US3510278A - Wall corner construction - Google Patents

Wall corner construction Download PDF

Info

Publication number
US3510278A
US3510278A US518111A US51811166A US3510278A US 3510278 A US3510278 A US 3510278A US 518111 A US518111 A US 518111A US 51811166 A US51811166 A US 51811166A US 3510278 A US3510278 A US 3510278A
Authority
US
United States
Prior art keywords
corrugations
intersection
angle
waves
star
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US518111A
Inventor
Jean Alleaume
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technigaz
Original Assignee
Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR939618A external-priority patent/FR1379651A/en
Application filed by Technigaz filed Critical Technigaz
Application granted granted Critical
Publication of US3510278A publication Critical patent/US3510278A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/08Vessels characterised by the material; Selection of materials for pressure vessels
    • G21C13/087Metallic vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/24Making hollow objects characterised by the use of the objects high-pressure containers, e.g. boilers, bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • B65D90/027Corrugated or zig-zag structures; Folded plate
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S220/00Receptacles
    • Y10S220/901Liquified gas content, cryogenic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/1241Nonplanar uniform thickness or nonlinear uniform diameter [e.g., L-shape]
    • Y10T428/12417Intersecting corrugating or dimples not in a single line [e.g., waffle form, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/2457Parallel ribs and/or grooves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • Y10T428/24669Aligned or parallel nonplanarities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • Y10T428/24736Ornamental design or indicia

Definitions

  • the present invetnion has essentially for its objects a device constituting a flexible wall element and its various applications, notably in the construction of fluid-tight enclosures such as tanks, cisterns, reservoirs, vats or like vessels, intended for example but not exclusively for the transport and/or storage or cryogenic preservation of strongly cooled fluids, more particularly liquefied gases at very low temperatures and at a pressure approximating the surrounding atmospheric pressure.
  • the wall element comprises a plurality of rectilinear identical corrugations of substantially dihedral isohedral configuration, which project unilaterally and intersect one another, these corrugations being preferably disposed at spaced intervals according to a regular pattern wherein the waves form therebetween equal separate substantially flat areas disposed substantially symmetrically in relation to the central intersection axes extending at right angles to the initial plane of the wall element.
  • the Wall element comprises two orthogonal series of parallel corrugations all projecting on the same face with respect to the initial plane of the wall element, the folding angles being determined in such a manner that no material projects from the face opposite to said initial plane in case of variation in the height or altitude of the waves of the two wave systems of said orthogonal pattern, for example as a consequence of heat distortion.
  • the common intersection solid of each pair of intersecting waves is a projecting polyhedral angle having an octahedral star-like regular pyramidal surface with the end points of the star arms of the base polygon lying substantially in the initial plane of the wall element, notably in the folding configuration with zero wave opening angle.
  • the object of the present invention is to generalize the known vfolding principle set forth hereinabove while preserving the advantageous feature of permitting likewise the absorption of the heat contraction and expansion in all directions.
  • the wall element according to this invention s charatcerized in that it comprises at least two or more intersecting groups of substantially parallel corrugations wherein the waves are uniformly distributed about each common center of intersection and the convergent successive edges, even in number, of the alternatively projecting and concave dihedrons of each aforesaid pyramidal angle, lie respectively in the successive planes of symmetry of the intersection configuration which pass through the aforesaid normal central axis.
  • the principle of intersecting groups of parallel corrugations is also applied to an arbitrary number, possibly more than two, of corrugation groups, the intersection angels being in this case also arbitrary and depending essentially on the number of intersecting groups of parallel corrugations.
  • the relative spacing of the crests of two successive parallel waves is greater than the width measured at the base of each wave, in order to constitute substantially plane polygonal areas in the form of rectangular or square quadrilaterals in the case of two groups of corrugations and of triangles in the case of a greater number of corrugation groups.
  • FIG. 1 is a perspective view showing one element or portion of a wall or plate according to one form of embodiment of the invention, and comprising three intersecting groups of parallel corrugations, wherein each solid dodecahedral star-like angle of intersection penetrates into the convergent waves respectively with its projecting arms or edges;
  • FIG. '2 is a perspective view showing a second form of embodiment of the invention, comprising two orthogonally intersecting groups of parallel corrugations, wherein each solid star-like octahedral solid angle of intersection has its projecting arms or edges disposed respectively between the convergent waves penetrating with their convex dihedrons into said solid angle;
  • FIG. 3 illustrates a modified form of embodiment of the construction shown in FIG. 2, which comprises three groups of parallel corrugations intersecting each other at 60;
  • FIGS. 4, 5 and 6 are fragmentary perspective views of a zone of intersection of the constructions shown on FIGS. 1, 2 and 3, respectively.
  • the form of embodiment illustrated in FIG. 1 constitutes a generalization of the folding or pleating system described and illustrated in the aforesaid prior state of the art.
  • the metal plate element 1 comprises three groups of parallel, substantially dihedral corrugations designated respectively by reference numerals 2a, 2b and 20, which project on the same face of the initial sheet-metal plane and constitute on this surface a Wave pattern bounding between the adjacent waves substantially plane triangular areas or zones 3. Since this pattern of rectilinear waves is regular or, in other words, the relative angular spacing of the convergent rectilinear waves at each intersection such as 4 is uniform or equal about the intersection point, the directions of any pair of adjacent waves form an angle of 60 with each other. As a rule, if the wave pattern consists of n groups of corrugations, the value of the plane angle formed between any pair of successive or adjacent waves at each intersection is n.
  • the solid common to each intersection 4 consists of a pyramidal or polyhedral angle having a vertex 0 and a polygonal base 5 consisting of a regular, concave or star-like polygon.
  • this polygon is dodecagonal so that the aforesaid pyramidal angle is a dodecahedral angle.
  • the base polygon of the aforesaid pyramidal angle will have 4 n sides and the pyramidal angle will have 4 it faces.
  • the convergent edges such as OA, OB, etc. of the projecting or convex dihedrons of each pyramidal angle lie in the longitudinal planes of symmetry of waves 2 which are respectively coincident with their crest edges 6, these planes being substantially perpendicular to the initial plane of the metal plate or sheet 1.
  • the configuration of the penetration of the projecting or convex dihedrons of the pyramidal angle 4 into each wave 2 consists of a concave tetrahedral angle of which two adjacent faces 7 and 8 constitute the faces of said projecting or convex dihedron, and the other two triangular faces 9 and 10 pertain to the said wave 2 and form a concave dihedron of which the edge MA connects the adjacent end of crest 6 of said wave to the crest or edge OA of said pyramidal angle.
  • the two faces 9 and 10 merge into the side faces of the wave 2 concerned, respectively through a convex folding to form a projecting dihedral angle (having a crest MN or MN) leading to the vertex of the intersection angle formed by edges 11a and 11b of the concave folds at the base of the two adjacent waves 2a and 2b.
  • the convergent edges such as ON, ON, etc., of the concave dihedrons of pyramidal angle 4 lie in the normal bisector planes of each pair of successive intersecting Waves or, in other words, in the bisector planes of the angles such as 76 formed by the intersection of the base edges such as 11a and 11b of said waves.
  • These edges ON, ON etc. lead respectively to the points of intersection of the pairs of adjacent concave folding edges, such as 11a, 11b, at the base of the successive Waves.
  • the value of the flat angle, such as M bk, of the lateral face terminating each wave at the intersection, must be substantially 15. It is also easily proved that, as a rule, in the case of a number n of corrugation groups, the value of this flat angle is 180/ 4n.
  • FIG. 4 shows a fragmentary perspective view at a larger scale of one zone of intersection of corrugations of the structure illustrated in FIG. 1.
  • FIGS. 2 and 3 illustrate exemplary forms of embodiments of the present invention wherein the projecting dihedrons of each pyramidal intersection angle do not penetrate into the convergent waves adjacent to said pyramidal angle but lie in the respective angles of intersection of said waves.
  • FIG. 2 illustrates this typical case comprising two orthogonally intersecting groups of parallel corrugations 12a and 12b forming at each intersection an octahedral pyramidal solid angle 13 having a vertex and a base consisting of a skew polygon forming in plane development a regular four-armed star having vertices or points A, B, C, D.
  • These vertices or points of the arms of star 13 lie respectively at the points of intersection of the pairs of adjacent concave folding edges such as 14a, 14b at the base of the successive convergent waves, the vertices such as N N N N of the concave angles of this star lying respectively on the crest edges such as 15 of said waves.
  • the convergent waves penetrate respectively into the concave dihedrons of the pyramidal angle 13.
  • the wave pattern or system determines on the initial plane of the sheet metal a checked pattern consisting of rectangular flat areas.
  • FIG. 5 shows an enlarged fragmentary perspective view of one zone of intersection of corrugations of the construction illustrated in FIG. 2.
  • FIG. 3 illustrates a modified form of embodiment of the same arrangement wherein more than two intersecting groups of parallel corrugations are provided. In this example, three such groups are actually provided.
  • FIG. 6 shows at a larger scale a fragmentary perspective view of one zone of intersection of corrugations belonging to the construction illustrated in FIG. 3.
  • the base polygon bounding each solid pyramidal intersection angle is a skew star-like regular polygon, since the arms of the star constituted by this solid pyramidal angle respectively overlap the convergent waves leading to said intersection; in other words, the portions of projecting dihedrons which constitute respectively the arms of said star, are positioned respectively in the angles of intersection of the convergent waves, whereby the edges of the portions of said concave dihedrons of said solid pyramidal angle, which lie between the arms of said star, lie respectively in the planes perpendicular to the initial plane of the sheet, which contain the crest edges of the convergent waves leading to said intersection.
  • each solid pyramidal angle has a pointed vertex, as shown, but it is clear that truncated solid pyramidal angles, that is, angles having the shape of a truncated pyramid formed at the top with a small polygonal base either substantially flat or more or less concave or convex, may also be used.
  • truncated solid pyramidal angles that is, angles having the shape of a truncated pyramid formed at the top with a small polygonal base either substantially flat or more or less concave or convex, may also be used.
  • the edges are not exactly dihedral sharp edges consisting of a single straight line, but rounded fillets or joining surfaces.
  • corrugations are shown in the drawings as having a substantially dihedral configuration.
  • substantially prismatic or polyhedral corrugations for example three-faced corrugations (i.e., two lateral faces and a top face), thus altering correspondingly the configuration of each solid pyramidal intersection angle and forming therein additional edges of dihedrons, so-as to obtain therein the shape of a truncated prism or pyramid.
  • a flexible sheet-like plate element at least one portion of which is formed with three sets of substantially parallel transversely equally spaced, identical, symmetrical, integral corrugations shaped as salient dihedrons of substantially uniform cross-section, entirely projecting all with their raised convex crest portions from a same side of said plate element without any projection of material from the opposite side thereof, the corrugations of each set intersecting those of the other sets at common zones of intersection containing each one corrugation of each set, the directions of said sets intersecting each other at equal angles of 60, so that said corrugations are uniformly distributed in a network of regular pattern consisting of adjacently juxtaposed equilateral triangles defining substantially smooth, uncorrugated, equilateral, triangular, separate areas located in the initial sheet surface, each zone of intersection together with its associated corrugations being substantially symmetrical about a central axis normal to the initial sheet surface, each zone of intersection comprising a regular pyramid having its vertex on said central axis and protruding from the same side of said plate element
  • each pyramid has a substantially pointed vertex.
  • each pyramid is truncated to end with a substantially blunt vertex providing a small polygonal top face.
  • a flexible sheet-like plate element at least one portion of which is provided with n series of substantially parallel, spaced, identical, symmetrical, integral corrugations shaped as salient dihedrons of substantially uniform cross-section, projecting all entirely with their raised convex crest portions from a same side of said plate element without any projection of material from the opposite side thereof, the corrugations of each series intersecting those of the other series at common zones of intersection containing each one corrugation of each series and each substantially symmetrical about a central axis normal to the initial sheet surface, n being an integer greater than 1,
  • corrugations forming a network consisting of adjacently juxtaposed convex polygonal meshes bounding therebetween smooth, uncorrugated, separate areas located in the initial sheet surface, each zone of intersection comprising a pyramid having its vertex on said central axis and protruding from the same side of said plate element as said corrugations, said pyramid having 2n triangular faces meeting along the edge lines of and forming regularly alternating, salient and re-entrant, successively adjacent dihedral angles defining corresponding ridges and troughs around the sloping sides of the pyramid and arranged by pairs in opposite relationship, said ridges lying in the bisecting planes, respectively, of the angles of intersection between successive corrugations whereas said troughs are located together with corresponding corrugation crests in the longitudinal planes of symmetry of the corrugations, respectively, the pyramid base being a 2npointed star-shaped, 4n-side, skew polygon, each re-entrant angle of which has its ap
  • a plate element according to claim 5 comprising two series of perpendicularly intersecting corrugations, forming a network of checked pattern with square meshes, each zone of intersection being an octahedral pyramid with a four-pointed star-shaped base octagon.
  • a plate element according to claim 5 comprising three series of corrugations intersecting each other at equal angles of 60, thereby forming a network with equilateral triangular meshes, each zone of intersection being a dodecahedral pyramid with a six-pointed star-shaped base dodecagon.
  • each pyramid has a substantially pointed vertex.
  • each pyramid is truncated to end with a substantially blunt vertex providing a small polygonal top face.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Architecture (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Laminated Bodies (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Cartons (AREA)
  • Panels For Use In Building Construction (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Revetment (AREA)
  • Earth Drilling (AREA)
  • Medicinal Preparation (AREA)

Description

May 5, 1970 J. ALL'EAUME I 3,510,273
WALL comma coNsTRucTIon 5 Sheets-Sheet 1 I Filed Jan. 3, 1966 JEAN ALLEAUME May 5, 1970 J. ALLEAUME WALL CORNER CONSTRUCTION 5 Sheets-Sheet 2 Filed Jan. 5. 1966 J. ALLEAUME WALL CORNER CONSTRUCTION May 5, 1970 5 Sheets-Sheet 3 Filed Jan. 5, 1966 J. ALLEAUME WALL CORNER CONSTRUCTION May 5, 19 70 5 Sheets-Sheet 4 Filed Jan. 3, 1966 e 5 Y W W T a i -m m 5m, m 4 a J y 5, 1970 v J. ALLEAUME 3,510,278
WALL CORNER CONSTRUCTION Filed Jan. 3, 1966 5 Sheets-Sheet 5 United States Patent Office 3,510,278 Patented May 5, 1970 3,510,278 WALL CORNER CONSTRUCTION Jean Alleaume, Saint-Cloud, France, assignor to Technigaz, Paris, France, a corporation of France Filed Jan. 3, 1966, Ser. No. 518,111
Claims priority, application France, Jan. 5, 1965, 918, Patent 1,459,749 Int. 'Cl. B22f 5/00 US. Cl. 29-183 Claims ABSTRACT OF THE DISCLOSURE A flexible sheet having two or three series of parallel corrugations, said series being orientated in uniformly distributed angular directions whereby the zones of intersection contain one corrugation of each series, each such zone of intersection of n corrugations having the shape of a 2n-pointed star-shaped pyramid projecting from the same side of the sheet as the corrugations, such that the pyramid crests and troughs regularly alternate with one another, whereas said crests or troughs lie together with respective crests of the n corrugations at the zone of intersection in a plane normal to the initial sheet surface.
The present invetnion has essentially for its objects a device constituting a flexible wall element and its various applications, notably in the construction of fluid-tight enclosures such as tanks, cisterns, reservoirs, vats or like vessels, intended for example but not exclusively for the transport and/or storage or cryogenic preservation of strongly cooled fluids, more particularly liquefied gases at very low temperatures and at a pressure approximating the surrounding atmospheric pressure.
Such a device is designed for example with a view to constitute the internal envelope or primary barrier (with a relatively thin and flexible wall) of a so-called built-in tank bearing against a resistant surrounding supporting structure. These tanks may also be used'at high temperatures and pressures in safety enclosures of nuclear installations, or in the construction of nuclear reactor casings. According to the prior known state of the art, the wall element comprises a plurality of rectilinear identical corrugations of substantially dihedral isohedral configuration, which project unilaterally and intersect one another, these corrugations being preferably disposed at spaced intervals according to a regular pattern wherein the waves form therebetween equal separate substantially flat areas disposed substantially symmetrically in relation to the central intersection axes extending at right angles to the initial plane of the wall element. Still according to the aforesaid prior art, the Wall element comprises two orthogonal series of parallel corrugations all projecting on the same face with respect to the initial plane of the wall element, the folding angles being determined in such a manner that no material projects from the face opposite to said initial plane in case of variation in the height or altitude of the waves of the two wave systems of said orthogonal pattern, for example as a consequence of heat distortion. In this known wall element the common intersection solid of each pair of intersecting waves is a projecting polyhedral angle having an octahedral star-like regular pyramidal surface with the end points of the star arms of the base polygon lying substantially in the initial plane of the wall element, notably in the folding configuration with zero wave opening angle.
The object of the present invention is to generalize the known vfolding principle set forth hereinabove while preserving the advantageous feature of permitting likewise the absorption of the heat contraction and expansion in all directions. The wall element according to this invention s charatcerized in that it comprises at least two or more intersecting groups of substantially parallel corrugations wherein the waves are uniformly distributed about each common center of intersection and the convergent successive edges, even in number, of the alternatively projecting and concave dihedrons of each aforesaid pyramidal angle, lie respectively in the successive planes of symmetry of the intersection configuration which pass through the aforesaid normal central axis. Thus, the principle of intersecting groups of parallel corrugations is also applied to an arbitrary number, possibly more than two, of corrugation groups, the intersection angels being in this case also arbitrary and depending essentially on the number of intersecting groups of parallel corrugations. In each group of parallel corrugations, the relative spacing of the crests of two successive parallel waves is greater than the width measured at the base of each wave, in order to constitute substantially plane polygonal areas in the form of rectangular or square quadrilaterals in the case of two groups of corrugations and of triangles in the case of a greater number of corrugation groups.
Other features and advantages of the present invention will appear more clearly as the following description proceeds with reference to the accompanying drawings illustrating diagramatically by way of example various forms of embodiment of the invention. In the drawings:
FIG. 1 is a perspective view showing one element or portion of a wall or plate according to one form of embodiment of the invention, and comprising three intersecting groups of parallel corrugations, wherein each solid dodecahedral star-like angle of intersection penetrates into the convergent waves respectively with its projecting arms or edges;
FIG. '2 is a perspective view showing a second form of embodiment of the invention, comprising two orthogonally intersecting groups of parallel corrugations, wherein each solid star-like octahedral solid angle of intersection has its projecting arms or edges disposed respectively between the convergent waves penetrating with their convex dihedrons into said solid angle;
FIG. 3 illustrates a modified form of embodiment of the construction shown in FIG. 2, which comprises three groups of parallel corrugations intersecting each other at 60; and
FIGS. 4, 5 and 6 are fragmentary perspective views of a zone of intersection of the constructions shown on FIGS. 1, 2 and 3, respectively.
The form of embodiment illustrated in FIG. 1 constitutes a generalization of the folding or pleating system described and illustrated in the aforesaid prior state of the art. The metal plate element 1 comprises three groups of parallel, substantially dihedral corrugations designated respectively by reference numerals 2a, 2b and 20, which project on the same face of the initial sheet-metal plane and constitute on this surface a Wave pattern bounding between the adjacent waves substantially plane triangular areas or zones 3. Since this pattern of rectilinear waves is regular or, in other words, the relative angular spacing of the convergent rectilinear waves at each intersection such as 4 is uniform or equal about the intersection point, the directions of any pair of adjacent waves form an angle of 60 with each other. As a rule, if the wave pattern consists of n groups of corrugations, the value of the plane angle formed between any pair of successive or adjacent waves at each intersection is n.
The solid common to each intersection 4 consists of a pyramidal or polyhedral angle having a vertex 0 and a polygonal base 5 consisting of a regular, concave or star-like polygon. In the present instance this polygon is dodecagonal so that the aforesaid pyramidal angle is a dodecahedral angle. As a rule, in the case of n groups of corrugations, the base polygon of the aforesaid pyramidal angle will have 4 n sides and the pyramidal angle will have 4 it faces.
The convergent edges such as OA, OB, etc. of the projecting or convex dihedrons of each pyramidal angle lie in the longitudinal planes of symmetry of waves 2 which are respectively coincident with their crest edges 6, these planes being substantially perpendicular to the initial plane of the metal plate or sheet 1. The configuration of the penetration of the projecting or convex dihedrons of the pyramidal angle 4 into each wave 2 consists of a concave tetrahedral angle of which two adjacent faces 7 and 8 constitute the faces of said projecting or convex dihedron, and the other two triangular faces 9 and 10 pertain to the said wave 2 and form a concave dihedron of which the edge MA connects the adjacent end of crest 6 of said wave to the crest or edge OA of said pyramidal angle. The two faces 9 and 10 merge into the side faces of the wave 2 concerned, respectively through a convex folding to form a projecting dihedral angle (having a crest MN or MN) leading to the vertex of the intersection angle formed by edges 11a and 11b of the concave folds at the base of the two adjacent waves 2a and 2b.
The convergent edges such as ON, ON, etc., of the concave dihedrons of pyramidal angle 4 lie in the normal bisector planes of each pair of successive intersecting Waves or, in other words, in the bisector planes of the angles such as 76 formed by the intersection of the base edges such as 11a and 11b of said waves. These edges ON, ON etc., lead respectively to the points of intersection of the pairs of adjacent concave folding edges, such as 11a, 11b, at the base of the successive Waves.
It is a simple matter to prove that if it is desired that points such as A, B, etc., forming the vertices or peaks of the star constituting the base polygon 5, especially in the folding configuration having a zero wave opening angle, lie substantially in the initial plane 15 of sheet 1,
the value of the flat angle, such as M bk, of the lateral face terminating each wave at the intersection, must be substantially 15. It is also easily proved that, as a rule, in the case of a number n of corrugation groups, the value of this flat angle is 180/ 4n.
For symmetry reasons, any displacement of material, which is due to a heat distortion in the direction of a wave is attended by an equal displacement in the other wave directions and this property is also found in the other two forms of embodiment described hereinafter.
FIG. 4 shows a fragmentary perspective view at a larger scale of one zone of intersection of corrugations of the structure illustrated in FIG. 1.
FIGS. 2 and 3 illustrate exemplary forms of embodiments of the present invention wherein the projecting dihedrons of each pyramidal intersection angle do not penetrate into the convergent waves adjacent to said pyramidal angle but lie in the respective angles of intersection of said waves.
FIG. 2 illustrates this typical case comprising two orthogonally intersecting groups of parallel corrugations 12a and 12b forming at each intersection an octahedral pyramidal solid angle 13 having a vertex and a base consisting of a skew polygon forming in plane development a regular four-armed star having vertices or points A, B, C, D. These vertices or points of the arms of star 13 lie respectively at the points of intersection of the pairs of adjacent concave folding edges such as 14a, 14b at the base of the successive convergent waves, the vertices such as N N N N of the concave angles of this star lying respectively on the crest edges such as 15 of said waves. Thus, the convergent waves penetrate respectively into the concave dihedrons of the pyramidal angle 13. In this specific form of embodiment, with two orthogonally secant groups of parallel waves or corrugations, the wave pattern or system determines on the initial plane of the sheet metal a checked pattern consisting of rectangular flat areas.
FIG. 5 shows an enlarged fragmentary perspective view of one zone of intersection of corrugations of the construction illustrated in FIG. 2.
FIG. 3 illustrates a modified form of embodiment of the same arrangement wherein more than two intersecting groups of parallel corrugations are provided. In this example, three such groups are actually provided. FIG. 6 shows at a larger scale a fragmentary perspective view of one zone of intersection of corrugations belonging to the construction illustrated in FIG. 3.
This example compares with the structure shown in FIG. 1 since the relative angular spacing of the corrugations or waves about each common center of intersection is also As in FIG. 1, the fiat zones or areas left in the sheet metal by the wave pattern formed in the initial sheet have a triangular configuration. As already explained hereinabove, the number of groups of corrugations or pleats is definitely immaterial and may also be selected among relatively high figures. if desired.
It will be noted that in the forms of embodiment similar to those of FIG. '1 or resulting from modifications thereof, for example by altering the number of intersecting groups of parallel corrugations, the base polygon of each solid pyramidal angle of intersection is substantially fiat and advantageously located in the initial plane of the sheet, whereas in the forms of embodiment similar or related to those illustrated in FIGS. 2 and 3, the base polygon bounding each solid pyramidal intersection angle is a skew star-like regular polygon, since the arms of the star constituted by this solid pyramidal angle respectively overlap the convergent waves leading to said intersection; in other words, the portions of projecting dihedrons which constitute respectively the arms of said star, are positioned respectively in the angles of intersection of the convergent waves, whereby the edges of the portions of said concave dihedrons of said solid pyramidal angle, which lie between the arms of said star, lie respectively in the planes perpendicular to the initial plane of the sheet, which contain the crest edges of the convergent waves leading to said intersection.
In the examples illustrated in the figures, each solid pyramidal angle has a pointed vertex, as shown, but it is clear that truncated solid pyramidal angles, that is, angles having the shape of a truncated pyramid formed at the top with a small polygonal base either substantially flat or more or less concave or convex, may also be used. On the other hand, it is also obvious that in actual manufacturing practice the edges are not exactly dihedral sharp edges consisting of a single straight line, but rounded fillets or joining surfaces.
The corrugations are shown in the drawings as having a substantially dihedral configuration. Of course, it would not constitute a departure from the present invention to provide substantially prismatic or polyhedral corrugations, for example three-faced corrugations (i.e., two lateral faces and a top face), thus altering correspondingly the configuration of each solid pyramidal intersection angle and forming therein additional edges of dihedrons, so-as to obtain therein the shape of a truncated prism or pyramid.
Of course, the present invention should not be construed as being limited by the various forms of embodiment shown, described or suggested herein, since many modifications may be brought thereto without departing from the scope of the invention as set forth in the appended claims.
What I claim is:
1. A flexible sheet-like plate element at least one portion of which is formed with three sets of substantially parallel transversely equally spaced, identical, symmetrical, integral corrugations shaped as salient dihedrons of substantially uniform cross-section, entirely projecting all with their raised convex crest portions from a same side of said plate element without any projection of material from the opposite side thereof, the corrugations of each set intersecting those of the other sets at common zones of intersection containing each one corrugation of each set, the directions of said sets intersecting each other at equal angles of 60, so that said corrugations are uniformly distributed in a network of regular pattern consisting of adjacently juxtaposed equilateral triangles defining substantially smooth, uncorrugated, equilateral, triangular, separate areas located in the initial sheet surface, each zone of intersection together with its associated corrugations being substantially symmetrical about a central axis normal to the initial sheet surface, each zone of intersection comprising a regular pyramid having its vertex on said central axis and protruding from the same side of said plate element as said corrugations, said pyramid having twelve triangular faces meeting along the edge lines of and forming regularly alternating salient and reentrant, successively adjacent, dihedral angles defining corresponding ridges and troughs around the sloping sides of the pyramid and arranged opposite by pairs, said ridges lying together with corresponding corrugation crests in the longitudinal planes of symmetry of the corrugations respectively whereas said troughs are located in the bisecting planes, respectively, of the angles of intersection between successive corrugations, the pyramid base being a regular six-pointed star-shaped, twelve-sided polygon, each re-entrant angle of which has its apex located at the meeting point of the two adjacent concave fold lines lying in the initial sheet surface at the base of two successive converging corrugations, whereas each star limb extends endwise into between both side faces of a corrugation with the corresponding star point lying below the crest of said corrugation and being connected with said crest by a sloping edge line of a concave fold formed in said crest, said sloping edge line making an obtuse angle with the adjacent ridge of said pyramid and said plate element having a wholly geometrically developable surface throughout with merely folded features made in one piece with said plate element.
2. A plate element according to claim 1, wherein the crest of each corrugation terminates at each zone of intersection by dividing into two convex fold lines falling downwards apart to join said crest to the meeting point of the concave fold line at the base of said corrugation with those of the neighboring corrugations respectively, thereby making each one an angle of 15 with the corresponding base in each lateral face of said corrugation to terminate the latter at the zone of intersection, so that for a zero wave opening angle of said corrugations, said star points lie in the initial sheet surface of said plate element.
3. A plate element according to claim 1, wherein each pyramid has a substantially pointed vertex.
4. A plate element according to claim 1, wherein each pyramid is truncated to end with a substantially blunt vertex providing a small polygonal top face.
5. A flexible sheet-like plate element at least one portion of which is provided with n series of substantially parallel, spaced, identical, symmetrical, integral corrugations shaped as salient dihedrons of substantially uniform cross-section, projecting all entirely with their raised convex crest portions from a same side of said plate element without any projection of material from the opposite side thereof, the corrugations of each series intersecting those of the other series at common zones of intersection containing each one corrugation of each series and each substantially symmetrical about a central axis normal to the initial sheet surface, n being an integer greater than 1,
said corrugations forming a network consisting of adjacently juxtaposed convex polygonal meshes bounding therebetween smooth, uncorrugated, separate areas located in the initial sheet surface, each zone of intersection comprising a pyramid having its vertex on said central axis and protruding from the same side of said plate element as said corrugations, said pyramid having 2n triangular faces meeting along the edge lines of and forming regularly alternating, salient and re-entrant, successively adjacent dihedral angles defining corresponding ridges and troughs around the sloping sides of the pyramid and arranged by pairs in opposite relationship, said ridges lying in the bisecting planes, respectively, of the angles of intersection between successive corrugations whereas said troughs are located together with corresponding corrugation crests in the longitudinal planes of symmetry of the corrugations, respectively, the pyramid base being a 2npointed star-shaped, 4n-side, skew polygon, each re-entrant angle of which has its apex on the crest of a corresponding corrugation Whereas each star limb extends endwise between two successive converging corrugations with the corresponding star point lying at the meeting point of the two adjacent concave fold lines bounding the base of said two successive corrugations within the initial sheet surface whereby said star limbs are straddling said corrugations, and said plate element having a wholly geometrically developable surface throughout with merely folded features made in one piece with said plate element.
6. A plate element according to claim 5, wherein the corrugations of each series are equally spaced from each other and the corrugations of all series are uniformly distributed in angularly equidistant relationship about each zone of intersection to intersect at an angle of /n degrees with respect to one another, whereby said network is of regular pattern, consisting of regular polygonal meshes with regular pyramids at the intersections.
7. A plate element according to claim 5, comprising two series of perpendicularly intersecting corrugations, forming a network of checked pattern with square meshes, each zone of intersection being an octahedral pyramid with a four-pointed star-shaped base octagon.
8. A plate element according to claim 5, comprising three series of corrugations intersecting each other at equal angles of 60, thereby forming a network with equilateral triangular meshes, each zone of intersection being a dodecahedral pyramid with a six-pointed star-shaped base dodecagon.
9. A plate element according to claim 5, wherein each pyramid has a substantially pointed vertex.
10. A plate element according to claim 5, wherein each pyramid is truncated to end with a substantially blunt vertex providing a small polygonal top face.
References Cited UNITED STATES PATENTS 3,118,523 1/1964 Girot 52-573 3,321,881 5/ 1967 Alleaume 52-276 3,325,953 6/1967 Alleaume 52-276 3,299,598 1/1967 Alleaume 52-630 X 3,302,359 2/1967 Alleaume 52-630 X FOREIGN PATENTS 1,370,087 7/1964 France.
L. DEWAYNE RUTLEDGE, Primary Examiner J. E. LEGRU, Assistant Examiner US. Cl. X.R.
US518111A 1963-06-27 1966-01-03 Wall corner construction Expired - Lifetime US3510278A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR939618A FR1379651A (en) 1963-06-27 1963-06-27 Device forming flexible wall element or the like and various applications of said device, in particular in the construction of tanks or the like
FR984429A FR87111E (en) 1963-06-27 1964-08-06 Device forming flexible wall element or the like and various applications of said device, in particular in the construction of tanks or the like
FR918A FR1459749A (en) 1963-06-27 1965-01-05 Device forming a flexible wall element and sealed enclosures made from such elements
FR919A FR87379E (en) 1963-06-27 1965-01-05
FR15442A FR87984E (en) 1963-06-27 1965-04-30 Device forming flexible wall element or the like and various applications of said device, in particular in the construction of tanks or the like

Publications (1)

Publication Number Publication Date
US3510278A true US3510278A (en) 1970-05-05

Family

ID=27514663

Family Applications (3)

Application Number Title Priority Date Filing Date
US374042A Expired - Lifetime US3299598A (en) 1963-06-27 1964-06-10 Corrugated sheet-like yieldable wall element
US476988A Expired - Lifetime US3302359A (en) 1963-06-27 1965-08-03 Corrugated sheet-like yieldable wall element and vessels or tanks made thereof
US518111A Expired - Lifetime US3510278A (en) 1963-06-27 1966-01-03 Wall corner construction

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US374042A Expired - Lifetime US3299598A (en) 1963-06-27 1964-06-10 Corrugated sheet-like yieldable wall element
US476988A Expired - Lifetime US3302359A (en) 1963-06-27 1965-08-03 Corrugated sheet-like yieldable wall element and vessels or tanks made thereof

Country Status (8)

Country Link
US (3) US3299598A (en)
JP (1) JPS4822932B1 (en)
DE (2) DE1450432B2 (en)
FR (4) FR87111E (en)
GB (3) GB1073281A (en)
NL (3) NL141633B (en)
NO (1) NO126582B (en)
SE (1) SE369751B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3814253A (en) * 1971-10-01 1974-06-04 K Forsberg Liquid control apparatus for chromatography columns
US3881835A (en) * 1973-06-06 1975-05-06 Felt Products Mfg Co Sidewalk-curb sealing member, assembly and method
USB421975I5 (en) * 1973-12-05 1976-03-02
US4149652A (en) * 1977-08-15 1979-04-17 Mitsubishi Jukogyo Kabushiki Kaisha Membrane structure in a liquified gas storage tank
US4251598A (en) * 1978-09-11 1981-02-17 Transco, Inc. Reflective insulative panel
US4683697A (en) * 1986-02-11 1987-08-04 Gregg Arthur H Roofing tiles
US5139887A (en) * 1988-12-27 1992-08-18 Barnes Group, Inc. Superplastically formed cellular article
US5292027A (en) * 1992-10-05 1994-03-08 Rockwell International Corporation Tension and compression extensible liner for a primary vessel
US5497895A (en) * 1993-02-17 1996-03-12 Euro-Composites S.A. Transport container
US5535912A (en) * 1994-03-17 1996-07-16 A. O. Smith Corporation Metal liner for a fiber-reinforced plastic tank
WO2005095234A1 (en) * 2004-03-30 2005-10-13 Hyundai Heavy Industries Co., Ltd. Metal membrane panel of insulated lng cargo tank
WO2006062271A1 (en) 2004-12-08 2006-06-15 Korea Gas Corporation Lng storage tank and constructing method thereof
US20100160309A1 (en) * 2007-03-13 2010-06-24 Tony Siu Inhibitors of janus kinases and/or 3-phosphoinositide-dependent protein kinase-1
US20110027604A1 (en) * 2008-04-21 2011-02-03 Samsung Heavy Ind. Co., Ltd Expandable metal membrane with orthogonally isotropic behavior
US9365266B2 (en) 2007-04-26 2016-06-14 Exxonmobil Upstream Research Company Independent corrugated LNG tank

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1450432B2 (en) * 1963-06-27 1976-01-08 Technigaz S.A., Paris Developable expansion wall for a container
FR1408334A (en) * 1964-07-02 1965-08-13 Transp Et De La Valorisation D expansion joint connecting element
FR1452802A (en) * 1965-07-31 1966-04-15 Technigaz Device forming part of corrugated sheet or plate and its various applications
FR1568290A (en) * 1968-03-26 1969-05-23
US3774358A (en) * 1972-09-18 1973-11-27 J Hale Structural membrane panel formed from saddle shaped surface
US4502257A (en) * 1981-02-02 1985-03-05 Gary Diamond Structural modules
JPS5968694A (en) * 1982-10-13 1984-04-18 動力炉・核燃料開発事業団 Thermal deformation damping liner material
GB8628021D0 (en) * 1986-11-24 1986-12-31 Pbt Int Ltd Roofing panel
US5269601A (en) * 1992-05-11 1993-12-14 Whirlpool Corporation Method and apparatus for maunfacture of plastic refrigerator liners
FR2706432B1 (en) * 1993-06-18 1995-09-08 Geostock Method for commissioning an underground storage tank for low-temperature hydrocarbons and installation for storing low-temperature hydrocarbons.
US5632674A (en) * 1995-11-02 1997-05-27 Butler Manufacturing Company Grain bin with side walls having integral vertical stiffeners and air conduits
USD378136S (en) * 1995-11-20 1997-02-18 Butler Manufacturing Company Grain bin with side walls having integral vertical stiffeners and air conduits
DE19755354A1 (en) * 1997-12-12 1999-06-17 Emitec Emissionstechnologie Metal foil with openings
US7204195B2 (en) 2004-12-08 2007-04-17 Korea Gas Corporation Ship with liquid tank
KR100644217B1 (en) * 2006-04-20 2006-11-10 한국가스공사 Lng storage tank having improved insulation structure and manufacturing method
US8042315B2 (en) * 2007-09-14 2011-10-25 Spectrum Aeronautical, Llc Reinforced composite panel
JP5520963B2 (en) 2009-11-13 2014-06-11 株式会社Uacj Plate material having concavo-convex portions, laminated structure using the same, and vehicle panel
WO2012032814A1 (en) 2010-09-08 2012-03-15 住友軽金属工業株式会社 Plate-shaped material having recessed and projected portion, and vehicle panel and layered structure incorporating same
GB201020152D0 (en) * 2010-11-29 2011-01-12 Airbus Uk Ltd Aircraft panel structure and aircraft panel structure manufacturing method for alleviation of stress
JP5941846B2 (en) 2011-01-11 2016-06-29 株式会社Uacj Plate material having concavo-convex part, vehicle panel and laminated structure using the same
US8920908B2 (en) 2011-01-17 2014-12-30 Uacj Corporation Sheet material having a concave-convex part, and vehicle panel and laminated structure using the same
EP2530010B1 (en) * 2011-06-02 2013-09-18 Bell Helicopter Textron Inc. Integrally stiffened panel
USD825203S1 (en) * 2015-05-13 2018-08-14 SUNGJOO R&D Inc. Fabric
EP3109152B1 (en) * 2015-06-24 2019-08-07 Airbus Operations GmbH Stiffened fuselage component as well as method and apparatus for manufacturing a stiffened fuselage component
KR102233191B1 (en) * 2019-08-26 2021-03-29 대우조선해양 주식회사 Metal Membrane of Cryogenic Fluid Storage Tank
CN116817162A (en) * 2023-06-29 2023-09-29 中太海事技术(上海)有限公司 Corrugated plate and storage container with smooth top surface and draw beads
CN117053083B (en) * 2023-10-13 2024-01-02 沪东中华造船(集团)有限公司 Pressure-resistant low-temperature-resistant sealing film and enclosure system
CN117718374B (en) * 2024-02-18 2024-05-10 中太能源科技(上海)有限公司 Method for manufacturing corrugated plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3118523A (en) * 1959-02-20 1964-01-21 Le Methane Liquide Connecting element for expansion joints
FR1370087A (en) * 1963-07-09 1964-08-21 Babcock & Wilcox France Elastically deformable seal at the intersection of two surface corrugations
US3299598A (en) * 1963-06-27 1967-01-24 Technigaz Corrugated sheet-like yieldable wall element
US3321881A (en) * 1963-08-16 1967-05-30 Technigaz Folded corrugated sheet-like corner piece

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1686274A (en) * 1926-07-17 1928-10-02 Oliver P Greenstreet Expansible and retractable roofing sheet
US2008640A (en) * 1934-03-17 1935-07-16 Nat Steel Car Corp Ltd Reenforced corrugated car ends
US3059733A (en) * 1955-07-13 1962-10-23 Peter S Pedersen Reinforced panel sheets
US2870981A (en) * 1957-08-06 1959-01-27 Associated Box Corp Platform
GB835089A (en) * 1957-09-23 1960-05-18 Jack Geneux Improvements in and relating to corrugated metal sheeting, particularly for roofs
US3114470A (en) * 1960-09-14 1963-12-17 Douglas Aircraft Co Inc Joint for honeycomb structure
FR1329016A (en) * 1962-04-25 1963-06-07 Chausson Usines Sa Process for the stiffening of flat sheets and its application to the manufacture of box body parts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3118523A (en) * 1959-02-20 1964-01-21 Le Methane Liquide Connecting element for expansion joints
US3299598A (en) * 1963-06-27 1967-01-24 Technigaz Corrugated sheet-like yieldable wall element
US3302359A (en) * 1963-06-27 1967-02-07 Technigaz Corrugated sheet-like yieldable wall element and vessels or tanks made thereof
FR1370087A (en) * 1963-07-09 1964-08-21 Babcock & Wilcox France Elastically deformable seal at the intersection of two surface corrugations
US3321881A (en) * 1963-08-16 1967-05-30 Technigaz Folded corrugated sheet-like corner piece
US3325953A (en) * 1963-08-16 1967-06-20 Technigaz Folded corrugated sheet-like corner piece

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3814253A (en) * 1971-10-01 1974-06-04 K Forsberg Liquid control apparatus for chromatography columns
US3881835A (en) * 1973-06-06 1975-05-06 Felt Products Mfg Co Sidewalk-curb sealing member, assembly and method
USB421975I5 (en) * 1973-12-05 1976-03-02
US3994693A (en) * 1973-12-05 1976-11-30 Lockheed Missiles & Space Company, Inc. Expandable metal membrane
US4149652A (en) * 1977-08-15 1979-04-17 Mitsubishi Jukogyo Kabushiki Kaisha Membrane structure in a liquified gas storage tank
US4251598A (en) * 1978-09-11 1981-02-17 Transco, Inc. Reflective insulative panel
US4683697A (en) * 1986-02-11 1987-08-04 Gregg Arthur H Roofing tiles
US5139887A (en) * 1988-12-27 1992-08-18 Barnes Group, Inc. Superplastically formed cellular article
US5292027A (en) * 1992-10-05 1994-03-08 Rockwell International Corporation Tension and compression extensible liner for a primary vessel
US5497895A (en) * 1993-02-17 1996-03-12 Euro-Composites S.A. Transport container
US5535912A (en) * 1994-03-17 1996-07-16 A. O. Smith Corporation Metal liner for a fiber-reinforced plastic tank
WO2005095234A1 (en) * 2004-03-30 2005-10-13 Hyundai Heavy Industries Co., Ltd. Metal membrane panel of insulated lng cargo tank
KR100707675B1 (en) 2004-03-30 2007-04-13 현대중공업 주식회사 Membrane Metal Panel of Insulated LNG Tank
WO2006062271A1 (en) 2004-12-08 2006-06-15 Korea Gas Corporation Lng storage tank and constructing method thereof
US20100160309A1 (en) * 2007-03-13 2010-06-24 Tony Siu Inhibitors of janus kinases and/or 3-phosphoinositide-dependent protein kinase-1
US9365266B2 (en) 2007-04-26 2016-06-14 Exxonmobil Upstream Research Company Independent corrugated LNG tank
US20110027604A1 (en) * 2008-04-21 2011-02-03 Samsung Heavy Ind. Co., Ltd Expandable metal membrane with orthogonally isotropic behavior

Also Published As

Publication number Publication date
JPS4822932B1 (en) 1973-07-10
DE1475866A1 (en) 1969-07-10
US3302359A (en) 1967-02-07
GB1117770A (en) 1968-06-26
NL6510311A (en) 1966-02-07
NL149275B (en) 1976-04-15
US3299598A (en) 1967-01-24
DE1475873B2 (en) 1972-08-24
FR87984E (en) 1966-11-18
FR1459749A (en) 1966-06-17
GB1073281A (en) 1967-06-21
NO126582B (en) 1973-02-26
DE1450432B2 (en) 1976-01-08
NL141633B (en) 1974-03-15
SE369751B (en) 1974-09-16
DE1475866C3 (en) 1974-03-28
GB1138951A (en) 1969-01-01
DE1475873A1 (en) 1969-12-18
NL150899B (en) 1976-09-15
FR87379E (en) 1966-07-29
DE1450432A1 (en) 1969-01-16
NL6600043A (en) 1966-07-06
NL6407078A (en) 1964-12-28
FR87111E (en) 1966-06-17
DE1475866B2 (en) 1973-08-23

Similar Documents

Publication Publication Date Title
US3510278A (en) Wall corner construction
US3321881A (en) Folded corrugated sheet-like corner piece
US4207715A (en) Tensegrity module structure and method of interconnecting the modules
US4247218A (en) Joint for three-dimensional framed structures
US5431980A (en) Formable cellular material with synclastic behavior
US4083190A (en) Fundamental armor module in breakwater net linked system
US2164966A (en) Pleated material and method of making the same
US3399719A (en) Locating structure
US3953948A (en) Homohedral construction employing icosahedron
US3118523A (en) Connecting element for expansion joints
US3485596A (en) Devices constituting corrugated sheet elements or plates and their various applications
US4555878A (en) Structural element for constructions
US3524288A (en) Complex,non-spherical structures
US4125130A (en) Bellows permitting twisting movement
US3362118A (en) Expansible surface structure
US3595430A (en) Containers for liquefied gases having corrigated wall structure
Bezdek et al. Finite and uniform stability of sphere packings
US3977138A (en) Space enclosure
Boon et al. Singular integrals over the Brillouin zone: the analytic-quadratic method for the density of states
US3799646A (en) Reflector
US3468082A (en) Sphere shaped structure
US4825602A (en) Polyhedral structures that approximate an ellipsoid
US2860806A (en) Circular bay tank structure
Eggleston Figures inscribed in convex sets
Subbotin On Two Classes of Polyhedra with Rhombic Vertices.