 33c.
- the lugs 37 are disposed behind vertical headers 22 so that the headers are held firmly between and brazed to the lugs 37 and flange 32c and 33c, respectively.
- the vertical bars forming flange 11 are welded to the respective side plates 16 and 17 (FIG. 5).
- horizontal arcuated plates 38 (FIG. 6) are welded to the outside edge of the horizontal bars of flange 11 and to the respective top and bottom plates 18 and 19, while vertical arcuated plates 39 (of which only one plate is shown in FIG. 1) are welded to the outside edges of vertical bars of flange 11 and to respective side plates 16 and 17.
- a feature of this invention is to provide a buffer fluid on the opposite side of the plates 21 in contact with the bleed air.
- the buffer fluid is disposed within the vertical passageways communicating with a top manifold formed by the top plate 18 and with a bottom manifold formed by the bottom plate 19.
- a pressure relief valve 41 (FIG. 2) is suitably connected to the top manifold 18 to prevent excessive pressure from building up if, for example, the fuel (coolant) is shut off, the bleed air would cause some of the buffer fluid to heat up, causing the pressure thereof to rise.
- the buffer fluid is a liquid so that a thermal inertia is built into the heat exchanger to prevent excessive thermal gradients.
- the heat is removed from the bleed air by the cold fuel entering the fuel inlet 13 and leaving outlet 14.
- the inlet 13 is made substantially the same as the outlet 14 and they include pipes 44a and 44b (FIG. 1) respectively, to which are fixed flanges 46a and 46b. Both pipes 44a and 44b pass through the side plate 16 and enter the bottom buffer fluid manifold, more clearly shown in FIG. 5. The pipes then pass through a plurality of plates or walls 47a and 47b.
- Plates 47a and 47b are suitably brazed to pipes 44a and 44b.
- Plates 47a and 47b are contoured plates having the same configuration, and are placed face to face as shown in FIG. 4 so that the vertical edges 48a and 48b and the top and bottom edges 48c and 48d (FIG. 6) respectively, on the two plates coincide face to face and are brazed together.
- Each plate has a center rib 49 that extends from the bottom edge 48d and touches the center rib on its mating plate so that when the two ribs are brazed together, a flat U-shaped chamber is formed between the two plates 47a and 47b (more clearly shown in FIG. 6).
- suitable openings 51 are formed as shown in FIG. 3 for pipe 440. These openings 51 allow the cooling fluid to leave pipe' 44a, pass through the plurality of U-shaped chambers, enter pipe 44b to leave the heat exchanger. Within the U-shaped chambers are disposed suitable offset corrugations 52 disposed so that heat is efficiently transferred from the plates 47a and 47b to the cooling fluid.
- offset corrugations 53 are disposed to transfer heat between plates 21 and the adjacent respective plates 47a and 47b.
- the offset corrugations 53 are oriented to allow the buffer fluid to move freely in the vertical direction.
- the offset corrugations 53 provide structural support for the plates 47a and 47b.
- Tubes 55 are disposed vertically and along both vertical edges 48a and 48b of plates 47a and 47b as shown in FIG. 4 to prevent the edges from distorting under pressure due to lack of support beyond the corrugations 53.
- the tubes 55 are opened at the top and bottom thereof so that the buffer fluid flows freely through the tubes.
- offset corrugations 31 are disposed between two adjacent plates 21.
- Corrugations 31 are disposed to allow the air to move freely through the horizontal passageway and efficiently transfer its heat to the coolant fuel in the following sequence: hot air to corrugations 31, corrugation to plates 21, to corrugations 53, to plates 47, to corrugations 52 and to cold fuel.
- buffer fluid would be disposed on the opposite side. Since flange 11 is relatively wide any heat flowing outward through the flange would be extracted by the buffer fluid contained within the curved plates 38 and 39.
- the buffer fluid keeps the air and fuel apart. If by the remote chance two leaks occur, one between the buffer fluid and the fuel and the other between the buffer fluid and the air, the fuel and air are prevented from mixing since the compartment containing the buffer fluid is pressurized, for example, by the buffer fluid accumulator 60 and the relief valve 41 to a pressure greater than both the fuel and the air. This causes the buffer fluid to flow outward and prevents the fuel and air from flowing inward into the buffer compartment.
- a buffer fluid accumulator 60 the pressure and volume can be monitored and a loss in buffer fluids indicates a malfunction.
- the device automatically makes use of the heat of vaporization of the buffer fluid to cool the air before it enters the passenger cabin. This feature should allow sufficient time to shutoff the associated air-conditioning system before the cabin temperature rises to dangerous levels.
- the bufferfluid would preferably be water to obtain the best heat transfer properties. It may be necessary to add a freeze suppressant, such as glycol, in order to operate at low ambient temperature. An inert type gas, such as nitrogen, can also be considered as a buffer fluid in the event that it is not to be utilized as a secondary heat sink. y
- a heat exchanger comprising:
- first spacer elements arranged between alternately spaced parallel plates to define a plurality of first ducts for the passage of a first fluid
- first and said second spacer elements are tubular and provided with apertures for the buffer fluid to communicate with the interior thereof;
- manifold means disposed within said buffer fluid enclosure and operably connected to said plurality of third ducts to deliver and discharge the second fluid therefrom.
- each of said third ducts comprises at least two plate walls disposed within each of said second ducts, said plate walls contoured to have the same configuration and disposed face-to-face with their contacting portions bonded together;
- said manifold means disposed within said buffer fluid enclosure includes at least one pipe extending through each of said third ducts, said, pipe having openings in the portions passing through said third ducts;
- a reinforcement element disposed between at least one bonded portion of said contoured plate walls and the adjacent plate of said second duct to position said third ducts within said second ducts;
- said heat transfer elements comprise second corrugated elements disposed between said third ducts and said spaced parallel plates of said second ducts;
- stiffening elements are disposed on opposite sides of the inlets of said first ducts and are bonded to said buffer fluid enclosure;
- each stiffening element has a first flange extending outwardly form the inlet of said first ducts and the two exterior plates have portions extending outwardly from the inlet of said first ducts, said outwardly extending flanges and said extending portions from an inlet conduit connected with the inlet of each of said first ducts;
- a second flange is formed on the end of said inlet conduit
- plate members are bonded to the edges of the second flange and bonded to said buffer fluid enclosure and to both exterior plates to form a hollow annular compartment around said inlet ducts;
- means are provided to allow the buffer fluid to flow between said hollow annular compartment and said enclosure.
- contoured plate walls are further shaped so that, when they are disposed face-to-face, each of said third ducts is U-shaped;
- means are operably associated with said buffer fluid enclosure to maintain said buffer fluid at a higher pressure than the pressure of both said first and said second fluids.
- said plate walls are further shaped so that when they are disposed face-to-face each of said third ducts is U-shaped;
- said manifold means includes two pipes extending through said buffer fluid enclosure and connect with each of said third ducts so that said second fluid flows into one leg of each of the U-shaped third ducts and out of the other leg thereof.
- a first passageway communicates with said first ducts
- said first passageway is formed by an inner wall surrounded by an outer wall forming a hollow annular compartment
- a heat exchanger comprising: an enclosure for containing a buffer fluid
- first spacer elements arranged between alternately spaced parallel plates to define a plurality of first passageways within said enclosure to convey a first fluid
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US71198768A | 1968-03-11 | 1968-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3537513A true US3537513A (en) | 1970-11-03 |
Family
ID=24860326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US711987A Expired - Lifetime US3537513A (en) | 1968-03-11 | 1968-03-11 | Three-fluid heat exchanger |
Country Status (4)
Country | Link |
---|---|
US (1) | US3537513A (enrdf_load_stackoverflow) |
DE (1) | DE1911889C2 (enrdf_load_stackoverflow) |
FR (1) | FR2003648B1 (enrdf_load_stackoverflow) |
GB (1) | GB1265691A (enrdf_load_stackoverflow) |
Cited By (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3633661A (en) * | 1970-08-14 | 1972-01-11 | Trane Co | Crossflow plate-type heat exchanger with barrier space |
US4078542A (en) * | 1976-08-11 | 1978-03-14 | Morton Metalcraft Co. | Fireplace grate and blower |
US4081025A (en) * | 1974-05-24 | 1978-03-28 | Borg-Warner Corporation | Multiple fluid stacked plate heat exchanger |
US4228848A (en) * | 1979-01-23 | 1980-10-21 | Grumman Energy Systems, Inc. | Leak detection for coaxial heat exchange system |
US4274481A (en) * | 1979-10-22 | 1981-06-23 | Stewart-Warner Corporation | Dry cooling tower with water augmentation |
US4344296A (en) * | 1978-07-21 | 1982-08-17 | Staples Jack W | Efficient second stage cooling system |
US4404793A (en) * | 1980-03-20 | 1983-09-20 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Apparatus for improving the fuel efficiency of a gas turbine engine |
US4550561A (en) * | 1980-03-20 | 1985-11-05 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method for improving the fuel efficiency of a gas turbine engine |
US4623019A (en) * | 1985-09-30 | 1986-11-18 | United Aircraft Products, Inc. | Heat exchanger with heat transfer control |
US5587053A (en) * | 1994-10-11 | 1996-12-24 | Grano Environmental Corporation | Boiler/condenser assembly for high efficiency purification system |
US5597453A (en) * | 1992-10-16 | 1997-01-28 | Superstill Technology, Inc. | Apparatus and method for vapor compression distillation device |
US5755280A (en) * | 1995-05-04 | 1998-05-26 | Packinox | Plate-type heat exchanger |
US5884696A (en) * | 1994-12-26 | 1999-03-23 | Valeo Climatisation | Heat exchanger of reduced size for heat transfer between three fluids |
US6039112A (en) * | 1997-03-08 | 2000-03-21 | Behr Industrietechnik Gmbh & Co. | Plate-type heat exchanger and method of making same |
US6263960B1 (en) | 1997-11-28 | 2001-07-24 | Denso Corporation | Oil cooler with cooling water side fin and oil side fin |
WO2004005829A1 (en) * | 2002-07-03 | 2004-01-15 | Ingersoll-Rand Energy Systems Corporation | Crossflow heat exchanger with cells formed by plates and fins forming u-shaped flow path |
US6705392B2 (en) * | 2001-03-05 | 2004-03-16 | Nissan Motor Co., Ltd. | Heat exchanger |
EP1475596A3 (de) * | 2003-05-08 | 2005-10-19 | Rehberg, Peter, Dipl.-Ing. | Plattenwärmeübertrager mit einwandigen und doppelwandigen Wärmeübertragerplatten |
US20060096393A1 (en) * | 2004-10-08 | 2006-05-11 | Pesiri David R | Apparatus for and method of sampling and collecting powders flowing in a gas stream |
US20060180703A1 (en) * | 2005-02-16 | 2006-08-17 | The Boeing Company | Heat exchanger systems and associated systems and methods for cooling aircraft starter/generators |
US20060266501A1 (en) * | 2005-05-24 | 2006-11-30 | So Allan K | Multifluid heat exchanger |
US20080110603A1 (en) * | 2006-11-09 | 2008-05-15 | Honeywell International Inc. | Integrated heat exchangers for ecs and obiggs applications |
US20080121381A1 (en) * | 2006-11-24 | 2008-05-29 | Dana Canada Corporation | Linked heat exchangers |
US20080121382A1 (en) * | 2006-11-24 | 2008-05-29 | Dana Canada Corporation | Multifluid two-dimensional heat exchanger |
US20080202731A1 (en) * | 2004-07-30 | 2008-08-28 | Behr Gmbh & Co. Kg | One-Piece Turbulence Insert |
US20080280049A1 (en) * | 2007-05-11 | 2008-11-13 | Sdc Materials, Inc. | Formation of catalytic regions within porous structures using supercritical phase processing |
USD627900S1 (en) | 2008-05-07 | 2010-11-23 | SDCmaterials, Inc. | Glove box |
US20110017429A1 (en) * | 2008-03-27 | 2011-01-27 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method For Vaporizing Cryogenic Liquid Through Heat Exchange Using Calorigenic Fluid |
CZ302986B6 (cs) * | 2007-08-08 | 2012-02-08 | Korado, A. S. | Univerzální prepážka, zvlášte pro otopná telesa se spodním pripojením na otopný systém |
US20120031597A1 (en) * | 2009-04-06 | 2012-02-09 | Atlas Copco Airpower | Improved heat exchanger |
US8470112B1 (en) | 2009-12-15 | 2013-06-25 | SDCmaterials, Inc. | Workflow for novel composite materials |
US8481449B1 (en) | 2007-10-15 | 2013-07-09 | SDCmaterials, Inc. | Method and system for forming plug and play oxide catalysts |
US8545652B1 (en) | 2009-12-15 | 2013-10-01 | SDCmaterials, Inc. | Impact resistant material |
US8557727B2 (en) | 2009-12-15 | 2013-10-15 | SDCmaterials, Inc. | Method of forming a catalyst with inhibited mobility of nano-active material |
US8652992B2 (en) | 2009-12-15 | 2014-02-18 | SDCmaterials, Inc. | Pinning and affixing nano-active material |
US8669202B2 (en) | 2011-02-23 | 2014-03-11 | SDCmaterials, Inc. | Wet chemical and plasma methods of forming stable PtPd catalysts |
US8668803B1 (en) | 2009-12-15 | 2014-03-11 | SDCmaterials, Inc. | Sandwich of impact resistant material |
US8679433B2 (en) | 2011-08-19 | 2014-03-25 | SDCmaterials, Inc. | Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions |
US8803025B2 (en) | 2009-12-15 | 2014-08-12 | SDCmaterials, Inc. | Non-plugging D.C. plasma gun |
US9126191B2 (en) | 2009-12-15 | 2015-09-08 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
US9149797B2 (en) | 2009-12-15 | 2015-10-06 | SDCmaterials, Inc. | Catalyst production method and system |
US9156025B2 (en) | 2012-11-21 | 2015-10-13 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
CN105332973A (zh) * | 2015-10-16 | 2016-02-17 | 北京精密机电控制设备研究所 | 一种电液伺服机构用内嵌式冷却器及冷却方法 |
US9427732B2 (en) | 2013-10-22 | 2016-08-30 | SDCmaterials, Inc. | Catalyst design for heavy-duty diesel combustion engines |
US9511352B2 (en) | 2012-11-21 | 2016-12-06 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9517448B2 (en) | 2013-10-22 | 2016-12-13 | SDCmaterials, Inc. | Compositions of lean NOx trap (LNT) systems and methods of making and using same |
US9586179B2 (en) | 2013-07-25 | 2017-03-07 | SDCmaterials, Inc. | Washcoats and coated substrates for catalytic converters and methods of making and using same |
US20170089643A1 (en) * | 2015-09-25 | 2017-03-30 | Westinghouse Electric Company, Llc. | Heat Exchanger |
US9687811B2 (en) | 2014-03-21 | 2017-06-27 | SDCmaterials, Inc. | Compositions for passive NOx adsorption (PNA) systems and methods of making and using same |
CN108597776A (zh) * | 2018-05-24 | 2018-09-28 | 河南森源电气股份有限公司 | 全密封油浸式变压器及其波纹散热器 |
CN108831695A (zh) * | 2018-05-24 | 2018-11-16 | 河南森源电气股份有限公司 | 油浸式变压器的波纹散热器及油浸式变压器 |
WO2021026397A1 (en) * | 2019-08-07 | 2021-02-11 | A. O. Smith Corporation | High efficiency tankless water heater |
US20230356847A1 (en) * | 2022-05-04 | 2023-11-09 | Liebherr-Aerospace Toulouse Sas | Heat exchange device comprising external plates having at least one hollow, air-conditioning system and vehicle |
EP4560241A1 (en) * | 2023-11-24 | 2025-05-28 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Heat exchanger with leak detection system |
US12372166B2 (en) | 2022-12-21 | 2025-07-29 | Dresser, Llc | Using diverget flow paths in valve trim to abate valve noise |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4344481A (en) * | 1980-01-23 | 1982-08-17 | United Technologies Corporation | Counterflow heat exchanger construction |
GB2280020A (en) * | 1993-07-02 | 1995-01-18 | Apv Corp Ltd | Heat exchanger housed in a container to prevent leakage from or fire damage to the heat exchanger |
DE19836889A1 (de) * | 1998-08-14 | 2000-02-17 | Modine Mfg Co | Abgaswärmetauscher |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR958699A (enrdf_load_stackoverflow) * | 1942-05-22 | 1950-03-17 | ||
US2634958A (en) * | 1948-12-03 | 1953-04-14 | Modine Mfg Co | Heat exchanger |
US2615688A (en) * | 1950-03-28 | 1952-10-28 | Diamond Alkali Co | Heat exchange method |
US2846198A (en) * | 1953-11-27 | 1958-08-05 | Ici Ltd | Heat exchangers |
GB922632A (en) * | 1961-02-01 | 1963-04-03 | Marston Excelsior Ltd | Improvements in heat exchangers |
DE949953C (de) * | 1953-11-27 | 1956-09-27 | Ici Ltd | Plattenwaermeaustauscher |
DE1057623B (de) * | 1955-02-08 | 1959-05-21 | Foster Wheeler Ltd | Zum Waermeaustausch zwischen einer Fluessigkeit und einem anderen Medium dienender Waermeaustauscher |
GB860359A (en) * | 1958-09-16 | 1961-02-01 | Morris Motors Ltd | Improvements relating to brazed light alloy heat-exchangers |
US3255817A (en) * | 1962-10-16 | 1966-06-14 | Desalination Plants | Plate type heat exchanger |
-
1968
- 1968-03-11 US US711987A patent/US3537513A/en not_active Expired - Lifetime
-
1969
- 1969-03-07 GB GB1265691D patent/GB1265691A/en not_active Expired
- 1969-03-08 DE DE1911889A patent/DE1911889C2/de not_active Expired
- 1969-03-10 FR FR6906687A patent/FR2003648B1/fr not_active Expired
Cited By (122)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3633661A (en) * | 1970-08-14 | 1972-01-11 | Trane Co | Crossflow plate-type heat exchanger with barrier space |
US4081025A (en) * | 1974-05-24 | 1978-03-28 | Borg-Warner Corporation | Multiple fluid stacked plate heat exchanger |
US4078542A (en) * | 1976-08-11 | 1978-03-14 | Morton Metalcraft Co. | Fireplace grate and blower |
US4344296A (en) * | 1978-07-21 | 1982-08-17 | Staples Jack W | Efficient second stage cooling system |
US4228848A (en) * | 1979-01-23 | 1980-10-21 | Grumman Energy Systems, Inc. | Leak detection for coaxial heat exchange system |
US4274481A (en) * | 1979-10-22 | 1981-06-23 | Stewart-Warner Corporation | Dry cooling tower with water augmentation |
US4404793A (en) * | 1980-03-20 | 1983-09-20 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Apparatus for improving the fuel efficiency of a gas turbine engine |
US4550561A (en) * | 1980-03-20 | 1985-11-05 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method for improving the fuel efficiency of a gas turbine engine |
US4623019A (en) * | 1985-09-30 | 1986-11-18 | United Aircraft Products, Inc. | Heat exchanger with heat transfer control |
US5597453A (en) * | 1992-10-16 | 1997-01-28 | Superstill Technology, Inc. | Apparatus and method for vapor compression distillation device |
US5587053A (en) * | 1994-10-11 | 1996-12-24 | Grano Environmental Corporation | Boiler/condenser assembly for high efficiency purification system |
US5884696A (en) * | 1994-12-26 | 1999-03-23 | Valeo Climatisation | Heat exchanger of reduced size for heat transfer between three fluids |
US5755280A (en) * | 1995-05-04 | 1998-05-26 | Packinox | Plate-type heat exchanger |
US6039112A (en) * | 1997-03-08 | 2000-03-21 | Behr Industrietechnik Gmbh & Co. | Plate-type heat exchanger and method of making same |
US6263960B1 (en) | 1997-11-28 | 2001-07-24 | Denso Corporation | Oil cooler with cooling water side fin and oil side fin |
US6705392B2 (en) * | 2001-03-05 | 2004-03-16 | Nissan Motor Co., Ltd. | Heat exchanger |
WO2004005829A1 (en) * | 2002-07-03 | 2004-01-15 | Ingersoll-Rand Energy Systems Corporation | Crossflow heat exchanger with cells formed by plates and fins forming u-shaped flow path |
EP1475596A3 (de) * | 2003-05-08 | 2005-10-19 | Rehberg, Peter, Dipl.-Ing. | Plattenwärmeübertrager mit einwandigen und doppelwandigen Wärmeübertragerplatten |
US20080202731A1 (en) * | 2004-07-30 | 2008-08-28 | Behr Gmbh & Co. Kg | One-Piece Turbulence Insert |
US20060096393A1 (en) * | 2004-10-08 | 2006-05-11 | Pesiri David R | Apparatus for and method of sampling and collecting powders flowing in a gas stream |
US7717001B2 (en) | 2004-10-08 | 2010-05-18 | Sdc Materials, Inc. | Apparatus for and method of sampling and collecting powders flowing in a gas stream |
US20090025913A1 (en) * | 2005-02-16 | 2009-01-29 | The Boeing Company | Heat Exchanger Systems and Associated Systems and Methods for Cooling Aircraft Starter/Generators |
US7883053B2 (en) | 2005-02-16 | 2011-02-08 | The Boeing Company | Heat exchanger systems and associated systems and methods for cooling aircraft starter/generators |
US7434765B2 (en) * | 2005-02-16 | 2008-10-14 | The Boeing Company | Heat exchanger systems and associated systems and methods for cooling aircraft starter/generators |
US20060180703A1 (en) * | 2005-02-16 | 2006-08-17 | The Boeing Company | Heat exchanger systems and associated systems and methods for cooling aircraft starter/generators |
US9599405B2 (en) | 2005-04-19 | 2017-03-21 | SDCmaterials, Inc. | Highly turbulent quench chamber |
US9719727B2 (en) | 2005-04-19 | 2017-08-01 | SDCmaterials, Inc. | Fluid recirculation system for use in vapor phase particle production system |
US9023754B2 (en) | 2005-04-19 | 2015-05-05 | SDCmaterials, Inc. | Nano-skeletal catalyst |
WO2008140785A1 (en) * | 2005-04-19 | 2008-11-20 | Sdc Materials, Inc. | Water cooling system and heat transfer system |
US9180423B2 (en) | 2005-04-19 | 2015-11-10 | SDCmaterials, Inc. | Highly turbulent quench chamber |
US9132404B2 (en) | 2005-04-19 | 2015-09-15 | SDCmaterials, Inc. | Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction |
US9216398B2 (en) | 2005-04-19 | 2015-12-22 | SDCmaterials, Inc. | Method and apparatus for making uniform and ultrasmall nanoparticles |
US20060266501A1 (en) * | 2005-05-24 | 2006-11-30 | So Allan K | Multifluid heat exchanger |
US8733427B2 (en) | 2005-05-24 | 2014-05-27 | Dana Canada Corporation | Multifluid heat exchanger |
US7946339B2 (en) | 2005-05-24 | 2011-05-24 | Dana Canada Corporation | Multifluid heat exchanger |
US20110180241A1 (en) * | 2005-05-24 | 2011-07-28 | So Allan K | Multifluid Heat Exchanger |
US20080110603A1 (en) * | 2006-11-09 | 2008-05-15 | Honeywell International Inc. | Integrated heat exchangers for ecs and obiggs applications |
US8079407B2 (en) * | 2006-11-09 | 2011-12-20 | Honeywell International Inc. | Integrated heat exchangers for ECS and OBIGGS applications |
US7703505B2 (en) | 2006-11-24 | 2010-04-27 | Dana Canada Corporation | Multifluid two-dimensional heat exchanger |
US20080121382A1 (en) * | 2006-11-24 | 2008-05-29 | Dana Canada Corporation | Multifluid two-dimensional heat exchanger |
US20080121381A1 (en) * | 2006-11-24 | 2008-05-29 | Dana Canada Corporation | Linked heat exchangers |
US8191615B2 (en) | 2006-11-24 | 2012-06-05 | Dana Canada Corporation | Linked heat exchangers having three fluids |
US7897127B2 (en) | 2007-05-11 | 2011-03-01 | SDCmaterials, Inc. | Collecting particles from a fluid stream via thermophoresis |
US8663571B2 (en) | 2007-05-11 | 2014-03-04 | SDCmaterials, Inc. | Method and apparatus for making uniform and ultrasmall nanoparticles |
US8142619B2 (en) | 2007-05-11 | 2012-03-27 | Sdc Materials Inc. | Shape of cone and air input annulus |
US20080280049A1 (en) * | 2007-05-11 | 2008-11-13 | Sdc Materials, Inc. | Formation of catalytic regions within porous structures using supercritical phase processing |
US8906316B2 (en) | 2007-05-11 | 2014-12-09 | SDCmaterials, Inc. | Fluid recirculation system for use in vapor phase particle production system |
US8893651B1 (en) | 2007-05-11 | 2014-11-25 | SDCmaterials, Inc. | Plasma-arc vaporization chamber with wide bore |
US7678419B2 (en) | 2007-05-11 | 2010-03-16 | Sdc Materials, Inc. | Formation of catalytic regions within porous structures using supercritical phase processing |
US8956574B2 (en) | 2007-05-11 | 2015-02-17 | SDCmaterials, Inc. | Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction |
US8524631B2 (en) | 2007-05-11 | 2013-09-03 | SDCmaterials, Inc. | Nano-skeletal catalyst |
US8076258B1 (en) | 2007-05-11 | 2011-12-13 | SDCmaterials, Inc. | Method and apparatus for making recyclable catalysts |
US7905942B1 (en) | 2007-05-11 | 2011-03-15 | SDCmaterials, Inc. | Microwave purification process |
US8051724B1 (en) | 2007-05-11 | 2011-11-08 | SDCmaterials, Inc. | Long cool-down tube with air input joints |
US8574408B2 (en) | 2007-05-11 | 2013-11-05 | SDCmaterials, Inc. | Fluid recirculation system for use in vapor phase particle production system |
US8604398B1 (en) | 2007-05-11 | 2013-12-10 | SDCmaterials, Inc. | Microwave purification process |
CZ302986B6 (cs) * | 2007-08-08 | 2012-02-08 | Korado, A. S. | Univerzální prepážka, zvlášte pro otopná telesa se spodním pripojením na otopný systém |
US9089840B2 (en) | 2007-10-15 | 2015-07-28 | SDCmaterials, Inc. | Method and system for forming plug and play oxide catalysts |
US9592492B2 (en) | 2007-10-15 | 2017-03-14 | SDCmaterials, Inc. | Method and system for forming plug and play oxide catalysts |
US9597662B2 (en) | 2007-10-15 | 2017-03-21 | SDCmaterials, Inc. | Method and system for forming plug and play metal compound catalysts |
US9737878B2 (en) | 2007-10-15 | 2017-08-22 | SDCmaterials, Inc. | Method and system for forming plug and play metal catalysts |
US8507402B1 (en) | 2007-10-15 | 2013-08-13 | SDCmaterials, Inc. | Method and system for forming plug and play metal catalysts |
US8759248B2 (en) | 2007-10-15 | 2014-06-24 | SDCmaterials, Inc. | Method and system for forming plug and play metal catalysts |
US9302260B2 (en) | 2007-10-15 | 2016-04-05 | SDCmaterials, Inc. | Method and system for forming plug and play metal catalysts |
US8575059B1 (en) | 2007-10-15 | 2013-11-05 | SDCmaterials, Inc. | Method and system for forming plug and play metal compound catalysts |
US9186663B2 (en) | 2007-10-15 | 2015-11-17 | SDCmaterials, Inc. | Method and system for forming plug and play metal compound catalysts |
US8481449B1 (en) | 2007-10-15 | 2013-07-09 | SDCmaterials, Inc. | Method and system for forming plug and play oxide catalysts |
US8507401B1 (en) | 2007-10-15 | 2013-08-13 | SDCmaterials, Inc. | Method and system for forming plug and play metal catalysts |
US20110017429A1 (en) * | 2008-03-27 | 2011-01-27 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method For Vaporizing Cryogenic Liquid Through Heat Exchange Using Calorigenic Fluid |
USD627900S1 (en) | 2008-05-07 | 2010-11-23 | SDCmaterials, Inc. | Glove box |
US9574828B2 (en) * | 2009-04-06 | 2017-02-21 | Atlas Copco Airpower Naamloze Vennootschap | Heat exchanger |
US20120031597A1 (en) * | 2009-04-06 | 2012-02-09 | Atlas Copco Airpower | Improved heat exchanger |
US8668803B1 (en) | 2009-12-15 | 2014-03-11 | SDCmaterials, Inc. | Sandwich of impact resistant material |
US8545652B1 (en) | 2009-12-15 | 2013-10-01 | SDCmaterials, Inc. | Impact resistant material |
US8470112B1 (en) | 2009-12-15 | 2013-06-25 | SDCmaterials, Inc. | Workflow for novel composite materials |
US8992820B1 (en) | 2009-12-15 | 2015-03-31 | SDCmaterials, Inc. | Fracture toughness of ceramics |
US8906498B1 (en) | 2009-12-15 | 2014-12-09 | SDCmaterials, Inc. | Sandwich of impact resistant material |
US9039916B1 (en) | 2009-12-15 | 2015-05-26 | SDCmaterials, Inc. | In situ oxide removal, dispersal and drying for copper copper-oxide |
US8877357B1 (en) | 2009-12-15 | 2014-11-04 | SDCmaterials, Inc. | Impact resistant material |
US9090475B1 (en) | 2009-12-15 | 2015-07-28 | SDCmaterials, Inc. | In situ oxide removal, dispersal and drying for silicon SiO2 |
US9119309B1 (en) | 2009-12-15 | 2015-08-25 | SDCmaterials, Inc. | In situ oxide removal, dispersal and drying |
US9126191B2 (en) | 2009-12-15 | 2015-09-08 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
US8865611B2 (en) | 2009-12-15 | 2014-10-21 | SDCmaterials, Inc. | Method of forming a catalyst with inhibited mobility of nano-active material |
US9149797B2 (en) | 2009-12-15 | 2015-10-06 | SDCmaterials, Inc. | Catalyst production method and system |
US8932514B1 (en) | 2009-12-15 | 2015-01-13 | SDCmaterials, Inc. | Fracture toughness of glass |
US8859035B1 (en) | 2009-12-15 | 2014-10-14 | SDCmaterials, Inc. | Powder treatment for enhanced flowability |
US8828328B1 (en) | 2009-12-15 | 2014-09-09 | SDCmaterails, Inc. | Methods and apparatuses for nano-materials powder treatment and preservation |
US8821786B1 (en) | 2009-12-15 | 2014-09-02 | SDCmaterials, Inc. | Method of forming oxide dispersion strengthened alloys |
US8557727B2 (en) | 2009-12-15 | 2013-10-15 | SDCmaterials, Inc. | Method of forming a catalyst with inhibited mobility of nano-active material |
US8652992B2 (en) | 2009-12-15 | 2014-02-18 | SDCmaterials, Inc. | Pinning and affixing nano-active material |
US8803025B2 (en) | 2009-12-15 | 2014-08-12 | SDCmaterials, Inc. | Non-plugging D.C. plasma gun |
US9308524B2 (en) | 2009-12-15 | 2016-04-12 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
US9332636B2 (en) | 2009-12-15 | 2016-05-03 | SDCmaterials, Inc. | Sandwich of impact resistant material |
US9533289B2 (en) | 2009-12-15 | 2017-01-03 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
US9522388B2 (en) | 2009-12-15 | 2016-12-20 | SDCmaterials, Inc. | Pinning and affixing nano-active material |
US8669202B2 (en) | 2011-02-23 | 2014-03-11 | SDCmaterials, Inc. | Wet chemical and plasma methods of forming stable PtPd catalysts |
US9433938B2 (en) | 2011-02-23 | 2016-09-06 | SDCmaterials, Inc. | Wet chemical and plasma methods of forming stable PTPD catalysts |
US9216406B2 (en) | 2011-02-23 | 2015-12-22 | SDCmaterials, Inc. | Wet chemical and plasma methods of forming stable PtPd catalysts |
US9498751B2 (en) | 2011-08-19 | 2016-11-22 | SDCmaterials, Inc. | Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions |
US8969237B2 (en) | 2011-08-19 | 2015-03-03 | SDCmaterials, Inc. | Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions |
US8679433B2 (en) | 2011-08-19 | 2014-03-25 | SDCmaterials, Inc. | Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions |
US9533299B2 (en) | 2012-11-21 | 2017-01-03 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9511352B2 (en) | 2012-11-21 | 2016-12-06 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9156025B2 (en) | 2012-11-21 | 2015-10-13 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9586179B2 (en) | 2013-07-25 | 2017-03-07 | SDCmaterials, Inc. | Washcoats and coated substrates for catalytic converters and methods of making and using same |
US9950316B2 (en) | 2013-10-22 | 2018-04-24 | Umicore Ag & Co. Kg | Catalyst design for heavy-duty diesel combustion engines |
US9427732B2 (en) | 2013-10-22 | 2016-08-30 | SDCmaterials, Inc. | Catalyst design for heavy-duty diesel combustion engines |
US9566568B2 (en) | 2013-10-22 | 2017-02-14 | SDCmaterials, Inc. | Catalyst design for heavy-duty diesel combustion engines |
US9517448B2 (en) | 2013-10-22 | 2016-12-13 | SDCmaterials, Inc. | Compositions of lean NOx trap (LNT) systems and methods of making and using same |
US10086356B2 (en) | 2014-03-21 | 2018-10-02 | Umicore Ag & Co. Kg | Compositions for passive NOx adsorption (PNA) systems and methods of making and using same |
US9687811B2 (en) | 2014-03-21 | 2017-06-27 | SDCmaterials, Inc. | Compositions for passive NOx adsorption (PNA) systems and methods of making and using same |
US10413880B2 (en) | 2014-03-21 | 2019-09-17 | Umicore Ag & Co. Kg | Compositions for passive NOx adsorption (PNA) systems and methods of making and using same |
US20170089643A1 (en) * | 2015-09-25 | 2017-03-30 | Westinghouse Electric Company, Llc. | Heat Exchanger |
CN105332973A (zh) * | 2015-10-16 | 2016-02-17 | 北京精密机电控制设备研究所 | 一种电液伺服机构用内嵌式冷却器及冷却方法 |
CN108597776A (zh) * | 2018-05-24 | 2018-09-28 | 河南森源电气股份有限公司 | 全密封油浸式变压器及其波纹散热器 |
CN108831695A (zh) * | 2018-05-24 | 2018-11-16 | 河南森源电气股份有限公司 | 油浸式变压器的波纹散热器及油浸式变压器 |
WO2021026397A1 (en) * | 2019-08-07 | 2021-02-11 | A. O. Smith Corporation | High efficiency tankless water heater |
US11852377B2 (en) | 2019-08-07 | 2023-12-26 | A.O. Smith Corporation | High efficiency tankless water heater |
US20230356847A1 (en) * | 2022-05-04 | 2023-11-09 | Liebherr-Aerospace Toulouse Sas | Heat exchange device comprising external plates having at least one hollow, air-conditioning system and vehicle |
US12372166B2 (en) | 2022-12-21 | 2025-07-29 | Dresser, Llc | Using diverget flow paths in valve trim to abate valve noise |
EP4560241A1 (en) * | 2023-11-24 | 2025-05-28 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Heat exchanger with leak detection system |
FR3155892A1 (fr) * | 2023-11-24 | 2025-05-30 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Echangeur de chaleur avec système de détection de fuite |
Also Published As
Publication number | Publication date |
---|---|
DE1911889C2 (de) | 1983-08-11 |
FR2003648A1 (enrdf_load_stackoverflow) | 1969-11-14 |
DE1911889A1 (de) | 1969-10-16 |
FR2003648B1 (enrdf_load_stackoverflow) | 1973-12-21 |
GB1265691A (enrdf_load_stackoverflow) | 1972-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3537513A (en) | Three-fluid heat exchanger | |
US6089313A (en) | Apparatus for exchanging heat between at least three fluids | |
US2384714A (en) | Tubular heat exchanger | |
US3168136A (en) | Shell and tube-type heat exchanger | |
US3483920A (en) | Heat exchangers | |
KR910004778B1 (ko) | 열교환장치 | |
US2782010A (en) | Heat exchanger | |
US3216495A (en) | Stacked plate regenerators | |
US2941787A (en) | Apparatus for heat exchange | |
CN100587381C (zh) | 改进的热交换器外壳和密封装置 | |
US3272260A (en) | Corrosion resistant heat exchanger | |
US2729433A (en) | Heat exchanger with removable tube banks | |
US6470963B2 (en) | Heat exchanger | |
US20240060682A1 (en) | Air heating apparatus and method for disassembling air heating apparatus | |
GB1594768A (en) | Header | |
US3042382A (en) | Plate type heat exchangers | |
US4475587A (en) | Heat exchanger | |
FI84659C (fi) | Vaermevaexlare. | |
US2528013A (en) | Plate type heat exchanger | |
US3280905A (en) | Heat exchange apparatus | |
EP3625510B1 (en) | Double wall printed circuit heat exchanger | |
US4219080A (en) | Plate-type heat exchanger | |
CN114093535A (zh) | 堆芯冷却系统 | |
US3734176A (en) | Heat exchanger assembly having a common fluid box | |
US2602648A (en) | Heat exchange apparatus |