US3237648A - Weaving machine - Google Patents
Weaving machine Download PDFInfo
- Publication number
- US3237648A US3237648A US319268A US31926863A US3237648A US 3237648 A US3237648 A US 3237648A US 319268 A US319268 A US 319268A US 31926863 A US31926863 A US 31926863A US 3237648 A US3237648 A US 3237648A
- Authority
- US
- United States
- Prior art keywords
- gear
- shaft
- wheel
- wheels
- driving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000009941 weaving Methods 0.000 title claims description 16
- 230000008878 coupling Effects 0.000 claims description 24
- 238000010168 coupling process Methods 0.000 claims description 24
- 238000005859 coupling reaction Methods 0.000 claims description 24
- 230000033001 locomotion Effects 0.000 description 22
- 230000007246 mechanism Effects 0.000 description 19
- 238000006073 displacement reaction Methods 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- 241000282472 Canis lupus familiaris Species 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 210000000078 claw Anatomy 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 208000008103 Amniotic Band Syndrome Diseases 0.000 description 1
- 101100172879 Caenorhabditis elegans sec-5 gene Proteins 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D51/00—Driving, starting, or stopping arrangements; Automatic stop motions
- D03D51/06—Driving, starting, or stopping arrangements; Automatic stop motions using particular methods of stopping
- D03D51/08—Driving, starting, or stopping arrangements; Automatic stop motions using particular methods of stopping stopping at definite point in weaving cycle, or moving to such point after stopping
- D03D51/085—Extraction of defective weft
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D51/00—Driving, starting, or stopping arrangements; Automatic stop motions
Definitions
- the present invention relates to shuttleless weaving machines an-d more especially to the design of machines of this type with a view to facilitating the operation known as deweaving, that is to say the removal of one or a number of defective weft threads.
- the present invention relates more especially to a device which embodies known principles and permits the possibility of carrying out a deweaving operation whenever the need arises by rotating in reverse motion both the means for actuating the healds and the mechanism for selecting and presenting the weft to the inserter, in the case in which a number of different wefts are employed in the weaving process, and by also reversing the usual direction of motion of the systems for guiding and takingup the fabric, of the system of delivery of the warp threads should this also prove necessary, or of any other operative system, whilst the devices which actuate the slay and those which actuate the weft inserter (or inserters) rotate in the normal direction. Accordingly, the deweaving operation can readily be effected inasmuch as the weft inserter is presented to a shed which is open in the normal manner.
- One known form of embodiment of a device of this type consists of a shaft which is driven from the operating mechanism of the slay and of the weft inserters by means of a coupling permitting of two directions of motion and made up of a keyed sleeve slidably mounted on said shaft and provided at each end with driving dogs designed to engage in slots formed in two gear-wheels which are mounted to rotate freely on said shaft and driven in opposite directions from the operating mechanism of the slay and weft inserters, the said shaft being fitted with a directing gear-wheel which is made fast with the sliding sleeve both for translational motion and for rotary motion whilst a manuallyV controlled rotary sliding shaft which is parallel to the shaft referred-to above is coupled to the directing gear-wheel on the one hand for translational motion With a dead range of travel and on the other hand for rotary motion at the two ends of the dead range of travel by means of a system of two gear-wheels which are rigidly fixed to the manual-control shaft and are adapted to engage selective
- the engagement of the teeth of the claw coupling with the freely rotatable motion-reversing gear-wheels is effected by means of long keys which are adapted to slide in keyways of the shaft 3,237,643 Patented Mar. l, 1966 and provide a connection between the coupling sleeve and the directing gear-wheel.
- the coupling which is effected by means of said keys is endowed with inadequate strength compared with the sturdiness of the other components.
- the object of the invention is to produce a device which relies on the same basic principle but which is not subject to the drawback mentioned above.
- the sliding sleeve of the coupling which permits of two directions of motion and the directing gear-wheel now constitute one and the same part.
- the directing wheel is driven in translational motion from the manual-control shaft by means of discs which are rigidly fixed to said shaft and which thrust back said wheel axially either in one direction or the other and are applied against a portion of the edge of said wheel which extends over a small circumferential arc.
- the system of transmission of motion between the manual-control shaft and the directing gear-wheel comprises at least one forked unit, the arms of which are disposed in oppositely facing relation to two substantially diametrically opposite zones of the common member which constitutes the directing gear-wheel and sliding sleeve of the two-way motion-reversing coupling.
- the two freely rotatable gear-wheels of the two-way motionreversing device were bevel wheels, said bevel wheels being both in mesh with a third bevel wheel which was in turn driven by the operating mechanism of the slay and weft inserters.
- Such an arrangement of bevel gears is attended by a certain number of disadvantages.
- such bevel gears call for a relatively complex and costly assembly of ball-bearings in order to prevent play resulting from the wear of bearing surfaces which in turn results from the oblique thrust applied by the teeth; in addition, the need to disengage the teeth when carrying out angular adjustments does not permit a simple design of axial thrustbearing for the bevel gears.
- the two free-motion gear-wheels which are driven in opposite directions from the driving mechanism of the slay and weft inserters are cylindrical spur gears.
- one of the said free-motion gear-wheels is continuously in mesh with a cylindrical spur wheel rigidly fixed to a primary shaft which is driven from the operating mechanism of the slay and weft inserters, whilst the other free-motion gearwheel is continuously in mesh with an intermediate gearwheel, said intermediate gear-wheel being also continuously in mesh with another gear-wheel which is rigidly xed to said primary shaft.
- FIG. 1 is a general View of the mechanism, in which only a portion of the mechanical safety device is shown;
- FiG. 2 is a perspective view of the complete mechanism, with the exception of the driving members 1 to 6 defined in FIG. l, there being also shown the components of the safety device.
- the reference numeral 1 designates the motor shaft of the motor (not shown) of the Weaving machine.
- the motor drives a pinion 2 in mesh with a gear-wheel 3 which is rigidly xed to the crankshaft 4 of the loom.
- the crankshaft 4 drives through the intermediary of a pair of bevel gears 6 and 7 a main shaft 8 to which are firmly secured two cylindrical spur gears 9 and 10.
- the spur gear 9 drives directly a first gear-wheel 11 which is mounted to rotate freely on an intermediate shaft 12.
- the spur gear 1t drives through the intermediary of an idler pinion 13 a second spur gear-wheel 14 which is capable of rotating freely on the shaft, in the same manner as the gear-wheel 11.
- the gear-wheel 14 rotates in opposite direction with respect to the gearwheel 11; the gear ratios are so determined that the angular speeds imparted to said gear-wheels 11 and 14 either in the positive or negative direction are numerically equal to the speed of the crankshaft 4.
- the shaft 12 is pr-ovided between the two seats of the gear-wheels 11 and 14 with a portion 15 of larger diameter in such manner as to ensure the spaced relationship of the two wheels 11 and 14 between the frame bearings 16 and 17.
- a coupling member consisting of a clutch sleeve 18a which is made fast for rotation with the shaft 12 by means of a key 19 (or by means of splines).
- the two ends of the sleeve which form the hub of a gear- Wheel 18 are each provided with a coupling element such as a dog or claw 211 and 21 respectively which is adapted to fit into a corresponding coupling element or recess 22 and 23 respectively of each hub of gear-wheels 14 and 11, in such manner as to make the shaft 12 fast for rotation with one or the other of said gear-wheels 11 and 14.
- the coupling unit 18-2d-21 must permit the engagement of the two coupling components relatively to each other only in one angular position; therefore, in the case of a number of dogs or claws, the shape and/ or the position of these latter must be designed accordingly.
- the shaft 12 carries a number of different driving members, namely, a pinion 24 which engages with another pinion 25, both pinions having helical gear-teeth, for the purpose of driving the shaft 26 which is at right angles to the shaft 12 and which forms part of the weft-presenting mechanism 26a.
- the wheels 2'7 and 2S are rollerchain wheels; the rst of these controls the movement of the heald-driving mechanism 27]) through a chain transmission which includes the Wheel 27 and a further chain wheel 27a secured to a shaft 27C of this mechanism.
- the second wheel28 is used to drive the warp delivering beam 28g and the cloth take-up roll 2811 through transmissions which include a common portion, namely, a chain transmission between the wheel 28 and a further wheel 28a secured to a rotary shaft 2gb, as well as individual portions, namely, for the warp-delivering beam 28g; a screw gear 28o carried by the shaft 2gb and in mesh with a screw gear 28d carried by a shaft 23e of a mechanism 281 adapted to drive the warp beam 28g, and for the cloth take-up means 28m; a screw gear 28h carried by a shaft 28k of a mechanism 28] adapted to drive the cloth take-up roll 28m.
- a control shaft 29 which is parallel tothe shaft 12 and the end of which is fitted with a handwheel 30, ⁇ said control shaft being adapted to slide and to rotate freely within bearings 31 and 32 of the frame of the motion-reversing mechanism; twin gear-wheels 33 and 34 formed on enlarged end portions of a cylindrical sleeve 3S rigidly secured to the shaft 29, said sleeve being capable of meshing with the wheel 18 through one or the other of said twin gear-wheels.
- sleeve 35 The space between the enlarged portions of sleeve 35 forms an annular groove designed to accommodate a stud 36 which is carried by a lever 37, said lever being rigidly secured to a cross-shaft 3S which is journalled in two bearings 39 and 4t) of the frame; a double forked unit 41-42 (FIG.
- a disc 45 which can be stopped in either of two rest positions determined by notches 46 and 47 of a small bar 43 carried at the end of a lever 49, the shaft or spindle 50 of said lever (as shown in FIG. 2) being pivotally mounted in bearings (not shown) of the frame of the machine.
- the small bar 4S is constantly urged downwards to apply pressure against the disc 45 by the action of a spring 51 (as shown 1n FIG. 2) one end of which is attached to the small bar and the other end of which is attached to a fixed point 52 of the frame.
- the lever 49 carries a small plate 53 (as shown in FIG.
- the spindle 50 can be extended towards the front end of the machine and be tted with a lever 54 (as shown in FIG. 2).
- the desired rotation can be imparted to said spindle Sttby means of said lever 54 and this latter can -be arrested in the position of disengagement of the lever 49 by means of a spring-hook 55. It is merely necessary to thrust back the said spring-hook in order to release the lever 54 and thus permit the combined assembly which forms part of the lever 49 to fall back into position under the action of the spring 51.
- FIGS. l and 2 accordingly illustrate said mechanism in the position of normal weaving.
- lever 49 In order to change over to reverse motion either for the purpose of deweaving or searching for weft threads, the lever 49 is first lifted by rotating lever 54 until this latter is caught by the hook 55.
- the hand-wheel 30 is pulled towards the operator and caused to rotate slightly in order to assist the engagement of gear wheel 33 with the gear-wheel 18.
- the stud 36 which is pushed by the internal face of gear -wheel 33 imparts a movement of rotation to the shaft 38 and to the double forked unit 41-42, the end portions 44 of which are applied against the corresponding face of gear-wheel 18 which then follows the movement of translation which is imparted to the assembly of shaft 29 by the pulling eifort exerted on the hand-wheel 30 until the dog 20 of the coupling gear 18 interlocks with the recess 22 of the gear-wheel 14. If there is an angular displacement between the driving members of the two gear-wheels 14 and 18, the handwheel 30 is caused to rotate while maintaining the pull on this latter, and the rotation thus effected is transmitted to the gear-wheel 18 by the gear-wheel 33.
- the hook 55 is withdrawn, thereby releasing the lever 54 and allowing the locking device constituted by the small bar 48 and small plate 53 to return downwards; if the coupling components and 22 are correctly engaged to the limit of travel, the small plate 53 begins to fall back behind the gear-wheel 1S on the side opposite to that on which said plate is shown in FIG. 2. It is then necessary to thrust back the hand-wheel in order to disengage the gear wheel 33 from the gear-wheel 18; the correct position is determined by a further downward movement of the locking device when the disc 45 passes beneath the notch 47 which fits over said disc and lo-cks this latter in position.
- the user can be requested always to make sure that the small bar 48 has completely returned to the bottom position thereof. It is preferable to connect said small bar to a circuit-breaker switch which can be mounted in the control circuit of the motor or the clutch in such manner as to hold the circuit open and make it impossible to start the mechanism as long as the small bar is not in the working position.
- the double forked unit 41-42 can be replaced by a single fork producing action on one side only of the gearwheel 18 close to the hub thereof, either by providing said hub with a grooved portion in which the extremities of the fork penetrate, or by causing said fork extremities to be applied on .the one hand against one of the faces of the wheel 18 and, on the other hand, against an annular flange formed on said hub. It would also be possible to produce action between the same members but on one side only of the hub.
- the stud 36 could be extended on the other side of the lever 37 with a view to effecting the safety locking on the extension thus formed, using a small bar 48 which has been bent oppositely in this case also but provided with only two notches.
- a shuttleless weaving machine in combination, a main rotary shaft rotating in a predetermined direction, an intermediate rotary shaft, heald driving means and cloth take-up driving means firmly connected to said intermediate rotary shaft, a first and a second gear wheel loosely mounted some distance apart on said intermediate rotary shaft, the facing ends of said gear wheels having coupling elements, gear means operatively connecting said main shaft with said first and second gear wheels for rotating said gear wheels in opposite direction, a clutch sleeve rotatable along with said intermediate shaft and movable longitudinally relatively thereto between said iirst and second gear wheels, said clutch sleeve having coupling elements at each end thereof adapted in a first position to mesh with the corresponding coupling element of said first gear wheel for driving said intermediate shaft in one direction for the normal operation of the weaving machine and adapted in a second position to mesh with said second gear wheel for driving said intermediate shaft in the other direction for enabling deweaving, directing gear means rigidly carried by said clutch sleeve, a manually operable
- said directing gear means are constituted by a directing gear wheel, said further gear means being comprised of twin gear wheels firmly secured to said control shaft and spaced apart by an axial distance greater than the width of said directing gear wheel, said control shaft having two rest positions wherein said twin gear wheels are located on opposite sides of said directing gear wheel, said control shaft being movable in opposite directions from any one of said two rest positions to intermediate positions in which the corresponding twin gear wheel engages said directing gear wheel, said mechanical connecting means between said control shaft and said clutch sleeve having a dead range of travel corresponding to the distance between each of said rest positions and a corresponding intermediate position.
- said mechanical connecting means between said control shaft and said clutch sleeve comprise at least one forked unit, the arms of which are disposed in oppositely facing relation to two substantially diametrically opposite zones of said directing gear means.
- said forked unit is a double fork and comprises four arms of which two are arranged in oppositely facing relation to two substantially diametrically opposite zones of one of the faces of said directing gear means whilst the two other arms of said forked unit are disposed in oppositely facing relation to two substantially diametrically opposite zones of the other face of said directing gear means.
- said mechanical connecting means between said control shaft and said clutch sleeve comprises a pivoting cross-shaft on which is mounted said forked unit, ⁇ a sleeve firmly connected to said control shaft and having an annular groove, a stud firmly secured to said cross-shaft and having one extremity located inside said annular groove formed in said sleeve which is firmly secured to said control shaft,
- gear means operatively connecting said main shaft with said rst and second spur gear wheels comprise a spur gear rig- 10 References Cited by the Examiner UNITED STATES PATENTS 2,421,539 6/1947 Clarke 1391.4
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Looms (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LU42604 | 1962-10-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3237648A true US3237648A (en) | 1966-03-01 |
Family
ID=19723161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US319268A Expired - Lifetime US3237648A (en) | 1962-10-27 | 1963-10-28 | Weaving machine |
Country Status (6)
Country | Link |
---|---|
US (1) | US3237648A (enrdf_load_stackoverflow) |
CH (1) | CH409814A (enrdf_load_stackoverflow) |
DE (1) | DE1535355A1 (enrdf_load_stackoverflow) |
GB (1) | GB1044668A (enrdf_load_stackoverflow) |
LU (1) | LU42604A1 (enrdf_load_stackoverflow) |
SE (1) | SE219346C1 (enrdf_load_stackoverflow) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3356109A (en) * | 1967-12-05 | Driving mechanisms for loom jacquards | ||
US3405740A (en) * | 1963-09-20 | 1968-10-15 | Alsacienne Constr Meca | Drive and control system for looms |
US3409053A (en) * | 1967-03-07 | 1968-11-05 | Marshall John D | Filling mechanism for looms |
US3732895A (en) * | 1970-06-26 | 1973-05-15 | Grosse Gmbh | Reversible jacquard loom and reversing mechanism therefor |
US3865147A (en) * | 1973-01-17 | 1975-02-11 | Vyzk Vyvojovy Ustav Vseobe | Mechanism for the return movement of heald shafts of a weaving loom |
US4474218A (en) * | 1982-11-22 | 1984-10-02 | Draper Corporation | Pick finder apparatus for fluid jet looms |
US5034593A (en) * | 1990-03-23 | 1991-07-23 | W. R. Grace & Co.-Conn. | Coated welding cups |
US20070090168A1 (en) * | 2005-10-25 | 2007-04-26 | Snow Gerald F | Protective coating and coated welding tip and nozzle assembly |
US11236835B2 (en) * | 2017-08-08 | 2022-02-01 | Can Luo | Plug valve with adjustable actuation actuation phases for controlling flow rate by means of plug axial movement |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE496139C (de) * | 1930-04-17 | Saverio Bruegger | Webstuhlantrieb mit auf einer Vorgelegewelle sitzender konischen Reibungskupplung | |
GB386174A (en) * | 1932-03-29 | 1933-01-12 | Lyonnaise Des Machines Textile | Improvements relating to driving mechanisms for loom dobbies |
CH177540A (de) * | 1935-06-04 | 1935-06-15 | Staeubli Geb & Co | Schaftmaschine mit mechanisch angetriebener Schusssuchvorrichtung. |
US2421539A (en) * | 1944-10-12 | 1947-06-03 | Uxbridge Worsted Co Inc | Loom reversing mechanism |
US2640504A (en) * | 1950-09-23 | 1953-06-02 | Crompton & Knowles Loom Works | Chain drive for loom shedding mechanism |
US3095015A (en) * | 1957-05-03 | 1963-06-25 | Dewas Raymond | Weaving looms |
-
1962
- 1962-10-27 LU LU42604D patent/LU42604A1/xx unknown
-
1963
- 1963-10-18 DE DE19631535355 patent/DE1535355A1/de not_active Withdrawn
- 1963-10-25 SE SE1177863A patent/SE219346C1/sv unknown
- 1963-10-25 CH CH1312963A patent/CH409814A/fr unknown
- 1963-10-25 GB GB42194/63A patent/GB1044668A/en not_active Expired
- 1963-10-28 US US319268A patent/US3237648A/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE496139C (de) * | 1930-04-17 | Saverio Bruegger | Webstuhlantrieb mit auf einer Vorgelegewelle sitzender konischen Reibungskupplung | |
GB386174A (en) * | 1932-03-29 | 1933-01-12 | Lyonnaise Des Machines Textile | Improvements relating to driving mechanisms for loom dobbies |
CH177540A (de) * | 1935-06-04 | 1935-06-15 | Staeubli Geb & Co | Schaftmaschine mit mechanisch angetriebener Schusssuchvorrichtung. |
US2421539A (en) * | 1944-10-12 | 1947-06-03 | Uxbridge Worsted Co Inc | Loom reversing mechanism |
US2640504A (en) * | 1950-09-23 | 1953-06-02 | Crompton & Knowles Loom Works | Chain drive for loom shedding mechanism |
US3095015A (en) * | 1957-05-03 | 1963-06-25 | Dewas Raymond | Weaving looms |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3356109A (en) * | 1967-12-05 | Driving mechanisms for loom jacquards | ||
US3405740A (en) * | 1963-09-20 | 1968-10-15 | Alsacienne Constr Meca | Drive and control system for looms |
US3409053A (en) * | 1967-03-07 | 1968-11-05 | Marshall John D | Filling mechanism for looms |
US3732895A (en) * | 1970-06-26 | 1973-05-15 | Grosse Gmbh | Reversible jacquard loom and reversing mechanism therefor |
US3865147A (en) * | 1973-01-17 | 1975-02-11 | Vyzk Vyvojovy Ustav Vseobe | Mechanism for the return movement of heald shafts of a weaving loom |
US4474218A (en) * | 1982-11-22 | 1984-10-02 | Draper Corporation | Pick finder apparatus for fluid jet looms |
US5034593A (en) * | 1990-03-23 | 1991-07-23 | W. R. Grace & Co.-Conn. | Coated welding cups |
US20070090168A1 (en) * | 2005-10-25 | 2007-04-26 | Snow Gerald F | Protective coating and coated welding tip and nozzle assembly |
US11236835B2 (en) * | 2017-08-08 | 2022-02-01 | Can Luo | Plug valve with adjustable actuation actuation phases for controlling flow rate by means of plug axial movement |
Also Published As
Publication number | Publication date |
---|---|
SE219346C1 (enrdf_load_stackoverflow) | 1968-02-27 |
DE1535355A1 (enrdf_load_stackoverflow) | 1970-01-02 |
GB1044668A (en) | 1966-10-05 |
LU42604A1 (enrdf_load_stackoverflow) | 1964-04-27 |
CH409814A (fr) | 1966-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3237648A (en) | Weaving machine | |
JPH08232142A (ja) | 織機の駆動装置 | |
DE2222151B2 (de) | Vorrichtung zum Zurückweben bei schützenlosen Webmaschinen | |
US3318341A (en) | Loom reversing means | |
US3095015A (en) | Weaving looms | |
DE3311670C2 (de) | Webmaschine | |
US3661185A (en) | Driving devices for loom shed-forming mechanisms | |
US4181036A (en) | Stepped-ratio gearing for motor vehicles | |
US7857011B2 (en) | Drive for a web machine | |
US3865147A (en) | Mechanism for the return movement of heald shafts of a weaving loom | |
EP1245707B1 (en) | Multi-position front clutch having a locking device of the movable element in a control drive of a weaving loom | |
US2556751A (en) | Loom clutch and stop mechanism | |
US4036266A (en) | Take-up motion for looms | |
US3856055A (en) | Shuttle control device for a loom | |
DE3115870C2 (enrdf_load_stackoverflow) | ||
US2245352A (en) | Control for apparatus for moving lengths of material | |
US3875972A (en) | Pick finder connected to color selector | |
US3739817A (en) | Drive arrangement for the terry warps on a terry loom | |
US3090267A (en) | Universal lathe structure | |
EP0086999A1 (en) | Device for synchronizing the shedding device in a loom | |
US2752954A (en) | Carpet weaving looms of the type provided with a wire motion | |
US1810679A (en) | Protective lock for loom reversing mechanism | |
GB502538A (en) | Improvements in and connected with driving and reversing mechanism for weaving looms | |
DE459184C (de) | Vorrichtung zum Schusssuchen fuer Schaftmaschinen | |
US3680598A (en) | Drive arrangement for a feed roller on a loom |