US2707167A - Electrodeposition of copper from an acid bath - Google Patents
Electrodeposition of copper from an acid bath Download PDFInfo
- Publication number
- US2707167A US2707167A US290092A US29009252A US2707167A US 2707167 A US2707167 A US 2707167A US 290092 A US290092 A US 290092A US 29009252 A US29009252 A US 29009252A US 2707167 A US2707167 A US 2707167A
- Authority
- US
- United States
- Prior art keywords
- copper
- liter
- group
- grams
- sulfate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 23
- 238000004070 electrodeposition Methods 0.000 title claims description 8
- 229910052802 copper Inorganic materials 0.000 title description 22
- 239000010949 copper Substances 0.000 title description 22
- 239000002253 acid Substances 0.000 title description 4
- 150000001875 compounds Chemical class 0.000 claims description 14
- 239000003929 acidic solution Substances 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 17
- 238000013019 agitation Methods 0.000 description 13
- 150000001450 anions Chemical group 0.000 description 13
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 12
- 229910000365 copper sulfate Inorganic materials 0.000 description 12
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 12
- -1 phenyl radicals Chemical class 0.000 description 12
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 11
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 11
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 11
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 10
- 230000002378 acidificating effect Effects 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 9
- 229910002651 NO3 Inorganic materials 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 9
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 6
- 150000004820 halides Chemical group 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 241000720913 Fuchsia Species 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- OARRHUQTFTUEOS-UHFFFAOYSA-N safranin Chemical compound [Cl-].C=12C=C(N)C(C)=CC2=NC2=CC(C)=C(N)C=C2[N+]=1C1=CC=CC=C1 OARRHUQTFTUEOS-UHFFFAOYSA-N 0.000 description 4
- 239000000080 wetting agent Substances 0.000 description 4
- RGLYKWWBQGJZGM-ZCXUNETKSA-N 4-[(z)-4-(4-hydroxyphenyl)hex-3-en-3-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(/CC)C1=CC=C(O)C=C1 RGLYKWWBQGJZGM-ZCXUNETKSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- SOUHUMACVWVDME-UHFFFAOYSA-N safranin O Chemical compound [Cl-].C12=CC(N)=CC=C2N=C2C=CC(N)=CC2=[N+]1C1=CC=CC=C1 SOUHUMACVWVDME-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000005282 brightening Methods 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000002932 luster Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- XZTJQQLJJCXOLP-UHFFFAOYSA-M sodium;decyl sulfate Chemical compound [Na+].CCCCCCCCCCOS([O-])(=O)=O XZTJQQLJJCXOLP-UHFFFAOYSA-M 0.000 description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241000499489 Castor canadensis Species 0.000 description 1
- 241001155433 Centrarchus macropterus Species 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical class C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 235000011779 Menyanthes trifoliata Nutrition 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000011260 aqueous acid Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002891 organic anions Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/38—Electroplating: Baths therefor from solutions of copper
Definitions
- This invention relates to the electrodeposition of copper from an aqueous acidic bath and more particularly concerns the utilization of selected addition agents to aqueous acidic baths for the purposes hereinafter stated.
- the object of this invention is to decrease the grain size and increase the luster of the copper deposit without materially impairing the ductility of the plate or decreasing the current density range of the acidic copper plating bath.
- R1, R2 and R3 are radicals selected from the group consisting of hydrogen, methyl, ethyl and phenyl radicals
- X is an anion selected from the group consisting of chloride, bromide, iodide, fluoride, sulfate, bisulfate and nitrate.
- the anion X is relatively unimportant and in addition to the anions above given may be any one of a wide variety of other anions including organic anions such as formate, acetate, propionate, etc.
- the compounds represented by the above formula when present in an acid copper bath are highly ionized substances and the anion X is in ionic admixture with the other anions of the bath such as the sulfate anion, the nitrate anion, etc.
- the class of compounds represented by Formula A which have been found to efiectively accomplish the above stated object are, in general, the diamino derivatives of the phenylphenazonium salts, which dyes are usually called the safranines.
- a concentration of chloride, or its equivalent in bromide or iodide of about .003 to about .020 gram/liter in the solution. It is to be understood that when X is either fluoride, sulfate, bisulfate or nitrate, that chloride, bromide or iodide ions in an amount equivalent to about .003 to .020 gram/liter of chloride is preferably present in addition.
- a solution containing a compound in which X is a halide other than fluoride contains at least the preferred minimum halide concentration, but it is usually preferable to replenish the halide during use in order to maintain the minimum concentration of about .003 gram/liter of chloride or its equivalent.
- Acidic copper baths having compositions varying over rather wide limits, may be employed. However, for the best grain refinement, rate of brightening and the widest bright plating range, the following basic bath composition designated Formula B is recommended for use:
- FORMULA B C one Prceferred I grams/ht grar s l liter GuSO -5H2O H2804
- the bath of Formula B is preferably operated at temperatures varying from room temperature to somewhat higher temperatures. For example, from about 17 C. to 40 C. (approximately 60 F. to 105 F.) may be used. Although it has been observed that warmer temperatures have a tendency to decrease the brightness of the plate which is produced, improved deposits may be obtained from baths operating at temperatures as high as about 50 C. It is desirable to have either cathode agitation or agitation of the bath, and uniform air agitation is preferred. Cathode current densities may vary between about 10-100 amps./ sq. ft.
- Nitric acid or phosphoric acid may be satisfactorily substituted for the sulfuric acid of Formula B in approximately equal proportions.
- Formula B may include other ions for the purpose of increasing the conductivity of the solution such as sodium, potassium or ammonium ions. These ions may be introduced in the solution in the form of soluble salts such as sodium, potassium or ammonium nitrate, etc.
- the copper sulfate of Formula B may be satisfactorily replaced by copper nitrate in approximately equivalent quantities and when acidified with small amounts of phosphoric, nitric or sulfuric acids, the beneficial effect of reducing the grain size and increasing the luster of the deposit is also evident upon the addition of small concentrations of the addition agents of this invention.
- the copper nitrate baths are, however, somewhat inferior in the production of brightness of plate, to the copper sulfate baths. Satisfactory results are obtained from baths in which the concentration of copper sulfate or copper nitrate varies from as low as about 100 grams/liter up to saturation. Concentrations of acid above that which is equivalent in acidity to about 80 to 100 grams/liter of sulfuric acid tends to decrease the brightening effect caused by the presence in the solution of the addition agents of this invention, and such concentrations are therefore to be avoided.
- wetting agents may be present in the baths of this invention and their presence therein has been observed to reduce pitting and striation formation in the deposit due to the presence of harmful organic compounds or excessive concentrations of, brighteners.
- the surface-active compounds, sodium decyl sulfate and the sulfated mono-ethylene oxide condtiusate of decyl alcohol when present in concentrations of about .01 to .06 grams/liter are especially effective.
- These wetting agents would normally cause excessive frothing upon air agitation, but in the presence of the addition agents of this invention, the frothing is minimized.
- Example 1 CuSO4-5H2O 200 grams/liter. H2804 15 grams/liter. Diethyl safranine .002 gram/liter. Temperature 70 F.-95 F. Cathode current density 30-40 amps./ sq. ft. Air agitation.
- Example 11 CuSO4-5H2O 200 grams/liter. H2804 15 grams/liter. Tolusafranine .008 gram/liter. Temperature 70 F.- F. Cathode current density 30-40 amps/sq. ft. Sodium decyl sulfate .03 gram/liter. Air agitation.
- Example III CuSOr-SHzO 200 grams/liter. NH4NO3 20-30 grams/liter. H2504 a 15 grams/liter. Amethyst Violet .008 gram/liter. Temperature 70 F. F. Cathode current density 30-50 amps/sq. ft. Air agitation.
- Example IV CU(NO3)2 200 grams/liter. HNOs 10 grams/liter. Mauveine .015 gram/liter. Temperature 70 F.-95 F. Cathode current density 40-60 amps./ sq. ft. Air agitation.
- Example V CuSO4-5H2O 200 grams/liter. H2504 15 grams/liter. Fuchsia .02 gram/liter. Temperature 70 F.-95 F. Cathode current density 30-40 amps./ sq. ft. Air agitation.
- Example VI CUSO4'5H2O 200 grams/liter. H2804 15 grams/liter. Phenosafranine .008 gram/liter. Temperature 70 F.-95 F. Cathode current density 30-40 amps/sq. ft. Air agitation.
- a bath for the electrodeposition of copper comprising an aqueous acidic solution of copper salts and minor proportions of a compound having the structure:
- R1, R2 and R3 are radicals selected from the group consisting of hydrogen, methyl, ethyl and phenyl radicals and X is an anion selected from the group consistiug of chloride, bromide, iodide, fluoride, sulfate, bisulfate and nitrate.
- a bath for the electrodeposition of copper comprising an aqueous acidic solution of a material selected from the group consisting of copper sulfate and copper nitrate and .002.03 grams/liter of a compound having the structure:
- R1, R2 and R3 are radicals selected from the group consisting of hydrogen, methyl, ethyl and phenyl radicals and X is an anion selected from the group consisting of chloride, bromide, iodide, fluoride, sulfate, bisulfate and nitrate.
- a bath for the electrodeposition of copper comprising an aqueous acidic solution of a material selected from the group consisting of copper sulfate and copper nitrate and .002.03 grams/ liter of a material selected from the group consisting of Phenosafranine, Tolusafranine, Fuchsia, Amethyst Violet, Diethyl safranine, Dimethyl safranine and Mauveine.
- aqueous acid copper solution containing a metal salt selected from the group consisting of copper sulfate and copper nitrate, said aqueous solution also containing minor proportions of a compound having the structure:
- R1, R2 and R3 are radicals selected from the group 5.
- the step which comprises electrolyzing an aqueous acidic copper solution containing a metal salt selected from the group consisting of copper sulfate and copper nitrate, said aqueous solution also containing minor proportions of a compound selected from a group consisting of Phenosafranine, Tolusafranine, Fuchsia, Amethyst Violet, Diethyl safranine, Dimethyl safranine and Mauveine.
- aqueous acidic copper solution containing a metal salt selected from the group consisting of copper sulfate and copper nitrate, said aqueous solution also containing about .002 to about .03 gram/liter of a compound having the structure:
- R1, R2 and Rs are radicals selected from the group consisting of hydrogen, methyl, ethyl and phenyl radicals and X is an anion selected from the group consulfate, bi-
- R1, R2 and R3 are radicals selected from the group consisting of hydrogen, methyl, ethyl and phenyl radicals and X is an anion selected from. the group consisting of chloride, bromide, iodide, fluoride, sulfate, bisulfate and nitrate.
- aqueous acidic copper solution containing a metal salt selected from the group consisting of copper sulfate and copper nitrate, a halide selected from the group consisting of chloride, bromide and iodide in an amount equivalent to about .003 gram/liter to about .020 gram/liter of chloride and a minor proportion of a compound having the structure:
- R1, R2 and R3 are radicals selected from the group consisting of hydrogen, methyl, ethyl and phenyl radicals and X is an anion selected from the group consisting of chloride, bromide, iodide, fluoride, sulfate, bisulfate and nitrate.
- a bath for the electrodeposition of copper comprising an aqueous acidic solution of a material selected from the group consisting of copper sulfate and copper nitrate, a halide selected from the group consisting of chloride, bromide and iodide in an amount equivalent to about .003 gram/liter to about .020 gram/liter of chloride, a minor proportion of a compound having the structure:
- R1, R2 and R3 are radicals selected from the group consisting of hydrogen, methyl, ethyl and phenyl radicals and X is an anion selected from the group consisting of chloride, bromide, iodide, fluoride, sulfate, bisulfate and nitrate, and a small amount of a wetting agent.
- a process of electrodepositing copper the step which comprises electrolyzing an aqueous: acidic copper solution containing a metal salt selected from the group consisting of copper sulfate and copper nitrate, a halide selected from the group consisting of chloride, bromide and iodide in an amount equivalent to about .003
- R1, R2 and R3 are radicals selected from the group proportion of a compound having the structure: consisting of hydrogen, methyl, ethyl and phenyl radicals N and X is an anion selected from the group consisting of chloride, bromide, iodide, fluoride, sulfate, bisulfate and R, R: 5 nitrate, and a small amount of a wetting agent.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE520210D BE520210A (en, 2012) | 1952-05-26 | ||
NLAANVRAGE7711060,A NL174178B (nl) | 1952-05-26 | Werkwijze voor het winnen van koolwaterstoffen uit een permeabele koolwaterstofhoudende formatie door injectie met stoom. | |
NL75967D NL75967C (en, 2012) | 1952-05-26 | ||
US290092A US2707167A (en) | 1952-05-26 | 1952-05-26 | Electrodeposition of copper from an acid bath |
GB28755/52A GB736230A (en) | 1952-05-26 | 1952-11-14 | Improvements in or relating to the electrodeposition of copper |
FR1071247D FR1071247A (fr) | 1952-05-26 | 1952-11-21 | Perfectionnements relatifs à un procédé et à un bain pour le dépôt électrolytique du cuivre |
DEU2202A DE1004880B (de) | 1952-05-26 | 1953-05-23 | Saures Bad zur Herstellung galvanischer Kupferueberzuege |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US290092A US2707167A (en) | 1952-05-26 | 1952-05-26 | Electrodeposition of copper from an acid bath |
Publications (1)
Publication Number | Publication Date |
---|---|
US2707167A true US2707167A (en) | 1955-04-26 |
Family
ID=23114503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US290092A Expired - Lifetime US2707167A (en) | 1952-05-26 | 1952-05-26 | Electrodeposition of copper from an acid bath |
Country Status (6)
Country | Link |
---|---|
US (1) | US2707167A (en, 2012) |
BE (1) | BE520210A (en, 2012) |
DE (1) | DE1004880B (en, 2012) |
FR (1) | FR1071247A (en, 2012) |
GB (1) | GB736230A (en, 2012) |
NL (2) | NL75967C (en, 2012) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2805193A (en) * | 1955-07-18 | 1957-09-03 | John F Beaver | Bright copper plating |
US2805194A (en) * | 1955-07-18 | 1957-09-03 | Dayton Bright Copper Company | Bright copper plating |
US3288690A (en) * | 1962-04-16 | 1966-11-29 | Udylite Corp | Electrodeposition of copper from acidic baths |
US3328273A (en) * | 1966-08-15 | 1967-06-27 | Udylite Corp | Electro-deposition of copper from acidic baths |
US3743584A (en) * | 1970-06-06 | 1973-07-03 | Schering Ag | Acid bright copper plating bath |
US4376685A (en) * | 1981-06-24 | 1983-03-15 | M&T Chemicals Inc. | Acid copper electroplating baths containing brightening and leveling additives |
DE3420999A1 (de) * | 1983-06-10 | 1984-12-13 | Omi International Corp., Warren, Mich. | Waessriges saures galvanisches kupferbad und verfahren zur galvanischen abscheidung eines glaenzenden eingeebneten kupferueberzugs auf einem leitfaehigen substrat aus diesem bad |
US6709568B2 (en) | 2002-06-13 | 2004-03-23 | Advanced Technology Materials, Inc. | Method for determining concentrations of additives in acid copper electrochemical deposition baths |
WO2004057061A1 (en) * | 2002-12-20 | 2004-07-08 | Atotech Deutschland Gmbh | Mixture of oligomeric phenazinium compounds and acid bath for electrolytically depositing a copper deposit |
US20050067304A1 (en) * | 2003-09-26 | 2005-03-31 | King Mackenzie E. | Electrode assembly for analysis of metal electroplating solution, comprising self-cleaning mechanism, plating optimization mechanism, and/or voltage limiting mechanism |
US20050109624A1 (en) * | 2003-11-25 | 2005-05-26 | Mackenzie King | On-wafer electrochemical deposition plating metrology process and apparatus |
US20050224370A1 (en) * | 2004-04-07 | 2005-10-13 | Jun Liu | Electrochemical deposition analysis system including high-stability electrode |
US20050247576A1 (en) * | 2004-05-04 | 2005-11-10 | Tom Glenn M | Electrochemical drive circuitry and method |
US20060102475A1 (en) * | 2004-04-27 | 2006-05-18 | Jianwen Han | Methods and apparatus for determining organic component concentrations in an electrolytic solution |
US20070261963A1 (en) * | 2006-02-02 | 2007-11-15 | Advanced Technology Materials, Inc. | Simultaneous inorganic, organic and byproduct analysis in electrochemical deposition solutions |
US7435320B2 (en) | 2004-04-30 | 2008-10-14 | Advanced Technology Materials, Inc. | Methods and apparatuses for monitoring organic additives in electrochemical deposition solutions |
EP2619244A4 (en) * | 2010-09-24 | 2014-06-04 | Macdermid Acumen Inc | IMPROVED METHOD FOR THE PRODUCTION OF POLYMERIC PHENAZONIUM COMPOUNDS |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE565994A (en, 2012) * | 1957-04-16 | |||
CN111074306B (zh) * | 2020-01-02 | 2020-10-27 | 江苏矽智半导体科技有限公司 | 用于适合超大电流密度的电镀铜柱溶液及电镀方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2291590A (en) * | 1940-03-11 | 1942-07-28 | Harshaw Chem Corp | Electrodeposition of metals |
US2326999A (en) * | 1940-03-11 | 1943-08-17 | Harshaw Chem Corp | Nickel plating |
US2602774A (en) * | 1948-05-11 | 1952-07-08 | John F Beaver | Method of plating copper |
-
0
- NL NLAANVRAGE7711060,A patent/NL174178B/xx unknown
- NL NL75967D patent/NL75967C/xx active
- BE BE520210D patent/BE520210A/xx unknown
-
1952
- 1952-05-26 US US290092A patent/US2707167A/en not_active Expired - Lifetime
- 1952-11-14 GB GB28755/52A patent/GB736230A/en not_active Expired
- 1952-11-21 FR FR1071247D patent/FR1071247A/fr not_active Expired
-
1953
- 1953-05-23 DE DEU2202A patent/DE1004880B/de active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2291590A (en) * | 1940-03-11 | 1942-07-28 | Harshaw Chem Corp | Electrodeposition of metals |
US2326999A (en) * | 1940-03-11 | 1943-08-17 | Harshaw Chem Corp | Nickel plating |
US2602774A (en) * | 1948-05-11 | 1952-07-08 | John F Beaver | Method of plating copper |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2805194A (en) * | 1955-07-18 | 1957-09-03 | Dayton Bright Copper Company | Bright copper plating |
US2805193A (en) * | 1955-07-18 | 1957-09-03 | John F Beaver | Bright copper plating |
US3288690A (en) * | 1962-04-16 | 1966-11-29 | Udylite Corp | Electrodeposition of copper from acidic baths |
US3328273A (en) * | 1966-08-15 | 1967-06-27 | Udylite Corp | Electro-deposition of copper from acidic baths |
US3743584A (en) * | 1970-06-06 | 1973-07-03 | Schering Ag | Acid bright copper plating bath |
US4376685A (en) * | 1981-06-24 | 1983-03-15 | M&T Chemicals Inc. | Acid copper electroplating baths containing brightening and leveling additives |
DE3420999A1 (de) * | 1983-06-10 | 1984-12-13 | Omi International Corp., Warren, Mich. | Waessriges saures galvanisches kupferbad und verfahren zur galvanischen abscheidung eines glaenzenden eingeebneten kupferueberzugs auf einem leitfaehigen substrat aus diesem bad |
FR2547318A1 (fr) * | 1983-06-10 | 1984-12-14 | Omi Int Corp | Composition d'electrolyte et procede pour le depot electrolytique de cuivre |
US6709568B2 (en) | 2002-06-13 | 2004-03-23 | Advanced Technology Materials, Inc. | Method for determining concentrations of additives in acid copper electrochemical deposition baths |
US7872130B2 (en) | 2002-12-20 | 2011-01-18 | Atotech Deutschland Gmbh | Mixture of oligomeric phenazinium compounds and acid bath for electrolytically depositing a copper deposit |
WO2004057061A1 (en) * | 2002-12-20 | 2004-07-08 | Atotech Deutschland Gmbh | Mixture of oligomeric phenazinium compounds and acid bath for electrolytically depositing a copper deposit |
KR101094117B1 (ko) | 2002-12-20 | 2011-12-15 | 아토테크더치랜드게엠베하 | 구리 퇴적물의 전기분해적 퇴적을 위한 소중합체 페나지늄화합물의 혼합물 및 산조 |
US20050067304A1 (en) * | 2003-09-26 | 2005-03-31 | King Mackenzie E. | Electrode assembly for analysis of metal electroplating solution, comprising self-cleaning mechanism, plating optimization mechanism, and/or voltage limiting mechanism |
US20050109624A1 (en) * | 2003-11-25 | 2005-05-26 | Mackenzie King | On-wafer electrochemical deposition plating metrology process and apparatus |
US20050224370A1 (en) * | 2004-04-07 | 2005-10-13 | Jun Liu | Electrochemical deposition analysis system including high-stability electrode |
US20060102475A1 (en) * | 2004-04-27 | 2006-05-18 | Jianwen Han | Methods and apparatus for determining organic component concentrations in an electrolytic solution |
US7427344B2 (en) | 2004-04-27 | 2008-09-23 | Advanced Technology Materials, Inc. | Methods for determining organic component concentrations in an electrolytic solution |
US7435320B2 (en) | 2004-04-30 | 2008-10-14 | Advanced Technology Materials, Inc. | Methods and apparatuses for monitoring organic additives in electrochemical deposition solutions |
US20050247576A1 (en) * | 2004-05-04 | 2005-11-10 | Tom Glenn M | Electrochemical drive circuitry and method |
US7427346B2 (en) | 2004-05-04 | 2008-09-23 | Advanced Technology Materials, Inc. | Electrochemical drive circuitry and method |
US20070261963A1 (en) * | 2006-02-02 | 2007-11-15 | Advanced Technology Materials, Inc. | Simultaneous inorganic, organic and byproduct analysis in electrochemical deposition solutions |
EP2619244A4 (en) * | 2010-09-24 | 2014-06-04 | Macdermid Acumen Inc | IMPROVED METHOD FOR THE PRODUCTION OF POLYMERIC PHENAZONIUM COMPOUNDS |
Also Published As
Publication number | Publication date |
---|---|
DE1004880B (de) | 1957-03-21 |
NL174178B (nl) | |
BE520210A (en, 2012) | |
NL75967C (en, 2012) | |
FR1071247A (fr) | 1954-08-27 |
GB736230A (en) | 1955-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2707167A (en) | Electrodeposition of copper from an acid bath | |
US2707166A (en) | Electrodeposition of copper from an acid bath | |
US2882209A (en) | Electrodeposition of copper from an acid bath | |
US2750334A (en) | Electrodeposition of chromium | |
CN108456898A (zh) | 一种低浓度硫酸盐三价铬快速镀铬电镀液及其制备方法 | |
CN108350589A (zh) | 镀镍用添加剂及含有其的缎光镀镍浴 | |
US2027358A (en) | Electrodeposition of metals of the platinum group | |
US2658032A (en) | Electrodeposition of bright copper-tin alloy | |
US2770587A (en) | Bath for plating bright copper | |
US2750337A (en) | Electroplating of chromium | |
US2402185A (en) | Tin electrodepositing composition and process | |
US2469727A (en) | Electrodeposition of nickel | |
US2750335A (en) | Chromium electrodeposition | |
US2846380A (en) | Chromium electroplating | |
US2738318A (en) | Electrodeposition of copper from an acid bath | |
US3030282A (en) | Electrodeposition of copper | |
US2750336A (en) | Chromium plating | |
US2751341A (en) | Electrodeposition of lead and lead alloys | |
US2694041A (en) | Electrodeposition of nickel | |
US2541700A (en) | Electroplating copper | |
US3898138A (en) | Method and bath for the electrodeposition of nickel | |
US3051634A (en) | Baths for the production of copper electroplates | |
KR101011473B1 (ko) | pH 완충효과가 향상된 전기도금공정용 니켈 도금 조성물 | |
US2805194A (en) | Bright copper plating | |
US2758076A (en) | Bright acid copper plating |