US3528896A - Process for electrochemically cleaning and brightening copper alloy and brass strip - Google Patents
Process for electrochemically cleaning and brightening copper alloy and brass strip Download PDFInfo
- Publication number
- US3528896A US3528896A US721936A US3528896DA US3528896A US 3528896 A US3528896 A US 3528896A US 721936 A US721936 A US 721936A US 3528896D A US3528896D A US 3528896DA US 3528896 A US3528896 A US 3528896A
- Authority
- US
- United States
- Prior art keywords
- strip
- electrolyte
- current density
- cleaning
- per liter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F1/00—Electrolytic cleaning, degreasing, pickling or descaling
Definitions
- a process for cleaning cooper alloy strip comprising soaking the strip in an electrolyte solution of polyphosphate and organic hydroxycarboxylic acid, and making the strip the anode in an electrochemical cell, the electrolyte in said cell being a solution of polyphosphate and organic hydroxycarboxylic acid.
- Another object of the present invention is to avoid the use of toxic, corrosive, or expensive chemicals and alleviate the problems of corrosion and the danger of handling toxic chemicals.
- the first step is a soaking operation in which the stained strip is exposed to the electrolyte solution.
- the electrolyte soaks through the stains and appears to soften the stain.
- the second step is an electrochemical stepin which the strip is made the anode in a cell with controlled flow.
- a small quantity of metal under the stain dissolves so that the stain or oxide is no longer attached to the metal. Then a reaction occurs between the electrolyte and the anodic strip which forms an extremely thin, transparent, passive layer on the metal.
- the strip then leaves the bath and is rinsed, dried and coiled.
- the electrolyte which is used in both the soaking and electrochemical steps is a solution of polyphosphate and organic hydroxycarboxylic acid.
- the pH of this solution should be adjusted to be between 6.0 and 9.0 with 8.0 as a preferred operating value.
- the electrochemical cleaning process does not proceed when the pH exceeds 9.0 and the polyphosphates are not sufiiciently stable below pH 6 0.
- the concentration of polyphosphate shoud be between 50 and grams per liter of anhydrous phosphate radical. For anhydrous tetrasodium pyrophosphate, this is approximately equivalent to a range of 75 to 140 grams per liter. The preferred concentration of sodium pyrophosphate is approximately grams per liter.
- the hydroxycarboxylic organic acid for the solution includes citric, tartaric, glycolic, gluconic, and sugar acids. Citric acid is preferred. Because pH adjustment is necessary, it is desirable to add equal weights of citric acid and sodium citrate. If this is done, then the pH will need little or no adjustment.
- the concentration range of citric acid and sodium citrate is from 10 grams to 60 grams per liter each. The exact concentration chosen is based on other process requirements as discussed below.
- the electrolyte temperature should be in the range of 4080 C. Low temperatures are undesirable because the voltage requirements are higher and pyrophosphate tends to crystallize out at lower temperatures. On the other hand, high temperatures produce excessive evaporation and require excessive heat inputs to maintain temperature.
- the preferred operating temperature range is 60- 70 C.
- the soaking time requirement is dependent largely upon the type of stain present. Heavy or dense stains require soak times up to 60 seconds, while light stains need only 2-10 seconds. Most industrial strip can be cleaned adequately with less than 30-second soaks.
- the electrochemical step in the process is critical to produce a satisfactory surface. The electrolyte must flow past the strip during treatment at a uniform velocity determined by the equations given below. The current density J of the anodic treatment must be set between the limits shown by these equations:
- I max. is the maximum current density in amps per square inch
- J min. is the minimum current density in amps per square inch
- V is the fluid velocity in feet per second and may vary from 2 to 15
- Vs is the strip velocity in feet per second and may vary from 0 to 10
- Cl is the concentration of sodium citrate and citric acid in the electrolyte expressed in grams per liter.
- the velocity terms represent vectorial quantities and so the velocity difference shown must be the magnitude of the vectorial velocity difference. Furthermore, these equations apply only to well-developed turbulent flow and so appropriate corrections must be made when considering any other flow regime situation. Wall shear is the important criteria in these relations.
- the minimum current density is lower than that shown.
- This group of alloys includes the alloys of copper and tin, and also of copper and aluminum.
- the minimum current density is about one third the value calculated from Equation 2.
- the citrate is consumed by an electrochemical oxidation reaction in this process. This reaction is necessary to produce the desirable cleaning and passivation which results from this process. However, it is necessary to add citrate to the bath to make up that consumed in the reaction.
- the voltage requirement of this process is dependent upon a number of factors including: the cathode material, cathode-anode ray ratio, alloy being cleaned, current density, electrolyte temperature, and composition and resistances in the external circuitry.
- V is the applied voltage in volts; V is a constant voltage determined by the alloy in volts; a, b and c are constants and may vary respectively from 0.01 to 2.0, 0.01 to 1.00, and 0.1 to 3.0; p is the electrical resistivity of the allow and is from 10 to 100 ohms mil ft. for copper and copper alloys; g is the gauge of the strip; w is the width of the strip; and J is the current density in amps per square inch.
- the constants a and b are determined by the external circuit and C is determined by the electrochemical cell para-meters.
- Equation 4 The treatment time in the electrochemical portion of the process is dependent upon the nature of the stain present and upon the current density used. This treatment time is therefore given by Equation 4:
- t is the treatment time in seconds
- ml is the extent of treatment in coulombs per square inch
- J is the current density in amps per square inch.
- the electrode sheets should be hung vertically in this regeneration and should be at least two feet long in the vertical direction.
- the current density in this regenerator should be maintained between about 1 and 20 ams per square foot and will vary according to the concentration of heavy metals in the electrolyte.
- Zn is the present zinc in the deposit
- J is the regenerator cathode current density in a-mperes per square foot.
- Equation 5 holds when the zinc content of the electrolyte is about 3 grams per liter and the copper content is 1.5 grams per liter and the temperature is 50-60" C., and the current density is between 4 and 10 amps per square foot. If the copper concentration of the electrolyte exceeds 1.5 grams per liter, the copper content of the deposit would be greater than predicted, and if it falls below 1.5 grams per liter, current efliciency of the cell would fall off. If the zinc content falls below the 3 grams per liter, the zinc content of the deposit would be lower than predicted. This behavior can be used to control the elecelectrolyte composition accurately while recovering the heavy metal values from the electrolyte.
- heavy metals for example, including Fe, Pb, Sn, Ni, Co and Mn can be removed from the solution by operating the regenerator at current densities of 1 to 20 amperes per square foot. However, most heavy metals can be removed with current densities of 2 to 6 amps per square foot with heavy metal concentrations up to about 5 grams per liter.
- Example I.Cleaning an alloy 260 brass strip An apparatus was constructed to treat coils of brass strip.
- the strip was first immersed in a tank with an immersive length of about 7 feet. Then the strip passed over a 3-foot diameter roller on which the electrochemical treatment was carried out. A curved stainless steel cathode, 30 inches long, was placed over the roller so that the distance between the cathode and the strip was inch uniformly over its length and width. The electrolyte was pumped from a nozzle in this cathode-anode space, such that its velocity was opposed to that of the strip.
- a volume of 200 liters of electrolyte consisting of grams per liter anhydrous sodium pyrophosphate, 10 grams per liter each of sodium citrate and citric acid was made up and heated to 60 C.
- a l-inch wide strip of alloy 260 brass with a dull grey stain on its surface was threaded through the apparatus.
- the strip speed was adjusted to 100 feet per minute and the solution flow adjusted to 50 gallons per minute. This corresponded to a flow velocity of 7.3 feet per second.
- the current was adjusted to 132 amperes at 8.9 volts corresponding to current density of about 4.4 a.s.i. and a treatment of 6.7 coulombs per square inch.
- the strip acquired a bright, lustrous surface.
- Example II -Cleaning an alloy 230 strip An alloy 230 strip, 2.1 inches wide, with a severe water stain on its surface, was placed in the apparatus described in Example I.
- the electrolyte was identical to Example I.
- the strip speed was adjusted to 40 feet per minute and the electrolyte flow rate was adjusted to 35 gallons per mlnute (or 6.5 ft. per sec.).
- the current was set at 215 amperes (3.4 a.s.i.) and the extent of treatment was 13 coulombs per square inch. A voltage of 6.2 volts was required for this current.
- the strip was cleaned completely and acquired a lustrous, attractive surface after treatment.
- Example III -Cleaning an alloy 260' strip in a high citrate electrolyte An apparatus was constructed with a pre-immersion soak length of three feet and a system of five nozzles, each with a 1-inch long cathode.
- This treatment produced a bright, lustrous finish and complete removal of stain.
- Example IV.Regeneration of electrolyte Current density (amps per sq. foot) Zn content of cathode deposit, percent Example V.Stain resistance of treated metal An alloy 230 strip cleaned by the process of the present invention in a 100 grams per liter sodium pyrophosphate, 10 grams per liter each of sodium citrate and citric acid, electrolyte at 70 C. with 3 a.s.i. current density and 10 coulombs per square inch treatment, rinsed and dried, was prepared.
- a stain test was performed in which panels were cooled to 40 F. and then exposed to an environment at 100 F. with a relative humidity of 95% for 3 days.
- a process for cleaning copper alloy strip comprising:
- step (a) A process according to claim 1 in which the pH of the solution to be used in step (a) is between 6.0 and 9.0.
- hydroxycarboxylic acid is selected from the group consisting of citric, tartaric, glycolic, gluconic, and sugar acids.
- step (a) 8. A process according to claim 1 in which the temperature of the electrolyte is maintained in step (a) in the range of approximately 40-80 C.
- step (a) 10. A process according to claim 1 in which the soaking time in step (a) is 2-60 seconds.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating Methods And Accessories (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- Electrochemical Coating By Surface Reaction (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US72193668A | 1968-04-17 | 1968-04-17 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3528896A true US3528896A (en) | 1970-09-15 |
Family
ID=24899885
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US721936A Expired - Lifetime US3528896A (en) | 1968-04-17 | 1968-04-17 | Process for electrochemically cleaning and brightening copper alloy and brass strip |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US3528896A (enExample) |
| JP (1) | JPS4939737B1 (enExample) |
| CA (1) | CA922265A (enExample) |
| DE (1) | DE1919365A1 (enExample) |
| FR (1) | FR2006374A1 (enExample) |
| GB (1) | GB1196395A (enExample) |
| SE (1) | SE340929B (enExample) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3663386A (en) * | 1971-02-08 | 1972-05-16 | Basf Wyandotte Corp | Electrocleaner composition and process |
| US4039410A (en) * | 1976-06-07 | 1977-08-02 | Bundy Corporation | Electrocleaning process |
| US4372831A (en) * | 1979-12-11 | 1983-02-08 | Schenk-Filterbau Gesellschaft Mit Beschrankter Haftung | Electrolyte solution for electropolishing |
| US4640752A (en) * | 1985-10-28 | 1987-02-03 | Engelhard Corporation | Method for producing silver colored brazing alloy |
| DE3828700A1 (de) * | 1987-09-16 | 1989-04-06 | Nat Semiconductor Corp | Kupferplattierter bleirahmen fuer halbleiter-kunststoff-gehaeuse |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5440695U (enExample) * | 1977-08-25 | 1979-03-17 | ||
| JPS5948631U (ja) * | 1982-09-27 | 1984-03-31 | 東陶機器株式会社 | 気泡発生浴槽 |
| JPS63137638U (enExample) * | 1987-03-02 | 1988-09-09 | ||
| PT1226289E (pt) * | 1999-09-29 | 2004-07-30 | Europa Metalli Spa | Metodo electroquimico para formar uma camada de cobertura inorganica numa superficie de um material de cobre |
-
1968
- 1968-04-17 US US721936A patent/US3528896A/en not_active Expired - Lifetime
-
1969
- 1969-01-30 CA CA041622A patent/CA922265A/en not_active Expired
- 1969-02-04 GB GB5938/69A patent/GB1196395A/en not_active Expired
- 1969-03-03 JP JP44016105A patent/JPS4939737B1/ja active Pending
- 1969-04-16 DE DE19691919365 patent/DE1919365A1/de active Pending
- 1969-04-16 SE SE05387/69A patent/SE340929B/xx unknown
- 1969-04-17 FR FR6911940A patent/FR2006374A1/fr not_active Withdrawn
Non-Patent Citations (1)
| Title |
|---|
| None * |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3663386A (en) * | 1971-02-08 | 1972-05-16 | Basf Wyandotte Corp | Electrocleaner composition and process |
| US4039410A (en) * | 1976-06-07 | 1977-08-02 | Bundy Corporation | Electrocleaning process |
| US4372831A (en) * | 1979-12-11 | 1983-02-08 | Schenk-Filterbau Gesellschaft Mit Beschrankter Haftung | Electrolyte solution for electropolishing |
| US4640752A (en) * | 1985-10-28 | 1987-02-03 | Engelhard Corporation | Method for producing silver colored brazing alloy |
| DE3828700A1 (de) * | 1987-09-16 | 1989-04-06 | Nat Semiconductor Corp | Kupferplattierter bleirahmen fuer halbleiter-kunststoff-gehaeuse |
| DE3828700C2 (de) * | 1987-09-16 | 2002-04-18 | Nat Semiconductor Corp | Kupferplattierter Leiterrahmen für Halbleiter-Kunststoff-Gehäuse |
Also Published As
| Publication number | Publication date |
|---|---|
| JPS4939737B1 (enExample) | 1974-10-28 |
| DE1919365A1 (de) | 1969-10-23 |
| FR2006374A1 (enExample) | 1969-12-26 |
| SE340929B (enExample) | 1971-12-06 |
| GB1196395A (en) | 1970-06-24 |
| CA922265A (en) | 1973-03-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2395694A (en) | Processes for removing oxide from the surface of metals | |
| US3420760A (en) | Process for descaling steel strip in an aqueous organic chelating bath using alternating current | |
| EP3538688B1 (en) | Method for electroplating an uncoated steel strip with a plating layer | |
| US2311099A (en) | Metal treatment | |
| US3528896A (en) | Process for electrochemically cleaning and brightening copper alloy and brass strip | |
| US2347742A (en) | Pickling process | |
| US2134457A (en) | Metal treatment | |
| JP6105167B2 (ja) | 高クロムフェライト系ステンレス冷延鋼板の酸洗方法 | |
| US2311139A (en) | Process for the electrolytic cleaning of metals | |
| US3239440A (en) | Electrolytic pickling of titanium and titanium base alloy articles | |
| US3257299A (en) | Composition and method for electrolytic stripping of coatings from metals | |
| US2304069A (en) | Metal coating process | |
| US4264419A (en) | Electrochemical detinning of copper base alloys | |
| US3632490A (en) | Method of electrolytic descaling and pickling | |
| US3030286A (en) | Descaling titanium and titanium base alloy articles | |
| DE19931820C2 (de) | Verfahren zum entzundern von Titanmaterial und entzundertes Titanmaterial | |
| JPS59157288A (ja) | ステンレス鋼帯の酸洗方法 | |
| CN104520473A (zh) | 用于制造奥氏体不锈钢冷轧钢板的高速酸洗方法 | |
| US2888387A (en) | Electroplating | |
| JPH04362183A (ja) | アルミニウム表面洗浄浴の再生方法 | |
| US2442195A (en) | Cleaning and electroplating process | |
| US2441776A (en) | Process of metal coating metal articles | |
| Azzerri et al. | Potentiostatic pickling: a new technique for improving stainless steel processing | |
| JP2577619B2 (ja) | 合金鉄鋼帯の脱スケール方法及び装置 | |
| JPH10219500A (ja) | ステンレス鋼帯の脱スケールにおける仕上げ電解酸洗方法 |