US3279863A - Mobile air layer transporter - Google Patents

Mobile air layer transporter Download PDF

Info

Publication number
US3279863A
US3279863A US404423A US40442364A US3279863A US 3279863 A US3279863 A US 3279863A US 404423 A US404423 A US 404423A US 40442364 A US40442364 A US 40442364A US 3279863 A US3279863 A US 3279863A
Authority
US
United States
Prior art keywords
valve
valves
top wall
head
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US404423A
Other languages
English (en)
Inventor
Bouladon Gabriel
Zuppiger Paul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spencer Melksham Ltd
Original Assignee
Spencer Melksham Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spencer Melksham Ltd filed Critical Spencer Melksham Ltd
Application granted granted Critical
Publication of US3279863A publication Critical patent/US3279863A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G51/00Conveying articles through pipes or tubes by fluid flow or pressure; Conveying articles over a flat surface, e.g. the base of a trough, by jets located in the surface
    • B65G51/02Directly conveying the articles, e.g. slips, sheets, stockings, containers or workpieces, by flowing gases
    • B65G51/03Directly conveying the articles, e.g. slips, sheets, stockings, containers or workpieces, by flowing gases over a flat surface or in troughs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60VAIR-CUSHION VEHICLES
    • B60V3/00Land vehicles, waterborne vessels, or aircraft, adapted or modified to travel on air cushions
    • B60V3/02Land vehicles, e.g. road vehicles
    • B60V3/04Land vehicles, e.g. road vehicles co-operating with rails or other guiding means, e.g. with air cushion between rail and vehicle

Definitions

  • ' 04/ 7 Z 4 4 V rr 5 2 Has ' llllll. e..
  • FIG. 4 MOBILE AIR LAYER TRANSPORTER 2 Sheets-Sheet 2 Filed Oct. 16, 1964 FIG. 4
  • FIG. 1 A first figure.
  • a mobile air layer transporter comprising a base including an internal chamber having an inlet for connection to a source of compressed air and including a top wall having an -outer surface defining a glide path along which an object to be transported is to travel, a plurality of valve and proximity detector means mounted in said top wall -to create beneath said object a mobile and localized layer of pressurized air capable of supporting said object while moving along therewith, each of said valve and proximity detector means including a normally closed compressed air leakage valve connecting said chamber with the outside and adapted to open upon said object being located thereover to form, in cooperation with neighbouring valves, said air layer beneath said object, and a proximity detector for detecting the presence of said object, each said proximity detector being operatively associated with said valve for actuation ⁇ thereof from a closed position to an open position when said object is located in the vicinity thereof and from said open position to said closed position when said object moves away therefrom, and said valve having a nozzle for imparting to the compressed air issuing therefrom when
  • FIGURE 1 is a section through a part of a iirst embodiment of the transporter according to the invention.
  • FIGURE 2 is a plan view of a part of this rst embodiment
  • FIGURE 3 shows, in vertical cross-section, another part thereof
  • FIGURE 4 is a cross-section of a second embodiment of the transporter according to the invention.
  • FIGURES 5, 6 and 7 are sectional views of modied cons-tructional details.
  • the transporter illustrated in FIGURE l comprises a hollow base 1 the interior of which forms a chamber 2 connected by a pipe 3 to a compressed air generator (not shown).
  • the outer face 4 of t-op wall 5 of base 1 forms a glide path along which an object 6 being transported is -to progress.
  • the top wall is provided with a plurality of differential pistons, such as or similar to pistons 7 and 8 visible in FIGURE 1.
  • These differential pistons all comprise, as may be seen in the case of piston 7, two heads: an upper head 11 and a lower head 12.
  • the upper head 11 has an area substantially larger than that of the lower head 12. These two heads are connected by a rod 13.
  • the upper head 11 is slidably mounted in a recess 14 formed in the -top wall 5 of base 1 and the rod 13 extends slidably in a central hole 15 passing through the remainder of -top wall 5.
  • the upper head 11 is thus exposed to the outside air whereas the lower head 12 is located in chamber 2.
  • the length of the rod 13 is such that in 4the raised position of the diiferential piston the upper head 11 is flush with the glide path 4 and the lower head 12 abuts against the inner face 4' of wall 5.
  • Through rod 13 is formed an axial passage 16 one end of which -ends in a nozzle 17, embedded in the upper head 11 and' vice fulfilling both functions.
  • the proximity detector may well be entirely separate from 3,279,863 Patented Oct.
  • a sealing ring 20 is embedded in wall 5 for engagement by the lower head 12 to prevent the escape of compressed air.
  • the orifice 19 thus forms, together with hole 15, a slide valve which only allows air to escape from chamber 2 towards the outside when the upper head 11 of the diierential piston is depressed in recess 14.
  • Channels 21 and 22 connect the bottom of recess 14 with the bottoms of the corresponding recesses of the neighbouring differential pistons, and constitute a network which communicates with the outside via a passage 23 to avoid the build-up of an air cushion beneath the upper head 11.
  • the -ratio between the area of upper head 11 and the area of lower head 12 is so chosen that the force exerted on the upper head by the atmospheric pressure p0 is only slightly less than that exerted on the lower head by the pressure pc prevailing in chamber 2.
  • the diiferential piston In the absence of the object being transported, the upper head 11 is subjected to atmospheric pressure po whereas the lower head 12 is subjected to the pressure pc prevailing in chamber 2. In view of the ratio between the areas of the heads, the diiferential piston is normally in its raised position, as shown for piston 7. The slide valve formed by the inner tone 19 and by the hole 15 is thus closed and this diiferential piston position is termed the closure position.
  • each diilerential piston acts as a proximity detector which actuates the corresponding valve formed by hole 15 and orifice 19 as soon as the object being transported 6 reaches the piston.
  • the atmospheric pressure again acts on the upper head so that the differential piston moves back to its closure position to close t-he valve.
  • the layer of air supporting the object only exists beneath the latter: it is mobile and accompanies the object during its forward travel.
  • the use of proximity detectors which react to a mere change of pressure brought about by the presence of the transported object to the exclusion of any direct mechanical Contact with the latter, has the advantage of eliminating any friction between the object 6 and the base 1.
  • the proximity detector and the valve as such are combined in a single de- I't will be understood that ice the valve; the main consideration is that it actuates the valve as soon as the object comes to overlie i-t. lMoreover, any kind of proximity detector may be envisaged provided it does not come into direct mechanical contact with the object.
  • the nozzle 17 has the effect of impartling to the air escaping from the upper head the form of a directed jet.
  • the orientation of lthis jet is, as regards piston 8, perpendicular'to the -glide path 4 Since the nozzle has an outlet 18 located in the alignment of channel 16. This jet only exercises on the object 6 a purely supporting action and the valve producing such a jet may be termed a supporting valve.
  • the thrust is .oblique in relation to the direction of movement of t-he object, it contribute-s simultaneously to the propulsion and to the ⁇ guidance of the object: such a valve acts as a supporting-propelling-guiding valve, whose thrust has a propulsion component and a guidance component.
  • the base 1 is provided with a plurality of valves actuated by diierential pistons.
  • the valves are supporting valves: the base then only supports the transported object, the propulsion thereof Vbeing carried out by any suitable means independently of the supporting action.
  • the plurality of valves includes ,both supporting valves and supporting-propelling valves: the base thus serves both to support and to propel the object. If the arrangement includes moreover supporting-guiding valves disposed so that their guiding thrust be directed towards the middle of the base, the latter can then serve simultaneously to support, propel and guide the object. The same applies if the valves are all supporting-propelling-guiding valves whose guidance components are ldirected towards the middle of the base.
  • FIGURE 2 shows a base provided with the four kinds of valves, the nonpurely supporting valves being identitied by arrows appended to some of them, which arrows represent the thrust exerted by the directed jet issuing therefrom.
  • arrow 40 which, starting from the outlet 43 of valve 42, points in the direction ot movement of the transported object 6, as represented by arrow 44, indicates that valve 42 is a propelling valve.
  • valve 46 is a guiding valve whose thrust is directed towards the longitudinal axis 47 of base 1; valve 48, which is symmetrical to the latter in relation to the longitudinal axis 47 of the base, is also a guiding valve whose thrust is directed, as shown by arr-ow 49, in a direction opposite to that of valve 46, but, as in the case of the latter, towards the longitudinal axis 47.
  • valve 50 it is of the mixed type: the thrust it exerts, represented by arrow 51, is oblique in relation to the direction of movement 44 of object 6 and directed towards the axis 47 of the base, so that the thrust of this valve 50 has a propulsion component and a guidance component, the latter being directed towards the middle of the base.
  • the transporter operates as follows: The object 6 is carried by a layer of air, represented by arrows 52.
  • the valves successively encountered by this object open under the action of the proximity detectors; the propulsion thrusts cause it to move forward and the guidance thrusts prevent it from slipping sideways in relation to its intended direction of movement.
  • FIGURE 2 which shows one central row A of supporting propelling valves, two rows B1 and B2 of supporting only valves, two rows C1 and C2 of supportingpropelling-guiding valves and four rows D1, El and D2, E2 of supporting-guiding valves, is, clearly, arbitrary.
  • the only condition to be respected is that any thrust perpendicular to the longitudinal .axis 47 of the base be directed towards the latter.
  • any distribution is permissible; only the weight, the size and the shape of the object may make it preferable t-o resort to a particular distribution.
  • valves are always closed in the absence of object 6 and only open under the action of the pressure prevailing within the air layer that supports the object.
  • some nozzles are provided wit-h a boss or raised portion, such as the annular flange 34 of nozzle 30 of t-he differential piston 9 (FIGURE 3).
  • This boss slightly tops the upper head 33, by a height such that when an object is laid on this piston, it causes the latter to be depressed thereby partially opening the valve; the resultant leakage initiates the air -layer andthe va-lve then opens fully.
  • this boss is however sufficiently low not to come into contact with the object when the object is fully open. 'Ilhis arrangement is useful not only when an object is being loaded on the transporter, but also when the opera-tion of the latter is being resumed after an interruption in .the course of which the base Vremains loaded, for example when resuming work in a plant. It is however not necessary that all valves be provided with such :a boss: it suices that some be so provided, in particular at the loading points of the :transporte-1'.
  • FIGURE 5 A -rst modied construction is illustrated in FIGURE 5.
  • the upper head is formed by a disc 35 which is peripherally connected to a skirt 36 by a thin and iiexible annular portion 37 acting as a joint.
  • This shirt 36 is mounted with a force t in the recess 14 kformed in the top wall 5.
  • Skirt 36 and disc 3S form a unit with rod 38 and are, for example, made in one piece out of plastic material.
  • a spli-t annular spring clip 39' is mounted at the end 39 of rod 38, which end acts as the lower head of the di'erential piston.
  • the clip has a conical outline thus enabling the arrangement to be placed in position by Vsimultaneously forcing skirt 36 into recess 14 and clip 39 into hole 15, the clip eX- panding upon emerging in chamber 2 to form an abutment that prevents disc 35 from projecting above the guide path 4.
  • the disc 35 is provided with a nozzle 35 simil-ar to the previously described nozzle.
  • This sheet 53 is provided with la plurality of thin and flexible annular zones, such as 54, the portion 55 inside each of these zones, constituting the upper head of a differential piston, being provided with a protruberance 56 acting as a rod for the latter.
  • Each rod is provided with a spring clip 57 having a conical outline, similar to clip 39 of the previous modified construction, and the distance between adjacent annular zones is such that the latter .are located opposite the recesses 14 formed in the top wall 5 of the base.
  • This sheet S3 is applied over the glide path 4, with clips 57 being forced through holes 115, and is 'held in -place by means of flat-headed screws screwed lthrough holes 58 into threaded bores 59.
  • FIGURE 7 Another modified construction for ⁇ the differenti-al piston, shown in FIGURE 7, consists in giving to the upper head of the pis-ton lthe shape of a deformable diaphragm 60 which is connected at its centre -to rod 61 and which is secured at its periphery to glide path 4. lIn this arr-angement also, it may be advantageous to connect together several diaphragms so as to form ya sheet 62 which is rendered locally exible opposite recesses 14 formed in the top wall 5 of the base, said sheet covering the glide path and being secured thereto by any suitable means, for example by screws 63.
  • a mobile -air layer transporter comprising a base including an intern-al chamber having an inlet for connection to a source of compressed air and including a top wall having an outer surface defining a glide path along which an object to be transported is lto travel, a plurality of valve and proximity detector means mounted in said top wall to create bene-ath said object a mobile land local-ized layer of pressurized air capable of supporting said object while moving along therewith, each of said valve means including a normally closed compressed air leakage valve connecting said chamber with the outside ⁇ and adapted to open upon said object being located thereover, bu-t out of contact with said valve, .to form, in cooperation with neighbouring valves, said air layer beneath said object, and a proximity detector adjacent to each valve for detecting the presence of said object, said proximity detector being disposed within said top wall for movement therein, and being operatively associated with said valve for actuation thereof from a closed position to an open position when said object is located in the vicinity thereof and from said open position to said closed position when said object moves away
  • a transporter according to claim 2, wherein said base includes for each of said proximity detectors a recess formed in the outer portion of said top wall and a passage extending -through the remaining portion of said top wall from the bottom of said recess to said chamber, and each of said proximity detectors includes a first head movably mounted in said recess and subjected to pressure exerted thereon outside said base, a rod extending slidably i through said passage and having one end connected to said first head, and a second head at the opposite end of said rod and subjected to the pressure exerted thereon by said compressed air in lsaid chamber, said first head having an area greater than that of said second head in order to form together a differential piston, ⁇ said base further including means for preventing the build-up of an aircushion in said recess when said first head is depressed therein.
  • a transporter according to claim 3, wherein said first head has an area such in relation to the area of said second head that the force exerted on said second head by the pressure is less than that exerted on said first head by the pressure prevailing in said air layer, and greater than that on said first head by the ambient room pressure, thereby to depress said first head, when said object is located in the vicinity thereof, towards the bottom of said recess to move said differential piston from a valve closing position to a valve opening posi-tion, and thereby to move said first head, when said object has moved away therefrom, away from the bottom of said recess to return said differential piston from said valve opening position to said va'lve closing position, said rod having a length such that in the valve closing position of the differential piston said second head abuts the inner surface of said top Wall and said first head is substantially fiush with -said glide path.
  • a transporter according to claim 3, wherein the means for preventing the build-up of an air cushion in said recess includes a plurality of balancing channels connecting the bottom portion of said recess to the bottom portions of neighbouring recesses to form a network of such channels.
  • a transporter according to claim 3, wherein said first head consists of a disc, said recess is lined by an annular member mounted in said recess with a tight fit, and said disc and said annular member have therebetween a thin and fiexible annular recess sealing member.
  • said first head consists of a disc having at ⁇ the periphery thereof a thin and flexible annular recess sealing member secured to the adjacent portion of said outer surface of said top Wall.
  • a transporter according to claim 3 further comprising a sheet covering the non-recessed portion of the top wall of said base, and wherein said sheet and the upper head of each of said differential pistons have therebetween a thin and fiexible annular recess sealing member.
  • a transporter wherein said nozzle is provided in said differential piston upper head, said vaLlve further having a passage extending through said piston rod, said passage having one end communicating with said nozzle and the opposite end terminating at an orifice formed in the side surface of said rod at a location such that said orifice is closed by the wall of said hole when said differential piston is in said valve closing position and communicates with said chamber when said piston is in ⁇ said valve opening position, whereby said valve constitutes a slide valve.
  • a transporter according to claim 3, wherein said differential piston upper head has a recess of circular cross-section in which said valve nozzle is removaly and rotably m-ounted with a tight fit to prevent undesired movement thereof, said valve further having a passage extending through said piston rod, said passage having one end communicating with said nozzle and the opposite end terminating at an orifice formed in the side surface of said rod at a location-on such that said orifice is closed by the Wall of said hole when said differential piston is in said valve closing position and communicates with said chamber when said piston is in said valve opening position, whereby said valve constitutes a slide valve.
  • a transporter according to claim 1 wherein said nozzle of at least some of said valves has an outlet passage perpendicular to the adjacent portion of the outer surface of said top wall, whereby said valves constitute object supporting valves.
  • a transporter according to claim 1, wherein said nozzle of at least some of said valves has an outlet passage which is oblique in relation to :the adjacent portion of the outer surface of said top wall and which is directed towards the mean course of said glide path and perpendi- '7 cularly thereto, whereby said ⁇ va1vesconstitute object supporting and vgui-ding Valves.
  • a transporter according to claim 1, wherein said nozzle of at least some of said valves has an outlet passage which is obliquerin relation t-o the adjacent portion of the outer surface of said top wall and which is directed towards the mean course of said. glide path and at an angle thereto, whereby said'valves constitute object supporting, guiding and -propelling valves.
  • a transporter according -to claim 1, wherein said valve and said proximity Adetector of each of said valve and proximity detector means are combined to form a unit and wherein at least 'some of ⁇ said units have a raised por- 8 tion projecting slightly beyond ythe upper surface of said top Wall only ⁇ in vthe closedpositionV ofvsaid valve.
  • a transporter according Vto claim 1 wherein the upper surfaceof atleast some of-said plurality of valve means has a raised portion comprising ari-annular bead disposed about the nozzle thereof, said bead projecting slightly above said top wall only in the Vclosed position of said valve means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Reciprocating Pumps (AREA)
  • Discharge Of Articles From Conveyors (AREA)
  • Control Of Conveyors (AREA)
  • Advancing Webs (AREA)
US404423A 1963-10-22 1964-10-16 Mobile air layer transporter Expired - Lifetime US3279863A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH1296463A CH407876A (fr) 1963-10-22 1963-10-22 Transport à lame d'air mobile

Publications (1)

Publication Number Publication Date
US3279863A true US3279863A (en) 1966-10-18

Family

ID=4388031

Family Applications (1)

Application Number Title Priority Date Filing Date
US404423A Expired - Lifetime US3279863A (en) 1963-10-22 1964-10-16 Mobile air layer transporter

Country Status (6)

Country Link
US (1) US3279863A (enrdf_load_stackoverflow)
BE (1) BE654693A (enrdf_load_stackoverflow)
CH (1) CH407876A (enrdf_load_stackoverflow)
DE (1) DE1263608B (enrdf_load_stackoverflow)
GB (1) GB1026820A (enrdf_load_stackoverflow)
NL (1) NL6412215A (enrdf_load_stackoverflow)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3411831A (en) * 1967-01-19 1968-11-19 Leon W. Smith Deformable air-cushioning pneumatic conveyor
US3414331A (en) * 1967-02-09 1968-12-03 Rapistan Inc Valve for air film conveyors
US3417878A (en) * 1966-04-14 1968-12-24 Spencer Melksham Ltd Valve for pneumatic floating means
US3431009A (en) * 1967-01-06 1969-03-04 Western Electric Co Pickup device for supporting workpieces on a layer of fluid
US3479092A (en) * 1968-02-07 1969-11-18 Alan Ward Conveying apparatus
US3603647A (en) * 1968-05-02 1971-09-07 Battelle Memorial Institute Pressure-responsive air discharge devices
FR2121798A1 (enrdf_load_stackoverflow) * 1971-01-13 1972-08-25 Motch Merryweather Machinery
US4874273A (en) * 1987-03-16 1989-10-17 Hitachi, Ltd. Apparatus for holding and/or conveying articles by fluid
US5299890A (en) * 1990-05-11 1994-04-05 G. D Societa' Per Azioni Unit for supplying products to a manufacturing machine
US6075924A (en) * 1995-01-13 2000-06-13 University Of Southern California Intelligent motion surface
US6585442B2 (en) * 2000-05-03 2003-07-01 The Regents Of The University Of Michigan Attachment mechanism
US20070181735A1 (en) * 2004-04-20 2007-08-09 Airglide Technologies Ag Bearing provided with a carrier surface for moving a platform on an air cushion
US20080031696A1 (en) * 2004-06-28 2008-02-07 Masayuki Toda Levitation Transportation Device And Levitation Transportation Method
US20110258837A1 (en) * 2008-12-23 2011-10-27 Xoma Technology Ltd. Flexible manufacturing system
US20140048994A1 (en) * 2012-08-14 2014-02-20 Scientech Corp. Non-Contact Substrate Chuck and Vertical Type Substrate Supporting Apparatus Using the Same
US20180093781A1 (en) * 2016-09-30 2018-04-05 Sony Interactive Entertainment Inc. Unmanned aerial vehicle movement via environmental interactions
US20180093171A1 (en) * 2016-09-30 2018-04-05 Sony Interactive Entertainment Inc. Unmanned aerial vehicle movement via environmental airflow
US10210905B2 (en) 2016-09-30 2019-02-19 Sony Interactive Entertainment Inc. Remote controlled object macro and autopilot system
US10377484B2 (en) 2016-09-30 2019-08-13 Sony Interactive Entertainment Inc. UAV positional anchors
US10410320B2 (en) 2016-09-30 2019-09-10 Sony Interactive Entertainment Inc. Course profiling and sharing
US10679511B2 (en) 2016-09-30 2020-06-09 Sony Interactive Entertainment Inc. Collision detection and avoidance
US10850838B2 (en) 2016-09-30 2020-12-01 Sony Interactive Entertainment Inc. UAV battery form factor and insertion/ejection methodologies
US10858202B1 (en) * 2014-04-14 2020-12-08 Amazon Technologies, Inc. Air cushioned materials handling system
US11125561B2 (en) 2016-09-30 2021-09-21 Sony Interactive Entertainment Inc. Steering assist

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2190540B1 (enrdf_load_stackoverflow) * 1972-06-30 1978-05-26 Diehl
DE2449620C2 (de) * 1974-10-18 1983-02-10 C.F. Scheer & Cie Gmbh & Co, 7000 Stuttgart Lufttisch zum leichtbeweglichen Handhaben von plattenförmigen Werkstücken, Papierstapeln u.dgl.
EP0059835A1 (en) * 1981-03-05 1982-09-15 The Perkin-Elmer Corporation Laterally stable air track
DE3512584A1 (de) * 1985-04-06 1986-10-30 Frank, Gabriele, 6333 Braunfels Anlage zum pneumatischen schwebefoerdern, stueckartige gueter
DE202007018661U1 (de) 2007-09-19 2009-01-08 Lange, Knut Vorrichtung zur Bereitstellung eines Druckluftstroms zur Erzeugung eines Luftkissens bei Bedarf desselben
DE102009006215A1 (de) 2009-01-27 2010-07-29 Knut Lange Vorrichtung zur Aufnahme eines pneumatischen Ventils

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US756600A (en) * 1902-11-18 1904-04-05 James M Dodge Belt conveyer.
US2176307A (en) * 1938-12-31 1939-10-17 George E Lamb Conveyer
US2678237A (en) * 1948-09-13 1954-05-11 Svenska Flaektfabriken Ab Device for supporting and conveying materials
US2785928A (en) * 1955-06-06 1957-03-19 Lamb Grays Harbor Co Inc Conveyor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3081886A (en) * 1962-01-12 1963-03-19 Bell Aerospace Corp Cargo conveyance means

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US756600A (en) * 1902-11-18 1904-04-05 James M Dodge Belt conveyer.
US2176307A (en) * 1938-12-31 1939-10-17 George E Lamb Conveyer
US2678237A (en) * 1948-09-13 1954-05-11 Svenska Flaektfabriken Ab Device for supporting and conveying materials
US2785928A (en) * 1955-06-06 1957-03-19 Lamb Grays Harbor Co Inc Conveyor

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3417878A (en) * 1966-04-14 1968-12-24 Spencer Melksham Ltd Valve for pneumatic floating means
US3431009A (en) * 1967-01-06 1969-03-04 Western Electric Co Pickup device for supporting workpieces on a layer of fluid
US3411831A (en) * 1967-01-19 1968-11-19 Leon W. Smith Deformable air-cushioning pneumatic conveyor
US3414331A (en) * 1967-02-09 1968-12-03 Rapistan Inc Valve for air film conveyors
US3479092A (en) * 1968-02-07 1969-11-18 Alan Ward Conveying apparatus
US3603647A (en) * 1968-05-02 1971-09-07 Battelle Memorial Institute Pressure-responsive air discharge devices
FR2121798A1 (enrdf_load_stackoverflow) * 1971-01-13 1972-08-25 Motch Merryweather Machinery
US4874273A (en) * 1987-03-16 1989-10-17 Hitachi, Ltd. Apparatus for holding and/or conveying articles by fluid
US5299890A (en) * 1990-05-11 1994-04-05 G. D Societa' Per Azioni Unit for supplying products to a manufacturing machine
US6075924A (en) * 1995-01-13 2000-06-13 University Of Southern California Intelligent motion surface
US6585442B2 (en) * 2000-05-03 2003-07-01 The Regents Of The University Of Michigan Attachment mechanism
US20070181735A1 (en) * 2004-04-20 2007-08-09 Airglide Technologies Ag Bearing provided with a carrier surface for moving a platform on an air cushion
US20080031696A1 (en) * 2004-06-28 2008-02-07 Masayuki Toda Levitation Transportation Device And Levitation Transportation Method
US7704019B2 (en) * 2004-06-28 2010-04-27 Kabushiki Kaisha Watanabe Shoko Levitation transportation device and levitation transportation method
US20100104380A1 (en) * 2004-06-28 2010-04-29 Kabushiki Kaisha Watanabe SHOKO Levitation transportation device and levitation transportation method
US20110258837A1 (en) * 2008-12-23 2011-10-27 Xoma Technology Ltd. Flexible manufacturing system
US10294658B2 (en) * 2008-12-23 2019-05-21 Xoma (Us) Llc Flexible manufacturing system
US20140048994A1 (en) * 2012-08-14 2014-02-20 Scientech Corp. Non-Contact Substrate Chuck and Vertical Type Substrate Supporting Apparatus Using the Same
US10858202B1 (en) * 2014-04-14 2020-12-08 Amazon Technologies, Inc. Air cushioned materials handling system
US10410320B2 (en) 2016-09-30 2019-09-10 Sony Interactive Entertainment Inc. Course profiling and sharing
US10679511B2 (en) 2016-09-30 2020-06-09 Sony Interactive Entertainment Inc. Collision detection and avoidance
US10336469B2 (en) * 2016-09-30 2019-07-02 Sony Interactive Entertainment Inc. Unmanned aerial vehicle movement via environmental interactions
US10357709B2 (en) * 2016-09-30 2019-07-23 Sony Interactive Entertainment Inc. Unmanned aerial vehicle movement via environmental airflow
US10377484B2 (en) 2016-09-30 2019-08-13 Sony Interactive Entertainment Inc. UAV positional anchors
US20180093171A1 (en) * 2016-09-30 2018-04-05 Sony Interactive Entertainment Inc. Unmanned aerial vehicle movement via environmental airflow
US10540746B2 (en) 2016-09-30 2020-01-21 Sony Interactive Entertainment Inc. Course profiling and sharing
US20180093781A1 (en) * 2016-09-30 2018-04-05 Sony Interactive Entertainment Inc. Unmanned aerial vehicle movement via environmental interactions
US10692174B2 (en) 2016-09-30 2020-06-23 Sony Interactive Entertainment Inc. Course profiling and sharing
US10850838B2 (en) 2016-09-30 2020-12-01 Sony Interactive Entertainment Inc. UAV battery form factor and insertion/ejection methodologies
US10210905B2 (en) 2016-09-30 2019-02-19 Sony Interactive Entertainment Inc. Remote controlled object macro and autopilot system
US11125561B2 (en) 2016-09-30 2021-09-21 Sony Interactive Entertainment Inc. Steering assist
US11222549B2 (en) 2016-09-30 2022-01-11 Sony Interactive Entertainment Inc. Collision detection and avoidance
US11288767B2 (en) 2016-09-30 2022-03-29 Sony Interactive Entertainment Inc. Course profiling and sharing

Also Published As

Publication number Publication date
GB1026820A (en) 1966-04-20
NL6412215A (enrdf_load_stackoverflow) 1965-04-23
CH407876A (fr) 1966-02-15
DE1263608B (de) 1968-03-14
BE654693A (enrdf_load_stackoverflow)

Similar Documents

Publication Publication Date Title
US3279863A (en) Mobile air layer transporter
US3181636A (en) Ground effect machine having heave stability for traversing rough surfaces
GB742875A (en) Improvements in or relating to variable-area jet propulsion nozzles
GB767513A (en) Method of and means for the control of a flow, and their various applications
ES402603A1 (es) Un transportador acumulador.
US3283920A (en) Infrastructure element for an installation for conveying objects by pneumatic floating
ES364954A1 (es) Dispositivo de control para sistema de transporte de efectode suelo con via de guiamiento.
GB1417511A (en) Air cushion type undercarriage
US3685788A (en) Valve for levitated vehicle track
GB800380A (en) Improvements in or relating to intakes for air inspiring apparatus
US3586382A (en) Transportation system
GB1164537A (en) Improvements in or relating to a Valve for Pneumatic Floating Means
US3331462A (en) Surface effect devices with dynamic boundary layer bleed slots
US3530798A (en) Fluid cushion supported and guided vehicle and track system
ES396184A1 (es) Perfeccionamientos en distribuidores de fluidos a presion en relacion con el accionamiento y estructura de su valvula.
GB1205621A (en) Improvements in or relating to conveyors
US3706476A (en) Transport systems utilizing a track supplied with fluid under pressure
US1071847A (en) Magnetically-operated conveying and discharging apparatus.
US3613822A (en) Combined plenum chamber and jet curtain air cushion device
GB1241544A (en) Improvements relating to gas-cushion load-supporting apparatus
US3727984A (en) Air cushion conveyor lift cells
US3603647A (en) Pressure-responsive air discharge devices
US3342280A (en) Jet sheet enclosure for compressed gases
GB1306588A (en) Nozzle assembly for jet propulsion engines
GB1351970A (en) Fluid pressure actuated thrust producing unit