US3355924A - Control of deflection in rolling mills and the like - Google Patents

Control of deflection in rolling mills and the like Download PDF

Info

Publication number
US3355924A
US3355924A US294048A US29404863A US3355924A US 3355924 A US3355924 A US 3355924A US 294048 A US294048 A US 294048A US 29404863 A US29404863 A US 29404863A US 3355924 A US3355924 A US 3355924A
Authority
US
United States
Prior art keywords
deflection
beams
mill
pressure
rolls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US294048A
Other languages
English (en)
Inventor
Sendzimir Tadeusz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Sendzimir Inc
Original Assignee
T Sendzimir Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Sendzimir Inc filed Critical T Sendzimir Inc
Priority to US294048A priority Critical patent/US3355924A/en
Priority to DE1452009A priority patent/DE1452009C3/de
Priority to FR981440A priority patent/FR1440612A/fr
Priority to GB28527/64A priority patent/GB1070166A/en
Application granted granted Critical
Publication of US3355924A publication Critical patent/US3355924A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/03Sleeved rolls
    • B21B27/05Sleeved rolls with deflectable sleeves
    • B21B27/055Sleeved rolls with deflectable sleeves with sleeves radially deflectable on a stationary beam by means of hydraulic supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/14Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories having counter-pressure devices acting on rolls to inhibit deflection of same under load; Back-up rolls
    • B21B13/147Cluster mills, e.g. Sendzimir mills, Rohn mills, i.e. each work roll being supported by two rolls only arranged symmetrically with respect to the plane passing through the working rolls

Definitions

  • the second expedient employed to minimize the effect of working roll deflection lies in grinding the surfaces of the working rolls in such a way as to produce a crown, i.e., to provide working rolls which are thicker at the centers of their working surfaces than at the ends thereof.
  • the crowning of the working rolls is effective primarily only under one set of rolling conditions, i.e., where the roll separating forces are of a certain value and remain constant. It will be understood that crowning of the working rolls which over-compensates for roll deflection under any given circumstances will result in the production of strip with a full center portion, while under-compensation has the opposite effect.
  • the Sendzimir cold rolling mill contemplates a housing characterized by beams extending longitudinally of the working rolls.
  • the working rolls which are usually supported by one or more sets of intermediate rolls, find their final support in casters mounted in saddles on the beams.
  • the working rolls therefore are supported throughout their effective lengths, and to all intents and purposes are prevented from deflecting under the roll separating forces excepting to the extent that the beams themselves deflect.
  • the beams can be made quite heavy and rigid; and mills of the character to which reference has been made (see US.
  • Patents 2,479,974 and 2,566,679, for example) have succeeded in accomplishing flat rolling with accuracy theretofore unknown.
  • the Sendzimir cold strip mills it has been possible to keep deflections under 1/ 10,000 of an inch where the stresses on the beams are kept below about 1000 p.s.i., the beams themselves being steel castings having an elastic limit of over 40,000 p.s.i.
  • An object of one aspect of the invention is the provision of means which compensate for or minimize deflection under load and also means which indicate the extent of any deflection remaining or the forces required to overcome it.
  • FIGURE 1 is a vertical sectional view, take on the line 1-1 of FIGURE 2, of astructure subject to deflection, compensating means for that deflection, and gauging means for showing the extent of deflection or compensation.
  • FIGURE 2 is an end elevation of the same apparatus, with parts in section on the line 22 of FIGURE 1.
  • FIGURE 2a is a partial schematic representation of one means for measuring deflection and controlling the response to same.
  • FIGURE 3 is a central vertical sectional view of a 4-high mill arranged for the practice of the invention.
  • FIGURE 4 is an elevational view of one of the backing element cores.
  • FIGURE 5 is a fragmentary central vertical sectional view similar to FIGURE 3, showing the coactionof a modified backing element core and its sleeve.
  • FIGURE 6 is a front elevational view of certain elements of a beam-backed mill (with parts in section) showing one structure for and mode of practicing the invention.
  • FIGURE 7 is a transverse cross-section taken at the center of the structure of FIGURE 6.
  • FIGURE 8 is an elevational view, similar to FIGURE 6, of a modified form of the apparatus.
  • the present invention is a improvement over means hitherto employed for preventing detrimental deflections, and is especially valuable in mechanisms where the shape or form of the structure is such that reliance on the rigidity alone of some element or elements will not be sufliciently effective. By consequence it is of value in structures in which increases in the size or cross-sectional depth of an element or elements encounters the law of diminishing returns.
  • the structure designed to prevent deflection is divided into two coacting parts, a first part which tends to resist deflecting stresses by reason of a high rigidity, and a second structure acting upon the first structure to support it, where the second structure can itself be subject to deflection but will still minimize deflection in the first structure.
  • first structure will be much more rigid than the second and will take the load directly (being subject to low unit stresses) and the outer structure may be subject to as high unit stresses as the material will withstand and will therefore show deflection
  • the arrangement of parts may be reversed as will hereinafter appear.
  • either of the two structures must necessarily be substantially more rigid than the other. In any event however, there will be a transfer of load from one of the structures to the other so that under the particular condition of use of the apparatus, one of the structures may be maintained in a substantially undeflected condition, or in a condition of controlled deflection.
  • FIGURES 1 and 2 One form of the invention is diagrammatically illustrated in FIGURES 1 and 2.
  • a frame 1 is shown as having beam-like portions 2 and 3 connected by portions 4 and 5 at their ends.
  • the portions 2, 3, 4 and 5 surround a central hollow space 6 within which stresses are exerted on the beams in the direction of the arrow 7.
  • the beams 2 and 3 may be rigidified by providing them with a substantial vertical depth.
  • the element 1 is a one-piece housing for a cold rolling mill, that the total length of the aperture or space 6 is about 120 inches, and that a material is being rolled within the space 6 by means of rolling instrumentalities ultimately supported by the beams 2 and 3. Assume further that a material 100 inches wide is being rolled in the mill. Under these circumstances the forces exerted on the beams 2 and 3 as indicated by the arrow 7 may well be of the order of tons per linear inch over a total length of 100 inches.
  • deflections within the range set forth above may be tolerable; but it should be pointed out first that if a range of deflections is selected as tolerable, the specific deflections will stay within the range only so long as the stresses do not exceed a certain limit. Second, a given range or" deflections may not be tolerable during variations in rolling procedure and especially when rolling wide sheet or strip material. The wider the material being rolled, the more certain it will be that deflections will cause the rolled product to be uneven in gauge and wavy.
  • a framework 8 which, in the exemplary embodiment, consists of an upper beam assembly 9 and a lower beam assembly 10, the ends of the beam assemblies being connected together respectively by tension members 11 and 12.
  • a plurality of spaced hydraulically actuated pressure elements 13, 13a-13e Between the upper beam assembly 9 and the upper beam 2 of the casting 1 there are shown a plurality of spaced hydraulically actuated pressure elements 13, 13a-13e.
  • a series of hydraulically actuated pressure elements 14, 14a-14e comprise cylinders mounted on the beam assemblies and having pistons, such as shown at 15, which engage the upper and lower beam assemblies at selected intervals.
  • the beams 2 and 3 are made so as to be quite resistive to deflecting forces since the auxiliary structure or framework designated by the numeral 8 serves to suppress the general tendencies of the beams to flex.
  • the beams of the structure 1 must be sufficiently rigid that flexure between the points of action of the pistons 15 will be negligible.
  • the adjustment of the pressure exerted by an individual cylinder may be accomplished by observing and measuring the piece being rolled, and then controlling the pressure in the several cylinders to give a flat product, and one devoid of camber and the like.
  • FIGURES 1 and 2 also illustrate a means whereby deflection can be measured and adjustment effected in accordance with such measurements.
  • the beams 2 and 3 are provided with relatively small longitudinal bores 16 and 17.
  • a frame element 18 has upper and lower legs 19 and 20 extending through these bores. In the upper bore there may be elements 21 which will support the frame 18 at the ends of the beam 2 in such a way that the frame legs 19 and 20 do not normally contact the beams 2 and 3.
  • a series of gauges 22 are provided, and a similar series of gauges 23 is located between the frame leg 20 and the upper surface of the bore 17. These gauges are preferably located opposite the pistons 15 of the pressure cylinders.
  • the gauges are of known character serving to indicate variations in the distance between the frame and the floor and ceiling respectively of the bores 16 and 17.
  • the floor and ceiling of the respective bores may be lined if desired with a harder metal facing as indicated at 24.
  • the gauges whether operating by pressure displacement or electrically, will have leads brought out in such a way that the gauges may be individually read.
  • the frame 18 is not subjected to the deflecting stresses on the beams excepting insofar as a minute fraction of these stresses may be transmitted through the gauges 22 and 23.
  • the rigidity of the frame 18 will be such as to withstand these stresses so that the gauges will give a definitive measurement of the actual deflections of the beams 2 and 3.
  • the indications derived from the gauges 22 and 23 can be used in various ways. They can be made visible on meters 22a and 23a such as shown in FIGURE 2a, so that the mill operator can use these indications in manually adjusting the hydraulic pressures in the several cylinders 13, 14, etc. Again, automatically acting connections (see FIGURE 2a) between the gauges 22 and 23- and valves controlling the hydraulic cylinders may be provided. In the practice of the extremely delicate art of accurately rolling flat metal strips, automatic adjustment means plus provision for manual adjustment when required, are preferred. Manual adjustment may be accomplished on the basis of indications derived from the gauges, or from indications derived from instruments acting upon the product itself after rolling, or both.
  • FIGURES 3, 4 and 5 illustrate the principles of the invention applied to mills which for exemplary purposes may be visualized as 4-high mills.
  • Such a mill as shown in FIGURE 3, may comprise end housings 25 and 26 of ordinary configuration for such mills.
  • a work piece 27 is shown as being reduced between working rolls 28 and 29.
  • These working rolls have necks 30, 31, 32 and 33, which are mounted in bearings 34, 35, 36 and 37, which bearings are normally made slidable in the windows of the mill frame members as conventional in the art.
  • the working rolls will normally have coupling means 38 and 39 by which the working rolls may be connected to a mill driving motor through a conventional pinion stand.
  • the backing means of the mill of FIGURE 3 comprises upper and lower backing assemblies each consisting of two parts, viz, an inner backing roll 40 or 41, these rolls being solid excepting for certain perforations hereinafter described, and an outer sleeve 42 or 43.
  • the last mentioned sleeve elements are in direct contact with the Working rolls 28 and 29.
  • Screw-down means will he provided for such mills; and these will take various forms which may include conventional hand or motor operated screws threaded in the mill housings and engaging bearing assemblies for the backing rolls.
  • neck portions 44, 45, 46 and 47 of the solid backing rolls are shown mounted eccentrically in circular bearing elements 48, 49, 50 and 51.
  • These bearing elements are rotatably mounted in holes in the mill housings and are provided with worm gears 52, 53, 54 and 55.
  • screw-down in the mill may be affected by the rotation of worms (not shown), which engage the worm gears.
  • the solid rolls 40 and 41 are kept from rotation by brackets 56 and 57 afiixed respectively to their necks and to the mill housing 25.
  • the sleeves 42 and 43 are held against axial movement by the eccentric bearing elements 48, 49, 50 and 51, and are free to rotate with the working rolls 28 and 29.
  • the solid roll 40 is divided on its u 1 1 der side into a series of areas marked 58 by grooves 59.
  • the areas need not be of the same size but are preferably arranged symmetrically.
  • the grooves 59 which both surround the assembly of areas and extend between adjacent areas are fitted with expansible seals 61.
  • Holes 60 are provided, at least one for each area. These holes either connect the several areas with a longitudinal perforation 61a in the roll 40, or preferably are individually connected to separate pressure pipes 62 which extend through the bore 61a and, externally of the mill, are individually connected with valved sources of fluid pressure (not shown).
  • the lower backing roll 41 is provided with similar configurations and adjuncts as will be evident from FIG. 3.
  • the sleeve members 42 and 43 are loosely held on the backing rolls 40 and 41, i.e., in a manner which will permit deflection to occur; but the expansion seals 61 remain at all times in contact with adjacent surfaces of the sleeves despite sleeve rotation.
  • the introduction of fluid under pressure into the various areas 58 will separate those portions of the sleeves which contact the working rolls from the backing rolls 40 and 41 by greater or lesser distances depending upon the actual pressures applied, and despite some leakage past the seals.
  • the strip 27 being rolled is preferably maintained in a symmetrical position in the mill. It becomes possible then to make overall adjustments in the pressures on areas 58 lying to the right and left of the center line of the mill and in this way control the general behavior of the strip in the mill. Afterwards, from data obtained from the strip itself, adjustment of the pressures in individual areas can be practiced to correct errors in rolling as will now be readily understood.
  • the backing rolls 40 and 41 are themselves rigid bodies capable of substantially reducing the deflections of the Working rolls which would otherwise occur.
  • the sleeves 42 and 43 also have a considerable rigidity; but the combination as described in connection with FIGURES 3, 4 and 5, enables deflections of the Working rolls to be controlled far more accurately than would be the case with solid backing rolls of equivalent diameter.
  • the arrangement taught herein serves to control the effective shape of the backing means as it bears against the working rolls. In very wide (4-high) mills, it is not possible to provide single :backing rolls of such very great diameters as will preclude some flexing thereof under normal rolling procedures.
  • a typical known hydraulic circuit would include a fixed delivery high pressure oil pump for each area 58, capable of delivering a quantity of oil in excess of the leakage past the expansible seals aforesaid, each such pump being equipped with a bypass valve enabling the pressure to be set at a desired value.
  • the number andaxial lengths of the areas 58 will depend on the diameters of the elements involved, i.e., the relative rigidities of the rolls and sleeves and the rolling program of the mill.
  • the circumferential lengths of the areas 58 will depend on the thickness of the sleeves as well as the diameters of the assemblies. An increase in the areas of the divisions 58 will change the effective by: d raulic pressure. Also, too great a circumferential extent 7 may, if the thicknesses of the sleeves 42 and 43 is limited, introduce certain bending stresses.
  • FIGURE A modification of structure may be noted in FIGURE in that the bearing elements 63 and 64 accept necks 65 and 66 on the sleeve 42, the neck 66 being provided additionally with means 67 for connection to a source of power.
  • the solid roll 40 is held against rotation by a somewhat modified bracket 68.
  • the solid rolls 40 and 41 will generally be subject to some deflection. This is of little consequence with respect to the accuracy of control of the deflection of the working rolls, providing that the material of which the solid backing rolls are made, will withstand the stresses imposed by the roll separating force, and providing that the deflections are not so large as to make an effective seal impracticable.
  • the problem may be ameliorated in wide mills by crowning the solid rolls 40 and 41 within the sleeve members 42 and 43. The crown should be proportioned to the average mill load, at which seals will work under ideal conditions.
  • seals provide a range of deflections above and below the median, throughout which range the mill will still function satisfactorily as to the seals and can still be adjusted so as to compensate for deflections of the working rolls which would otherwise occur.
  • FIGURES 6 and 7 show the application of the principle of this invention to beam-backed mills.
  • Such mills are disclosed in Patent No. 2,776,586 and others, and they generally consist of a housing having rigid means parallel to the working rolls.
  • Such beams are indicated in the figures at 69 and 70.
  • the beams are tied together at the ends of the housing by portions 71 and 72 which are usually, but not necessarily, parts of the same casting.
  • Parallel channels 73 and 74 are machined in the facing surfaces of the beams, and serve to locate saddles 7 5 and 76 which in turn support caster elements 77 and 78.
  • mill housings of the type just described are capable of supporting small diameter working rolls with a sufficiently low deflection to provide rolled strip up to about 60 inches wide.
  • the top and bottom faces of the housing beams 69 and 70 are so designed as to present relatively large flat areas which may be either round or rectangular or oval in configuration; and these areas are machined.
  • An independent auxiliary structure 81 is provided comprising an upper beam element 82 and a lower beam element 83 lying respectively above and below the mill housing beams 69 and 70.
  • the beams 82 and 83 are made wide enough to cover the aforesaid machined areas on the outer sides of the beams 69 and 70, and the beams 82 and 83 may be held together by four tie members, two of which are shown at 84 and 85 in FIG. 6.
  • the tying members may extend, as shown, through vertical holes in the mill housing so that the parts may be held in accurate assembly.
  • Hydraulic seals indicated at 86 are disposed between the facing surfaces of the mill housing beams and the frame beams respectively, the seals running around close to the periphery of the machined areas so as to close off a pressure space indicated at 87.
  • Hydraulic fluid may be intro: quizd into the pressure spaces aforesaid, and the pressure of the fiuid can be so adjusted as to completely compensate for deflection of the housing beams 68 and 70, i.e., to keep these beams from deflecting.
  • the pressure spaces 87 should be so designed as to cover in length a major part of the width of the strip to be rolled. The pressure can be so adjusted as to relieve the mill housing means of all bending and shearing stresses, if desired, although deflection of the beams 82 and 83 will occur.
  • each mill housing beam has one area only (as at 87) which will be subjected to the hydraulic pressure.
  • the compensating counterpressure is so controlled by means including seals as to be limited to the same area, any deflection of the mill beams will be more accurately eliminated.
  • the beams 67 and 70 of mills such as are disclosed in FIGS. 6 and 7, are inherently very rigid, and in most cases can withstand load differences due to variations in the width of the strips being rolled.
  • screwdown type elements 89 may be interposed between the mill housing beam 69 and the external beam 82. These mechanical pressure exerting elements may be provided with worm gears and operated either together or selectively by worms (not shown).
  • FIGURE 8 also illustrates the fact that it is not necessary to provide a complete external frame work.
  • the beam 82 may be attached to the end portions 71 and 72 of the mill housing by tension studs 90 and 91 threaded directly into the mill housing.
  • tension studs 90 and 91 threaded directly into the mill housing.
  • a beam element 83 will be provided beneath the mill housing beam 70, may be provided with similar pressure exerting instrumentalities, and similarly attached to the end portions 71 and 72 of the mill housing.
  • a method for diminishing the deflection of a pair of mutually opposed pressure bearing stationary beams of a mill housing used in rolling fiat articles which comprises providing one of a pair of cooperating parallel structures outside each of said beams, and interposing between each beam and its adjacent structure at least one pressure element capable of exerting a controlled force on said structure in a direction substantially opposite to the direction of deflection resulting from the rolling of said articles.
  • a mechanical device the combination of a pair of mutually opposed relatively rigid structures subject to deflection by reason of separating forces exerted thereon, and means for diminishing said deflection comprising at least one stationary cooperating structure parallel to one of said structures, said latter structure being disposed near and spaced from one of said rigid structures, means fixing said structures against movements at their ends, and at least one pressure element interposed between each said rigid structure and said parallel structure adjacent thereto at the parts of said rigid structure subject to deflection, whereby to exert pressure upon said rigid structure at said parts in a direction opposite to the direction of the deflecting forces.
  • the structure cliamed in claim 3 including a plurality of pressure elements interposed between said rigid and cooperating parallel structures at selected intervals and means for independently controlling the pressure exerted by the individual pressure elements.
  • the structure claimed in claim 4 including a member related to the first mentioned relatively rigid structure and having deflection gauges interposed between it and the said structure whereby the degree of deflection of said structure at various parts thereof may be measured.
  • said pressure element comprises mechanical means located at spaced intervals in the direction of the length of the beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Control Of Metal Rolling (AREA)
US294048A 1963-07-10 1963-07-10 Control of deflection in rolling mills and the like Expired - Lifetime US3355924A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US294048A US3355924A (en) 1963-07-10 1963-07-10 Control of deflection in rolling mills and the like
DE1452009A DE1452009C3 (de) 1963-07-10 1964-07-10 Walzgerüst
FR981440A FR1440612A (fr) 1963-07-10 1964-07-10 Procédé et dispositif s'opposant au déplacement des cylindres de laminage et analogues
GB28527/64A GB1070166A (en) 1963-07-10 1964-07-10 Control of deflection in rolling mills and other mechanical devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US294048A US3355924A (en) 1963-07-10 1963-07-10 Control of deflection in rolling mills and the like

Publications (1)

Publication Number Publication Date
US3355924A true US3355924A (en) 1967-12-05

Family

ID=23131665

Family Applications (1)

Application Number Title Priority Date Filing Date
US294048A Expired - Lifetime US3355924A (en) 1963-07-10 1963-07-10 Control of deflection in rolling mills and the like

Country Status (3)

Country Link
US (1) US3355924A (de)
DE (1) DE1452009C3 (de)
GB (1) GB1070166A (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3422650A (en) * 1967-02-23 1969-01-21 Bliss Co Gauge control for a rolling mill
US3596489A (en) * 1967-11-21 1971-08-03 Davy & United Eng Co Ltd Apparatus for processing sheet and strip material
US3657913A (en) * 1968-09-30 1972-04-25 United Eng Foundry Co Crown control
US3762202A (en) * 1971-10-18 1973-10-02 W Sherwood Rolling mill for flat-rolled products
US4041752A (en) * 1975-02-13 1977-08-16 Escher Wyss Limited Rolling mills having hydraulic forces exerted on the exterior roll surfaces
US4059976A (en) * 1975-02-13 1977-11-29 Escher-Wyss Limited Rolling mill
US4295355A (en) * 1979-08-13 1981-10-20 Tadeusz Sendzimir Beam-backed strip mill with attached inserts
DE3031426A1 (de) * 1980-08-18 1982-04-01 Escher Wyss AG, Zürich Walzvorrichtung
US4683744A (en) * 1985-06-18 1987-08-04 Wean United Rolling Mills, Inc. Flexible edge roll
WO1999041026A1 (fr) * 1998-02-13 1999-08-19 Kvaerner Metals Clecim Installation de laminage de produits plats
US20090165521A1 (en) * 2007-10-31 2009-07-02 Jochen Corts Linear Bearing Plate for Rolling Mill

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926365B2 (ja) * 1979-05-24 1984-06-27 住友金属工業株式会社 可変クラウン・ロ−ルを用いた圧延機
DE3128722C2 (de) * 1981-07-21 1985-05-15 Eduard 4150 Krefeld Küsters Durchbiegungssteuerbare Walze
DE3145526C2 (de) * 1981-11-17 1985-10-31 Sulzer-Escher Wyss AG, Zürich Walzgerüst

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1781809A (en) * 1927-12-14 1930-11-18 Allegheny Steel Co Rolling mill
US1910158A (en) * 1928-03-09 1933-05-23 Timken Roller Bearing Co Rolling mill
US2792730A (en) * 1953-05-14 1957-05-21 Baldwin Lima Hamilton Corp Metal forming
US2907235A (en) * 1955-06-15 1959-10-06 Murakami Yoshihiko Cold rolling mills
US2985042A (en) * 1959-04-30 1961-05-23 United Eng Foundry Co Rolling mill
US3031872A (en) * 1958-09-16 1962-05-01 Textilmaschinen Eduard Kusters Fluid pressure roll
US3076360A (en) * 1958-08-22 1963-02-05 Sendzimir Tadeusz Clam shell cold rolling mill
US3169423A (en) * 1959-12-03 1965-02-16 Davy & United Eng Co Ltd Rolling mills

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1781809A (en) * 1927-12-14 1930-11-18 Allegheny Steel Co Rolling mill
US1910158A (en) * 1928-03-09 1933-05-23 Timken Roller Bearing Co Rolling mill
US2792730A (en) * 1953-05-14 1957-05-21 Baldwin Lima Hamilton Corp Metal forming
US2907235A (en) * 1955-06-15 1959-10-06 Murakami Yoshihiko Cold rolling mills
US3076360A (en) * 1958-08-22 1963-02-05 Sendzimir Tadeusz Clam shell cold rolling mill
US3031872A (en) * 1958-09-16 1962-05-01 Textilmaschinen Eduard Kusters Fluid pressure roll
US2985042A (en) * 1959-04-30 1961-05-23 United Eng Foundry Co Rolling mill
US3169423A (en) * 1959-12-03 1965-02-16 Davy & United Eng Co Ltd Rolling mills

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3422650A (en) * 1967-02-23 1969-01-21 Bliss Co Gauge control for a rolling mill
US3596489A (en) * 1967-11-21 1971-08-03 Davy & United Eng Co Ltd Apparatus for processing sheet and strip material
US3657913A (en) * 1968-09-30 1972-04-25 United Eng Foundry Co Crown control
US3762202A (en) * 1971-10-18 1973-10-02 W Sherwood Rolling mill for flat-rolled products
US4041752A (en) * 1975-02-13 1977-08-16 Escher Wyss Limited Rolling mills having hydraulic forces exerted on the exterior roll surfaces
US4059976A (en) * 1975-02-13 1977-11-29 Escher-Wyss Limited Rolling mill
US4295355A (en) * 1979-08-13 1981-10-20 Tadeusz Sendzimir Beam-backed strip mill with attached inserts
DE3031426A1 (de) * 1980-08-18 1982-04-01 Escher Wyss AG, Zürich Walzvorrichtung
US4683744A (en) * 1985-06-18 1987-08-04 Wean United Rolling Mills, Inc. Flexible edge roll
WO1999041026A1 (fr) * 1998-02-13 1999-08-19 Kvaerner Metals Clecim Installation de laminage de produits plats
FR2774929A1 (fr) * 1998-02-13 1999-08-20 Kvaerner Metals Clecim Installation de laminage de produits plats et son procede de mise en oeuvre
US6151944A (en) * 1998-02-13 2000-11-28 Vai Clecim Rolling installation for flat products
US20090165521A1 (en) * 2007-10-31 2009-07-02 Jochen Corts Linear Bearing Plate for Rolling Mill
US8353192B2 (en) * 2007-10-31 2013-01-15 Corts Engineering Gmbh & Co. Kg Linear bearing plate for rolling mill

Also Published As

Publication number Publication date
DE1452009C3 (de) 1975-08-07
DE1452009A1 (de) 1968-12-05
DE1452009B2 (de) 1975-01-09
GB1070166A (en) 1967-06-01

Similar Documents

Publication Publication Date Title
US3355924A (en) Control of deflection in rolling mills and the like
US4651547A (en) Process for adjusting the thickness and profile of a flat product in the course of rolling
US4454738A (en) Roller leveler and method of operating same
US4898012A (en) Roll bite gauge and profile measurement system for rolling mills
US2792730A (en) Metal forming
US5406817A (en) Rolling mill and rolling method
KR100424527B1 (ko) 롤스탠드에있어서롤의수평운동에의해야기된힘을보정하기위한방법
US4127997A (en) Rolling mill stand
US4898014A (en) Roll shifting system for rolling mills
US3427839A (en) Hydraulic adjusting means for rolling mills
US4289013A (en) Crown control for rolling mill
JPS6160204A (ja) ストリツプ状材料のためのロールスタンド
US3714805A (en) Control system and method for concurrent automatic gage and crown control of a rolling mill
EP0019737B1 (de) Walzwerk mit einer Walze variabler Balligkeit
EP0344583B1 (de) Einrichtung zum Messen der Planheit von gewalztem Band
US3285049A (en) Rolling mill with closed frames and with a control system for continuously and rapidly adjusting the roll gap
US3516273A (en) Strip thickness measuring device for use in a rolling mill and like apparatus
US5806360A (en) Rolling mill installation
US3877270A (en) Rolling mill including means for compensating for roll bending
TW424008B (en) A metal band product rolling installation and method for implementing the same
US3517531A (en) Rolling mill gage control actuator system
US4149395A (en) Method and apparatus for correcting camber in rolled metal workpiece
EP0556408A1 (de) Blechwalzmaschine
US3526114A (en) Rolling of strip
US3132547A (en) Loadmeters in rolling mills