US2743204A - Phosphate metal coatings - Google Patents
Phosphate metal coatings Download PDFInfo
- Publication number
- US2743204A US2743204A US306961A US30696152A US2743204A US 2743204 A US2743204 A US 2743204A US 306961 A US306961 A US 306961A US 30696152 A US30696152 A US 30696152A US 2743204 A US2743204 A US 2743204A
- Authority
- US
- United States
- Prior art keywords
- phosphate
- solution
- coating
- tetra
- zinc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/12—Orthophosphates containing zinc cations
- C23C22/17—Orthophosphates containing zinc cations containing also organic acids
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/18—Orthophosphates containing manganese cations
Definitions
- the present invention relates to improvedphosphate coating compositionsv and. methods for forming. protective,
- phosphate coatings on metallic surfaces including iron steel,.zinc and aluminum.
- thisinvention is concerned with animproved solution of'the coating-phosphate type, c. g., zinc, iron or manganese phosphate,
- Another object is to provide an improved coating solution which produces heavy phosphate coatings on metallic.
- a further object of the present, invention is to provide a method for treating the surfaces of iron, steel and zinc to form a heavy phosphate coating thereon.
- Still anotherobjective is to I provide an auxiliary accelerator which in combination with conventional oxidiiing -agents in a coating-phosphate solution greatly in creases the coating weights obtainable on me'tallic sur faces.
- iLhas beenf oundham r d cati nate ca-s t e were phosphate type and having a pH in the range of 1.9 to 3.5
- Coating-phosphate solu- V enter:t onal xi z ng g nt Q-h pre nt in: 0
- Polycarbox-L yliq alph aminosacids such. as; ethylenediamine tetnm acetioaci have; even greater tendencies torfornistable metallic ions in comparable: fl ltiqnfin han. 9 h simpler minqiacidsi.
- easin aodi y hus, heeatra heavy-coat n we h s. wh wereqbt ine i nd. u ed; by: he. addition? b -ED111013; ties of such c; r,ga nicv chelatingiagentsi to relatinely: a inapho phate o utions were; not e pected. or he re en sincr a e in. oatineweight s.no -.-co p e elynde st od; Coating wei htaresnlting.
- oxidizing agents which may be used are potassium iodate, sodium meta-nitrobenzene sulfonate, picric acid, hydroxylamine, etc. Typical concentrations which may be used are 0.02% to 0.5% potassium iodate, 0.03% to .5 sodium meta-nitrobenzene sulfonate, 0.01% to 0.3% picric acid and .01 to .3% hydroxylamine.
- the proportion given for each oxidizing agent is that proportion which causes a substantially equivalent amount of oxidizing or acceleration of the coating formation as 'is caused by any other oxidizing agent when present in the quantity shown.
- Nitrates may be used in manganese phosphate solutions at a concentration between 0.1% and 5% and may likewise be used in zinc phosphate solutions, although in certain cases they are not the most beneficial oxidizing agents with the latter solutions.
- nitrites it is preferable to maintain the temperature of the solution below about 140 F. inasmuch as the nitrite appears to react with the chelating agent and to decrease its effectiveness.
- the upper limit is usually determined on the basis of economy and ease of operation and proportions above about 1% have not been found to be necessary in the majority of applications. A few simple tests under operating conditions will easily establish the most desirable concentration.
- the preferred concentration of ethylene diamine tetra-acetic acid based on the tetra sodium salt, is in the range of about .1% to about .3%. Proportions below about .01% ethylene diamine tetra-acetic acid have some beneficial effect, but the effect is not as pronounced as with concentrations exceeding 0.01%.
- Example 1 An aqueous solution was made up with the following composition:
- the solution operated at a pH of 23-335.
- Four inch by six inch cold rolled steel panels were cleaned of oil and other foreign material by conventional cleaning methods such as dry wiping followed by wiping in mineral spirits or a short pickle in sulfuric acid.
- the panels were then immersed in a solution of the above composition heated to 160 F.-200 F. for periods of 1, 3, 5, 10 and minutes.
- Coating weights received were 108 mg./sq. ft. after one minute, 110 mg./sq. ft. after three minutes and only 118 ing/sq. ft. after 15 minutes.
- the solution was then altered by adding .5 grams/liter of tetra sodium ethylene diamine tetra-acetate.
- a series of identi- 4 cally cleaned panels were then immersed in the new solution for l, 3, 5, 10 and 15 minutes. Coating weights obtained increased as follows:
- the solution operated at a pH of 2.7-2.9.
- Prelimi-narily cleaned cold rolled steel panels were immersed in the solution heated to about F. for three minutes. Coating weights averaging 55 rug/sq. it. were obtained. To the solution was then added 2.5 grams/ liter of the tetra sodium salt of ethylene diamine tetraacetic acid, and coating weights were observed to increase to an average of 313 rug/sq. ft. after otherwise identical treatment.
- compositions similar to those of Example 1 and 2 were made up in which the sodium chlorate and sodium bromate was replaced with other oxidizing agents including sodium nitrate, sodium nitrite, sodium sulfite, nitrobenzene sulfonate, hydroxylamine, etc. A few of these variations are given in the following examples.
- Example 3 Grams/liter Manganese dihydrogen phosphate 20 Sodium nitrate 10 Triglycine .5 to 30
- Example 4 Grams/liter Zinc 3 Phosphoric acid 12 Sodium m-nitrobenzene sulfonate 3 Ethylene diamine tetra-acetic acid .4 to 27
- Example 5 Grams/liter Manganese dihydrogen phosphate 15 Sodium m-nitrobenzene sulfonate 6 Tetra sodium ethylene diamine tetra-acetate .5-30
- Corrosion resistance of the Coatings appeared to be somewhat better when thecoatingsfresulted from longer immersion periods, that -is,-; between-- and minutes and the temperature approaehed-"the upper" operating Bumper-bar stock, preliminarily-cleaned, was sprayedfor 6.0 seconds incthe above solution at 138 F.
- Coating. weights obtained varied: from 48. to .135 nag/sq ft.- The. SQ JliQ wast-altered byadding l. 'gram/litenof tetra sodium ethylene diamine tetra acetate. The. solution then had a pH of 2.7 and coating weight after sixty-second p y ried between 33.65am, 416 met/sq. ft.
- Optimum concentrations of tetra sodium ethylene diamine tetra acetate are as follows:
- Example 10 A composition particularly useful for treating aluminum or aluminum alloy surfaces is given in Example 10.
- Example 10 Pounds Phosphoric acid (75%) 37 Nitric acid, 42 B 71.5 Zinc oxide 42.5 Boric acid l8- Hydrofiuoric acid (60%) 16.5 Sodium bifiuoride 17 Water to make 500 gallons.
- Example V A solution particularly adapted for-coating zinc, galvanized iron or the like is givenin Example V a
- The. aqueous. solution .having theabove, analysis is: prefi stably f m d b a m rtqltq i ns oi sa lfi fh oluti n-@ 503 t fiv mi u e t menve a e coating weight of .445Qmgs pen. square, foot .was,. obtained,
- a composition for producing heavy phosphatevcoathuge on, metallic-surfaces inshort periods'of time which consistsessentiallyof an aqueous acidic. solution of a phosphatwt et lf t the ewe s ns fiasqf itqu zinc and manganese, an oxidizing agent and an acetic amino acid, said solution having pH in the range of 1.9 to 3.5.
- a solution for producing heavy phosphate coatings on metallic surfaces in short periods of time consisting essentially of an aqueous acidic solution of a phosphate selected from the group consisting of zinc phosphate, iron phosphate and manganese phosphate, an oxidizing agent selected from the group consisting of nitrates, nitrites, chlorates, bromates, sulfites, nitrobenzene sulfonate, picric acid, and hydroxylamine, and an acetic amino acid, said solution having a pH between 1.9 and 3.5.
- a phosphate selected from the group consisting of zinc phosphate, iron phosphate and manganese phosphate
- an oxidizing agent selected from the group consisting of nitrates, nitrites, chlorates, bromates, sulfites, nitrobenzene sulfonate, picric acid, and hydroxylamine
- an acetic amino acid said solution having a pH between 1.9 and 3.5.
- a solution for producing heavy phosphate coatings on metallic surfaces in short periods of time consisting essentially of an aqueous acidic solution of a phosphate selected from the group consisting of zinc phosphate, iron phosphate and manganese phosphate, an oxidizing agent selected from the group consisting of nitrates, nitrites, chlorates, bromates, sulfites, nitrobenzene sulfonate, picric acid, and hydroxylamine, and about .01% to about 3% of ethylene diamine tetra-acetic acid, said solution having a-pH between,1. 9 and 3.5.
- a method which comprises obtaining a corrosion resistantheavy coating on iron, steel and zinc by subjecting the surface of said metal to the action of an aqueous acidic solution of a phosphate of a metal from the group consisting of iron, zinc and manganese; and an acetic amino acid, the pH of the said solution being between 1.9 and 3.5
- a method which comprises obtaining a heavy, corrosion resistant coating on a metal selected from the group consisting of iron, steel and zinc by subjecting the surface of said metal to the action of an aqueous acidic solution of a phosphate selected from the group consisting of zinc phosphate, iron phosphate and manganese phosphate, an
- oxidizing agent selected from the group consisting of ni-,
- a method which comprises obtaining a heavy, corrosion resistant coating on a metal selected from the group consisting of iron, steel and zinc by'subjecting the surface of said metal to the action of an aqueous acidic solution of a phosphate and manganese phosphate, an oxidizing agent selected from the group consisting of nitrates, nitrites, chlorates, bromates, sulfites, nitrobenzene sulfonate, picric acid, and hydroxylamine, and at least about .0l% of ethylene diamine tetra-acetic acid, said solution having a pH between 1.9 and 3.5.
- a method which comprises obtaining a heavy, corrosion resistant coating on a metal selected from the group consisting of iron, steel and zinc by subjecting the surface of said metal to the action of an aqueous acidic solution of a phosphate selected from the group consisting of zinc phosphate, iron phosphate and manganese phosphate, an oxidizing agent selected from the group consisting of nitrates, nitrites, chlorates, bromates, sulfites, nitrobenzene sulfonate, picric acid, and hydroxylamine, and a chelating agent selected from the group consisting of ethylene diamine tetra-acetic acid, triglycine, the tetra-acetic acid derivative of trimethylene diamine and the alkali metal salts thereof in an amount equivalent to .01% to 3% of ethylene diamine tetraacetic acid, said solution having a pH between 1.9 and 3.5.
- a method which comprises obtaining a heavy, corrosion resistant coating on a metal selected from the group consisting of iron, steel and zinc by subjecting the surface of said metal to the action of an aqueous acidic solution of a phosphate selected from the group consisting of zinc phosphate, iron phosphate and manganese phosphate, an oxidizing agent selected from the group consisting of nitrates, nitrites, chlorates, bromates, sulfites, nitrobenzene sulfonate, picric acid, and hydroxylamine, and about .01% to about 3% of ethylene diamine tetra-acetic acid, said solution having a pH between 1.9 and 3.5.
- a phosphate selected from the group consisting of zinc phosphate, iron phosphate and manganese phosphate
- an oxidizing agent selected from the group consisting of nitrates, nitrites, chlorates, bromates, sulfites, nitrobenzene sulfonate,
- a composition for producing heavy phosphate coatings on metallic surfaces in short periods of time which consists essentially of an aqueous acidic solution of a phosphate of a metal from the group consisting of iron, zinc and manganese, an oxidizing agent, a fluoride and an acetic amino acid, said solution having a pH in the range of 1.9 to 3.5.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Paints Or Removers (AREA)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL91161D NL91161C (ja) | 1952-08-28 | ||
DENDAT1072055D DE1072055B (ja) | 1952-08-28 | ||
BE522392D BE522392A (ja) | 1952-08-28 | ||
US306961A US2743204A (en) | 1952-08-28 | 1952-08-28 | Phosphate metal coatings |
GB29258/52A GB733235A (en) | 1952-08-28 | 1952-11-19 | Improvements in processes of, and compositions for forming phosphate coatings on metallic surfaces |
FR1086955D FR1086955A (fr) | 1952-08-28 | 1953-08-27 | Perfectionnements relatifs à l'enduisage des métaux |
CH312218D CH312218A (fr) | 1952-08-28 | 1953-08-27 | Procédé de traitement de surfaces métalliques, en vue de les munir d'un revêtement phosphaté lourd. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US306961A US2743204A (en) | 1952-08-28 | 1952-08-28 | Phosphate metal coatings |
Publications (1)
Publication Number | Publication Date |
---|---|
US2743204A true US2743204A (en) | 1956-04-24 |
Family
ID=23187651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US306961A Expired - Lifetime US2743204A (en) | 1952-08-28 | 1952-08-28 | Phosphate metal coatings |
Country Status (7)
Country | Link |
---|---|
US (1) | US2743204A (ja) |
BE (1) | BE522392A (ja) |
CH (1) | CH312218A (ja) |
DE (1) | DE1072055B (ja) |
FR (1) | FR1086955A (ja) |
GB (1) | GB733235A (ja) |
NL (1) | NL91161C (ja) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2859145A (en) * | 1956-01-25 | 1958-11-04 | Parker Rust Proof Co | Cold rolling of steel |
US2930723A (en) * | 1954-12-07 | 1960-03-29 | Walterisation Company Ltd | Surface treatment of metals |
US3141797A (en) * | 1961-09-07 | 1964-07-21 | Lubrizol Corp | Phosphating process |
US3145082A (en) * | 1959-12-07 | 1964-08-18 | Dow Chemical Co | Stabilized hydroxylamine and its method of preparation |
US3146133A (en) * | 1961-03-23 | 1964-08-25 | Hooker Chemical Corp | Process and compositions for forming improved phosphate coatings on metallic surfaces |
US3346426A (en) * | 1964-04-22 | 1967-10-10 | Detrex Chem Ind | Wipe-on phosphating composition |
US4053328A (en) * | 1974-08-30 | 1977-10-11 | Nippon Paint Co., Ltd. | Zinc phosphate coating process |
US4149909A (en) * | 1977-12-30 | 1979-04-17 | Amchem Products, Inc. | Iron phosphate accelerator |
US4168983A (en) * | 1978-04-13 | 1979-09-25 | Vittands Walter A | Phosphate coating composition |
DE3543733A1 (de) * | 1984-12-20 | 1986-07-03 | Parker Chemical Co., Madison Heights, Mich. | Verfahren zur erleichterung der kaltverformung |
US4637838A (en) * | 1984-03-09 | 1987-01-20 | Metallgesellschaft, A.G. | Process for phosphating metals |
US4708744A (en) * | 1985-02-22 | 1987-11-24 | Henkel Kommanditgesellschaft Auf Aktien | Process for phosphating metal surfaces and especially iron surfaces |
US4865653A (en) * | 1987-10-30 | 1989-09-12 | Henkel Corporation | Zinc phosphate coating process |
US5234509A (en) * | 1984-12-20 | 1993-08-10 | Henkel Corporation | Cold deformation process employing improved lubrication coating |
US5261973A (en) * | 1991-07-29 | 1993-11-16 | Henkel Corporation | Zinc phosphate conversion coating and process |
US5344713A (en) * | 1989-04-03 | 1994-09-06 | Sumitomo Electric Industries Ltd. | Method for manufacturing steel wire material for reinforcing optical fiber |
WO1995012010A1 (en) * | 1993-10-29 | 1995-05-04 | Henkel Corporation | Composition and process for treating magnesium-containing metals and product therefrom |
US5588989A (en) * | 1994-11-23 | 1996-12-31 | Ppg Industries, Inc. | Zinc phosphate coating compositions containing oxime accelerators |
US5653790A (en) * | 1994-11-23 | 1997-08-05 | Ppg Industries, Inc. | Zinc phosphate tungsten-containing coating compositions using accelerators |
US5797987A (en) * | 1995-12-14 | 1998-08-25 | Ppg Industries, Inc. | Zinc phosphate conversion coating compositions and process |
US6179934B1 (en) * | 1997-01-24 | 2001-01-30 | Henkel Corporation | Aqueous phosphating composition and process for metal surfaces |
US6368426B1 (en) * | 1991-07-29 | 2002-04-09 | Henkel Corporation | Zinc phosphate conversion coating and process |
US20030155042A1 (en) * | 2001-12-13 | 2003-08-21 | Richard Church | Use of substituted hydroxylamines in metal phosphating processes |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19538778A1 (de) * | 1995-10-18 | 1997-04-24 | Henkel Kgaa | Schichtgewichtssteuerung bei Hydroxylamin-beschleunigten Phosphatiersystemen |
DE102014005444A1 (de) * | 2014-04-11 | 2015-10-15 | Audi Ag | Verfahren zur Passivierung einer metallischen Oberfläche |
DE102016002852A1 (de) * | 2016-03-10 | 2017-09-14 | Audi Ag | Verfahren zur Passivierung einer Oberfläche eines Metallbauteils |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1911726A (en) * | 1931-07-07 | 1933-05-30 | Metal Finishing Res Corp | Production of phosphate coatings on metals |
US2132883A (en) * | 1937-04-30 | 1938-10-11 | American Chem Paint Co | Method of coating ferrous metal with a water insoluble metallic phosphate |
US2298280A (en) * | 1939-02-02 | 1942-10-13 | Parker Rust Proof Co | Treatment of metal |
US2316811A (en) * | 1940-04-13 | 1943-04-20 | American Chem Paint Co | Method of coating ferrous metal surfaces with water insoluble metallic phosphates |
US2461519A (en) * | 1948-03-17 | 1949-02-15 | Frederick C Bersworth | Method of producing carboxylic substituted aliphatic amines and metallic salts thereof |
US2479423A (en) * | 1946-02-07 | 1949-08-16 | American Chem Paint Co | Method of and materials for treating surfaces of iron, zinc, and alloys of each |
GB663650A (en) * | 1947-11-05 | 1951-12-27 | Hans Bibus | Chromatic mouth organ |
-
0
- BE BE522392D patent/BE522392A/xx unknown
- DE DENDAT1072055D patent/DE1072055B/de active Pending
- NL NL91161D patent/NL91161C/xx active
-
1952
- 1952-08-28 US US306961A patent/US2743204A/en not_active Expired - Lifetime
- 1952-11-19 GB GB29258/52A patent/GB733235A/en not_active Expired
-
1953
- 1953-08-27 FR FR1086955D patent/FR1086955A/fr not_active Expired
- 1953-08-27 CH CH312218D patent/CH312218A/fr unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1911726A (en) * | 1931-07-07 | 1933-05-30 | Metal Finishing Res Corp | Production of phosphate coatings on metals |
US2132883A (en) * | 1937-04-30 | 1938-10-11 | American Chem Paint Co | Method of coating ferrous metal with a water insoluble metallic phosphate |
US2298280A (en) * | 1939-02-02 | 1942-10-13 | Parker Rust Proof Co | Treatment of metal |
US2316811A (en) * | 1940-04-13 | 1943-04-20 | American Chem Paint Co | Method of coating ferrous metal surfaces with water insoluble metallic phosphates |
US2479423A (en) * | 1946-02-07 | 1949-08-16 | American Chem Paint Co | Method of and materials for treating surfaces of iron, zinc, and alloys of each |
GB663650A (en) * | 1947-11-05 | 1951-12-27 | Hans Bibus | Chromatic mouth organ |
US2461519A (en) * | 1948-03-17 | 1949-02-15 | Frederick C Bersworth | Method of producing carboxylic substituted aliphatic amines and metallic salts thereof |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2930723A (en) * | 1954-12-07 | 1960-03-29 | Walterisation Company Ltd | Surface treatment of metals |
US2859145A (en) * | 1956-01-25 | 1958-11-04 | Parker Rust Proof Co | Cold rolling of steel |
US3145082A (en) * | 1959-12-07 | 1964-08-18 | Dow Chemical Co | Stabilized hydroxylamine and its method of preparation |
US3146133A (en) * | 1961-03-23 | 1964-08-25 | Hooker Chemical Corp | Process and compositions for forming improved phosphate coatings on metallic surfaces |
US3141797A (en) * | 1961-09-07 | 1964-07-21 | Lubrizol Corp | Phosphating process |
US3346426A (en) * | 1964-04-22 | 1967-10-10 | Detrex Chem Ind | Wipe-on phosphating composition |
US4053328A (en) * | 1974-08-30 | 1977-10-11 | Nippon Paint Co., Ltd. | Zinc phosphate coating process |
US4149909A (en) * | 1977-12-30 | 1979-04-17 | Amchem Products, Inc. | Iron phosphate accelerator |
US4168983A (en) * | 1978-04-13 | 1979-09-25 | Vittands Walter A | Phosphate coating composition |
US4637838A (en) * | 1984-03-09 | 1987-01-20 | Metallgesellschaft, A.G. | Process for phosphating metals |
EP0186823A3 (en) * | 1984-12-20 | 1988-04-27 | Parker Chemical Company | Process for facilitating cold-forming |
GB2169620A (en) * | 1984-12-20 | 1986-07-16 | Parker Chemical Co | Phosphate coatings |
EP0186823A2 (de) * | 1984-12-20 | 1986-07-09 | HENKEL CORPORATION (a Delaware corp.) | Verfahren zur Erleichterung der Kaltverformung |
DE3543733A1 (de) * | 1984-12-20 | 1986-07-03 | Parker Chemical Co., Madison Heights, Mich. | Verfahren zur erleichterung der kaltverformung |
AU577424B2 (en) * | 1984-12-20 | 1988-09-22 | Parker Chemical Company | Lubricant coating for metal working |
US5234509A (en) * | 1984-12-20 | 1993-08-10 | Henkel Corporation | Cold deformation process employing improved lubrication coating |
US4708744A (en) * | 1985-02-22 | 1987-11-24 | Henkel Kommanditgesellschaft Auf Aktien | Process for phosphating metal surfaces and especially iron surfaces |
US4865653A (en) * | 1987-10-30 | 1989-09-12 | Henkel Corporation | Zinc phosphate coating process |
US5344713A (en) * | 1989-04-03 | 1994-09-06 | Sumitomo Electric Industries Ltd. | Method for manufacturing steel wire material for reinforcing optical fiber |
US5261973A (en) * | 1991-07-29 | 1993-11-16 | Henkel Corporation | Zinc phosphate conversion coating and process |
US6368426B1 (en) * | 1991-07-29 | 2002-04-09 | Henkel Corporation | Zinc phosphate conversion coating and process |
WO1995012010A1 (en) * | 1993-10-29 | 1995-05-04 | Henkel Corporation | Composition and process for treating magnesium-containing metals and product therefrom |
US5588989A (en) * | 1994-11-23 | 1996-12-31 | Ppg Industries, Inc. | Zinc phosphate coating compositions containing oxime accelerators |
US5653790A (en) * | 1994-11-23 | 1997-08-05 | Ppg Industries, Inc. | Zinc phosphate tungsten-containing coating compositions using accelerators |
US5797987A (en) * | 1995-12-14 | 1998-08-25 | Ppg Industries, Inc. | Zinc phosphate conversion coating compositions and process |
US5868874A (en) * | 1995-12-14 | 1999-02-09 | Ppg Industries, Inc. | Zinc phosphate conversion coating compositions and process |
US6179934B1 (en) * | 1997-01-24 | 2001-01-30 | Henkel Corporation | Aqueous phosphating composition and process for metal surfaces |
US20030155042A1 (en) * | 2001-12-13 | 2003-08-21 | Richard Church | Use of substituted hydroxylamines in metal phosphating processes |
US7294210B2 (en) | 2001-12-13 | 2007-11-13 | Henkel Kommanditgesellschaft Auf Aktien | Use of substituted hydroxylamines in metal phosphating processes |
Also Published As
Publication number | Publication date |
---|---|
GB733235A (en) | 1955-07-06 |
FR1086955A (fr) | 1955-02-17 |
CH312218A (fr) | 1955-12-31 |
DE1072055B (ja) | |
BE522392A (ja) | |
NL91161C (ja) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2743204A (en) | Phosphate metal coatings | |
US4865653A (en) | Zinc phosphate coating process | |
EP0019430B1 (en) | Composition and process for zinc phosphate coating a metal surface and a process for painting the coated surface | |
JP2680618B2 (ja) | 金属のりん酸塩処理方法 | |
CA2234819C (en) | Zinc phosphate conversion coating compositions and process | |
JPH09503824A (ja) | アルミニウムのための親水性被覆剤 | |
US2318606A (en) | Corrosion inhibition | |
US2744555A (en) | Method of simultaneously phosphating and cleaning metal surfaces and composition therefor | |
US4637838A (en) | Process for phosphating metals | |
GB2179680A (en) | Method of forming phosphate coatings on zinc | |
US1947122A (en) | Surface treatment of magnesium and magnesium base alloys | |
US2758949A (en) | Alkali metal phosphate coating solutions and the method of forming coatings therewith | |
US2835617A (en) | Composition and method for coating metallic surfaces | |
JPH0465151B2 (ja) | ||
US2928763A (en) | Aluminum chromating process | |
US3144360A (en) | Phosphating process | |
US3338755A (en) | Production of phosphate coatings on metals | |
US3161549A (en) | Solution for forming zinc phosphate coatings on metallic surfaces | |
US3104177A (en) | Phosphating process | |
US5776231A (en) | Concentrate for the electroless deposition of copper coatings on iron and iron alloy surfaces | |
US3977912A (en) | Process for reducing the rate of sludge formation in crystalline phosphatizing baths | |
US3459600A (en) | Novel zinc coating composition and method | |
GB1582354A (en) | Processes for producing phosphate coatings on ferrous metal surfaces | |
US5234509A (en) | Cold deformation process employing improved lubrication coating | |
US2769737A (en) | Amine phosphate coating solutions and method of coating |