US3299598A - Corrugated sheet-like yieldable wall element - Google Patents
Corrugated sheet-like yieldable wall element Download PDFInfo
- Publication number
- US3299598A US3299598A US374042A US37404264A US3299598A US 3299598 A US3299598 A US 3299598A US 374042 A US374042 A US 374042A US 37404264 A US37404264 A US 37404264A US 3299598 A US3299598 A US 3299598A
- Authority
- US
- United States
- Prior art keywords
- corrugations
- series
- corrugation
- continuous
- sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 description 21
- 239000002184 metal Substances 0.000 description 20
- 238000010276 construction Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 230000008602 contraction Effects 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 230000005489 elastic deformation Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910001234 light alloy Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C13/00—Pressure vessels; Containment vessels; Containment in general
- G21C13/08—Vessels characterised by the material; Selection of materials for pressure vessels
- G21C13/087—Metallic vessels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D51/00—Making hollow objects
- B21D51/16—Making hollow objects characterised by the use of the objects
- B21D51/24—Making hollow objects characterised by the use of the objects high-pressure containers, e.g. boilers, bottles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D90/00—Component parts, details or accessories for large containers
- B65D90/02—Wall construction
- B65D90/027—Corrugated or zig-zag structures; Folded plate
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
- F17C3/025—Bulk storage in barges or on ships
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
- F17C3/025—Bulk storage in barges or on ships
- F17C3/027—Wallpanels for so-called membrane tanks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S220/00—Receptacles
- Y10S220/901—Liquified gas content, cryogenic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/1241—Nonplanar uniform thickness or nonlinear uniform diameter [e.g., L-shape]
- Y10T428/12417—Intersecting corrugating or dimples not in a single line [e.g., waffle form, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
- Y10T428/2457—Parallel ribs and/or grooves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24628—Nonplanar uniform thickness material
- Y10T428/24669—Aligned or parallel nonplanarities
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24628—Nonplanar uniform thickness material
- Y10T428/24736—Ornamental design or indicia
Definitions
- This invention relates essentially to devices constituting each a sheet or plate element made from sheet-material stock or metal-plate stock and intended for constructing flexible or resiliently yielding walls or the like, and also to various applications of devices of this character in the construction of enclosure walls or the like.
- These wall elements may comprise in the manner already known per se a plurality of pleats, ribs or corrugations frequently of substantially cylindrical, prismatic or more generally polyhedral cross-sectional configuration, consisting of at least two series or groups of corrugations with secant generatices respectively, the corrugations of a same series or group being preferably substantially parallel to each other and extending at right angles to those of the other series or group.
- wall elements of this character in large-sized structures comprising for example a metal casing of which the temperature under normal service conditions departs considerably from the outside temperature, in that it is either higher or lower than this outside temperature.
- Such structures may constitute for instance containers for stocking and transporting liquefied gas but heat exchangers, caissons of chemical or nuclear reactors, and other similar constructions are other examples of such containers.
- corrugations formed in the wall of a structure of this type in addition to the fact that they increase to a certain extent the rigidity imparted thereby to said wall in a direction substantially at right angles to the corrugations, facilitate the successive expansions and contractions of the casing at least in the corrugation portions extending between two adjacent crossings thereof during successive periods of operation and stoppage or holdup of the construction, so that these corrugations act somewhat like expansion joints.
- these walls are made more particularly from sheetmetal stock of relatively reduced thickness in order to impart a certain flexibility thereto.
- the elementary configuration consists of at least two secant corrugations extending at right angles to each other.
- the device according to this invention is remarkable notably in that the corrugations pertaining to one of said two series or groups are substantially continuous in their longitudinal directions while those pertaining to the other series or group are discontinuous longitudinally and consist of substantially aligned sections bounded by said continuous corrugations of the first series, and that said sheet element further comprises a third series or group of longitudinally discontinuous, preferably parallel corrugations, formed in the crests of the continuous corrugations of said first series or group.
- the sheet-metal wall element can expand by undergoing a relatively free distortion in the direction parallel to the corrugations of the second series, i.e. at right anges to the continuous corrugations of the first series.
- the wall element can also expand or undergo a certain relatively free deformation in directions parallel to the continuous corrugations of the first series, i.e. at right angles to the discontinuous corrugations of the second series, whereas if these third-series corrugations were not provided such deformation would involve detrimental e'longations, notably in the crest or top surface of the continuous waves or corrugations of the first series.
- the aforesaid corrugations may be regular and disposed at spaced intervals or constitute a locally variable configuration, according to requirements.
- said first and second series of corrugations form in said sheet element substantially plane rectangular surface portions.
- discontinuous corrugations of the third series aforesaid constitute respectively impressions or cavities of which the depth is preferably inferior to the amplitude or height of the continuous corrugations of the first series aforesaid.
- the aforesaid corrugations are of substantially dihedral configuration with their connecting or intersecting crests and tops or solid angles formed preferably vvith rounded fillets.
- this invention provides a sheet metal wall element of the type set forth hereinabove' wherein, in case the corrugations of said first and second series project from the same side of said Wall element, the continuous corrugations of said first series have an amplitude or height preferably greater than those of the second series.
- This invention is also concerned with the various possible applications of the sheet-metal wall elements broadly described hereinabove, notably in the form of panels or the like, in the construction of enclosure walls or the like, such as tanks, reservoirs, containers, hulls, cisterns caissons, heat exchange apparatus and the like. It is particularly suitable for the construction of very large tanks or the like for transporting or stocking lowboiling liquefied gas at very low temperature, such as methane.
- Tanks constructed according to the same principle may be used for obtaining the fluid-tightness necessary in the case of very high temperatures and pressures in safety enclosures of nuclear plants or caissons of nuclear reactors.
- the present invention it is possible to construct from relatively thin sheet stock a fluid-tight and flexible enclosure wall adapted to meet the requirements of the tank or casing construction contemplated this sheet stock consisting of a material having the properties consistent with the service conditions contemplated, such as corrosion-resisting properties, the mechanical characteristics to be preserved at the extreme valuesof service temperatures, etc.
- materials suitable for this purpose are aluminum, light alloys, stainless steel or the like.
- FIGURE 1 is a perspective view from above showing a first form of embodiment of a wall or panel element of a flexible casing according to this invention
- FIGURE 2 illustrates on a larger scale a similar view of a detail of the intersection zone of two corrugations
- FIGURE 3 is a section taken uponthe line IIIIII of FIGURE 2;
- FIGURE 4 is another section taken upon the line IV'-IV"of FIGURE 2, and
- FIGURE 5 is a view from beneath of the wall element of FIGURE 2.
- the flexible wall element designated by the reference numeral 1 and intended for constructing a tank casing or the like is manufactured or shaped from sheet-metal stock 2 preferably of relatively reduced thickness and in its initial form, that is, before the shaping or bending steps applied thereto, this sheet is preferably but not compulsorily plane and for instance of rectangular configuration.
- a pattern of geometrical alterations or features preferably in the form of corrugations, pleats, ribs or the like, are formed therein, these alterations or features being preferably divided into at least three series or groups of corrugations having substantially rectilinear crests and being adapted each to impart the desired elasticity in a direction at right angles to their main or longitudinal axis.
- a first series of so-called continuous, preferably parallel corrugations 3 having a constant or variable relative spacing or pitch between adjacent crests, and extending in a direction which may be parallel or not to one of the edges of the sheet-metal stock.
- discontinuous corrugations 4 disposed between the corrugations of the first series and extending preferably in a direction substantially perpendicular to the corrugations of said first series, the relative spacing of the corrugations of said second series being likewise either constant or variable.
- the depth of these corrugations 5 may be for instance /3 of the height of the first-series corrugations 3.
- these various corrugations 3, 4- and 5 have in cross section a substantially cylindrical or prismatic configuration and preferably a dihedral configuration as in the form of embodiment illustrated.
- rounded fillets of relatively small radius of curvature for the sharp connecting or intersection ridges, edge or angles, to prevent any localized cold-drawing of the metal.
- the aforesaid corrugations may be disposed either on the same side as the initial plane or surface of the sheetmetal element, as in the example contemplated in FIG- UR E l, or alternatively on either side of the sheet.
- the corrugated pattern will thus form a kind of chequerwork on the panel 1 and divide same into substantially rectangular surface portions or elements 6 bounded or surrounded by the first and second series of corrugations 3, 4 constituting the main corrugations of the pattern.
- This configuration providing substantially plane separate rectangular portions facilitates the fitting and fastening of the corrugated wall element on a rigid or resistant support which may be made of insulating material or consist of a metal wall with the interposition of expansion or like joints.
- FIGURE 2 shows more in detail the zone of intersecion or crossing of two corrugations 3 and 4 belonging to the first and second series set forth hereinabove, in case these corrugations project from the same side of the sheet 2. It will be seen that the height or amplitude of the continuous corrugations 3 are greater than those of the discontinuous corrugations 4 which penetrate somewhat into the side faces or walls of the corrugations 3, as shown diagrammatically in FIGURES 3 and 4.
- FIGURE 5 illustrates the back side thereof and it will be seen that each so-called discontinuous corrugation 4 is practically interrupted at its point of intersection with a so-called continuous corrugation 3 by the latter, thus forming a space of penetration common to the two solid figures constituted by these two corrugations 3 and 4 at their point of crossing.
- each corrugation section 4 through the side of a corrugation 3 produces a partial sinking of, or depression in the sides of this corrugation, so that the portion 7 of the continuous corrugation 3 which clears or bridges" corrugation 4 is somewhat narrowed transversely or reduced in width and may cause a corresponding flattening of the crest as a consequence of the formation of a flat face 8 at its top.
- This fiat face 8 occurs in the present instance as a substantially plane and rectilinear surface substantially parallel to the base plane of the sheet-metal element 2.
- the junction of two corrugations 3 and 4 in their intersection or crossing zone will form a top face either substantially plane and of square or rectangular configuration as in the example illustrated, or substantially rounded or part-spherical or bulged, this surface merging into the corrugations preferably through geometrically developable surfaces.
- each intersection or crossing zone such as shown in FIGURE 2 has two planes of symmetry substantially orthogonal to each other and respectively perpendicular to the base plane of the sheet-metal element 2, these planes extending along straight lines constituting the imaginary extensions of the crests of corrugations 3 and 4.
- the thickness of the sheet-metal stock, and the depth, relative spacing and direction of the corrugations are selected with a view to constitute the best possible approach to the sometimes contradictory characteristics that may be required in practice such as flexibility, mechanical resistance to pressure, possibility of fastening the elements on the rigid support, easy-cleaning,
- any stress or movement in a direction at right angles to the waves or corrugations of the first series will involve a stress or a concomitant movement in the very direction of the corrugations of the first series due to the action exerted on the wave patterns of the second and third series, which are geometrically connected to the first-series pattern through impressed or projecting dihedrons or vice-versa.
- the parameters of the second and third series of corrugations can be determined only by taking due account of the geometrical connections and relationships existing between these corrugations with a view to prevent considerable stress from developing in the metal as a consequence not anymore of the elastic deformation obtained with the specific geometrical configuration of the selected wave pattern, but of the elastic deformation caused by the mechanical properties of the metal proper, that is, of the stress thus tending not to alter the geometry of the wave pattern but to produce an elastic or plastic deformation of the metal.
- each side 9 of the intermediate portion 7 of the continuous corrugation 3 of the first series which connects two adjacent discontinuous dihedral corrugations 5 of the third series lies substantially in a plane approximately at right angles to the basic sheet surface 2, forming the aforesaid rectangular panel portions 6.
- the dihedral angle formed by the sides of the corrugation of the second series 4 is substantially a right angle.
- the depth of penetration of the crest of a discontinuous corrugation 4 of the second series, into a continuouscorrugation 3 of the first series which depth is represented by the length of segment a as measured between said lateral face portion a and a plane passing through the concave fold line at the base of the continuous corrugation ⁇ and perpendicular to the basic plane 2, be substantially equal to the sum of the halflength c of the crest segment forming the top of said intermediate portion 7 (corresponding to the half-length of the above-defined rectangle 8) on the one hand, and of the height b (above the crest of corrugation 4) of the face 9 constituting the side of said intermediate portion 7 which is adjacent or contiguous to both re-entrant waves 5, on the other hand; in other words, the lengths of segments a, b, c as illustrated in FIGURE 2 should
- corrugations are formed preferably in commercially avilable sheet-metal stock, that is, consistent with the means and tools available for performing the shaping operation which will consist preferably of a folding operation.
- other manufacturing methods such as moulding, welding, stamping, pressing, etc. may be used.
- These sheet elements are subsequently assembled by welding, gluing, riveting, stapling or any other equivalent and suitable method adapted to provide a strict or relative fluid-tightness meeting the service conditions contemplated.
- any distortion resultant may be decomposed into at least two substantially orthogonal components respectively parallel to the directions of the corrugations constituting the aforesaid first and second series. Any deformation parallel to the direction of the discontinuous corrugations 4 of the second series may take place by transverse deformation of the continuous corrugations 3 of the first series of which the cross-sectional angular contour will thus tend to open or close more or less according as it is an expansion or a contraction that takes place, respectively.
- any deformation parallel to the direction of the continuous corrugations 3 of the first series may take place, on the other hand, due to the distortion of the discontinuous corrugations 4 of the second series and on the other hand, due to the simultaneous deformation of the discontinuous corrugations 5 of the third series which permit a certain elongation or narrowing of the corrugations 3 in a direction parallel to their longitudinal axis.
- a sheet-like metal plate element at least a portion of which is formed with at least two sets of integral channel-like corrugations having their raised convex wavelike portions all projecting from a same side of said plate element, the corrugations of each set intersecting each one of the corrugations of the other set, thereby defining therebetween substantially smooth uncorrugated areas located in the initial sheet surface of said plate element, each corrugation having a substantially uniform crosssection throughout its length except in the intersecting regions, the corrugations of one set having at least their ridge portions extending continuously across said plate element, whereas each corrugation of the other set is discontinuous and separated into substantially aligned wave sections by the continuous corrugations of said one set and raises to a wave height smaller than that of said continuous corrugations a third set of corrugations being disposed in a direction substantially at right angles with respect to the wave section of at least one of said corrugations, each one of at least some of said continuous corrugations being formed, adjacent to each one of at least some of its intersections with said discontinuous
- each end of the con-cave folding edge line of each depression is connected by a convex fold line to the meeting point of the two concave fold lines bounding a same corrugated area along the bases of two intersecting corrugations, said meeting pointbeing also connected by two concave fold lines to the crest folding edge lines of said two corrugations respectively.
- each depression has substantially the shape of a fragmentary re-entrant dihedron.
- each raised wave-like portion of each corrugation has substantially the shape of a dihedron.
- each dihedral corrugation is substantially symmetrical with respect to a plane passing through its crest edge line and extending at right angles to said initial plane sheet surface and each discontinuous corrugation has a substantially right dihedral angle and extends at least with its crest portion into the sides of each continuous corrugation at each intersection thereof, by such a distance that those lateral face portions of the continuous corrugation, which are comprised between two associated depressions and overlap said discontinuous corrugation to form a top hump at said intersection, are substantially perpendicular to said initial plane sheet surface, whereas the depth of penetration of the crest edge line of said discontinuous corrugation into the side of a continuous corrugation, as measured by the length of said crest edge line between that lateral face portion of continuous corrugation which joins said crest edge line and a plane passing through the concave fold line at the base of said continuous corrugation and perpendicular to said initial plane sheet surface, is equal to the sum of the half-length of said top
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Architecture (AREA)
- High Energy & Nuclear Physics (AREA)
- Civil Engineering (AREA)
- Plasma & Fusion (AREA)
- Electromagnetism (AREA)
- Structural Engineering (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Laminated Bodies (AREA)
- Roof Covering Using Slabs Or Stiff Sheets (AREA)
- Cartons (AREA)
- Panels For Use In Building Construction (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Earth Drilling (AREA)
- Revetment (AREA)
- Medicinal Preparation (AREA)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR939618A FR1379651A (fr) | 1963-06-27 | 1963-06-27 | Dispositif formant élément de paroi souple ou analogue et applications diverses dudit dispositif, en particulier à la construction de réservoirs ou analogues |
FR984429A FR87111E (fr) | 1963-06-27 | 1964-08-06 | Dispositif formant élément de paroi souple ou analogue et applications diverses dudit dispositif, en particulier à la construction de réservoirs ou analogues |
FR919A FR87379E (enrdf_load_stackoverflow) | 1963-06-27 | 1965-01-05 | |
FR918A FR1459749A (fr) | 1963-06-27 | 1965-01-05 | Dispositif formant élément de paroi souple et enceintes étanches constituées avec de tels éléments |
FR15442A FR87984E (fr) | 1963-06-27 | 1965-04-30 | Dispositif formant élément de paroi souple ou analogue et applications diverses dudit dispositif, en particulier à la construction de réservoirs ou analogues |
Publications (1)
Publication Number | Publication Date |
---|---|
US3299598A true US3299598A (en) | 1967-01-24 |
Family
ID=27514663
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US374042A Expired - Lifetime US3299598A (en) | 1963-06-27 | 1964-06-10 | Corrugated sheet-like yieldable wall element |
US476988A Expired - Lifetime US3302359A (en) | 1963-06-27 | 1965-08-03 | Corrugated sheet-like yieldable wall element and vessels or tanks made thereof |
US518111A Expired - Lifetime US3510278A (en) | 1963-06-27 | 1966-01-03 | Wall corner construction |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US476988A Expired - Lifetime US3302359A (en) | 1963-06-27 | 1965-08-03 | Corrugated sheet-like yieldable wall element and vessels or tanks made thereof |
US518111A Expired - Lifetime US3510278A (en) | 1963-06-27 | 1966-01-03 | Wall corner construction |
Country Status (8)
Country | Link |
---|---|
US (3) | US3299598A (enrdf_load_stackoverflow) |
JP (1) | JPS4822932B1 (enrdf_load_stackoverflow) |
DE (2) | DE1450432B2 (enrdf_load_stackoverflow) |
FR (4) | FR87111E (enrdf_load_stackoverflow) |
GB (3) | GB1073281A (enrdf_load_stackoverflow) |
NL (3) | NL141633B (enrdf_load_stackoverflow) |
NO (1) | NO126582B (enrdf_load_stackoverflow) |
SE (1) | SE369751B (enrdf_load_stackoverflow) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3395505A (en) * | 1964-07-02 | 1968-08-06 | Transp Et De La Valorisation D | Connection element for expansion joints |
US3485596A (en) * | 1965-07-31 | 1969-12-23 | Technigaz | Devices constituting corrugated sheet elements or plates and their various applications |
US3510278A (en) * | 1963-06-27 | 1970-05-05 | Technigaz | Wall corner construction |
US3881835A (en) * | 1973-06-06 | 1975-05-06 | Felt Products Mfg Co | Sidewalk-curb sealing member, assembly and method |
US4149652A (en) * | 1977-08-15 | 1979-04-17 | Mitsubishi Jukogyo Kabushiki Kaisha | Membrane structure in a liquified gas storage tank |
US4251598A (en) * | 1978-09-11 | 1981-02-17 | Transco, Inc. | Reflective insulative panel |
US4942712A (en) * | 1986-11-24 | 1990-07-24 | Thompson Peter B | Roof covering |
USD378136S (en) * | 1995-11-20 | 1997-02-18 | Butler Manufacturing Company | Grain bin with side walls having integral vertical stiffeners and air conduits |
US5632674A (en) * | 1995-11-02 | 1997-05-27 | Butler Manufacturing Company | Grain bin with side walls having integral vertical stiffeners and air conduits |
US6316121B1 (en) * | 1997-12-12 | 2001-11-13 | Emitec Gesellschaft Fuer Emissionstechnologie Mbh | Metal foil with through openings and honeycomb body |
US20060118018A1 (en) * | 2004-12-08 | 2006-06-08 | Yang Young M | Modular walls for use in building liquid tank |
US7204195B2 (en) | 2004-12-08 | 2007-04-17 | Korea Gas Corporation | Ship with liquid tank |
US20070246473A1 (en) * | 2006-04-20 | 2007-10-25 | Korea Gas Corporation | Lng tank and vehicle with the same |
US20090071098A1 (en) * | 2007-09-14 | 2009-03-19 | Ashton Larry J | Reinforced composite panel |
US20120135200A1 (en) * | 2010-11-29 | 2012-05-31 | Burvill Thomas | Aircraft panel structure and aircraft panel structure manufacturing method for alleviation of stress |
US20120305708A1 (en) * | 2011-06-02 | 2012-12-06 | Bell Helicopter Textron Inc. | Integrally stiffened panel |
US20160375978A1 (en) * | 2015-06-24 | 2016-12-29 | Airbus Operations Gmbh | Stiffened fuselage component as well as method and apparatus for manufacturing a stiffened fuselage component |
US20230408030A1 (en) * | 2023-06-29 | 2023-12-21 | Sinotech Marine Co., Ltd. | Corrugated plate having smooth top surface and drawbeads and storage container |
CN117718374A (zh) * | 2024-02-18 | 2024-03-19 | 中太能源科技(上海)有限公司 | 制造波纹板的方法 |
RU2819569C1 (ru) * | 2023-06-29 | 2024-05-21 | Синотек Энерджи Ко., Лтд. | Гофрированная пластина с гладкой верхней поверхностью и вытянутыми ребрами и контейнер для хранения |
CN119713105A (zh) * | 2025-02-28 | 2025-03-28 | 中太能源科技(上海)有限公司 | 波纹板及具有其的液化气体储存容器 |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1568290A (enrdf_load_stackoverflow) * | 1968-03-26 | 1969-05-23 | ||
US3814253A (en) * | 1971-10-01 | 1974-06-04 | K Forsberg | Liquid control apparatus for chromatography columns |
US3774358A (en) * | 1972-09-18 | 1973-11-27 | J Hale | Structural membrane panel formed from saddle shaped surface |
US3994693A (en) * | 1973-12-05 | 1976-11-30 | Lockheed Missiles & Space Company, Inc. | Expandable metal membrane |
US4502257A (en) * | 1981-02-02 | 1985-03-05 | Gary Diamond | Structural modules |
JPS5968694A (ja) * | 1982-10-13 | 1984-04-18 | 動力炉・核燃料開発事業団 | 熱変形吸収性ライナ−材 |
US4683697A (en) * | 1986-02-11 | 1987-08-04 | Gregg Arthur H | Roofing tiles |
US5139887A (en) * | 1988-12-27 | 1992-08-18 | Barnes Group, Inc. | Superplastically formed cellular article |
US5269601A (en) * | 1992-05-11 | 1993-12-14 | Whirlpool Corporation | Method and apparatus for maunfacture of plastic refrigerator liners |
US5292027A (en) * | 1992-10-05 | 1994-03-08 | Rockwell International Corporation | Tension and compression extensible liner for a primary vessel |
DE4304845A1 (de) * | 1993-02-17 | 1994-09-08 | Euro Composites | Transportbehälter |
FR2706432B1 (fr) * | 1993-06-18 | 1995-09-08 | Geostock | Procédé de mise en service d'une cavité de stockage souterrain d'hydrocarbure à basse température et installation de stockage d'hydrocarbure à basse température. |
US5535912A (en) * | 1994-03-17 | 1996-07-16 | A. O. Smith Corporation | Metal liner for a fiber-reinforced plastic tank |
KR100707675B1 (ko) | 2004-03-30 | 2007-04-13 | 현대중공업 주식회사 | Lng 저장탱크의 멤브레인 금속패널 |
RU2285096C1 (ru) * | 2005-02-24 | 2006-10-10 | ООО "Научно-производственное предприятие "МОДУЛЬ" | Строительный элемент (варианты) и стена из строительных элементов |
WO2008112217A1 (en) * | 2007-03-13 | 2008-09-18 | Merck & Co., Inc. | Inhibitors of janus kinases and/or 3-phosphoinositide-dependent protein kinase-1 |
JP5229833B2 (ja) | 2007-04-26 | 2013-07-03 | エクソンモービル アップストリーム リサーチ カンパニー | 独立型波形lngタンク |
KR100964571B1 (ko) * | 2008-04-21 | 2010-06-21 | 삼성중공업 주식회사 | 직교 등방성을 가지는 신축성 금속 멤브레인 |
JP5520963B2 (ja) | 2009-11-13 | 2014-06-11 | 株式会社Uacj | 凹凸部を有する板材並びにこれを用いた積層構造体及び車両パネル |
JP5868858B2 (ja) | 2010-09-08 | 2016-02-24 | 株式会社Uacj | 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体 |
USD673779S1 (en) | 2010-10-04 | 2013-01-08 | Sumitomo Light Metals Industries, Ltd. | Metal sheet material |
WO2012096085A1 (ja) | 2011-01-11 | 2012-07-19 | 住友軽金属工業株式会社 | 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体 |
US8920908B2 (en) | 2011-01-17 | 2014-12-30 | Uacj Corporation | Sheet material having a concave-convex part, and vehicle panel and laminated structure using the same |
USD825203S1 (en) * | 2015-05-13 | 2018-08-14 | SUNGJOO R&D Inc. | Fabric |
KR102233191B1 (ko) * | 2019-08-26 | 2021-03-29 | 대우조선해양 주식회사 | 극저온 유체 저장탱크의 금속 멤브레인 |
CN117053083B (zh) * | 2023-10-13 | 2024-01-02 | 沪东中华造船(集团)有限公司 | 一种耐压抗低温的密封膜及围护系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1686274A (en) * | 1926-07-17 | 1928-10-02 | Oliver P Greenstreet | Expansible and retractable roofing sheet |
US2008640A (en) * | 1934-03-17 | 1935-07-16 | Nat Steel Car Corp Ltd | Reenforced corrugated car ends |
US2870981A (en) * | 1957-08-06 | 1959-01-27 | Associated Box Corp | Platform |
US3114470A (en) * | 1960-09-14 | 1963-12-17 | Douglas Aircraft Co Inc | Joint for honeycomb structure |
US3118523A (en) * | 1959-02-20 | 1964-01-21 | Le Methane Liquide | Connecting element for expansion joints |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3059733A (en) * | 1955-07-13 | 1962-10-23 | Peter S Pedersen | Reinforced panel sheets |
GB835089A (en) * | 1957-09-23 | 1960-05-18 | Jack Geneux | Improvements in and relating to corrugated metal sheeting, particularly for roofs |
FR1329016A (fr) * | 1962-04-25 | 1963-06-07 | Chausson Usines Sa | Procédé pour la rigidification de tôles plates et son application à la fabrication d'éléments de carrosserie en caisson |
DE1450432B2 (de) * | 1963-06-27 | 1976-01-08 | Technigaz S.A., Paris | Abwickelbare Dehnungswand tür einen Behälter |
FR1370087A (fr) * | 1963-07-09 | 1964-08-21 | Babcock & Wilcox France | Joint élastiquement déformable à l'intersection de deux ondulations de surface |
FR1447913A (fr) * | 1963-08-16 | 1966-08-05 | Technigaz | Pièces d'angle obtenues par pliage à partir de tôles ondulées |
-
1964
- 1964-05-11 DE DE1450432A patent/DE1450432B2/de active Granted
- 1964-06-04 GB GB23299/64A patent/GB1073281A/en not_active Expired
- 1964-06-10 US US374042A patent/US3299598A/en not_active Expired - Lifetime
- 1964-06-22 NL NL646407078A patent/NL141633B/xx not_active IP Right Cessation
- 1964-06-27 JP JP39036237A patent/JPS4822932B1/ja active Pending
- 1964-08-06 FR FR984429A patent/FR87111E/fr not_active Expired
-
1965
- 1965-01-05 FR FR918A patent/FR1459749A/fr not_active Expired
- 1965-01-05 FR FR919A patent/FR87379E/fr not_active Expired
- 1965-04-30 FR FR15442A patent/FR87984E/fr not_active Expired
- 1965-08-03 US US476988A patent/US3302359A/en not_active Expired - Lifetime
- 1965-08-03 NO NO159.190A patent/NO126582B/no unknown
- 1965-08-04 GB GB33332/65A patent/GB1117770A/en not_active Expired
- 1965-08-05 SE SE10294/65A patent/SE369751B/xx unknown
- 1965-08-06 NL NL656510311A patent/NL149275B/xx not_active IP Right Cessation
- 1965-08-06 DE DE1475866A patent/DE1475866C3/de not_active Expired
-
1966
- 1966-01-03 GB GB66/66A patent/GB1138951A/en not_active Expired
- 1966-01-03 US US518111A patent/US3510278A/en not_active Expired - Lifetime
- 1966-01-04 NL NL666600043A patent/NL150899B/xx unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1686274A (en) * | 1926-07-17 | 1928-10-02 | Oliver P Greenstreet | Expansible and retractable roofing sheet |
US2008640A (en) * | 1934-03-17 | 1935-07-16 | Nat Steel Car Corp Ltd | Reenforced corrugated car ends |
US2870981A (en) * | 1957-08-06 | 1959-01-27 | Associated Box Corp | Platform |
US3118523A (en) * | 1959-02-20 | 1964-01-21 | Le Methane Liquide | Connecting element for expansion joints |
US3114470A (en) * | 1960-09-14 | 1963-12-17 | Douglas Aircraft Co Inc | Joint for honeycomb structure |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3510278A (en) * | 1963-06-27 | 1970-05-05 | Technigaz | Wall corner construction |
US3395505A (en) * | 1964-07-02 | 1968-08-06 | Transp Et De La Valorisation D | Connection element for expansion joints |
US3485596A (en) * | 1965-07-31 | 1969-12-23 | Technigaz | Devices constituting corrugated sheet elements or plates and their various applications |
US3881835A (en) * | 1973-06-06 | 1975-05-06 | Felt Products Mfg Co | Sidewalk-curb sealing member, assembly and method |
US4149652A (en) * | 1977-08-15 | 1979-04-17 | Mitsubishi Jukogyo Kabushiki Kaisha | Membrane structure in a liquified gas storage tank |
US4251598A (en) * | 1978-09-11 | 1981-02-17 | Transco, Inc. | Reflective insulative panel |
US4942712A (en) * | 1986-11-24 | 1990-07-24 | Thompson Peter B | Roof covering |
US5632674A (en) * | 1995-11-02 | 1997-05-27 | Butler Manufacturing Company | Grain bin with side walls having integral vertical stiffeners and air conduits |
USD378136S (en) * | 1995-11-20 | 1997-02-18 | Butler Manufacturing Company | Grain bin with side walls having integral vertical stiffeners and air conduits |
US6316121B1 (en) * | 1997-12-12 | 2001-11-13 | Emitec Gesellschaft Fuer Emissionstechnologie Mbh | Metal foil with through openings and honeycomb body |
US7204195B2 (en) | 2004-12-08 | 2007-04-17 | Korea Gas Corporation | Ship with liquid tank |
US20060118019A1 (en) * | 2004-12-08 | 2006-06-08 | Yang Young M | Ship with liquid tank |
WO2006062271A1 (en) | 2004-12-08 | 2006-06-15 | Korea Gas Corporation | Lng storage tank and constructing method thereof |
US20060131304A1 (en) * | 2004-12-08 | 2006-06-22 | Yang Young M | Liquid tank system |
US7171916B2 (en) | 2004-12-08 | 2007-02-06 | Korea Gas Corporation | Ship with liquid tank |
US20060118018A1 (en) * | 2004-12-08 | 2006-06-08 | Yang Young M | Modular walls for use in building liquid tank |
US7325288B2 (en) | 2004-12-08 | 2008-02-05 | Korea Gas Corporation | Method for manufacturing liquid tank and ship with liquid tank |
US20060117566A1 (en) * | 2004-12-08 | 2006-06-08 | Yang Young M | Method for manufacturing liquid tank and ship with liquid tank |
US7597212B2 (en) | 2004-12-08 | 2009-10-06 | Korea Gas Corporation | Modular walls for use in building liquid tank |
US7717288B2 (en) | 2004-12-08 | 2010-05-18 | Korea Gas Corporation | Liquid tank system |
US7819273B2 (en) | 2006-04-20 | 2010-10-26 | Korea Gas Corporation | Liquid natural gas tank with wrinkled portion and spaced layers and vehicle with the same |
US20070246473A1 (en) * | 2006-04-20 | 2007-10-25 | Korea Gas Corporation | Lng tank and vehicle with the same |
US8042315B2 (en) * | 2007-09-14 | 2011-10-25 | Spectrum Aeronautical, Llc | Reinforced composite panel |
US20090071098A1 (en) * | 2007-09-14 | 2009-03-19 | Ashton Larry J | Reinforced composite panel |
US20120135200A1 (en) * | 2010-11-29 | 2012-05-31 | Burvill Thomas | Aircraft panel structure and aircraft panel structure manufacturing method for alleviation of stress |
US9145195B2 (en) * | 2010-11-29 | 2015-09-29 | Airbus Operations Limited | Aircraft panel structure and aircraft panel structure manufacturing method for alleviation of stress |
US20120305708A1 (en) * | 2011-06-02 | 2012-12-06 | Bell Helicopter Textron Inc. | Integrally stiffened panel |
US8517309B2 (en) * | 2011-06-02 | 2013-08-27 | Bell Helicopter Textron Inc. | Integrally stiffened panel |
US20160375978A1 (en) * | 2015-06-24 | 2016-12-29 | Airbus Operations Gmbh | Stiffened fuselage component as well as method and apparatus for manufacturing a stiffened fuselage component |
US20230408030A1 (en) * | 2023-06-29 | 2023-12-21 | Sinotech Marine Co., Ltd. | Corrugated plate having smooth top surface and drawbeads and storage container |
US11953156B2 (en) * | 2023-06-29 | 2024-04-09 | Sinotech Energy Co., Ltd. | Corrugated plate having smooth top surface and drawbeads and storage container |
RU2819569C1 (ru) * | 2023-06-29 | 2024-05-21 | Синотек Энерджи Ко., Лтд. | Гофрированная пластина с гладкой верхней поверхностью и вытянутыми ребрами и контейнер для хранения |
CN117718374A (zh) * | 2024-02-18 | 2024-03-19 | 中太能源科技(上海)有限公司 | 制造波纹板的方法 |
CN117718374B (zh) * | 2024-02-18 | 2024-05-10 | 中太能源科技(上海)有限公司 | 制造波纹板的方法 |
CN119713105A (zh) * | 2025-02-28 | 2025-03-28 | 中太能源科技(上海)有限公司 | 波纹板及具有其的液化气体储存容器 |
Also Published As
Publication number | Publication date |
---|---|
GB1138951A (en) | 1969-01-01 |
NO126582B (enrdf_load_stackoverflow) | 1973-02-26 |
DE1475866A1 (de) | 1969-07-10 |
NL149275B (nl) | 1976-04-15 |
NL6407078A (enrdf_load_stackoverflow) | 1964-12-28 |
JPS4822932B1 (enrdf_load_stackoverflow) | 1973-07-10 |
US3302359A (en) | 1967-02-07 |
GB1117770A (en) | 1968-06-26 |
DE1475866B2 (de) | 1973-08-23 |
NL6600043A (enrdf_load_stackoverflow) | 1966-07-06 |
NL141633B (nl) | 1974-03-15 |
DE1450432A1 (de) | 1969-01-16 |
SE369751B (enrdf_load_stackoverflow) | 1974-09-16 |
DE1450432B2 (de) | 1976-01-08 |
FR87111E (fr) | 1966-06-17 |
FR87379E (enrdf_load_stackoverflow) | 1966-07-29 |
DE1475873A1 (de) | 1969-12-18 |
FR1459749A (fr) | 1966-06-17 |
FR87984E (fr) | 1966-11-18 |
NL150899B (nl) | 1976-09-15 |
GB1073281A (en) | 1967-06-21 |
DE1475866C3 (de) | 1974-03-28 |
NL6510311A (enrdf_load_stackoverflow) | 1966-02-07 |
US3510278A (en) | 1970-05-05 |
DE1475873B2 (de) | 1972-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3299598A (en) | Corrugated sheet-like yieldable wall element | |
TWI298305B (en) | Sealed wall structure and tank furnished with such a structure | |
NO153049B (no) | Fremgangsmaate og reaktor for ammoniakk-syntese | |
US4296050A (en) | Packing element for an exchange column | |
US4344899A (en) | Fill sheets for gas and liquid contact apparatus | |
RU2153933C2 (ru) | Металлический элемент с сотовой структурой | |
US3321881A (en) | Folded corrugated sheet-like corner piece | |
GB1532170A (en) | Contact body for liquid and gas | |
US3279973A (en) | Plane expansible corrugations | |
US2526323A (en) | Roof construction | |
US3362118A (en) | Expansible surface structure | |
US3638434A (en) | Flexible structural plate pipes and the like | |
JP6420482B2 (ja) | 金属板とそれを用いた金属製カバー | |
US3485596A (en) | Devices constituting corrugated sheet elements or plates and their various applications | |
US3959942A (en) | Combined spacer and transverse reinforcing beam | |
GB1024977A (en) | Improvements in or relating to plate type heat exchangers | |
US3994693A (en) | Expandable metal membrane | |
USRE28534E (en) | Stress oriented corrugations | |
US3395505A (en) | Connection element for expansion joints | |
US3528495A (en) | Thermal insulation | |
US3199963A (en) | Corrugated sheet formed material | |
JP2818103B2 (ja) | メンブレン式液化ガスタンクの壁体部およびその製造方法 | |
GB1197963A (en) | Improvements in or relating to Plate Heat Exchangers | |
DE1171684B (de) | Verbindungselement fuer sich kreuzende Wellungen an Dehnbehaeltern oder -umhuellungen | |
KR970005077B1 (ko) | 액화천연가스 저장 탱크용 멤브레인 구조 |