US3385072A - Cryostat - Google Patents
Cryostat Download PDFInfo
- Publication number
- US3385072A US3385072A US57111766A US3385072A US 3385072 A US3385072 A US 3385072A US 57111766 A US57111766 A US 57111766A US 3385072 A US3385072 A US 3385072A
- Authority
- US
- United States
- Prior art keywords
- container
- cryostat
- tube
- wall
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000543 intermediate Substances 0.000 description 44
- 239000007788 liquid Substances 0.000 description 9
- 239000002826 coolant Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- 238000010276 construction Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/04—Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
- F17C3/08—Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
- F17C3/085—Cryostats
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/068—Special properties of materials for vessel walls
- F17C2203/0687—Special properties of materials for vessel walls superconducting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/05—Applications for industrial use
- F17C2270/0509—"Dewar" vessels
Definitions
- a cryostat adapted to house a structure such as a superconductive magnetic coil and provided with a substantially horizontal tubular inner chamber accessible from the outside there is an outer horizontal hollow container of cylindrical configuration and an inner horizontal hollow container of cylindrical configuration situated within said outer container, and vertically extending tubular means connected to and carrying said outer and inner containers and including at least an outer tube connected to said outer container and an inner tube situated within said outer tube and connected to said inner container, said outer container including a ring fixed to said outer tube and a pair of cylindrical walls, said ring and said cylindrical walls having means for removably connecting said cylindrical walls respectively with said ring, said cylindrical walls respectively extending in opposite directions from the latter.
- My invention relates to cryostats.
- Cryostats which are provided with horizontal inner hollow chambers which are accessible from the outside are required for various technical and scientific purposes. Such devices are required primarily for cooling cryostat coils, particularly superconductive coils which serve to provide a magnetic field filling a horizontally extending chamber which is accessible from the outside. Such coils can be used particularly where charged particles, such as ions, electrons, or other elementary particles, for example, are to be subjected to the influence of a magnetic field. Such a magnetic coil can be used, for example, as a magnet for a magnetohydrodynamic generator or for achieving an intense axially extending magnetic field which is to enclose plasma.
- cryostats of the above type should be as easy as possible to disassemble, so that access may be had in a simple way to the coil which is situated in the interior of the cryostat.
- the cryostat must have a high mechanical strength, which can only be achieved with difficulty because of the great weight of the magnetic coil.
- cryostat capable of solving the above problems while at the same time being adapted to house a superconductive magnetic coil and having a horizontal approximately tubular inner chamber which is accessible from the outside.
- the objects of my invention also include the provision of a cryostat which can be very easily disassembled so that easy access may be had to a coil situated in an inner container of the cryostat.
- the cryostat of my invention is particularly adapted to house a superconductive magnetic coil and is provided with an inner hollow horizontal chamber which is accessible from the outside.
- This cryostat of my invention include-s an outer hollow horizontal cylindrical container and an inner horizontal hollow cylindrical container situated within the outer container, as well as vertically extending tubular means fixed to the inner and outer containers and carrying the latter.
- This tubular means of my invention includes an outer tube which is connected to the outer container and an inner tube which is connected to the inner container.
- At least the outer container of the cryostat of my invention includes a ring which is fixed to the outer tube of the tubular means and a pair of cylindrical walls which are respectively removably connected with the ring and respectively extend in opposite directions therefrom.
- FIG. 1 is a schematic longitudinal sectional elevation of one possible embodiment of a cryostat according to my invention
- FIG. 2 illustrates schematically in a longitudinal sectional elevation another embodiment of an inner container of the cryostat of FIG. 1;
- FIG. 3 shows in a longitudinal sectional elevation a further embodiment of an inner container for the cryostat of FIG. 1.
- the cryostat illustrated therein serves to refrigerate a superconductive magnetic coil.
- This cryostat of my invention includes three elongated hollow horizontal containers arranged one within the other and all having a common horizontal axis.
- the outer container 1 serves to provide the cryostat with an evacuated space in which structure within the outer container is situated.
- the intermediate container 2 forms a heat-shielding means.
- the inner container 3 serves to house the coil as well as the liquid refrigerating bath which surrounds this coil and which is in the form of liquid helium.
- a tubular means 4 is provided to carry the containers 1-3 of the cryostat of my invention, and this tubular means 4 includes an outer vertical tube 41 and an inner vertical tube 42.
- this inner tube 42 has a pair of tubular sections which are connected to each other in the manner shown in FIG. 1.
- the outer tube 41 and the inner tube 42 of the tubular means are connected to each other at the top end of the tubular means.
- the inner tube 42 is surrounded by an intermediate tube 43 made of a material of good thermal conductivity. This intermediate tube 43 is in good heat-conducting contact with the inner tube 42 approximately midway between the ends thereof, which is to say at the connection between the sections of the inner tube 42.
- the outer container 1 includes a ring 44 which is fixed to the outer tube 41 and which is coaxial with the remainder of the cylindrical outer container 1.
- the ring 44 serves to fix the outer container 1 to the outer tube 41, and it will be noted that the tube 41 communicates with the interior of the outer container 1.
- This outer container 1 has a pair of cylindrical walls 11 and 12 which are respectively removably connected with the ring 44 and which respectively extend in opposite directions therefrom.
- the cylindrical walls 11 and 12 may have a threaded connection with the ring 44.
- a discshaped end wall 13 of the container 1 is permanently fixed with the cylindrical wall 11 thereof as by being welded thereto.
- an opposed discshaped end wall 14 is permanently fixed with the cylindrical wall 12 as by being welded thereto.
- the outer container 1 includes an inner tubular wall 15 which extends into central openings which are formed in the end walls 13 and 14.
- This inner tubular wall 15 of the outer container 1 is fixed to the end wall 13, as by being welded thereto, and has a removable connection with the end wall 14.
- the tubular wall 15 may have a threaded connection with the end wall 14.
- the intermediate container 2 which forms the heatshielding means, is fixed to and hangs from the intermediate tube 43.
- This intermediate container 2 includes a ring 45 which co'axially surrounds the axis of the cryostat and which is connected with the tube 43.
- the intermediate container 2 includes a pair of double-walled cylinders 21 and 22 which are respectively fixed removably to and respectively extend in opposite directions from the ring 45, these double-walled cylinders 21 and 22 having, for example, a threaded connection with the ring 45.
- Each of the double-walled cylinders 21 and 22 is formed by a pair of cylindrical walls which define between themselves a space which during operation of the cryostat is filled with liquid nitrogen or liquid air.
- the filling of the double-walled cylinders 21 and 22, in the space between the walls thereof, can take place through a suitable conduit which is guided through the tubular means 4 of the cryostat and which communicates with a suitable connection provided at the outer cylindrical wall of each of the double-walled cylinders 21 and 22.
- the double-walled cylinder 21 is fixed at its outer end of a disc-shaped end wall 23, while the double-walled cylinder 22 is fixed at its outer end to a disc-shaped end wall 24.
- the intermediate container 2 includes an inner tubular wall which extends into central openings formed in the end walls 23 and 24.
- This tubular inner wall 25 I of the intermediate container 2 coaxially surrounds the inner wall 15 of the outer container 1, as indicated in FIG. 1.
- the tube 25 need not be welded or threaded to the end walls 23 and 24. It need only extend into the central openings of these end walls. However, there should be a good heat-conductive contact between the end walls 23 and 24 and the tube 25.
- the inner container 3 includes a single cylindrical wall 31 which is permanently fixed with the inner tube 42 of the tubular means 4 as by being welded thereto.
- a disc-shaped end wall 32 is welded to the right end of the cylinder 31, as viewed in FIG. 1.
- the inner container 3 includes, in addition to the single cylindrical wall 31 and the end wall 32, an inner tubular wall 33 which coaxially surrounds the inner wall 25 of the intermediate container 2.
- the inner container 3 includes an end wall 34 which is opposed to the end wall 32 and which is of a disc-shaped configuration.
- the inner tubular Wall 33 of the inner container 3 is welded with the end wall 34 so as to be permanently fixed therewith. It will be noted that the inner tubular wall 33 of the inner container 3 is in alignment with central openings of the end walls 32 and 34.
- the inner tube 33 is rcmovably connected with the end wall 32 as by being threaded to the latter.
- the superconductive coil which is situated in the interior of the inner container 3 can be fixed either to the inner tube 33 or to the end wall 34 or to both the inner tube 33 and the end wall 34.
- cryostat of my invention can be very easily disassembled and reassembled so as to give ready access to a coil in the inner container 3.
- the tube 43 which is in good thermal contact with the outer wall of the container 2 and with the tube 42 and which also serves to carry the intermediate container 2 serves simultaneously as a heat shield for the inner tube 42 of the tubular means and as a structure for precooling the inner tube 42.
- a tubular fitting 46 is operatively connected with the outer tube 41 and is adapted to be placed in communication with a suitable vacuum pump or the like for the purpose of evacuating the cryostat.
- the interior space of the tube 41 communicates with the interior of the outer container 1 as well as with the interior of the intermediate container 2, this space of the tube 41 which communicates with the interiors of the outer and intermediate containers 1 and 2 being defined between the tube 41 and the upper portion of the tube 42 as well as the tube 43.
- the end walls 23 and 24 of the intermediate container 2 are provided with a plurality of small openings.
- the tube 43 may also be provided with such small openings.
- the cover 47 of the tubular means of the croystat of my invention is provided with passages for the conduits through which the refrigerating mediums flow to the inner container 3 as well as the space in the double Walls of the intermediate container 2, and also the cover 47 is provided wtth a passage for the power-supply conductors which are connected electrically with the coil.
- the tubular means 4 together with the rings 44 and 45 as well as the outer wall 31 of the inner container 3 and the end wall 32 thereof form a mounting frame.
- the end wall 34 and inner tube 33 of the inner container 3, which carry the coil, are threaded to the wall 31 and the end wall 32, respectively.
- the intermediate container 2 is assembled, and finally the outer container 1 is assembled.
- the intermediate container 2 including its ring 45, and also including the intermediate tube 43, which is in direct heat-conducting contact with the intermediate container 2, are preferably made of copper.
- the material for the other containers, tubes, and rings of the containers is preferably antimagnetic chrome-nickel steel 18/8 (V A-steel).
- the horizontal innermost tubular space of the cryostat this space being surrounded by and situated within the inner tube wall 15 of the outer container 1, is accessible from both ends of the cryostat.
- FIG. 2 another embodiment of an inner container of the cryostat of my invention is shown.
- the outer cylindrical wall of the inner container 3 is made up of a pair of cylindrical walls 35 and 36.
- FIG. 3 shows a further embodiment of an inner container of a cryostat of my invention.
- the coil-carrying body which carries the winding of the magnetic coil, forms the inner tubular wall of the inner container 3.
- the outer wall of the container 3 of this embodiment also includes a pair of cylindrical walls 35 and 36 which are threaded with the ring 48 which is fixed to the inner tube 42.
- the disc-shaped end walls 32 and 34 of the inner container 3 of this embodiment are welded to the cylindrical walls 35 and 36 of the inner container 3.
- the inner tubular wall of the container 3 of FIG. 3 is formed by the coil-carrying body 37 on which the winding 38 of the magnetic coil is wound. This coil-carrying body 37 is removably connected with the end walls 32 and 34 as by being threaded therewith.
- the coil within the inner container 3 is situated in a bath of a refrigerating medium such as liquid helium with which the inner container 3 is filled, so that in this way the entire coil is submerged within the refrigerating bath.
- a refrigerating medium such as liquid helium with which the inner container 3 is filled.
- the surface 50 of the liquid cooling medium is shown in FIG. 3 within the inner tube 42.
- the cryostat of my invention is particularly suited for refrigerating cylindrical coils where the axis of the coil extends in the same direction as the axis of the container in which the coil is situated.
- a magnetic field which extends parallel to the axis of the inner chamber.
- cryostat of my invention is suitable for refrigerating coils which have windings composed of a pair of saddle-shaped components, such windings serving to achieve in the tubular interior chamber of the cryostat a magnetic field which extends perpendicularly with respect to the axis of the container. Coils of this latter type are particularly suited for magnetohydrodynamic generators.
- the cylindrical containers are carried by the tubular means.
- the inner container which serves to receive the coil and the refrigerating medium, hangs freely from the inner tube of the tubular means and is in communication with the outer chamber only by way of this inner tube.
- the chrome-nickel-steel used for this inner tube has a very poor thermal conductivity, so that with this construction of my invention the extent of transfer of heat between the inner container and the outer chamber is very greatly reduced. Further reduction in this transfer of heat is brought about by the precooling of the inner tube. It will be noted that there ar no other supporting connections between the inner containers of the cryostat of my invention.
- the suspension of the individual containers from the tubes of the tubular means provides a high mechanical strength, while reducing the thermal contact between the components to a minimum.
- the removable conn ct ons of the cylindrical walls of the outer container with the ring 44 thereof provides the cryostat of my invention with the possibility of easy access to the interior of the cryostat, and thus with the cryostat of my invention it is possible in a simple way to have access to the interior of the inner container where the coil is situated.
- cryostat of my invention removable connections are provided wherever required so as to give the cryostat a simple and convenient assembly and disassembly, whereas components which do not have to be assembled and disassembled are welded together in a vacuum-tight manner.
- the coil-carrying body such as the body 37, with parts which form the end walls of the inner container 3.
- the shielding means formed by the inter mediate container functions to prevent to a very large extent radiation of heat through the outer chamber to the inner container.
- the suspension of the intermediate container from the intermediate tube 43 which is in good heat-conducting contact with the inner tube 42 and the formation of the tube 43 as well as the intermediate container from a metal such as copper of good thermal conductivity provide the cryostat of my invention with particularly favorable features.
- this intermediate container 2 is made of a material of good thermal conductivity, the entire container assumes the temperature of the refrigerating medium which is situated within the double walls of the intermediate container.
- the heat which radiates inwardly from the outer chamber is absorbed by the walls of the intermediate container and does not radiate all the way through to the inner container wihch is at an even lower temperature than the intermediate container walls inasmuch as the inner container contains liquid helium.
- This refrigerating medium which is situated in the space within the double walls of the intermediate container serves to pre-cool the inner tube 42. Since this inner tube is surrounded by the tube 43 from which the intermediate container is suspended and since this intermediate tube 43 is made of a material of good thermal conductivity, the inner tube 42 at its connection with the intermediate tube 43 is also maintained approximately at the temperature of the outer double-wall of the intermediate container, which is to say at the temperature of the cooling medium therein, such as liquid nitrogen or liquid air. Further pre-cooling of the inner tube of the tubular means is provided by use of the vapor of the cooling medium which is situated in the interior of the inner container and which rises up into the inner tube to the elevation 50 shown in FIG. 3.
- the conduit for the refrigerant this conduit serving to fill and empty the inner container, and also the power-supply conductors for the magnetic coil extend along the interior of the inner tube of the tubular means, and of course these components are cooled in the same way by the vapor of the cooling medium.
- the conduits for delivering the cooling medium to the interior of the double walls of the intermediate container as well as any tubular connections for evacuating the cryostat can advantageously extend along the interior of the tubular means in the space between the inner and outer tubes.
- a cryostat which is adapted to house a structure such as a superconducitive magnetic coil and is provided with a substantially horizontal tubular inner chamber which is accessible from the outside, an outer horizontal hollow container of cylindrical configuration and an inner horizontal hollow container of cylindrical con-figuration situated within said outer container, and vertically extending tubular means connected to and carrying said outer and inner containers and including at least an outer tube connected to said outer container and an inner tube situated within said outer tube and connected to said inner container, said outer container including a ring fixed to said outer tube and a pair of cylindrical walls, said ring and said cylindrical walls having means for removably connecting said cylindrical walls respectively with said ring, said cylindrical walls respectively extending in opposite directions from the latter.
- said inner container including only a single cylindrical wall which is welded to said inner tube.
- said inner container including a ring fixed to said inner tube and a pair of cylindrical walls respectively fixed removably to said ring and extending in opposite directions therefrom, respectively.
- heat-shielding means situated between said inner and outer containers and including a hollow cylindrical container situated between said outer and inner containers and forming an intermediate container in which said inner container is located, and said intermediate container being situated within said outer container.
- said tubular means including an intermediate tube of good thermal conductivity situated between said outer and inner tubes and extending part of the way along the length of said inner tube and being in good heat-conducting relationship therewith, said intermediate container also being made of a material of good thermal conductivity and being fixed to said intermediate .tube.
- said intermediate container including a ring fixed to said intermediate tube and a pair of double-walled cylinders respectively fixed removably to and extending in opposite directions from said ring, respectively, each of said double-walled cylinders having a pair of walls which define between themselves a space for receiving a cooling medium.
- said materials of said intermediate tube and intermediate container which are of good thermal conductivity being copper.
- said inner and outer containers and said inner and outer tubes being made of antimagnetic chrome-nickel-steel.
- said coil-carrying body forming an inner wall of said inner container.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DES0098717 | 1965-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3385072A true US3385072A (en) | 1968-05-28 |
Family
ID=7521674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US57111766 Expired - Lifetime US3385072A (en) | 1965-08-07 | 1966-08-08 | Cryostat |
Country Status (5)
Country | Link |
---|---|
US (1) | US3385072A (enEXAMPLES) |
CH (1) | CH461554A (enEXAMPLES) |
DE (1) | DE1501304B2 (enEXAMPLES) |
GB (1) | GB1156833A (enEXAMPLES) |
NL (1) | NL6610445A (enEXAMPLES) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4702825A (en) * | 1984-12-24 | 1987-10-27 | Eriez Manufacturing Company | Superconductor high gradient magnetic separator |
EP1443528A3 (en) * | 2003-01-30 | 2004-08-18 | Hitachi, Ltd. | Super conductive magnet apparatus |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL68138A (en) * | 1983-03-15 | 1988-01-31 | Elscint Ltd | Cryogenic magnet system |
DE3471998D1 (en) * | 1983-04-15 | 1988-07-14 | Hitachi Ltd | Cryostat |
US4492090A (en) * | 1983-09-19 | 1985-01-08 | General Electric Company | Cryostat for NMR magnet |
GB2455720B (en) * | 2007-12-18 | 2010-01-06 | Siemens Magnet Technology Ltd | Re-workable pressure vessels for superconducting magnet arrangements |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3133144A (en) * | 1962-08-16 | 1964-05-12 | Bell Telephone Labor Inc | Cryostat |
US3176473A (en) * | 1963-04-09 | 1965-04-06 | Andonian Associates Inc | Modular dewar vessel for cryogenic use |
US3242418A (en) * | 1962-08-31 | 1966-03-22 | Dynatech Corp | Low temperature electromechanical transducer |
US3262279A (en) * | 1964-10-09 | 1966-07-26 | Little Inc A | Extreme high vacuum apparatus |
US3320757A (en) * | 1966-04-15 | 1967-05-23 | Cryobank Inc | Cryogenic preserver |
-
1965
- 1965-08-07 DE DE19651501304 patent/DE1501304B2/de active Pending
-
1966
- 1966-06-22 CH CH906366A patent/CH461554A/de unknown
- 1966-07-25 NL NL6610445A patent/NL6610445A/xx unknown
- 1966-08-08 US US57111766 patent/US3385072A/en not_active Expired - Lifetime
- 1966-08-08 GB GB3549566A patent/GB1156833A/en not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3133144A (en) * | 1962-08-16 | 1964-05-12 | Bell Telephone Labor Inc | Cryostat |
US3242418A (en) * | 1962-08-31 | 1966-03-22 | Dynatech Corp | Low temperature electromechanical transducer |
US3176473A (en) * | 1963-04-09 | 1965-04-06 | Andonian Associates Inc | Modular dewar vessel for cryogenic use |
US3262279A (en) * | 1964-10-09 | 1966-07-26 | Little Inc A | Extreme high vacuum apparatus |
US3320757A (en) * | 1966-04-15 | 1967-05-23 | Cryobank Inc | Cryogenic preserver |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4702825A (en) * | 1984-12-24 | 1987-10-27 | Eriez Manufacturing Company | Superconductor high gradient magnetic separator |
EP1443528A3 (en) * | 2003-01-30 | 2004-08-18 | Hitachi, Ltd. | Super conductive magnet apparatus |
US20040185305A1 (en) * | 2003-01-30 | 2004-09-23 | Takeo Nemoto | Super conductive magnet apparatus |
US6864770B2 (en) | 2003-01-30 | 2005-03-08 | Hitachi, Ltd. | Super conductive magnet apparatus |
Also Published As
Publication number | Publication date |
---|---|
DE1501304B2 (de) | 1970-05-27 |
GB1156833A (en) | 1969-07-02 |
NL6610445A (enEXAMPLES) | 1967-02-08 |
CH461554A (de) | 1968-08-31 |
DE1501304A1 (de) | 1969-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102308676B (zh) | 冷却系统和方法 | |
US4590428A (en) | Electromagnet for NMR tomography | |
US6783059B2 (en) | Conduction cooled passively-shielded MRI magnet | |
US3368087A (en) | Rotating electric high power machine with super-conducting stator | |
US8279030B2 (en) | Method and apparatus for electrical, mechanical and thermal isolation of superconductive magnets | |
US4291541A (en) | Cryostat with external refrigerator for super-conducting NMR spectrometer | |
JP2000294399A (ja) | 超電導高周波加速空胴及び粒子加速器 | |
US11573279B2 (en) | Displacer in magnetic resonance imaging system | |
US3133144A (en) | Cryostat | |
US3358463A (en) | Integrated superconducting magnetcryostat system | |
US3385072A (en) | Cryostat | |
US5956957A (en) | Cryostat apparatus | |
CN108987027B (zh) | 用于mri系统的超导磁体结构的冷却装置 | |
US4680936A (en) | Cryogenic magnet systems | |
JP2006253718A (ja) | Mriシステムで使用するための超電導電磁石 | |
GB2102109A (en) | Cryostats | |
US4622824A (en) | Cryostat suspension system | |
WO2014203826A1 (ja) | Nmrシステム | |
CN215100687U (zh) | 用于低温环境下超导磁体的支撑杆结构及超导磁体 | |
US5304972A (en) | Superconducting magnet apparatus having circulating path for coolant | |
JP2017031986A (ja) | 極低温冷媒供給システム | |
JP2013507753A (ja) | 超伝導磁石の電気的、機械的、熱的隔離方法および装置 | |
EP0694931A1 (en) | Improvements in or relating to electromagnets | |
SU1116265A1 (ru) | Криостат | |
CN113871132B (zh) | 一种无液氦动物成像超导磁体 |