US2521744A - Moistureproof microphone - Google Patents
Moistureproof microphone Download PDFInfo
- Publication number
- US2521744A US2521744A US627945A US62794545A US2521744A US 2521744 A US2521744 A US 2521744A US 627945 A US627945 A US 627945A US 62794545 A US62794545 A US 62794545A US 2521744 A US2521744 A US 2521744A
- Authority
- US
- United States
- Prior art keywords
- diaphragm
- electrode
- microphone
- casing
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000008187 granular material Substances 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 210000003298 dental enamel Anatomy 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R21/00—Variable-resistance transducers
- H04R21/02—Microphones
- H04R21/021—Microphones with granular resistance material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S1/00—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
- G01S1/72—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using ultrasonic, sonic or infrasonic waves
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R7/00—Diaphragms for electromechanical transducers; Cones
- H04R7/02—Diaphragms for electromechanical transducers; Cones characterised by the construction
- H04R7/12—Non-planar diaphragms or cones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R7/00—Diaphragms for electromechanical transducers; Cones
- H04R7/16—Mounting or tensioning of diaphragms or cones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R9/00—Transducers of moving-coil, moving-strip, or moving-wire type
- H04R9/06—Loudspeakers
Definitions
- This invention relates to telephone transmitters or microphones of the variable-resistance type in which granules of conductive material, usually carbon, form one or more current paths between electrodes, and are arranged to be agitated in response to applied sound.
- the invention is directed to providing microphones with protection against ingress of moisture.
- One feature of the invention comprises a microphone of the type described in which a movable electrode forms one wall of an otherwise rigidly constructed chamber which is effectively sealed against entry of moisture.
- the sensitivity of a microphone in the lower part of its frequency range is approximately inversely proportional to the total stiffness of the moving system.
- a second feature of the invention comprises a microphone of the type described, in which the electrode chamber is completely sealed against entry of moisture and in which the space behind the diaphragm is ventilated, thereby avoiding the occurrence of excess pressure on the back of the diaphragm, and reducing considerably the contribution to total stiffness of the diaphragm in association with the air space behind it.
- seals which rely on organic materials in the class of Waxes have insuflicient strength and are liable to crack, while viscous liquids except in thin films are ultimately forced out when continued pressure is applied.
- the surfaces to be sealed can be forced into intimate contact by cold flowing material, such as lead, other soft metals, and soft alloys with a thin film of viscous liquid between them to complete the joint.
- a combination of lead and rubber seals may be used. 7
- a third feature of the invention comprises a microphone of the type described, in which the joints between the several individual members forming the closed electrode chamber are protected from passage of moisture by seals of coldflowing material with thin films of viscous liquid or insertions of rubber instead of the viscous films.
- the electrode chamber of a microphone is so constructed that the electrode system is effectively sealed against entry of moisture under conditions which may cause internal excess pressures of up to 9 lbs/square inch.
- the electrode system is also completely sealed against entry of moisture such conditions which may cause external excess pressures of up to 9 lbs/square inch.
- the device will operate effectively under conditions which may cause internal excess pressures, of up to 5 lbs/square inch.
- Fig. 1 is a cross-sectional side elevation of a microphone
- Fig. 2 is a back view of the microphone shown in Fig. 1;
- Fig. 3 is a cross-sectional side elevation of the electrode chamber of a modified form of the microphone shown in Figs. 1 and 2.
- the capsule casing I forms both the electrode and carbon granule chamber and also the support for the diaphragm Ill.
- the back electrode 3 is mounted in an electrode holder 2 passing through an aperture in the casing I insulated by mica washers 4 and secured in position by metal washers 5 and a pressed lead seal 6.
- a thin film of viscous material is applied between all jointing surfaces external to the casing 1.
- the front electrode 1 is a flat metal circular disc formed with a central dome 8.
- the front electrode material could be any metal with a suitable surface; gold, platinum or rhodium plating would be satisfactory, or a carbonised surface as described in British Specification No. 526,212. It has been found, however, that carbonised nickel provides a suitable surface and that this material can be formed without damage to the carbon surface, so that the finished electrode is in a work hardened condition.
- the front electrode is sealed into a seating in the casing I by a lead seal 9 engaging a groove in the seating, and a thin viscous film.
- the diaphragm I is mounted on the casing I in known manner by the ring I2 and cover I3.
- the centre of the diaphragm is apertured and formed into a cylindrical or conical ring II with a serrated edge of a diameter such that it fits into the domed portion of the front electrode.
- the casing I is formed with holes N, Fig. 2, ventilating theback of the diaphragm.
- a unit comprising an annular spring plate I4 and a wire gauze annulus I is mounted on the back of the casing I by a bayonet joint in known manner, grooves in the plate I4 engaging pips I9 on the casing.
- the plate I4 has apertures I6 opposite the holes I! in the casing.
- the seals 6 and 9 are formed by pressure of the order of 4 to 5 tons per square inch at which pressure the lead flows and moulds the contacting surfaces intimately together.
- the holes II in the casing I not only reduce air stiffness behind the diaphragm but also allow water to be easily shaken out if for instance the transmitter has been immersed in water.
- the construction of the diaphragm and the method of assembling the diaphragm to the front electrode obviate the necessity for fine assembly limits and can also prevent increase in stilfness of the mechanical system arising from opposing stresses in the diaphragm and electrode.
- teeth II may be fixed to the front electrode dome 8 by sealing material to prevent easy passage of breath moisture through the joint into the transmitter case.
- the diaphragm is of light metal enamel finished on both sides, the electrical circuit is not, in this transmitter, through the diaphragm itself.
- the internal surface of the electrode chamber is enamelled, but the seating surface for the front electrode is kept free of enamel to form electrical contact between the front electrode and the casing which acts as one terminal, the other being the interior surface of the hole in the back electrode which is well plated internally for this purpose.
- the lead seals and adjacent surfaces are painted externally with sealing compound to form a continuous film free from pin-holes.
- the holder 2 for the back electrode is cut away at I8 to receive a. rubber sealing ring which will be substantially deformed on assembly. Rubber sealing could also be added for the front electrode. The rubber seal would obviate the necessity for viscous films between jointing surfaces.
- the centre portion ZI of the diaphragm I0 is not cylindrical or serrated, and it is in spring contact with the lip of the domed portion 8 of electrode 1.
- Microphones according to the invention are capable of withstanding extremes of damp heat and dry heat, very low temperatures, conditions of condensation due to rapid change of air temperature, driving rain etc., immersion in water, and high altitudes, while retaining a high standard of efliciency, and freedom from carbon granule packing troubles.
- the additional stiffness of the mechanical system due to the method of assembling the diaphragm to the front electrode is offset by the elimination of air stiffness by ventilating the back of the diaphragm.
- the ventilation avoids the occurrence of excess pressure on the diaphragm, and reduces considerably the contribution to total stiffness, of the diaphragm in association with the air space behind it.
- an electro-acoustic transducer of the carbon granule type having a rigid housing including a back electrode for holding the granules closed by a flexible disc constituting the front electrode received within an annular axially extending shoulder formed integrally on said housin the improvement that comprises an annulus of coldflowing metal within said annular shoulder pressing against the outer surface of said front electrode and. engaging with an annular groove formed on the inner surface of said shoulder whereby the housing is eif ectively sealed against entry of moisture.
- annulus of cold-flowing metal is formed of lead.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
- Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
- Details Of Audible-Bandwidth Transducers (AREA)
- Toys (AREA)
- Piezo-Electric Transducers For Audible Bands (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB15574/44A GB594082A (en) | 1945-08-27 | 1944-08-15 | Improvements in or relating to microphones |
GB21942/45A GB616158A (en) | 1944-08-15 | 1945-08-27 | Improvements in or relating to electro-acoustic devices |
GB2131/47A GB631970A (en) | 1944-08-15 | 1947-01-23 | Improvements in or relating to acoustic diaphragms |
Publications (1)
Publication Number | Publication Date |
---|---|
US2521744A true US2521744A (en) | 1950-09-12 |
Family
ID=36952628
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US627945A Expired - Lifetime US2521744A (en) | 1944-08-15 | 1945-11-10 | Moistureproof microphone |
US704965A Expired - Lifetime US2539488A (en) | 1944-08-15 | 1946-10-22 | Electroacoustic diaphragm coupling |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US704965A Expired - Lifetime US2539488A (en) | 1944-08-15 | 1946-10-22 | Electroacoustic diaphragm coupling |
Country Status (6)
Country | Link |
---|---|
US (2) | US2521744A (en:Method) |
BE (3) | BE477474A (en:Method) |
CH (2) | CH271258A (en:Method) |
DE (3) | DE873103C (en:Method) |
FR (3) | FR939111A (en:Method) |
GB (1) | GB631970A (en:Method) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140126762A1 (en) * | 2012-11-02 | 2014-05-08 | Robert Bosch Gmbh | Component having a micromechanical microphone structure |
USD964321S1 (en) | 2019-08-23 | 2022-09-20 | Tymphany Acoustic Technology Limited | Waveguide |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU107204B (en) * | 1904-07-15 | 1905-06-27 | And | Improvements inthe wheels of steam or gas turbines |
US1141107A (en) * | 1902-01-27 | 1915-06-01 | Kellogg Switchboard & Supply | Telephone-transmitter. |
US1226886A (en) * | 1913-05-13 | 1917-05-22 | New Jersey Patent Co | Telephone-transmitter. |
US1352939A (en) * | 1917-02-24 | 1920-09-14 | Western Electric Co | Telephone-transmitter |
US1943425A (en) * | 1931-12-26 | 1934-01-16 | Kellogg Switchboard & Supply | Diaphragm |
GB425186A (en) * | 1933-11-24 | 1935-03-08 | Alfred Graham & Co Ltd | Improvements relating to telephones |
GB425558A (en) * | 1933-10-26 | 1935-03-18 | Alfred Graham & Co Ltd | Improvements relating to telephones |
US2042822A (en) * | 1933-05-11 | 1936-06-02 | Bell Telephone Labor Inc | Telephone transmitter |
US2069242A (en) * | 1933-01-19 | 1937-02-02 | George A Graham | Electroacoustic energy converting system |
US2191992A (en) * | 1937-03-31 | 1940-02-27 | Int Standard Electric Corp | Telephone transmitter |
US2293078A (en) * | 1939-12-05 | 1942-08-18 | B A Proctor Company Inc | Microphone |
US2410528A (en) * | 1940-10-26 | 1946-11-05 | Soldan Otto | Microphone |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1869230A (en) * | 1929-08-16 | 1932-07-26 | Philadelphia Storage Battery | Electrical element |
US1848433A (en) * | 1929-09-09 | 1932-03-08 | Magnavox Co | Loud speaker element |
US1846351A (en) * | 1930-06-13 | 1932-02-23 | Murkham Leonard Walter | Electrodynamic sound-reproducing device |
US1930328A (en) * | 1933-01-25 | 1933-10-10 | Tichenor | Sound reproducing diaphragm |
US2043833A (en) * | 1934-11-12 | 1936-06-09 | Abraham I Klotz | Protecting framing for brief cases |
-
0
- BE BE482597D patent/BE482597A/xx unknown
-
1945
- 1945-11-10 US US627945A patent/US2521744A/en not_active Expired - Lifetime
-
1946
- 1946-04-03 FR FR939111D patent/FR939111A/fr not_active Expired
- 1946-08-10 CH CH271258D patent/CH271258A/fr unknown
- 1946-10-22 US US704965A patent/US2539488A/en not_active Expired - Lifetime
-
1947
- 1947-01-23 GB GB2131/47A patent/GB631970A/en not_active Expired
- 1947-11-20 BE BE477474D patent/BE477474A/xx unknown
- 1947-12-02 FR FR57814D patent/FR57814E/fr not_active Expired
- 1947-12-17 BE BE478254D patent/BE478254A/xx unknown
-
1948
- 1948-01-22 FR FR58186D patent/FR58186E/fr not_active Expired
- 1948-01-23 CH CH263325D patent/CH263325A/de unknown
-
1950
- 1950-10-01 DE DEST2537A patent/DE873103C/de not_active Expired
- 1950-10-01 DE DEST2548A patent/DE940654C/de not_active Expired
- 1950-10-31 DE DEST2523A patent/DE862768C/de not_active Expired
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1141107A (en) * | 1902-01-27 | 1915-06-01 | Kellogg Switchboard & Supply | Telephone-transmitter. |
AU107204B (en) * | 1904-07-15 | 1905-06-27 | And | Improvements inthe wheels of steam or gas turbines |
US1226886A (en) * | 1913-05-13 | 1917-05-22 | New Jersey Patent Co | Telephone-transmitter. |
US1352939A (en) * | 1917-02-24 | 1920-09-14 | Western Electric Co | Telephone-transmitter |
US1943425A (en) * | 1931-12-26 | 1934-01-16 | Kellogg Switchboard & Supply | Diaphragm |
US2069242A (en) * | 1933-01-19 | 1937-02-02 | George A Graham | Electroacoustic energy converting system |
US2042822A (en) * | 1933-05-11 | 1936-06-02 | Bell Telephone Labor Inc | Telephone transmitter |
GB425558A (en) * | 1933-10-26 | 1935-03-18 | Alfred Graham & Co Ltd | Improvements relating to telephones |
GB425186A (en) * | 1933-11-24 | 1935-03-08 | Alfred Graham & Co Ltd | Improvements relating to telephones |
US2191992A (en) * | 1937-03-31 | 1940-02-27 | Int Standard Electric Corp | Telephone transmitter |
US2293078A (en) * | 1939-12-05 | 1942-08-18 | B A Proctor Company Inc | Microphone |
US2410528A (en) * | 1940-10-26 | 1946-11-05 | Soldan Otto | Microphone |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140126762A1 (en) * | 2012-11-02 | 2014-05-08 | Robert Bosch Gmbh | Component having a micromechanical microphone structure |
US8929584B2 (en) * | 2012-11-02 | 2015-01-06 | Robert Bosch Gmbh | Component having a micromechanical microphone structure |
USD964321S1 (en) | 2019-08-23 | 2022-09-20 | Tymphany Acoustic Technology Limited | Waveguide |
USD966235S1 (en) * | 2019-08-23 | 2022-10-11 | Tymphany Acoustic Technology Limited | Waveguide |
USD977457S1 (en) | 2019-08-23 | 2023-02-07 | Tymphany Acoustic Technology Limited | Waveguide |
USD986857S1 (en) | 2019-08-23 | 2023-05-23 | Tymphany Acoustic Technology Limited | Waveguide |
Also Published As
Publication number | Publication date |
---|---|
CH263325A (de) | 1949-08-31 |
DE873103C (de) | 1953-04-09 |
FR58186E (fr) | 1953-09-29 |
BE482597A (en:Method) | |
CH271258A (fr) | 1950-10-15 |
BE477474A (fr) | 1948-05-20 |
FR57814E (fr) | 1953-09-17 |
DE940654C (de) | 1956-03-22 |
FR939111A (fr) | 1948-11-04 |
BE478254A (fr) | 1948-05-17 |
US2539488A (en) | 1951-01-30 |
DE862768C (de) | 1953-01-12 |
GB631970A (en) | 1949-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2644902A (en) | Electrokinetic device and electrode arrangement therefor | |
US3573394A (en) | Piezoelectric microphone with biasing means | |
US2714703A (en) | Transducer | |
GB1335415A (en) | Disc-shaped semiconductor device and method for manufacturing same | |
US2521744A (en) | Moistureproof microphone | |
US2042822A (en) | Telephone transmitter | |
US3130275A (en) | Microphone | |
US3278695A (en) | Construction of earphones and microphones | |
US2518331A (en) | Piezoelectric crystal mounting | |
US2191992A (en) | Telephone transmitter | |
US2410806A (en) | Submarine signal detector | |
US2225488A (en) | Impulse translating apparatus | |
US2345078A (en) | Carbon microphone | |
US2585052A (en) | Granule type acoustic transducer | |
US2429988A (en) | Temperature compensated microphone | |
US1352939A (en) | Telephone-transmitter | |
US2250781A (en) | Microphone | |
US1565581A (en) | Telephone transmitter | |
US2567368A (en) | Telephone transmitter | |
US2532694A (en) | Telephone transmitter having frustoconical back electrode | |
US2748882A (en) | Electro-acoustic transducers | |
US2302278A (en) | Carbon microphone | |
US2774438A (en) | Mechanical damping means for the diaphragms of microphones, speakers, and the like | |
US2667552A (en) | Spot detector | |
US2179733A (en) | Microphone |