US20230294627A1 - Omni-wheel cable pusher - Google Patents
Omni-wheel cable pusher Download PDFInfo
- Publication number
- US20230294627A1 US20230294627A1 US17/655,370 US202217655370A US2023294627A1 US 20230294627 A1 US20230294627 A1 US 20230294627A1 US 202217655370 A US202217655370 A US 202217655370A US 2023294627 A1 US2023294627 A1 US 2023294627A1
- Authority
- US
- United States
- Prior art keywords
- frame
- wheel
- wheels
- cable
- mount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009987 spinning Methods 0.000 claims description 16
- 238000002059 diagnostic imaging Methods 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 3
- 230000001012 protector Effects 0.000 abstract description 26
- 230000000712 assembly Effects 0.000 abstract description 6
- 238000000429 assembly Methods 0.000 abstract description 6
- 238000003384 imaging method Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013170 computed tomography imaging Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R19/00—Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
- B60R19/54—Obstruction removers or deflectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/44—Constructional features of apparatus for radiation diagnosis
- A61B6/4405—Constructional features of apparatus for radiation diagnosis the apparatus being movable or portable, e.g. handheld or mounted on a trolley
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/56—Details of data transmission or power supply, e.g. use of slip rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S9/00—Ground-engaging vehicle fittings for supporting, lifting, or manoeuvring the vehicle, wholly or in part, e.g. built-in jacks
- B60S9/14—Ground-engaging vehicle fittings for supporting, lifting, or manoeuvring the vehicle, wholly or in part, e.g. built-in jacks for both lifting and manoeuvring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62B—HAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
- B62B5/00—Accessories or details specially adapted for hand carts
- B62B5/0006—Bumpers; Safety devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62B—HAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
- B62B5/00—Accessories or details specially adapted for hand carts
- B62B5/0083—Wheeled supports connected to the transported object
- B62B5/0086—Wheeled supports connected to the transported object arranged independently on either side of the transported load
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/44—Constructional features of apparatus for radiation diagnosis
- A61B6/4429—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
- A61B6/4435—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
- A61B6/4441—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60B—VEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
- B60B2200/00—Type of product being used or applied
- B60B2200/20—Furniture or medical appliances
- B60B2200/26—Medical appliances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R19/00—Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
- B60R2019/002—Wheel guards
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62B—HAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
- B62B2301/00—Wheel arrangements; Steering; Stability; Wheel suspension
- B62B2301/34—Protection against mud, e.g. by retracting or enclosing the wheels
Definitions
- the present application relates generally to cable protection systems, and more particularly, to cable pushers configured to protect cables lying on the floor from damage by wheels of a moveable system.
- the healthcare industry utilizes a number of mobile systems for patient care.
- mobile three-dimensional imaging systems, robotic systems, and/or navigation systems may be used in operating rooms, procedure rooms, intensive care units, emergency departments, ambulatory surgery centers, physician offices, or the like. These moveable systems may be very useful during surgery or other procedures.
- the imaging, robotic, and/or navigation systems may be moveable via a set of wheels.
- omni-directional wheels may be used to allow for multiple-axis movement of the system.
- Omni-directional wheels provide for all of the desired degrees of freedom similar to conventional casters but without swiveling.
- the moveable nature of the equipment can pose the problem of potentially damaging nearby cables on the floor. While moving the equipment, the wheels may inadvertently run over cables or leads from various angles including laterally, and the wheels may cause damage to the cables or leads. Accordingly, there is a need to protect various cables and leads lying on the floor from this type of damage.
- the cable protection system may utilize features on three of the four sides of each wheel configured to contact and push nearby cables while not allowing them to wander under the wheel.
- the cable protector device is adaptable to omni-type wheels that provide for multiple-axis movement of the system.
- the cable protection system protects the wheels from various cables and leads lying flat or slightly raised from the floor that could migrate under the equipment.
- the cable protection system may push the cables, leads, or wires out of the way, thereby preventing any damage.
- a cable protection system includes a moveable system with a plurality of wheels for moving the moveable system across a floor, and a cable pusher attached to each of the plurality of wheels.
- Each cable pusher may include a frame with a pair of deflector legs configured to be positioned in front of and behind each wheel in close proximity to the floor.
- the cable pusher may be magnetically secured to the wheel.
- the deflector legs may magnetically connect to the frame. As the wheels spin or rotate, the frame and deflector legs remain stationary, thereby pushing obstacles (such as cables, wires, or leads) out of the way.
- Each deflector leg may include an elongate leg and a shoulder configured to mate with the frame.
- the shoulder may transition to the leg with a bent portion that positions the leg transverse to the shoulder and the frame when connected thereto.
- the shoulder may be bifurcated into two branches by a window, and magnets may be positioned in the two branches of the shoulder.
- the pair of deflector legs may be aligned in parallel to one another.
- the frame may include an upper hub configured to engage with a wheel hub of the wheel, a pair of angled arms extending distally, and a base connecting the angled arms.
- the upper hub of the frame may house a spinning magnet constrained inside a magnet retainer such that the spinning magnet attracts to a magnet on the wheel.
- the cable pusher may be attached to the wheel with a mount including a revolving central shaft and a pair of blades positioned on opposite sides of the central shaft.
- the wheels may be omni-directional wheels configured to allow for multiple-axis movement of the moveable system.
- the moveable system may be medical equipment, such as an imaging system, robotic system, and/or navigation system.
- a cable pusher assembly includes a frame, first and second deflector legs, and a target mount.
- the frame includes an upper hub, a pair of angled arms, and a base connecting the angled arms.
- the base includes first and second connection areas each including north and south magnets.
- the first and second deflector legs each include north and south magnets configured to magnetically attract to the opposite north and south magnets of the first and second connection areas, respectively, thereby securing the first and second deflector legs to the first and second connection areas of the frame.
- the target mount includes a revolving central shaft and a pair of blades positioned on opposite sides of the central shaft.
- the upper hub of the frame houses a spinning magnet constrained inside a magnet retainer.
- the cable pusher assembly may include one or more of the following features.
- the central shaft may include an outward projection on a front face of the mount receivable in a seat defining a cavity for the projection.
- the target mount including the central shaft, the seat, the spinning magnet, and the magnet retainer may be coaxially aligned along a central axis.
- the base and the deflector legs may include one or more indicators identifying the north and south magnets such that the magnets attract when the deflector legs are correctly positioned against the frame (and repel if not aligned properly).
- the magnets may be disc magnets or other suitable polar magnets.
- a cable protection system includes a moveable system, a cable pusher, and a lifting jack.
- the moveable system includes a plurality of wheels for moving the moveable system across a floor.
- the cable pusher is attachable to one or more of the plurality of wheels.
- the cable pusher includes a frame with a pair of deflector legs and a mount including a revolving central shaft and a pair of blades positioned on opposite sides of the central shaft.
- the lifting jack is attachable to one or more of the plurality of wheels.
- the lifting jack includes a jack mount and a dolly. The lifting jack is configured to lift the wheel off the floor and allow for movement of the moveable system using the dolly.
- the cable protection system may include one or more of the following features.
- the central shaft of the mount may include an outward projection defining a threaded portion configured to theadedly interface with the jack mount.
- the mount may be securable to the wheel with nuts positioned through openings in the blades of the mount.
- the lifting jack may include a jacking bolt to raise and lower the wheel.
- the dolly may include a plate with a plurality of caster wheels. The lifting jack and dolly may allow for the moveable system to be manually maneuvered upon power loss.
- FIG. 1 shows a perspective view of a cable protector coupled to an omni-directional wheel of a moveable system according to one embodiment
- FIGS. 2 A- 2 B show a moveable station and gantry for three-dimensional imaging according to one embodiment
- FIG. 3 is a perspective view of the cable protector according to one embodiment
- FIG. 4 shows the cable protector mounted to the wheel hub of the omni-wheel of the moveable system according to one embodiment
- FIG. 5 shows a partial cross-sectional view of the cable protector with the magnetically attracted mount and constrained spinning magnet according to one embodiment
- FIGS. 6 A- 6 B show break-away magnetically-attracted deflector legs according to one embodiment
- FIG. 7 shows the target mount of the cable protector mounted to the front of the omni-wheel according to one embodiment
- FIG. 8 shows a jack mount screwed onto the target mount for supporting a dolly system according to one embodiment
- FIG. 9 shows the omni-wheel lifted off the floor via the dolly system according to one embodiment.
- Embodiments of the disclosure are generally directed to cable protection devices, assemblies, and systems. Specifically, embodiments are directed to cable protectors or pushers that prevent damage to cables, wires, or leads lying on the floor.
- the cable protectors may be provided on each wheel of moveable equipment to prevent the wheels from rolling over or catching the cables.
- the cable protectors may be especially suitable for moveable medical equipment, such as portable medical imaging systems, robotic systems, navigation systems, and the like, although it will be appreciated that the cable protectors may also be used on the wheels of moveable equipment in other applications and industries.
- the cable protection system 10 is configured to be attached to one or more wheels 12 of moveable medical equipment 14 .
- the cable protection system 10 may be provided on each of the wheels 12 of the equipment 14 .
- the cable protection system 10 is configured to protect any cable on or near the floor when the medical equipment 14 is moved about the room (e.g., the operating room).
- the cables may include any cables, wires, or leads in the room, for example, having a protective casing and used for transmitting electricity or telecommunication signals.
- the cable protection system 10 prevents the tangling or pinching of cables routed along the floor.
- the cable protection system 10 comes into contact with objects first to avoid interference with the wheels 12 by pushing the obstacles out of the way.
- the cable protection system 10 may be configured to push or guide any cables out of the path of the wheels 12 , thereby preventing the wheels 12 from rolling over the cable or the cable getting caught up into the wheels 12 .
- the medical equipment 14 may include a medical imaging system, such as a computerized tomographic (CT) x-ray scanner, including a moveable station 20 and a gantry 22 .
- the movable station 20 may include two front wheels 12 and two rear wheels 12 , which together provide movement of the movable station 20 in any direction in an X-Y plane.
- the gantry 22 may include a first C-arm and a second C-arm slidably coupled to the first C-arm, which are configured to provide imaging modalities including but not limited to, fluoroscopy, 2D radiography, cone-beam CT, and magnetic resonance imaging (MRI).
- MRI magnetic resonance imaging
- the wheels 12 may include omni-directional wheels, which allow for the movable station 20 to be positioned in all three degrees of freedom about the horizontal plane (X, Y, Wag).
- the omni-directional wheels 12 allow for positioning in tight spaces, narrow corridors, or for precisely traversing up and down the length of an operating room table or patient bed.
- the omni-directional wheels 12 may have a central hub 24 with a plurality of smaller wheels or rollers 26 on or around its circumference.
- the smaller wheels 26 may be mounted at an angle to the central axis of the hub 24 , thereby allowing for movement in any direction.
- Each wheel 12 may be powered individually to guide the portable medical imaging cart 20 in the desired direction. Further details of suitable types of omni-directional wheels 12 are provided in U.S. Pat. No. 10,842,453, which is incorporated by reference herein in its entirety for all purposes.
- the medical equipment 14 is configured to move about the room via wheels 12 .
- the equipment 14 may be moved by a person and/or with motor control.
- Cable protectors or pushers 10 may be provided on each wheel 12 to prevent contact between the wheels 12 and the cables.
- the cable pushers 10 may push or move the cables out of the way as the medical equipment 14 moves about the room.
- the cable protector assembly 10 includes a frame 30 with one or more deflector legs 32 .
- the frame 30 includes an upper hub 34 configured to engage with the wheel hub 24 of the wheel 12 .
- the outer body of the upper hub 34 may be generally rounded or curved.
- the upper hub 34 may have a generally cylindrical body.
- the frame 30 may include a pair of angled arms 36 extending downwardly or distally. Each arm 36 may be angled about 20-45°, about 30-45°, or about 30° from a central longitudinal axis of the frame 30 .
- the angled arms 36 may form a generally triangular or A-frame type configuration for the frame 30 .
- each arm 36 may be connected to one another with a base 38 .
- the frame 30 may define a cutout 40 between the hub 34 , arms 36 , and base 38 .
- the cutout 40 may be generally straight along arms 36 and curved along hub 34 and base 38 .
- the curved portion of the cutout 40 along the base 38 may be concave and the curved portion of the cutout 40 along the hub 34 may be convex.
- the base 38 may be segmented with a first connection portion 42 near the distal end of the first arm 36 and a second connection portion 42 near the distal end of the second arm 36 .
- the connection portions 42 are configured to secure first and second deflector legs 32 , respectively.
- a central portion of the base 38 between the two connection portions 42 may be configured to contact or be in close proximity to the floor.
- the frame 30 has an outward-facing face 44 and an opposite inward facing face 46 .
- the inward face 46 is configured to face toward the wheel hub 24 when the cable protector 10 is attached to the wheel 12 .
- the outward face 44 may have a generally planar surface.
- the components of the frame 30 may be formed from a solid material or may be separate components that are joined together, for example, with pins, adhesive, or the like.
- the cable protector 10 may be formed from metals, such as steel, aluminum, or iron; plastics, such as polyurethane or polyvinylchloride; rubber; or combinations thereof.
- Each deflector leg 32 includes an elongate blade or leg 50 and a shoulder 52 .
- the shoulder 52 includes connection portion 54 configured to mate with the corresponding connections portions 42 on the frame 30 .
- the shoulder 52 transitions to the leg 50 with an angled or bent portion 56 .
- the bent portion 56 may be offset to one side of the shoulder 52 .
- the bent portion 56 positions the leg 50 transverse to the shoulder 52 and body of the frame 30 when connected thereto.
- the bent portion 56 may be angled about 80-100°, or about 90° such that the leg 50 extends generally perpendicular to the shoulder 52 and body of the frame 30 when connected thereto.
- Each blade or leg 50 terminates at a free end 58 .
- the leg 50 When the cable protector 10 is attached to the wheel 12 , the leg 50 is configured to extend back and under the wheel 12 .
- the length of the leg 50 may be equal to or greater than the width of the wheel 12 , thereby providing adequate protection to the wheel 12 .
- the legs 50 With two legs 32 attached to the frame 30 (i.e., left and right deflector legs 32 ), the legs 50 are positioned in front of and behind the wheel 12 , respectively.
- the pair of legs 50 may be aligned generally in parallel to one another.
- Each leg 50 also has a height configured to block any cables or leads lying on or near the floor.
- the legs 50 may be slightly angled away from one another such that the top of each leg 50 is further away from one another and the bottom of each leg 50 closer together. In this manner, the legs 50 protect the wheel 12 during travel in any direction.
- each shoulder 52 may define a cutout or window 60 .
- the window 60 may bifurcate the shoulder 52 into two branches configured to receive the magnets 90 , 92 .
- the window 60 may form an arch shape with rounded corners.
- the connection portion 54 may form a flat face configured to mate against a corresponding flat face of the connection portion 42 on the frame 30 .
- notches 62 may be defined between the shoulder 52 and the base 38 of the frame 30 .
- the notches 62 may be generally triangular in shape.
- the notches 62 may be formed on the underside of the cable protector assembly 10 , thereby providing clearance from the floor.
- the cable pusher assembly 10 may be attached to the wheel 12 with a mount 70 .
- the mount 70 may form a spinning target mount including a revolving central shaft 72 with one or more blades 74 .
- the central shaft 72 may include a projection 73 on the front face of the mount 70 .
- the projection 73 may define a circular or cylindrical interface.
- a pair of blades 74 are aligned with one another on opposite sides of the shaft. 72 .
- the mount 70 may include a suitable number of blades 74 or other geometry to secure the cable pusher assembly 10 to the wheel assembly 12 .
- the mount 70 When attached to the wheel 12 , the mount 70 is configured to revolve such that the mount 70 keeps pace with the revolution of the wheel 12 while holding the frame 30 and legs 32 steady.
- the mount 70 may be secured to the wheel 12 with one or more fastening mechanisms. In one embodiment, the mount 70 is magnetically attracted to the wheel hub 24 . In this manner, the cable pusher assembly 10 can be easily attached and removed by hand, without any tools.
- the mount 70 may also be attached with one or more fasteners, such as screws, bolts, or nuts 104 . Openings 76 may be provided near the free end of each blade 74 . The openings 76 may be configured to receive the respective fasteners, thereby allowing the mount 70 to be optionally bolted to the wheel hub 24 .
- the mount 70 allows for the deflector legs 32 to hang slightly off the floor vertically and stationary while the wheel 12 spins. This may be accomplished using the magnetically attracted mount 70 with an internally constrained spinning magnet 78 .
- the spinning magnet 78 may be held inside a magnet retainer 80 .
- the internally constrained spinning magnet 78 may be positioned inside the hub 34 of the frame 30 .
- the magnet retainer 80 may have a threaded interface 82 with the frame hub 34 .
- the internally constrained spinning magnet 78 acts as a shaft that attracts to a ferrous target on the wheel's center hub 24 .
- the mount 70 may be separated from the frame 30 and magnetically attracted to the frame 30 via the constrained magnet 78 .
- the outward projection 73 of the mount 70 is receivable in a seat 84 which defines a cavity for receiving the projection 73 .
- the seat 84 may be sandwiched between the projection 73 and the constrained magnet 78 .
- the mount 70 including shaft 72 , seat 84 , spinning magnet 78 , and magnet retainer 80 may be coaxially aligned along central axis A.
- the spinning magnetic target mount 70 magnetically attaches to the wheel hub 24 .
- the central axis A is aligned to and corresponds with the central rotational axis of the wheel hub 24 .
- the frame 30 and deflector legs 32 remain stationary, thereby pushing any obstacles out of the way.
- the cable pusher assembly 10 is configured to easily detach as a whole from each wheel 12 so that the cable pusher assemblies 10 can be quickly removed prior to traversing over a fixed or rigid obstacle, such as a threshold.
- each deflector leg 32 may utilize a magnetic break-away interface in order to prevent serious damage to the equipment 14 as well as the cable pusher assembly themselves. Upon impact, the deflector legs 32 may detach while the main frame 30 rotates on the wheel 12 . A quick reassembling and mounting gets the deflector legs 32 back to being operational.
- each connection portion 42 , 54 may include magnetic attachment points with one or more magnets 86 , 88 , 90 , 92 .
- the frame 30 may include a north magnet 86 and a south magnet 88 .
- the shoulder 52 may include a north magnet 90 and a south magnet 92 .
- the magnets 86 , 88 , 90 , 92 may include polar magnets, such as cylinder magnets, disc magnets, bar magnets, rings magnets, etc. It will be appreciated that the locations of north and south magnets may be reversed, the number of magnets may be changed, and the positions of the magnets may be otherwise configured to magnetically attach the deflector legs 32 to the frame 30 .
- connection portions 42 , 54 may include one or more indictors 94 to identify the polarity of the magnets 86 , 88 , 90 , 92 and/or the proper positioning of the deflector legs 32 relative to the frame 30 .
- the north and south magnetic attachment points may be arranged and marked in such a way that correct positioning of the left and right deflector legs 32 occur by attracting when correct and repelling when incorrect.
- the cable pusher target mount 70 allows for attachment of a lifting jack 100 in addition to the cable pushers 10 .
- the target mount 70 that supports the cable pusher assembly 10 magnetically via its front face may also include a threaded interface 102 that can support additional attachments, such as lifting jack 100 .
- the projection 73 on the target mount 70 may include a threaded section 102 with one or more threads around a periphery of the projection 73 configured to mate with corresponding threads on the jack 100 .
- the mount 70 is attached to the wheel hub 24 with nuts 104 secured through openings 76 in the blades 74 of the mount 70 .
- the lifting jack 100 may be secured to the target mount 70 via the threaded interface.
- the lifting jack 100 may include a jack mount 106 , which is shown screwed onto the target mount 70 , and a dolly 108 .
- the dolly 108 may include a plate 110 with a plurality of wheels 112 bolted to the plate 110 .
- the dolly wheels 112 may include a pair of caster wheels, for example.
- the lifting jack 100 may utilize a jacking bolt 114 to raise and lower the wheel 12 .
- an instrument 116 such as a socket wrench, may be used to turn the jacking bolt 114 , thereby raising wheel 112 .
- FIG. 9 an instrument 116 , such as a socket wrench
- the omni-wheel 12 is lifted off the floor, thereby allowing for movement of the equipment 14 using the dolly 108 . This may be especially helpful in the event of power loss of the moveable system 14 . Due to its large mass and the type of omni-wheels 12 , the system 14 may be difficult to move manually. By jacking up the two rear wheels 12 , for example, via the lifting jack 100 and wheel dolly 108 system, the movable system 14 is more easily maneuvered manually upon power loss. The lifting jack 100 and wheel dolly 108 may assist in the manual movement of the moveable system 14 .
- the cable protection assembly is configured to protect cables lying on or near the floor from damage by wheels of a moveable system, such as an imaging system.
- the cable protectors may be especially suitable for use with omni-type wheels that provide for multiple-axis movement of the moveable system.
- the cable protectors eliminate the need to reach under the wheel to assemble the assembly. Therefore, these cable protectors are less dangerous than snap-together sliding floor ring type protectors used for standard swivel casters.
- the cable protectors greatly reduce opportunities for breakage of the protectors even upon sudden contact due to the break-away magnetic deflector legs. Minimal sliding contact on the wheels and floor greatly reduce wear and noise since the assemblies hang a slight distance from the floor. Due to the magnetic interface, no tools are required for mounting the cable protectors to the wheels or re-assembling after a collision.
- the cable pusher mount also provides an additional interface for other attachments, such as a wheel jacks.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- High Energy & Nuclear Physics (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Computer Networks & Wireless Communication (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Cable protector devices, assemblies, and systems. The cable protection system may include a moveable system with wheels for moving the moveable system across a floor and a cable pusher attached to each of the wheels. Each cable pusher may include a frame with a pair of deflector legs configured to be positioned in front of and behind each wheel in close proximity to the floor. The cable pusher may be magnetically secured to the wheel, and the deflector legs may magnetically connect to the frame. As the wheels spin or rotate, the frame and deflector legs remain stationary, thereby pushing obstacles out of the way.
Description
- The present application relates generally to cable protection systems, and more particularly, to cable pushers configured to protect cables lying on the floor from damage by wheels of a moveable system.
- The healthcare industry utilizes a number of mobile systems for patient care. In particular, mobile three-dimensional imaging systems, robotic systems, and/or navigation systems may be used in operating rooms, procedure rooms, intensive care units, emergency departments, ambulatory surgery centers, physician offices, or the like. These moveable systems may be very useful during surgery or other procedures.
- The imaging, robotic, and/or navigation systems may be moveable via a set of wheels. In some cases, omni-directional wheels may be used to allow for multiple-axis movement of the system. Omni-directional wheels provide for all of the desired degrees of freedom similar to conventional casters but without swiveling. However, the moveable nature of the equipment can pose the problem of potentially damaging nearby cables on the floor. While moving the equipment, the wheels may inadvertently run over cables or leads from various angles including laterally, and the wheels may cause damage to the cables or leads. Accordingly, there is a need to protect various cables and leads lying on the floor from this type of damage.
- To meet this and other needs, cable protection devices, assemblies and systems, moveable systems with cable protectors on the wheels, and methods of installing and using the same are provided. In particular, the cable protection system may utilize features on three of the four sides of each wheel configured to contact and push nearby cables while not allowing them to wander under the wheel. The cable protector device is adaptable to omni-type wheels that provide for multiple-axis movement of the system. The cable protection system protects the wheels from various cables and leads lying flat or slightly raised from the floor that could migrate under the equipment. The cable protection system may push the cables, leads, or wires out of the way, thereby preventing any damage.
- According to one embodiment, a cable protection system includes a moveable system with a plurality of wheels for moving the moveable system across a floor, and a cable pusher attached to each of the plurality of wheels. Each cable pusher may include a frame with a pair of deflector legs configured to be positioned in front of and behind each wheel in close proximity to the floor. The cable pusher may be magnetically secured to the wheel. The deflector legs may magnetically connect to the frame. As the wheels spin or rotate, the frame and deflector legs remain stationary, thereby pushing obstacles (such as cables, wires, or leads) out of the way.
- The cable protection system may include one or more of the following features. Each deflector leg may include an elongate leg and a shoulder configured to mate with the frame. The shoulder may transition to the leg with a bent portion that positions the leg transverse to the shoulder and the frame when connected thereto. The shoulder may be bifurcated into two branches by a window, and magnets may be positioned in the two branches of the shoulder. The pair of deflector legs may be aligned in parallel to one another. The frame may include an upper hub configured to engage with a wheel hub of the wheel, a pair of angled arms extending distally, and a base connecting the angled arms. The upper hub of the frame may house a spinning magnet constrained inside a magnet retainer such that the spinning magnet attracts to a magnet on the wheel. The cable pusher may be attached to the wheel with a mount including a revolving central shaft and a pair of blades positioned on opposite sides of the central shaft. The wheels may be omni-directional wheels configured to allow for multiple-axis movement of the moveable system. The moveable system may be medical equipment, such as an imaging system, robotic system, and/or navigation system.
- According to another embodiment, a cable pusher assembly includes a frame, first and second deflector legs, and a target mount. The frame includes an upper hub, a pair of angled arms, and a base connecting the angled arms. The base includes first and second connection areas each including north and south magnets. The first and second deflector legs each include north and south magnets configured to magnetically attract to the opposite north and south magnets of the first and second connection areas, respectively, thereby securing the first and second deflector legs to the first and second connection areas of the frame. The target mount includes a revolving central shaft and a pair of blades positioned on opposite sides of the central shaft. The upper hub of the frame houses a spinning magnet constrained inside a magnet retainer.
- The cable pusher assembly may include one or more of the following features. The central shaft may include an outward projection on a front face of the mount receivable in a seat defining a cavity for the projection. The target mount including the central shaft, the seat, the spinning magnet, and the magnet retainer may be coaxially aligned along a central axis. The base and the deflector legs may include one or more indicators identifying the north and south magnets such that the magnets attract when the deflector legs are correctly positioned against the frame (and repel if not aligned properly). The magnets may be disc magnets or other suitable polar magnets.
- According to yet another embodiment, a cable protection system includes a moveable system, a cable pusher, and a lifting jack. The moveable system includes a plurality of wheels for moving the moveable system across a floor. The cable pusher is attachable to one or more of the plurality of wheels. The cable pusher includes a frame with a pair of deflector legs and a mount including a revolving central shaft and a pair of blades positioned on opposite sides of the central shaft. The lifting jack is attachable to one or more of the plurality of wheels. The lifting jack includes a jack mount and a dolly. The lifting jack is configured to lift the wheel off the floor and allow for movement of the moveable system using the dolly.
- The cable protection system may include one or more of the following features. The central shaft of the mount may include an outward projection defining a threaded portion configured to theadedly interface with the jack mount. The mount may be securable to the wheel with nuts positioned through openings in the blades of the mount. The lifting jack may include a jacking bolt to raise and lower the wheel. The dolly may include a plate with a plurality of caster wheels. The lifting jack and dolly may allow for the moveable system to be manually maneuvered upon power loss.
- A more complete understanding of the present invention, and the attendant advantages and features thereof, will be more readily understood by reference to the following detailed description when considered in conjunction with the accompanying drawings, wherein:
-
FIG. 1 shows a perspective view of a cable protector coupled to an omni-directional wheel of a moveable system according to one embodiment; -
FIGS. 2A-2B show a moveable station and gantry for three-dimensional imaging according to one embodiment; -
FIG. 3 is a perspective view of the cable protector according to one embodiment; -
FIG. 4 shows the cable protector mounted to the wheel hub of the omni-wheel of the moveable system according to one embodiment; -
FIG. 5 shows a partial cross-sectional view of the cable protector with the magnetically attracted mount and constrained spinning magnet according to one embodiment; -
FIGS. 6A-6B show break-away magnetically-attracted deflector legs according to one embodiment; -
FIG. 7 shows the target mount of the cable protector mounted to the front of the omni-wheel according to one embodiment; -
FIG. 8 shows a jack mount screwed onto the target mount for supporting a dolly system according to one embodiment; and -
FIG. 9 shows the omni-wheel lifted off the floor via the dolly system according to one embodiment. - Embodiments of the disclosure are generally directed to cable protection devices, assemblies, and systems. Specifically, embodiments are directed to cable protectors or pushers that prevent damage to cables, wires, or leads lying on the floor. The cable protectors may be provided on each wheel of moveable equipment to prevent the wheels from rolling over or catching the cables. The cable protectors may be especially suitable for moveable medical equipment, such as portable medical imaging systems, robotic systems, navigation systems, and the like, although it will be appreciated that the cable protectors may also be used on the wheels of moveable equipment in other applications and industries.
- Additional aspects, advantages and/or other features of example embodiments of the invention will become apparent in view of the following detailed description. It should be apparent to those skilled in the art that the described embodiments provided herein are merely exemplary and illustrative and not limiting. Numerous embodiments and modifications thereof are contemplated as falling within the scope of this disclosure and equivalents thereto.
- Referring now to
FIG. 1 , acable protection system 10 is shown according to one embodiment. Thecable protection system 10 is configured to be attached to one ormore wheels 12 of moveablemedical equipment 14. In one embodiment, thecable protection system 10 may be provided on each of thewheels 12 of theequipment 14. Thecable protection system 10 is configured to protect any cable on or near the floor when themedical equipment 14 is moved about the room (e.g., the operating room). The cables may include any cables, wires, or leads in the room, for example, having a protective casing and used for transmitting electricity or telecommunication signals. Thecable protection system 10 prevents the tangling or pinching of cables routed along the floor. During motion of thewheels 12, thecable protection system 10 comes into contact with objects first to avoid interference with thewheels 12 by pushing the obstacles out of the way. Thecable protection system 10 may be configured to push or guide any cables out of the path of thewheels 12, thereby preventing thewheels 12 from rolling over the cable or the cable getting caught up into thewheels 12. - With emphasis on
FIGS. 2A-2B , themedical equipment 14 may include a medical imaging system, such as a computerized tomographic (CT) x-ray scanner, including amoveable station 20 and agantry 22. Themovable station 20 may include twofront wheels 12 and tworear wheels 12, which together provide movement of themovable station 20 in any direction in an X-Y plane. Thegantry 22 may include a first C-arm and a second C-arm slidably coupled to the first C-arm, which are configured to provide imaging modalities including but not limited to, fluoroscopy, 2D radiography, cone-beam CT, and magnetic resonance imaging (MRI). Further details of themedical imaging system 14 is provided in U.S. Pat. No. 10,842,453, which is incorporated by reference herein in its entirety for all purposes. Although a medical imaging system is exemplified, it will be appreciated that other movable medical equipment may be provided with thecable protection systems 10 described herein. - The
wheels 12 may include omni-directional wheels, which allow for themovable station 20 to be positioned in all three degrees of freedom about the horizontal plane (X, Y, Wag). The omni-directional wheels 12 allow for positioning in tight spaces, narrow corridors, or for precisely traversing up and down the length of an operating room table or patient bed. The omni-directional wheels 12 may have acentral hub 24 with a plurality of smaller wheels orrollers 26 on or around its circumference. Thesmaller wheels 26 may be mounted at an angle to the central axis of thehub 24, thereby allowing for movement in any direction. Eachwheel 12 may be powered individually to guide the portablemedical imaging cart 20 in the desired direction. Further details of suitable types of omni-directional wheels 12 are provided in U.S. Pat. No. 10,842,453, which is incorporated by reference herein in its entirety for all purposes. - The
medical equipment 14 is configured to move about the room viawheels 12. Theequipment 14 may be moved by a person and/or with motor control. There may be cables, wire, and/or leads on or near the floor of the room, for example, from the medical equipment itself and other medical equipment used in the space. As themedical equipment 14 is moved about the space, it is desired that thewheels 12 do not run over, pinch, or otherwise damage the cables. Cable protectors orpushers 10 may be provided on eachwheel 12 to prevent contact between thewheels 12 and the cables. For example, thecable pushers 10 may push or move the cables out of the way as themedical equipment 14 moves about the room. - With emphasis on
FIG. 3 , the cable protector orpusher assembly 10 is shown in more detail. Thecable protector assembly 10 includes aframe 30 with one ormore deflector legs 32. Theframe 30 includes anupper hub 34 configured to engage with thewheel hub 24 of thewheel 12. The outer body of theupper hub 34 may be generally rounded or curved. For example, theupper hub 34 may have a generally cylindrical body. Theframe 30 may include a pair ofangled arms 36 extending downwardly or distally. Eacharm 36 may be angled about 20-45°, about 30-45°, or about 30° from a central longitudinal axis of theframe 30. Theangled arms 36 may form a generally triangular or A-frame type configuration for theframe 30. - The distal end of each
arm 36 may be connected to one another with abase 38. Theframe 30 may define acutout 40 between thehub 34,arms 36, andbase 38. Thecutout 40 may be generally straight alongarms 36 and curved alonghub 34 andbase 38. The curved portion of thecutout 40 along thebase 38 may be concave and the curved portion of thecutout 40 along thehub 34 may be convex. The base 38 may be segmented with afirst connection portion 42 near the distal end of thefirst arm 36 and asecond connection portion 42 near the distal end of thesecond arm 36. Theconnection portions 42 are configured to secure first andsecond deflector legs 32, respectively. A central portion of the base 38 between the twoconnection portions 42 may be configured to contact or be in close proximity to the floor. - The
frame 30 has an outward-facingface 44 and an opposite inward facing face 46. The inward face 46 is configured to face toward thewheel hub 24 when thecable protector 10 is attached to thewheel 12. Theoutward face 44 may have a generally planar surface. The components of theframe 30 may be formed from a solid material or may be separate components that are joined together, for example, with pins, adhesive, or the like. Thecable protector 10 may be formed from metals, such as steel, aluminum, or iron; plastics, such as polyurethane or polyvinylchloride; rubber; or combinations thereof. - Each
deflector leg 32 includes an elongate blade orleg 50 and ashoulder 52. Theshoulder 52 includesconnection portion 54 configured to mate with the correspondingconnections portions 42 on theframe 30. Theshoulder 52 transitions to theleg 50 with an angled orbent portion 56. Thebent portion 56 may be offset to one side of theshoulder 52. Thebent portion 56 positions theleg 50 transverse to theshoulder 52 and body of theframe 30 when connected thereto. For example, thebent portion 56 may be angled about 80-100°, or about 90° such that theleg 50 extends generally perpendicular to theshoulder 52 and body of theframe 30 when connected thereto. Each blade orleg 50 terminates at afree end 58. When thecable protector 10 is attached to thewheel 12, theleg 50 is configured to extend back and under thewheel 12. Thus, the length of theleg 50 may be equal to or greater than the width of thewheel 12, thereby providing adequate protection to thewheel 12. With twolegs 32 attached to the frame 30 (i.e., left and right deflector legs 32), thelegs 50 are positioned in front of and behind thewheel 12, respectively. The pair oflegs 50 may be aligned generally in parallel to one another. Eachleg 50 also has a height configured to block any cables or leads lying on or near the floor. Thelegs 50 may be slightly angled away from one another such that the top of eachleg 50 is further away from one another and the bottom of eachleg 50 closer together. In this manner, thelegs 50 protect thewheel 12 during travel in any direction. - To assist in assembly and/or with visibility, each
shoulder 52 may define a cutout orwindow 60. Thewindow 60 may bifurcate theshoulder 52 into two branches configured to receive themagnets window 60 may form an arch shape with rounded corners. Theconnection portion 54 may form a flat face configured to mate against a corresponding flat face of theconnection portion 42 on theframe 30. When thelegs 32 are coupled to theframe 30,notches 62 may be defined between theshoulder 52 and thebase 38 of theframe 30. Thenotches 62 may be generally triangular in shape. Thenotches 62 may be formed on the underside of thecable protector assembly 10, thereby providing clearance from the floor. - The
cable pusher assembly 10 may be attached to thewheel 12 with amount 70. Themount 70 may form a spinning target mount including a revolvingcentral shaft 72 with one ormore blades 74. Thecentral shaft 72 may include aprojection 73 on the front face of themount 70. Theprojection 73 may define a circular or cylindrical interface. In one embodiment, a pair ofblades 74 are aligned with one another on opposite sides of the shaft. 72. Although twoblades 74 are exemplified, it will be appreciated that themount 70 may include a suitable number ofblades 74 or other geometry to secure thecable pusher assembly 10 to thewheel assembly 12. When attached to thewheel 12, themount 70 is configured to revolve such that themount 70 keeps pace with the revolution of thewheel 12 while holding theframe 30 andlegs 32 steady. - The
mount 70 may be secured to thewheel 12 with one or more fastening mechanisms. In one embodiment, themount 70 is magnetically attracted to thewheel hub 24. In this manner, thecable pusher assembly 10 can be easily attached and removed by hand, without any tools. Themount 70 may also be attached with one or more fasteners, such as screws, bolts, or nuts 104.Openings 76 may be provided near the free end of eachblade 74. Theopenings 76 may be configured to receive the respective fasteners, thereby allowing themount 70 to be optionally bolted to thewheel hub 24. - As best seen in
FIG. 4 , when attached to thewheel assembly 12, themount 70 allows for thedeflector legs 32 to hang slightly off the floor vertically and stationary while thewheel 12 spins. This may be accomplished using the magnetically attractedmount 70 with an internally constrained spinningmagnet 78. As best seen inFIG. 5 , the spinningmagnet 78 may be held inside amagnet retainer 80. The internally constrained spinningmagnet 78 may be positioned inside thehub 34 of theframe 30. Themagnet retainer 80 may have a threadedinterface 82 with theframe hub 34. The internally constrained spinningmagnet 78 acts as a shaft that attracts to a ferrous target on the wheel'scenter hub 24. - The
mount 70 may be separated from theframe 30 and magnetically attracted to theframe 30 via the constrainedmagnet 78. Theoutward projection 73 of themount 70 is receivable in aseat 84 which defines a cavity for receiving theprojection 73. Theseat 84 may be sandwiched between theprojection 73 and the constrainedmagnet 78. Themount 70 includingshaft 72,seat 84, spinningmagnet 78, andmagnet retainer 80 may be coaxially aligned along central axis A. The spinningmagnetic target mount 70 magnetically attaches to thewheel hub 24. When theassembly 10 is attached to thewheel 12, the central axis A is aligned to and corresponds with the central rotational axis of thewheel hub 24. As thewheel 12 spins or rotates, theframe 30 anddeflector legs 32 remain stationary, thereby pushing any obstacles out of the way. - The
cable pusher assembly 10 is configured to easily detach as a whole from eachwheel 12 so that thecable pusher assemblies 10 can be quickly removed prior to traversing over a fixed or rigid obstacle, such as a threshold. In the event that thecable pusher assemblies 10 are forgotten to be removed and inadvertently run into a threshold, eachdeflector leg 32 may utilize a magnetic break-away interface in order to prevent serious damage to theequipment 14 as well as the cable pusher assembly themselves. Upon impact, thedeflector legs 32 may detach while themain frame 30 rotates on thewheel 12. A quick reassembling and mounting gets thedeflector legs 32 back to being operational. - With emphasis on
FIGS. 6A-6B , thedeflector legs 32 couple to theframe 30 atconnection portions connection portion more magnets connection portion 42 of theframe 30 for attaching eachdeflector leg 32, theframe 30 may include anorth magnet 86 and asouth magnet 88. Similarly, on theconnection portion 54 for eachdeflector leg 32, theshoulder 52 may include anorth magnet 90 and asouth magnet 92. Themagnets deflector legs 32 to theframe 30. - When aligned properly and placed near one another, the north pole of one
magnet opposite magnet connection portions more indictors 94 to identify the polarity of themagnets deflector legs 32 relative to theframe 30. In other words, the north and south magnetic attachment points may be arranged and marked in such a way that correct positioning of the left andright deflector legs 32 occur by attracting when correct and repelling when incorrect. - Referring now to
FIGS. 7-9 , the cablepusher target mount 70 allows for attachment of a liftingjack 100 in addition to thecable pushers 10. The target mount 70 that supports thecable pusher assembly 10 magnetically via its front face may also include a threadedinterface 102 that can support additional attachments, such as liftingjack 100. As best seen inFIG. 7 , theprojection 73 on thetarget mount 70 may include a threadedsection 102 with one or more threads around a periphery of theprojection 73 configured to mate with corresponding threads on thejack 100. Themount 70 is attached to thewheel hub 24 withnuts 104 secured throughopenings 76 in theblades 74 of themount 70. - With further emphasis on
FIG. 8 , the liftingjack 100 may be secured to thetarget mount 70 via the threaded interface. The liftingjack 100 may include ajack mount 106, which is shown screwed onto thetarget mount 70, and adolly 108. Thedolly 108 may include aplate 110 with a plurality ofwheels 112 bolted to theplate 110. Thedolly wheels 112 may include a pair of caster wheels, for example. The liftingjack 100 may utilize a jackingbolt 114 to raise and lower thewheel 12. As shown inFIG. 9 , aninstrument 116, such as a socket wrench, may be used to turn the jackingbolt 114, thereby raisingwheel 112. As shown inFIG. 9 , the omni-wheel 12 is lifted off the floor, thereby allowing for movement of theequipment 14 using thedolly 108. This may be especially helpful in the event of power loss of themoveable system 14. Due to its large mass and the type of omni-wheels 12, thesystem 14 may be difficult to move manually. By jacking up the tworear wheels 12, for example, via the liftingjack 100 andwheel dolly 108 system, themovable system 14 is more easily maneuvered manually upon power loss. The liftingjack 100 andwheel dolly 108 may assist in the manual movement of themoveable system 14. - The cable protection assembly is configured to protect cables lying on or near the floor from damage by wheels of a moveable system, such as an imaging system. The cable protectors may be especially suitable for use with omni-type wheels that provide for multiple-axis movement of the moveable system. The cable protectors eliminate the need to reach under the wheel to assemble the assembly. Therefore, these cable protectors are less dangerous than snap-together sliding floor ring type protectors used for standard swivel casters. The cable protectors greatly reduce opportunities for breakage of the protectors even upon sudden contact due to the break-away magnetic deflector legs. Minimal sliding contact on the wheels and floor greatly reduce wear and noise since the assemblies hang a slight distance from the floor. Due to the magnetic interface, no tools are required for mounting the cable protectors to the wheels or re-assembling after a collision. The cable pusher mount also provides an additional interface for other attachments, such as a wheel jacks.
- Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to one skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. Thus, it is intended that the invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. It is expressly intended, for example, that all components of the various devices disclosed above may be combined or modified in any suitable configuration.
Claims (20)
1. A cable protection system comprising:
a moveable system with a plurality of wheels for moving the moveable system across a floor; and
a cable pusher attached to each of the plurality of wheels, each cable pusher comprising a frame with a pair of deflector legs configured to be positioned in front of and behind each wheel in close proximity to the floor, wherein the cable pusher is magnetically secured to the wheel, and the deflector legs magnetically connect to the frame, and wherein as the wheels spin or rotate, the frame and deflector legs remain stationary, thereby pushing obstacles out of the way.
2. The system of claim 1 , wherein each deflector leg includes an elongate leg and a shoulder configured to mate with the frame.
3. The system of claim 2 , wherein the shoulder transitions to the leg with a bent portion that positions the leg transverse to the shoulder and the frame when connected thereto.
4. The system of claim 2 , wherein the shoulder is bifurcated into two branches by a window, and magnets are positioned in the two branches of the shoulder.
5. The system of claim 1 , wherein the pair of deflector legs are aligned in parallel to one another.
6. The system of claim 1 , wherein the frame includes an upper hub configured to engage with a wheel hub of the wheel, a pair of angled arms extending distally, and a base connecting the angled arms.
7. The system of claim 6 , wherein the upper hub of the frame houses a spinning magnet constrained inside a magnet retainer, wherein the spinning magnet attracts to a magnet on the wheel.
8. The system of claim 1 , wherein the cable pusher is attached to the wheel with a mount including a revolving central shaft and a pair of blades positioned on opposite sides of the central shaft.
9. The system of claim 1 , wherein the wheels are omni-directional wheels.
10. The system of claim 1 , wherein the moveable system is a medical imaging system.
11. A cable pusher assembly comprising:
a frame including an upper hub, a pair of angled arms, and a base connecting the angled arms, the base including first and second connection areas each including north and south magnets;
first and second deflector legs each including north and south magnets are configured to magnetically attract to the opposite north and south magnets of the first and second connection areas, respectively, thereby securing the first and second deflector legs to the first and second connection areas of the frame; and
a target mount including a revolving central shaft and a pair of blades positioned on opposite sides of the central shaft, wherein the upper hub of the frame houses a spinning magnet constrained inside a magnet retainer.
12. The cable pusher assembly of claim 11 , wherein the central shaft includes an outward projection on a front face of the mount, and the projection is received in a seat defining a cavity for the projection.
13. The cable pusher assembly of claim 12 , wherein the target mount including the central shaft, the seat, the spinning magnet, and the magnet retainer are coaxially aligned along a central axis.
14. The cable pusher assembly of claim 11 , wherein the base and the deflector legs include indicators identifying the north and south magnets such that when the deflector legs are correctly positioned against the frame the magnets attract.
15. The cable pusher assembly of claim 11 , wherein the magnets are disc magnets.
16. A cable protection system comprising:
a moveable system with a plurality of wheels for moving the moveable system across a floor;
a cable pusher attachable to one or more of the plurality of wheels, the cable pusher comprising a frame with a pair of deflector legs and a mount including a revolving central shaft and a pair of blades positioned on opposite sides of the central shaft; and
a lifting jack attachable to one or more of the plurality of wheels, the lifting jack including a jack mount and a dolly, wherein the lifting jack is configured to lift the wheel off the floor and allow for movement of the moveable system using the dolly.
17. The system of claim 16 , wherein the central shaft of the mount includes an outward projection defining a threaded portion configured to theadedly interface with the jack mount.
18. The system of claim 16 , wherein the mount is securable to the wheel with nuts positioned through openings in the blades of the mount.
19. The system of claim 16 , wherein the lifting jack includes a jacking bolt to raise and lower the wheel.
20. The system of claim 16 , wherein the dolly includes a plate with a plurality of caster wheels.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/655,370 US12103480B2 (en) | 2022-03-18 | 2022-03-18 | Omni-wheel cable pusher |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/655,370 US12103480B2 (en) | 2022-03-18 | 2022-03-18 | Omni-wheel cable pusher |
Publications (2)
Publication Number | Publication Date |
---|---|
US20230294627A1 true US20230294627A1 (en) | 2023-09-21 |
US12103480B2 US12103480B2 (en) | 2024-10-01 |
Family
ID=88066463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/655,370 Active 2042-12-21 US12103480B2 (en) | 2022-03-18 | 2022-03-18 | Omni-wheel cable pusher |
Country Status (1)
Country | Link |
---|---|
US (1) | US12103480B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2450062A (en) * | 1946-06-17 | 1948-09-28 | Voss Grace | Caster guard |
US5702117A (en) * | 1994-12-19 | 1997-12-30 | U.S. Philips Corporation | Trolley intended for a medical apparatus and comprising wheels provided with a cable pusher |
US9701269B1 (en) * | 2015-08-10 | 2017-07-11 | Bryan D. Dubas | Wheel guard |
US11820170B2 (en) * | 2021-07-01 | 2023-11-21 | Alcon Inc. | Retractable guard assemblies |
Family Cites Families (552)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2614083B2 (en) | 1976-04-01 | 1979-02-08 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | X-ray film device for the production of transverse slice images |
US5354314A (en) | 1988-12-23 | 1994-10-11 | Medical Instrumentation And Diagnostics Corporation | Three-dimensional beam localization apparatus and microscope for stereotactic diagnoses or surgery mounted on robotic type arm |
US5246010A (en) | 1990-12-11 | 1993-09-21 | Biotrine Corporation | Method and apparatus for exhalation analysis |
US5417210A (en) | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
US6963792B1 (en) | 1992-01-21 | 2005-11-08 | Sri International | Surgical method |
US5631973A (en) | 1994-05-05 | 1997-05-20 | Sri International | Method for telemanipulation with telepresence |
US5657429A (en) | 1992-08-10 | 1997-08-12 | Computer Motion, Inc. | Automated endoscope system optimal positioning |
US5397323A (en) | 1992-10-30 | 1995-03-14 | International Business Machines Corporation | Remote center-of-motion robot for surgery |
DE69417229T2 (en) | 1993-05-14 | 1999-07-08 | Sri International, Menlo Park, Calif. | SURGERY DEVICE |
JP3378401B2 (en) | 1994-08-30 | 2003-02-17 | 株式会社日立メディコ | X-ray equipment |
US6646541B1 (en) | 1996-06-24 | 2003-11-11 | Computer Motion, Inc. | General purpose distributed operating room control system |
US6978166B2 (en) | 1994-10-07 | 2005-12-20 | Saint Louis University | System for use in displaying images of a body part |
CA2201877C (en) | 1994-10-07 | 2004-06-08 | Richard D. Bucholz | Surgical navigation systems including reference and localization frames |
US5882206A (en) | 1995-03-29 | 1999-03-16 | Gillio; Robert G. | Virtual surgery system |
US5887121A (en) | 1995-04-21 | 1999-03-23 | International Business Machines Corporation | Method of constrained Cartesian control of robotic mechanisms with active and passive joints |
US6122541A (en) | 1995-05-04 | 2000-09-19 | Radionics, Inc. | Head band for frameless stereotactic registration |
US5649956A (en) | 1995-06-07 | 1997-07-22 | Sri International | System and method for releasably holding a surgical instrument |
US5825982A (en) | 1995-09-15 | 1998-10-20 | Wright; James | Head cursor control interface for an automated endoscope system for optimal positioning |
US5772594A (en) | 1995-10-17 | 1998-06-30 | Barrick; Earl F. | Fluoroscopic image guided orthopaedic surgery system with intraoperative registration |
US5855583A (en) | 1996-02-20 | 1999-01-05 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
SG64340A1 (en) | 1996-02-27 | 1999-04-27 | Inst Of Systems Science Nation | Curved surgical instruments and methods of mapping a curved path for stereotactic surgery |
US6167145A (en) | 1996-03-29 | 2000-12-26 | Surgical Navigation Technologies, Inc. | Bone navigation system |
US5792135A (en) | 1996-05-20 | 1998-08-11 | Intuitive Surgical, Inc. | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US6167296A (en) | 1996-06-28 | 2000-12-26 | The Board Of Trustees Of The Leland Stanford Junior University | Method for volumetric image navigation |
US7302288B1 (en) | 1996-11-25 | 2007-11-27 | Z-Kat, Inc. | Tool position indicator |
US8529582B2 (en) | 1996-12-12 | 2013-09-10 | Intuitive Surgical Operations, Inc. | Instrument interface of a robotic surgical system |
US7727244B2 (en) | 1997-11-21 | 2010-06-01 | Intuitive Surgical Operation, Inc. | Sterile surgical drape |
US6205411B1 (en) | 1997-02-21 | 2001-03-20 | Carnegie Mellon University | Computer-assisted surgery planner and intra-operative guidance system |
US6012216A (en) | 1997-04-30 | 2000-01-11 | Ethicon, Inc. | Stand alone swage apparatus |
US5820559A (en) | 1997-03-20 | 1998-10-13 | Ng; Wan Sing | Computerized boundary estimation in medical images |
US5911449A (en) | 1997-04-30 | 1999-06-15 | Ethicon, Inc. | Semi-automated needle feed method and apparatus |
US6231565B1 (en) | 1997-06-18 | 2001-05-15 | United States Surgical Corporation | Robotic arm DLUs for performing surgical tasks |
EP2362286B1 (en) | 1997-09-19 | 2015-09-02 | Massachusetts Institute Of Technology | Robotic apparatus |
US6226548B1 (en) | 1997-09-24 | 2001-05-01 | Surgical Navigation Technologies, Inc. | Percutaneous registration apparatus and method for use in computer-assisted surgical navigation |
US5951475A (en) | 1997-09-25 | 1999-09-14 | International Business Machines Corporation | Methods and apparatus for registering CT-scan data to multiple fluoroscopic images |
US5987960A (en) | 1997-09-26 | 1999-11-23 | Picker International, Inc. | Tool calibrator |
US6212419B1 (en) | 1997-11-12 | 2001-04-03 | Walter M. Blume | Method and apparatus using shaped field of repositionable magnet to guide implant |
US6157853A (en) | 1997-11-12 | 2000-12-05 | Stereotaxis, Inc. | Method and apparatus using shaped field of repositionable magnet to guide implant |
US6031888A (en) | 1997-11-26 | 2000-02-29 | Picker International, Inc. | Fluoro-assist feature for a diagnostic imaging device |
US6165170A (en) | 1998-01-29 | 2000-12-26 | International Business Machines Corporation | Laser dermablator and dermablation |
US7169141B2 (en) | 1998-02-24 | 2007-01-30 | Hansen Medical, Inc. | Surgical instrument |
FR2779339B1 (en) | 1998-06-09 | 2000-10-13 | Integrated Surgical Systems Sa | MATCHING METHOD AND APPARATUS FOR ROBOTIC SURGERY, AND MATCHING DEVICE COMPRISING APPLICATION |
US6477400B1 (en) | 1998-08-20 | 2002-11-05 | Sofamor Danek Holdings, Inc. | Fluoroscopic image guided orthopaedic surgery system with intraoperative registration |
DE19839825C1 (en) | 1998-09-01 | 1999-10-07 | Siemens Ag | Diagnostic X=ray device |
US6033415A (en) | 1998-09-14 | 2000-03-07 | Integrated Surgical Systems | System and method for performing image directed robotic orthopaedic procedures without a fiducial reference system |
DE19842798C1 (en) | 1998-09-18 | 2000-05-04 | Howmedica Leibinger Gmbh & Co | Calibration device |
WO2000021442A1 (en) | 1998-10-09 | 2000-04-20 | Surgical Navigation Technologies, Inc. | Image guided vertebral distractor |
US6659939B2 (en) | 1998-11-20 | 2003-12-09 | Intuitive Surgical, Inc. | Cooperative minimally invasive telesurgical system |
US8527094B2 (en) | 1998-11-20 | 2013-09-03 | Intuitive Surgical Operations, Inc. | Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures |
US7125403B2 (en) | 1998-12-08 | 2006-10-24 | Intuitive Surgical | In vivo accessories for minimally invasive robotic surgery |
US6325808B1 (en) | 1998-12-08 | 2001-12-04 | Advanced Realtime Control Systems, Inc. | Robotic system, docking station, and surgical tool for collaborative control in minimally invasive surgery |
US6322567B1 (en) | 1998-12-14 | 2001-11-27 | Integrated Surgical Systems, Inc. | Bone motion tracking system |
US6451027B1 (en) | 1998-12-16 | 2002-09-17 | Intuitive Surgical, Inc. | Devices and methods for moving an image capture device in telesurgical systems |
US7016457B1 (en) | 1998-12-31 | 2006-03-21 | General Electric Company | Multimode imaging system for generating high quality images |
DE19905974A1 (en) | 1999-02-12 | 2000-09-07 | Siemens Ag | Computer tomography scanning method using multi-line detector |
US6560354B1 (en) | 1999-02-16 | 2003-05-06 | University Of Rochester | Apparatus and method for registration of images to physical space using a weighted combination of points and surfaces |
US6501981B1 (en) | 1999-03-16 | 2002-12-31 | Accuray, Inc. | Apparatus and method for compensating for respiratory and patient motions during treatment |
US6144875A (en) | 1999-03-16 | 2000-11-07 | Accuray Incorporated | Apparatus and method for compensating for respiratory and patient motion during treatment |
US6778850B1 (en) | 1999-03-16 | 2004-08-17 | Accuray, Inc. | Frameless radiosurgery treatment system and method |
US6470207B1 (en) | 1999-03-23 | 2002-10-22 | Surgical Navigation Technologies, Inc. | Navigational guidance via computer-assisted fluoroscopic imaging |
JP2000271110A (en) | 1999-03-26 | 2000-10-03 | Hitachi Medical Corp | Medical x-ray system |
US6594552B1 (en) | 1999-04-07 | 2003-07-15 | Intuitive Surgical, Inc. | Grip strength with tactile feedback for robotic surgery |
US6424885B1 (en) | 1999-04-07 | 2002-07-23 | Intuitive Surgical, Inc. | Camera referenced control in a minimally invasive surgical apparatus |
US6565554B1 (en) | 1999-04-07 | 2003-05-20 | Intuitive Surgical, Inc. | Friction compensation in a minimally invasive surgical apparatus |
US6301495B1 (en) | 1999-04-27 | 2001-10-09 | International Business Machines Corporation | System and method for intra-operative, image-based, interactive verification of a pre-operative surgical plan |
DE19927953A1 (en) | 1999-06-18 | 2001-01-11 | Siemens Ag | X=ray diagnostic apparatus |
US6314311B1 (en) | 1999-07-28 | 2001-11-06 | Picker International, Inc. | Movable mirror laser registration system |
US6788018B1 (en) | 1999-08-03 | 2004-09-07 | Intuitive Surgical, Inc. | Ceiling and floor mounted surgical robot set-up arms |
US7594912B2 (en) | 2004-09-30 | 2009-09-29 | Intuitive Surgical, Inc. | Offset remote center manipulator for robotic surgery |
US8004229B2 (en) | 2005-05-19 | 2011-08-23 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US8271130B2 (en) | 2009-03-09 | 2012-09-18 | Intuitive Surgical Operations, Inc. | Master controller having redundant degrees of freedom and added forces to create internal motion |
US6312435B1 (en) | 1999-10-08 | 2001-11-06 | Intuitive Surgical, Inc. | Surgical instrument with extended reach for use in minimally invasive surgery |
US8239001B2 (en) | 2003-10-17 | 2012-08-07 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US6235038B1 (en) | 1999-10-28 | 2001-05-22 | Medtronic Surgical Navigation Technologies | System for translation of electromagnetic and optical localization systems |
US6379302B1 (en) | 1999-10-28 | 2002-04-30 | Surgical Navigation Technologies Inc. | Navigation information overlay onto ultrasound imagery |
US8644907B2 (en) | 1999-10-28 | 2014-02-04 | Medtronic Navigaton, Inc. | Method and apparatus for surgical navigation |
US6499488B1 (en) | 1999-10-28 | 2002-12-31 | Winchester Development Associates | Surgical sensor |
US7366562B2 (en) | 2003-10-17 | 2008-04-29 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
AU4311901A (en) | 1999-12-10 | 2001-06-18 | Michael I. Miller | Method and apparatus for cross modality image registration |
US7635390B1 (en) | 2000-01-14 | 2009-12-22 | Marctec, Llc | Joint replacement component having a modular articulating surface |
US6377011B1 (en) | 2000-01-26 | 2002-04-23 | Massachusetts Institute Of Technology | Force feedback user interface for minimally invasive surgical simulator and teleoperator and other similar apparatus |
WO2001056007A1 (en) | 2000-01-28 | 2001-08-02 | Intersense, Inc. | Self-referenced tracking |
WO2001064124A1 (en) | 2000-03-01 | 2001-09-07 | Surgical Navigation Technologies, Inc. | Multiple cannula image guided tool for image guided procedures |
JP2003534035A (en) | 2000-03-15 | 2003-11-18 | オーソソフト インコーポレイテッド | Automatic calibration system for computer assisted surgical instruments |
US6535756B1 (en) | 2000-04-07 | 2003-03-18 | Surgical Navigation Technologies, Inc. | Trajectory storage apparatus and method for surgical navigation system |
US6856826B2 (en) | 2000-04-28 | 2005-02-15 | Ge Medical Systems Global Technology Company, Llc | Fluoroscopic tracking and visualization system |
US6856827B2 (en) | 2000-04-28 | 2005-02-15 | Ge Medical Systems Global Technology Company, Llc | Fluoroscopic tracking and visualization system |
US6490475B1 (en) | 2000-04-28 | 2002-12-03 | Ge Medical Systems Global Technology Company, Llc | Fluoroscopic tracking and visualization system |
US6614453B1 (en) | 2000-05-05 | 2003-09-02 | Koninklijke Philips Electronics, N.V. | Method and apparatus for medical image display for surgical tool planning and navigation in clinical environments |
US6645196B1 (en) | 2000-06-16 | 2003-11-11 | Intuitive Surgical, Inc. | Guided tool change |
US6782287B2 (en) | 2000-06-27 | 2004-08-24 | The Board Of Trustees Of The Leland Stanford Junior University | Method and apparatus for tracking a medical instrument based on image registration |
US6837892B2 (en) | 2000-07-24 | 2005-01-04 | Mazor Surgical Technologies Ltd. | Miniature bone-mounted surgical robot |
US6902560B1 (en) | 2000-07-27 | 2005-06-07 | Intuitive Surgical, Inc. | Roll-pitch-roll surgical tool |
DE10037491A1 (en) | 2000-08-01 | 2002-02-14 | Stryker Leibinger Gmbh & Co Kg | Process for three-dimensional visualization of structures inside the body |
US6823207B1 (en) | 2000-08-26 | 2004-11-23 | Ge Medical Systems Global Technology Company, Llc | Integrated fluoroscopic surgical navigation and imaging workstation with command protocol |
AU2001294718A1 (en) | 2000-09-25 | 2002-05-06 | Z-Kat, Inc | Fluoroscopic registration artifact with optical and/or magnetic markers |
DE10194615D2 (en) | 2000-10-23 | 2003-10-02 | Deutsches Krebsforsch | Method, device and navigation aid for navigation during medical interventions |
US6718194B2 (en) | 2000-11-17 | 2004-04-06 | Ge Medical Systems Global Technology Company, Llc | Computer assisted intramedullary rod surgery system with enhanced features |
US6666579B2 (en) | 2000-12-28 | 2003-12-23 | Ge Medical Systems Global Technology Company, Llc | Method and apparatus for obtaining and displaying computed tomography images using a fluoroscopy imaging system |
US6840938B1 (en) | 2000-12-29 | 2005-01-11 | Intuitive Surgical, Inc. | Bipolar cauterizing instrument |
EP1364183B1 (en) | 2001-01-30 | 2013-11-06 | Mako Surgical Corp. | Tool calibrator and tracker system |
US7220262B1 (en) | 2001-03-16 | 2007-05-22 | Sdgi Holdings, Inc. | Spinal fixation system and related methods |
FR2822674B1 (en) | 2001-04-03 | 2003-06-27 | Scient X | STABILIZED INTERSOMATIC MELTING SYSTEM FOR VERTEBERS |
WO2002083003A1 (en) | 2001-04-11 | 2002-10-24 | Clarke Dana S | Tissue structure identification in advance of instrument |
US6994708B2 (en) | 2001-04-19 | 2006-02-07 | Intuitive Surgical | Robotic tool with monopolar electro-surgical scissors |
US8398634B2 (en) | 2002-04-18 | 2013-03-19 | Intuitive Surgical Operations, Inc. | Wristed robotic surgical tool for pluggable end-effectors |
US7824401B2 (en) | 2004-10-08 | 2010-11-02 | Intuitive Surgical Operations, Inc. | Robotic tool with wristed monopolar electrosurgical end effectors |
US6783524B2 (en) | 2001-04-19 | 2004-08-31 | Intuitive Surgical, Inc. | Robotic surgical tool with ultrasound cauterizing and cutting instrument |
US6636757B1 (en) | 2001-06-04 | 2003-10-21 | Surgical Navigation Technologies, Inc. | Method and apparatus for electromagnetic navigation of a surgical probe near a metal object |
US7607440B2 (en) | 2001-06-07 | 2009-10-27 | Intuitive Surgical, Inc. | Methods and apparatus for surgical planning |
WO2002100284A1 (en) | 2001-06-13 | 2002-12-19 | Volume Interactions Pte Ltd | A guide system |
US6584339B2 (en) | 2001-06-27 | 2003-06-24 | Vanderbilt University | Method and apparatus for collecting and processing physical space data for use while performing image-guided surgery |
US7063705B2 (en) | 2001-06-29 | 2006-06-20 | Sdgi Holdings, Inc. | Fluoroscopic locator and registration device |
EP1408846B1 (en) | 2001-06-29 | 2012-03-07 | Intuitive Surgical Operations, Inc. | Platform link wrist mechanism |
US20040243147A1 (en) | 2001-07-03 | 2004-12-02 | Lipow Kenneth I. | Surgical robot and robotic controller |
ITMI20011759A1 (en) | 2001-08-09 | 2003-02-09 | Nuovo Pignone Spa | SCRAPER DEVICE FOR PISTON ROD OF ALTERNATIVE COMPRESSORS |
US7708741B1 (en) | 2001-08-28 | 2010-05-04 | Marctec, Llc | Method of preparing bones for knee replacement surgery |
US6728599B2 (en) | 2001-09-07 | 2004-04-27 | Computer Motion, Inc. | Modularity system for computer assisted surgery |
US6587750B2 (en) | 2001-09-25 | 2003-07-01 | Intuitive Surgical, Inc. | Removable infinite roll master grip handle and touch sensor for robotic surgery |
US6619840B2 (en) | 2001-10-15 | 2003-09-16 | Koninklijke Philips Electronics N.V. | Interventional volume scanner |
US6839612B2 (en) | 2001-12-07 | 2005-01-04 | Institute Surgical, Inc. | Microwrist system for surgical procedures |
US6947786B2 (en) | 2002-02-28 | 2005-09-20 | Surgical Navigation Technologies, Inc. | Method and apparatus for perspective inversion |
US8996169B2 (en) | 2011-12-29 | 2015-03-31 | Mako Surgical Corp. | Neural monitor-based dynamic haptics |
CN1643371B (en) | 2002-03-19 | 2011-07-06 | 麦德特尼克航空公司 | Computer X-ray tomography device equipped with detector moving with number axis X-ray source |
US7164968B2 (en) | 2002-04-05 | 2007-01-16 | The Trustees Of Columbia University In The City Of New York | Robotic scrub nurse |
US7099428B2 (en) | 2002-06-25 | 2006-08-29 | The Regents Of The University Of Michigan | High spatial resolution X-ray computed tomography (CT) system |
US7248914B2 (en) | 2002-06-28 | 2007-07-24 | Stereotaxis, Inc. | Method of navigating medical devices in the presence of radiopaque material |
US7630752B2 (en) | 2002-08-06 | 2009-12-08 | Stereotaxis, Inc. | Remote control of medical devices using a virtual device interface |
US7231063B2 (en) | 2002-08-09 | 2007-06-12 | Intersense, Inc. | Fiducial detection system |
AU2003264048A1 (en) | 2002-08-09 | 2004-02-25 | Intersense, Inc. | Motion tracking system and method |
EP2070487B1 (en) | 2002-08-13 | 2014-03-05 | NeuroArm Surgical, Ltd. | Microsurgical robot system |
US6892090B2 (en) | 2002-08-19 | 2005-05-10 | Surgical Navigation Technologies, Inc. | Method and apparatus for virtual endoscopy |
US7331967B2 (en) | 2002-09-09 | 2008-02-19 | Hansen Medical, Inc. | Surgical instrument coupling mechanism |
ES2204322B1 (en) | 2002-10-01 | 2005-07-16 | Consejo Sup. De Invest. Cientificas | FUNCTIONAL BROWSER. |
JP3821435B2 (en) | 2002-10-18 | 2006-09-13 | 松下電器産業株式会社 | Ultrasonic probe |
US7318827B2 (en) | 2002-12-02 | 2008-01-15 | Aesculap Ag & Co. Kg | Osteotomy procedure |
US7319897B2 (en) | 2002-12-02 | 2008-01-15 | Aesculap Ag & Co. Kg | Localization device display method and apparatus |
US8814793B2 (en) | 2002-12-03 | 2014-08-26 | Neorad As | Respiration monitor |
US7386365B2 (en) | 2004-05-04 | 2008-06-10 | Intuitive Surgical, Inc. | Tool grip calibration for robotic surgery |
US7945021B2 (en) | 2002-12-18 | 2011-05-17 | Varian Medical Systems, Inc. | Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager |
US7505809B2 (en) | 2003-01-13 | 2009-03-17 | Mediguide Ltd. | Method and system for registering a first image with a second image relative to the body of a patient |
US7660623B2 (en) | 2003-01-30 | 2010-02-09 | Medtronic Navigation, Inc. | Six degree of freedom alignment display for medical procedures |
US7542791B2 (en) | 2003-01-30 | 2009-06-02 | Medtronic Navigation, Inc. | Method and apparatus for preplanning a surgical procedure |
WO2004069040A2 (en) | 2003-02-04 | 2004-08-19 | Z-Kat, Inc. | Method and apparatus for computer assistance with intramedullary nail procedure |
US6988009B2 (en) | 2003-02-04 | 2006-01-17 | Zimmer Technology, Inc. | Implant registration device for surgical navigation system |
US7083615B2 (en) | 2003-02-24 | 2006-08-01 | Intuitive Surgical Inc | Surgical tool having electrocautery energy supply conductor with inhibited current leakage |
JP4163991B2 (en) | 2003-04-30 | 2008-10-08 | 株式会社モリタ製作所 | X-ray CT imaging apparatus and imaging method |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US7194120B2 (en) | 2003-05-29 | 2007-03-20 | Board Of Regents, The University Of Texas System | Methods and systems for image-guided placement of implants |
US7171257B2 (en) | 2003-06-11 | 2007-01-30 | Accuray Incorporated | Apparatus and method for radiosurgery |
US9002518B2 (en) | 2003-06-30 | 2015-04-07 | Intuitive Surgical Operations, Inc. | Maximum torque driving of robotic surgical tools in robotic surgical systems |
US7042184B2 (en) | 2003-07-08 | 2006-05-09 | Board Of Regents Of The University Of Nebraska | Microrobot for surgical applications |
US7960935B2 (en) | 2003-07-08 | 2011-06-14 | The Board Of Regents Of The University Of Nebraska | Robotic devices with agent delivery components and related methods |
JP2007530085A (en) | 2003-07-15 | 2007-11-01 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Computer tomography scanner with large gantry bore |
US7313430B2 (en) | 2003-08-28 | 2007-12-25 | Medtronic Navigation, Inc. | Method and apparatus for performing stereotactic surgery |
US7835778B2 (en) | 2003-10-16 | 2010-11-16 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation of a multiple piece construct for implantation |
US20050171558A1 (en) | 2003-10-17 | 2005-08-04 | Abovitz Rony A. | Neurosurgery targeting and delivery system for brain structures |
US7840253B2 (en) | 2003-10-17 | 2010-11-23 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US20050096502A1 (en) | 2003-10-29 | 2005-05-05 | Khalili Theodore M. | Robotic surgical device |
US9393039B2 (en) | 2003-12-17 | 2016-07-19 | Brainlab Ag | Universal instrument or instrument set for computer guided surgery |
US7466303B2 (en) | 2004-02-10 | 2008-12-16 | Sunnybrook Health Sciences Center | Device and process for manipulating real and virtual objects in three-dimensional space |
US20080287781A1 (en) | 2004-03-05 | 2008-11-20 | Depuy International Limited | Registration Methods and Apparatus |
US20060100610A1 (en) | 2004-03-05 | 2006-05-11 | Wallace Daniel T | Methods using a robotic catheter system |
US20080269596A1 (en) | 2004-03-10 | 2008-10-30 | Ian Revie | Orthpaedic Monitoring Systems, Methods, Implants and Instruments |
US7657298B2 (en) | 2004-03-11 | 2010-02-02 | Stryker Leibinger Gmbh & Co. Kg | System, device, and method for determining a position of an object |
US8475495B2 (en) | 2004-04-08 | 2013-07-02 | Globus Medical | Polyaxial screw |
US8860753B2 (en) | 2004-04-13 | 2014-10-14 | University Of Georgia Research Foundation, Inc. | Virtual surgical system and methods |
KR100617974B1 (en) | 2004-04-22 | 2006-08-31 | 한국과학기술원 | Command-following laparoscopic system |
US7567834B2 (en) | 2004-05-03 | 2009-07-28 | Medtronic Navigation, Inc. | Method and apparatus for implantation between two vertebral bodies |
US7379790B2 (en) | 2004-05-04 | 2008-05-27 | Intuitive Surgical, Inc. | Tool memory-based software upgrades for robotic surgery |
US7974674B2 (en) | 2004-05-28 | 2011-07-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system and method for surface modeling |
US8528565B2 (en) | 2004-05-28 | 2013-09-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system and method for automated therapy delivery |
FR2871363B1 (en) | 2004-06-15 | 2006-09-01 | Medtech Sa | ROBOTIZED GUIDING DEVICE FOR SURGICAL TOOL |
US7327865B2 (en) | 2004-06-30 | 2008-02-05 | Accuray, Inc. | Fiducial-less tracking with non-rigid image registration |
ITMI20041448A1 (en) | 2004-07-20 | 2004-10-20 | Milano Politecnico | APPARATUS FOR THE MERGER AND NAVIGATION OF ECOGRAPHIC AND VOLUMETRIC IMAGES OF A PATIENT USING A COMBINATION OF ACTIVE AND PASSIVE OPTICAL MARKERS FOR THE LOCALIZATION OF ECHOGRAPHIC PROBES AND SURGICAL INSTRUMENTS COMPARED TO THE PATIENT |
US7440793B2 (en) | 2004-07-22 | 2008-10-21 | Sunita Chauhan | Apparatus and method for removing abnormal tissue |
US7979157B2 (en) | 2004-07-23 | 2011-07-12 | Mcmaster University | Multi-purpose robotic operating system and method |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
GB2422759B (en) | 2004-08-05 | 2008-07-16 | Elekta Ab | Rotatable X-ray scan apparatus with cone beam offset |
US7702379B2 (en) | 2004-08-25 | 2010-04-20 | General Electric Company | System and method for hybrid tracking in surgical navigation |
US7555331B2 (en) | 2004-08-26 | 2009-06-30 | Stereotaxis, Inc. | Method for surgical navigation utilizing scale-invariant registration between a navigation system and a localization system |
DE102004042489B4 (en) | 2004-08-31 | 2012-03-29 | Siemens Ag | Medical examination or treatment facility with associated method |
CA2581009C (en) | 2004-09-15 | 2011-10-04 | Synthes (U.S.A.) | Calibrating device |
CN101035464A (en) | 2004-10-06 | 2007-09-12 | 皇家飞利浦电子股份有限公司 | Computed tomography method |
US7831294B2 (en) | 2004-10-07 | 2010-11-09 | Stereotaxis, Inc. | System and method of surgical imagining with anatomical overlay for navigation of surgical devices |
US7983733B2 (en) | 2004-10-26 | 2011-07-19 | Stereotaxis, Inc. | Surgical navigation using a three-dimensional user interface |
US7062006B1 (en) | 2005-01-19 | 2006-06-13 | The Board Of Trustees Of The Leland Stanford Junior University | Computed tomography with increased field of view |
US7837674B2 (en) | 2005-01-24 | 2010-11-23 | Intuitive Surgical Operations, Inc. | Compact counter balance for robotic surgical systems |
US7763015B2 (en) | 2005-01-24 | 2010-07-27 | Intuitive Surgical Operations, Inc. | Modular manipulator support for robotic surgery |
US20060184396A1 (en) | 2005-01-28 | 2006-08-17 | Dennis Charles L | System and method for surgical navigation |
US7231014B2 (en) | 2005-02-14 | 2007-06-12 | Varian Medical Systems Technologies, Inc. | Multiple mode flat panel X-ray imaging system |
EP1861010B1 (en) | 2005-03-07 | 2019-12-25 | Hector O. Pacheco | Cannula for improved access to vertebral bodies for kyphoplasty, vertebroplasty, vertebral body biopsy or screw placement |
US8496647B2 (en) | 2007-12-18 | 2013-07-30 | Intuitive Surgical Operations, Inc. | Ribbed force sensor |
US8465771B2 (en) | 2005-03-30 | 2013-06-18 | The University Of Western Ontario | Anisotropic hydrogels |
US8375808B2 (en) | 2005-12-30 | 2013-02-19 | Intuitive Surgical Operations, Inc. | Force sensing for surgical instruments |
US7720523B2 (en) | 2005-04-20 | 2010-05-18 | General Electric Company | System and method for managing power deactivation within a medical imaging system |
US8208988B2 (en) | 2005-05-13 | 2012-06-26 | General Electric Company | System and method for controlling a medical imaging device |
WO2007030173A1 (en) | 2005-06-06 | 2007-03-15 | Intuitive Surgical, Inc. | Laparoscopic ultrasound robotic surgical system |
US8398541B2 (en) | 2006-06-06 | 2013-03-19 | Intuitive Surgical Operations, Inc. | Interactive user interfaces for robotic minimally invasive surgical systems |
JP2007000406A (en) | 2005-06-24 | 2007-01-11 | Ge Medical Systems Global Technology Co Llc | X-ray ct method and x-ray ct apparatus |
US7840256B2 (en) | 2005-06-27 | 2010-11-23 | Biomet Manufacturing Corporation | Image guided tracking array and method |
US20070005002A1 (en) | 2005-06-30 | 2007-01-04 | Intuitive Surgical Inc. | Robotic surgical instruments for irrigation, aspiration, and blowing |
US20070038059A1 (en) | 2005-07-07 | 2007-02-15 | Garrett Sheffer | Implant and instrument morphing |
US20080302950A1 (en) | 2005-08-11 | 2008-12-11 | The Brigham And Women's Hospital, Inc. | System and Method for Performing Single Photon Emission Computed Tomography (Spect) with a Focal-Length Cone-Beam Collimation |
US7787699B2 (en) | 2005-08-17 | 2010-08-31 | General Electric Company | Real-time integration and recording of surgical image data |
US8800838B2 (en) | 2005-08-31 | 2014-08-12 | Ethicon Endo-Surgery, Inc. | Robotically-controlled cable-based surgical end effectors |
US7643862B2 (en) | 2005-09-15 | 2010-01-05 | Biomet Manufacturing Corporation | Virtual mouse for use in surgical navigation |
US20070073133A1 (en) | 2005-09-15 | 2007-03-29 | Schoenefeld Ryan J | Virtual mouse for use in surgical navigation |
US7835784B2 (en) | 2005-09-21 | 2010-11-16 | Medtronic Navigation, Inc. | Method and apparatus for positioning a reference frame |
US8079950B2 (en) | 2005-09-29 | 2011-12-20 | Intuitive Surgical Operations, Inc. | Autofocus and/or autoscaling in telesurgery |
EP1946243A2 (en) | 2005-10-04 | 2008-07-23 | Intersense, Inc. | Tracking objects with markers |
WO2007061890A2 (en) | 2005-11-17 | 2007-05-31 | Calypso Medical Technologies, Inc. | Apparatus and methods for using an electromagnetic transponder in orthopedic procedures |
US7711406B2 (en) | 2005-11-23 | 2010-05-04 | General Electric Company | System and method for detection of electromagnetic radiation by amorphous silicon x-ray detector for metal detection in x-ray imaging |
EP1795142B1 (en) | 2005-11-24 | 2008-06-11 | BrainLAB AG | Medical tracking system using a gamma camera |
US8672922B2 (en) | 2005-12-20 | 2014-03-18 | Intuitive Surgical Operations, Inc. | Wireless communication in a robotic surgical system |
US7689320B2 (en) | 2005-12-20 | 2010-03-30 | Intuitive Surgical Operations, Inc. | Robotic surgical system with joint motion controller adapted to reduce instrument tip vibrations |
US7955322B2 (en) | 2005-12-20 | 2011-06-07 | Intuitive Surgical Operations, Inc. | Wireless communication in a robotic surgical system |
US7819859B2 (en) | 2005-12-20 | 2010-10-26 | Intuitive Surgical Operations, Inc. | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
US7762825B2 (en) | 2005-12-20 | 2010-07-27 | Intuitive Surgical Operations, Inc. | Electro-mechanical interfaces to mount robotic surgical arms |
US8182470B2 (en) | 2005-12-20 | 2012-05-22 | Intuitive Surgical Operations, Inc. | Telescoping insertion axis of a robotic surgical system |
US8054752B2 (en) | 2005-12-22 | 2011-11-08 | Intuitive Surgical Operations, Inc. | Synchronous data communication |
ES2292327B1 (en) | 2005-12-26 | 2009-04-01 | Consejo Superior Investigaciones Cientificas | MINI CAMERA GAMMA AUTONOMA AND WITH LOCATION SYSTEM, FOR INTRACHIRURGICAL USE. |
KR101296220B1 (en) | 2005-12-30 | 2013-08-13 | 인튜어티브 서지컬 인코포레이티드 | Modular force sensor |
US7907166B2 (en) | 2005-12-30 | 2011-03-15 | Intuitive Surgical Operations, Inc. | Stereo telestration for robotic surgery |
US7930065B2 (en) | 2005-12-30 | 2011-04-19 | Intuitive Surgical Operations, Inc. | Robotic surgery system including position sensors using fiber bragg gratings |
US7533892B2 (en) | 2006-01-05 | 2009-05-19 | Intuitive Surgical, Inc. | Steering system for heavy mobile medical equipment |
KR100731052B1 (en) | 2006-01-23 | 2007-06-22 | 한양대학교 산학협력단 | Bi-planar fluoroscopy guided robot system for a minimally invasive surgical |
US8142420B2 (en) | 2006-01-25 | 2012-03-27 | Intuitive Surgical Operations Inc. | Robotic arm with five-bar spherical linkage |
US8162926B2 (en) | 2006-01-25 | 2012-04-24 | Intuitive Surgical Operations Inc. | Robotic arm with five-bar spherical linkage |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US20110290856A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument with force-feedback capabilities |
EP1815950A1 (en) | 2006-02-03 | 2007-08-08 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Robotic surgical system for performing minimally invasive medical procedures |
US8219178B2 (en) | 2007-02-16 | 2012-07-10 | Catholic Healthcare West | Method and system for performing invasive medical procedures using a surgical robot |
US8219177B2 (en) | 2006-02-16 | 2012-07-10 | Catholic Healthcare West | Method and system for performing invasive medical procedures using a surgical robot |
US8526688B2 (en) | 2006-03-09 | 2013-09-03 | General Electric Company | Methods and systems for registration of surgical navigation data and image data |
EP2004071B1 (en) | 2006-03-30 | 2013-05-15 | Koninklijke Philips Electronics N.V. | Targeting device, computer readable medium and program element |
US20070233238A1 (en) | 2006-03-31 | 2007-10-04 | Medtronic Vascular, Inc. | Devices for Imaging and Navigation During Minimally Invasive Non-Bypass Cardiac Procedures |
CN102988074A (en) | 2006-04-14 | 2013-03-27 | 威廉博蒙特医院 | Scanning slot cone-beam computed tomography and scanning focus spot cone-beam computed tomography |
US8021310B2 (en) | 2006-04-21 | 2011-09-20 | Nellcor Puritan Bennett Llc | Work of breathing display for a ventilation system |
US8112292B2 (en) | 2006-04-21 | 2012-02-07 | Medtronic Navigation, Inc. | Method and apparatus for optimizing a therapy |
US7940999B2 (en) | 2006-04-24 | 2011-05-10 | Siemens Medical Solutions Usa, Inc. | System and method for learning-based 2D/3D rigid registration for image-guided surgery using Jensen-Shannon divergence |
US20090259123A1 (en) | 2006-05-16 | 2009-10-15 | Surgiceye Gmbh | Method and device for 3d acquisition, 3d visualization and computer guided surgery using nuclear probes |
US8784435B2 (en) | 2006-06-13 | 2014-07-22 | Intuitive Surgical Operations, Inc. | Surgical system entry guide |
US20080004523A1 (en) | 2006-06-29 | 2008-01-03 | General Electric Company | Surgical tool guide |
DE102006032127B4 (en) | 2006-07-05 | 2008-04-30 | Aesculap Ag & Co. Kg | Calibration method and calibration device for a surgical referencing unit |
US20080013809A1 (en) | 2006-07-14 | 2008-01-17 | Bracco Imaging, Spa | Methods and apparatuses for registration in image guided surgery |
EP1886640B1 (en) | 2006-08-08 | 2009-11-18 | BrainLAB AG | Planning method and system for adjusting a free-shaped bone implant |
CN101505658B (en) | 2006-08-17 | 2015-08-19 | 皇家飞利浦电子股份有限公司 | computed tomography image acquisition |
DE102006041033B4 (en) | 2006-09-01 | 2017-01-19 | Siemens Healthcare Gmbh | Method for reconstructing a three-dimensional image volume |
US8231610B2 (en) | 2006-09-06 | 2012-07-31 | National Cancer Center | Robotic surgical system for laparoscopic surgery |
US8150498B2 (en) | 2006-09-08 | 2012-04-03 | Medtronic, Inc. | System for identification of anatomical landmarks |
US8532741B2 (en) | 2006-09-08 | 2013-09-10 | Medtronic, Inc. | Method and apparatus to optimize electrode placement for neurological stimulation |
WO2008031077A2 (en) | 2006-09-08 | 2008-03-13 | Hansen Medical, Inc. | Robotic surgical system with forward-oriented field of view guide instrument navigation |
US8150497B2 (en) | 2006-09-08 | 2012-04-03 | Medtronic, Inc. | System for navigating a planned procedure within a body |
US8248413B2 (en) | 2006-09-18 | 2012-08-21 | Stryker Corporation | Visual navigation system for endoscopic surgery |
EP2074383B1 (en) | 2006-09-25 | 2016-05-11 | Mazor Robotics Ltd. | C-arm computerized tomography |
US8660635B2 (en) | 2006-09-29 | 2014-02-25 | Medtronic, Inc. | Method and apparatus for optimizing a computer assisted surgical procedure |
US8052688B2 (en) | 2006-10-06 | 2011-11-08 | Wolf Ii Erich | Electromagnetic apparatus and method for nerve localization during spinal surgery |
US20080144906A1 (en) | 2006-10-09 | 2008-06-19 | General Electric Company | System and method for video capture for fluoroscopy and navigation |
US20080109012A1 (en) | 2006-11-03 | 2008-05-08 | General Electric Company | System, method and apparatus for tableside remote connections of medical instruments and systems using wireless communications |
US8551114B2 (en) | 2006-11-06 | 2013-10-08 | Human Robotics S.A. De C.V. | Robotic surgical device |
US20080108912A1 (en) | 2006-11-07 | 2008-05-08 | General Electric Company | System and method for measurement of clinical parameters of the knee for use during knee replacement surgery |
US20080108991A1 (en) | 2006-11-08 | 2008-05-08 | General Electric Company | Method and apparatus for performing pedicle screw fusion surgery |
US8682413B2 (en) | 2006-11-15 | 2014-03-25 | General Electric Company | Systems and methods for automated tracker-driven image selection |
US7935130B2 (en) | 2006-11-16 | 2011-05-03 | Intuitive Surgical Operations, Inc. | Two-piece end-effectors for robotic surgical tools |
WO2008063494A2 (en) | 2006-11-16 | 2008-05-29 | Vanderbilt University | Apparatus and methods of compensating for organ deformation, registration of internal structures to images, and applications of same |
US8727618B2 (en) | 2006-11-22 | 2014-05-20 | Siemens Aktiengesellschaft | Robotic device and method for trauma patient diagnosis and therapy |
US7835557B2 (en) | 2006-11-28 | 2010-11-16 | Medtronic Navigation, Inc. | System and method for detecting status of imaging device |
US8320991B2 (en) | 2006-12-01 | 2012-11-27 | Medtronic Navigation Inc. | Portable electromagnetic navigation system |
US7683331B2 (en) | 2006-12-08 | 2010-03-23 | Rush University Medical Center | Single photon emission computed tomography (SPECT) system for cardiac imaging |
US7683332B2 (en) | 2006-12-08 | 2010-03-23 | Rush University Medical Center | Integrated single photon emission computed tomography (SPECT)/transmission computed tomography (TCT) system for cardiac imaging |
US8556807B2 (en) | 2006-12-21 | 2013-10-15 | Intuitive Surgical Operations, Inc. | Hermetically sealed distal sensor endoscope |
DE102006061178A1 (en) | 2006-12-22 | 2008-06-26 | Siemens Ag | Medical system for carrying out and monitoring a minimal invasive intrusion, especially for treating electro-physiological diseases, has X-ray equipment and a control/evaluation unit |
US20080177203A1 (en) | 2006-12-22 | 2008-07-24 | General Electric Company | Surgical navigation planning system and method for placement of percutaneous instrumentation and implants |
US20080161680A1 (en) | 2006-12-29 | 2008-07-03 | General Electric Company | System and method for surgical navigation of motion preservation prosthesis |
US9220573B2 (en) | 2007-01-02 | 2015-12-29 | Medtronic Navigation, Inc. | System and method for tracking positions of uniform marker geometries |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US8374673B2 (en) | 2007-01-25 | 2013-02-12 | Warsaw Orthopedic, Inc. | Integrated surgical navigational and neuromonitoring system having automated surgical assistance and control |
CA2920553C (en) | 2007-02-01 | 2018-11-20 | Interactive Neuroscience Center, Llc | Surgical navigation system for guiding an access member |
US20080218770A1 (en) | 2007-02-02 | 2008-09-11 | Hansen Medical, Inc. | Robotic surgical instrument and methods using bragg fiber sensors |
US8600478B2 (en) | 2007-02-19 | 2013-12-03 | Medtronic Navigation, Inc. | Automatic identification of instruments used with a surgical navigation system |
US8233963B2 (en) | 2007-02-19 | 2012-07-31 | Medtronic Navigation, Inc. | Automatic identification of tracked surgical devices using an electromagnetic localization system |
DE102007009017B3 (en) | 2007-02-23 | 2008-09-25 | Siemens Ag | Arrangement for supporting a percutaneous procedure |
US10039613B2 (en) | 2007-03-01 | 2018-08-07 | Surgical Navigation Technologies, Inc. | Method for localizing an imaging device with a surgical navigation system |
US8098914B2 (en) | 2007-03-05 | 2012-01-17 | Siemens Aktiengesellschaft | Registration of CT volumes with fluoroscopic images |
US20080228068A1 (en) | 2007-03-13 | 2008-09-18 | Viswanathan Raju R | Automated Surgical Navigation with Electro-Anatomical and Pre-Operative Image Data |
US8821511B2 (en) | 2007-03-15 | 2014-09-02 | General Electric Company | Instrument guide for use with a surgical navigation system |
US20080235052A1 (en) | 2007-03-19 | 2008-09-25 | General Electric Company | System and method for sharing medical information between image-guided surgery systems |
US8150494B2 (en) | 2007-03-29 | 2012-04-03 | Medtronic Navigation, Inc. | Apparatus for registering a physical space to image space |
US7879045B2 (en) | 2007-04-10 | 2011-02-01 | Medtronic, Inc. | System for guiding instruments having different sizes |
EP2142132B1 (en) | 2007-04-16 | 2012-09-26 | NeuroArm Surgical, Ltd. | System for non-mechanically restricting and/or programming movement of a tool of a manipulator along a single axis |
CA2684472C (en) | 2007-04-16 | 2015-11-24 | Neuroarm Surgical Ltd. | Methods, devices, and systems for automated movements involving medical robots |
US8311611B2 (en) | 2007-04-24 | 2012-11-13 | Medtronic, Inc. | Method for performing multiple registrations in a navigated procedure |
US8301226B2 (en) | 2007-04-24 | 2012-10-30 | Medtronic, Inc. | Method and apparatus for performing a navigated procedure |
US8108025B2 (en) | 2007-04-24 | 2012-01-31 | Medtronic, Inc. | Flexible array for use in navigated surgery |
US20090012509A1 (en) | 2007-04-24 | 2009-01-08 | Medtronic, Inc. | Navigated Soft Tissue Penetrating Laser System |
US8010177B2 (en) | 2007-04-24 | 2011-08-30 | Medtronic, Inc. | Intraoperative image registration |
US8062364B1 (en) | 2007-04-27 | 2011-11-22 | Knee Creations, Llc | Osteoarthritis treatment and device |
DE102007022122B4 (en) | 2007-05-11 | 2019-07-11 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Gripping device for a surgery robot arrangement |
US8057397B2 (en) | 2007-05-16 | 2011-11-15 | General Electric Company | Navigation and imaging system sychronized with respiratory and/or cardiac activity |
US20080287771A1 (en) | 2007-05-17 | 2008-11-20 | General Electric Company | Surgical navigation system with electrostatic shield |
US8934961B2 (en) | 2007-05-18 | 2015-01-13 | Biomet Manufacturing, Llc | Trackable diagnostic scope apparatus and methods of use |
US20080300478A1 (en) | 2007-05-30 | 2008-12-04 | General Electric Company | System and method for displaying real-time state of imaged anatomy during a surgical procedure |
US20080300477A1 (en) | 2007-05-30 | 2008-12-04 | General Electric Company | System and method for correction of automated image registration |
US9468412B2 (en) | 2007-06-22 | 2016-10-18 | General Electric Company | System and method for accuracy verification for image based surgical navigation |
JP5591696B2 (en) | 2007-07-12 | 2014-09-17 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | Biopsy elements, arm devices, and medical devices |
US7834484B2 (en) | 2007-07-16 | 2010-11-16 | Tyco Healthcare Group Lp | Connection cable and method for activating a voltage-controlled generator |
JP2009045428A (en) | 2007-07-25 | 2009-03-05 | Terumo Corp | Operating mechanism, medical manipulator and surgical robot system |
WO2009018086A2 (en) | 2007-07-27 | 2009-02-05 | The Cleveland Clinic Foundation | Oblique lumbar interbody fusion |
US8035685B2 (en) | 2007-07-30 | 2011-10-11 | General Electric Company | Systems and methods for communicating video data between a mobile imaging system and a fixed monitor system |
US8328818B1 (en) | 2007-08-31 | 2012-12-11 | Globus Medical, Inc. | Devices and methods for treating bone |
US8092370B2 (en) | 2007-09-19 | 2012-01-10 | Sriort, LLC | Direct visualization robotic intra-operative radiation therapy applicator device |
US20090080737A1 (en) | 2007-09-25 | 2009-03-26 | General Electric Company | System and Method for Use of Fluoroscope and Computed Tomography Registration for Sinuplasty Navigation |
US9050120B2 (en) | 2007-09-30 | 2015-06-09 | Intuitive Surgical Operations, Inc. | Apparatus and method of user interface with alternate tool mode for robotic surgical tools |
US9522046B2 (en) | 2010-08-23 | 2016-12-20 | Gip | Robotic surgery system |
CN101848679B (en) | 2007-11-06 | 2014-08-06 | 皇家飞利浦电子股份有限公司 | Nuclear medicine SPECT-CT machine with integrated asymmetric flat panel cone-beam CT and SPECT system |
DE102007055203A1 (en) | 2007-11-19 | 2009-05-20 | Kuka Roboter Gmbh | A robotic device, medical workstation and method for registering an object |
US8561473B2 (en) | 2007-12-18 | 2013-10-22 | Intuitive Surgical Operations, Inc. | Force sensor temperature compensation |
US8400094B2 (en) | 2007-12-21 | 2013-03-19 | Intuitive Surgical Operations, Inc. | Robotic surgical system with patient support |
RU2010130474A (en) | 2007-12-21 | 2012-01-27 | Конинклейке Филипс Электроникс, Н.В. (Nl) | SYNCHRONOUS INTERVENTIONAL SCANNER |
US8864798B2 (en) | 2008-01-18 | 2014-10-21 | Globus Medical, Inc. | Transverse connector |
KR20100120183A (en) | 2008-01-30 | 2010-11-12 | 더 트러스티이스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 | Systems, devices, and methods for robot-assisted micro-surgical stenting |
US20090198121A1 (en) | 2008-02-01 | 2009-08-06 | Martin Hoheisel | Method and apparatus for coordinating contrast agent injection and image acquisition in c-arm computed tomography |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US8696458B2 (en) | 2008-02-15 | 2014-04-15 | Thales Visionix, Inc. | Motion tracking system and method using camera and non-camera sensors |
US7925653B2 (en) | 2008-02-27 | 2011-04-12 | General Electric Company | Method and system for accessing a group of objects in an electronic document |
US20090228019A1 (en) | 2008-03-10 | 2009-09-10 | Yosef Gross | Robotic surgical system |
US8282653B2 (en) | 2008-03-24 | 2012-10-09 | Board Of Regents Of The University Of Nebraska | System and methods for controlling surgical tool elements |
US8808164B2 (en) | 2008-03-28 | 2014-08-19 | Intuitive Surgical Operations, Inc. | Controlling a robotic surgical tool with a display monitor |
BRPI0822423B1 (en) | 2008-03-28 | 2020-09-24 | Telefonaktiebolaget Lm Ericsson (Publ) | METHODS TO ENABLE DETECTION AND DETECTION OF A BASE STATION, BASE STATION OF A COMMUNICATION NETWORK, AND, NUCLEUS NETWORK NODE |
US8333755B2 (en) | 2008-03-31 | 2012-12-18 | Intuitive Surgical Operations, Inc. | Coupler to transfer controller motion from a robotic manipulator to an attached instrument |
US7886743B2 (en) | 2008-03-31 | 2011-02-15 | Intuitive Surgical Operations, Inc. | Sterile drape interface for robotic surgical instrument |
US7843158B2 (en) | 2008-03-31 | 2010-11-30 | Intuitive Surgical Operations, Inc. | Medical robotic system adapted to inhibit motions resulting in excessive end effector forces |
US9002076B2 (en) | 2008-04-15 | 2015-04-07 | Medtronic, Inc. | Method and apparatus for optimal trajectory planning |
US9345875B2 (en) | 2008-04-17 | 2016-05-24 | Medtronic, Inc. | Method and apparatus for cannula fixation for an array insertion tube set |
US8167793B2 (en) | 2008-04-26 | 2012-05-01 | Intuitive Surgical Operations, Inc. | Augmented stereoscopic visualization for a surgical robot using time duplexing |
EP2271490B1 (en) | 2008-04-30 | 2019-10-09 | Nanosys, Inc. | Non-fouling surfaces for reflective spheres |
US9579161B2 (en) | 2008-05-06 | 2017-02-28 | Medtronic Navigation, Inc. | Method and apparatus for tracking a patient |
WO2009151206A1 (en) | 2008-06-09 | 2009-12-17 | (주)미래컴퍼니 | Master interface for surgical robot and control method |
TW201004607A (en) | 2008-07-25 | 2010-02-01 | Been-Der Yang | Image guided navigation system and method thereof |
US8054184B2 (en) | 2008-07-31 | 2011-11-08 | Intuitive Surgical Operations, Inc. | Identification of surgical instrument attached to surgical robot |
US8771170B2 (en) | 2008-08-01 | 2014-07-08 | Microaccess, Inc. | Methods and apparatus for transesophageal microaccess surgery |
JP2010035984A (en) | 2008-08-08 | 2010-02-18 | Canon Inc | X-ray imaging apparatus |
ES2608820T3 (en) | 2008-08-15 | 2017-04-17 | Stryker European Holdings I, Llc | System and method of visualization of the inside of a body |
US8500728B2 (en) | 2008-08-18 | 2013-08-06 | Encision, Inc. | Enhanced control systems including flexible shielding and support systems for electrosurgical applications |
DE102008041813B4 (en) | 2008-09-04 | 2013-06-20 | Carl Zeiss Microscopy Gmbh | Method for the depth analysis of an organic sample |
US7900524B2 (en) | 2008-09-09 | 2011-03-08 | Intersense, Inc. | Monitoring tools |
US8165658B2 (en) | 2008-09-26 | 2012-04-24 | Medtronic, Inc. | Method and apparatus for positioning a guide relative to a base |
US8073335B2 (en) | 2008-09-30 | 2011-12-06 | Intuitive Surgical Operations, Inc. | Operator input device for a robotic surgical system |
US8379791B2 (en) | 2008-10-10 | 2013-02-19 | Koninklijke Philips Electronics N.V. | Method and apparatus to improve CT image acquisition using a displaced geometry |
KR100944412B1 (en) | 2008-10-13 | 2010-02-25 | (주)미래컴퍼니 | Surgical slave robot |
WO2010044852A2 (en) | 2008-10-14 | 2010-04-22 | University Of Florida Research Foundation, Inc. | Imaging platform to provide integrated navigation capabilities for surgical guidance |
WO2010048160A2 (en) | 2008-10-20 | 2010-04-29 | The Johns Hopkins University | Environment property estimation and graphical display |
EP2455038B1 (en) | 2008-10-21 | 2015-04-01 | Brainlab AG | Integration of surgical instrument and display device for supporting image led surgery |
KR101075363B1 (en) | 2008-10-31 | 2011-10-19 | 정창욱 | Surgical Robot System Having Tool for Minimally Invasive Surgery |
US9040087B2 (en) | 2008-10-31 | 2015-05-26 | The Invention Science Fund I, Llc | Frozen compositions and methods for piercing a substrate |
US9033958B2 (en) | 2008-11-11 | 2015-05-19 | Perception Raisonnement Action En Medecine | Surgical robotic system |
TWI435705B (en) | 2008-11-20 | 2014-05-01 | Been Der Yang | Surgical position device and image guided navigation system using the same |
US8787520B2 (en) | 2008-11-27 | 2014-07-22 | Hitachi Medical Corporation | Radiation imaging device |
US8483800B2 (en) | 2008-11-29 | 2013-07-09 | General Electric Company | Surgical navigation enabled imaging table environment |
CA2745210C (en) | 2008-12-01 | 2018-03-13 | Mazor Robotics Ltd | Robot guided oblique spinal stabilization |
ES2341079B1 (en) | 2008-12-11 | 2011-07-13 | Fundacio Clinic Per A La Recerca Biomedica | EQUIPMENT FOR IMPROVED VISION BY INFRARED VASCULAR STRUCTURES, APPLICABLE TO ASSIST PHYTOSCOPIC, LAPAROSCOPIC AND ENDOSCOPIC INTERVENTIONS AND SIGNAL TREATMENT PROCESS TO IMPROVE SUCH VISION. |
US8021393B2 (en) | 2008-12-12 | 2011-09-20 | Globus Medical, Inc. | Lateral spinous process spacer with deployable wings |
US8184880B2 (en) | 2008-12-31 | 2012-05-22 | Intuitive Surgical Operations, Inc. | Robust sparse image matching for robotic surgery |
US8374723B2 (en) | 2008-12-31 | 2013-02-12 | Intuitive Surgical Operations, Inc. | Obtaining force information in a minimally invasive surgical procedure |
US8830224B2 (en) | 2008-12-31 | 2014-09-09 | Intuitive Surgical Operations, Inc. | Efficient 3-D telestration for local robotic proctoring |
US8594841B2 (en) | 2008-12-31 | 2013-11-26 | Intuitive Surgical Operations, Inc. | Visual force feedback in a minimally invasive surgical procedure |
EP2389114A1 (en) | 2009-01-21 | 2011-11-30 | Koninklijke Philips Electronics N.V. | Method and apparatus for large field of view imaging and detection and compensation of motion artifacts |
EP2381877B1 (en) | 2009-01-29 | 2018-02-28 | Imactis | Method and device for navigation of a surgical tool |
KR101038417B1 (en) | 2009-02-11 | 2011-06-01 | 주식회사 이턴 | Surgical robot system and control method thereof |
US8120301B2 (en) | 2009-03-09 | 2012-02-21 | Intuitive Surgical Operations, Inc. | Ergonomic surgeon control console in robotic surgical systems |
US8418073B2 (en) | 2009-03-09 | 2013-04-09 | Intuitive Surgical Operations, Inc. | User interfaces for electrosurgical tools in robotic surgical systems |
US8918207B2 (en) | 2009-03-09 | 2014-12-23 | Intuitive Surgical Operations, Inc. | Operator input device for a robotic surgical system |
US9737235B2 (en) | 2009-03-09 | 2017-08-22 | Medtronic Navigation, Inc. | System and method for image-guided navigation |
US20120053597A1 (en) | 2009-03-10 | 2012-03-01 | Mcmaster University | Mobile robotic surgical system |
US8335552B2 (en) | 2009-03-20 | 2012-12-18 | Medtronic, Inc. | Method and apparatus for instrument placement |
WO2010110560A2 (en) | 2009-03-24 | 2010-09-30 | 주식회사 래보 | Surgical robot system using augmented reality, and method for controlling same |
US20100249571A1 (en) | 2009-03-31 | 2010-09-30 | General Electric Company | Surgical navigation system with wireless magnetoresistance tracking sensors |
US8882803B2 (en) | 2009-04-01 | 2014-11-11 | Globus Medical, Inc. | Orthopedic clamp and extension rod |
EP2429438A1 (en) | 2009-04-24 | 2012-03-21 | Medtronic, Inc. | Electromagnetic navigation of medical instruments for cardiothoracic surgery |
US8225798B2 (en) | 2009-05-18 | 2012-07-24 | Loma Linda University | Method and devices for performing minimally invasive surgery |
ES2388029B1 (en) | 2009-05-22 | 2013-08-13 | Universitat Politècnica De Catalunya | ROBOTIC SYSTEM FOR LAPAROSCOPIC SURGERY. |
CN101897593B (en) | 2009-05-26 | 2014-08-13 | 清华大学 | Computer chromatography imaging device and method |
US8121249B2 (en) | 2009-06-04 | 2012-02-21 | Virginia Tech Intellectual Properties, Inc. | Multi-parameter X-ray computed tomography |
WO2011013164A1 (en) | 2009-07-27 | 2011-02-03 | 株式会社島津製作所 | Radiographic apparatus |
BR212012002342U2 (en) | 2009-08-06 | 2015-11-03 | Koninkl Philips Electronics Nv | method of imaging an object using an imaging apparatus having a detector, medical imaging apparatus adapted to image an object, and combined x-ray and spect imaging system |
CA2770507C (en) | 2009-08-17 | 2019-01-08 | Mazor Robotics Ltd. | Device for improving the accuracy of manual operations |
US9844414B2 (en) | 2009-08-31 | 2017-12-19 | Gregory S. Fischer | System and method for robotic surgical intervention in a magnetic resonance imager |
EP2298223A1 (en) | 2009-09-21 | 2011-03-23 | Stryker Leibinger GmbH & Co. KG | Technique for registering image data of an object |
US8465476B2 (en) | 2009-09-23 | 2013-06-18 | Intuitive Surgical Operations, Inc. | Cannula mounting fixture |
WO2011038759A1 (en) | 2009-09-30 | 2011-04-07 | Brainlab Ag | Two-part medical tracking marker |
NL1037348C2 (en) | 2009-10-02 | 2011-04-05 | Univ Eindhoven Tech | Surgical robot, instrument manipulator, combination of an operating table and a surgical robot, and master-slave operating system. |
US8556979B2 (en) | 2009-10-15 | 2013-10-15 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US8062375B2 (en) | 2009-10-15 | 2011-11-22 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US8685098B2 (en) | 2010-06-25 | 2014-04-01 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US8679183B2 (en) | 2010-06-25 | 2014-03-25 | Globus Medical | Expandable fusion device and method of installation thereof |
WO2011050456A1 (en) | 2009-10-28 | 2011-05-05 | Imris Inc. | Automatic registration of images for image guided surgery |
USD631966S1 (en) | 2009-11-10 | 2011-02-01 | Globus Medical, Inc. | Basilar invagination implant |
US8521331B2 (en) | 2009-11-13 | 2013-08-27 | Intuitive Surgical Operations, Inc. | Patient-side surgeon interface for a minimally invasive, teleoperated surgical instrument |
US20110137152A1 (en) | 2009-12-03 | 2011-06-09 | General Electric Company | System and method for cooling components of a surgical navigation system |
US8277509B2 (en) | 2009-12-07 | 2012-10-02 | Globus Medical, Inc. | Transforaminal prosthetic spinal disc apparatus |
CN102651998B (en) | 2009-12-10 | 2015-08-05 | 皇家飞利浦电子股份有限公司 | For the scanning system of differential contrast imaging |
US8694075B2 (en) | 2009-12-21 | 2014-04-08 | General Electric Company | Intra-operative registration for navigated surgical procedures |
US8353963B2 (en) | 2010-01-12 | 2013-01-15 | Globus Medical | Expandable spacer and method for use thereof |
US9381045B2 (en) | 2010-01-13 | 2016-07-05 | Jcbd, Llc | Sacroiliac joint implant and sacroiliac joint instrument for fusing a sacroiliac joint |
RU2556593C2 (en) | 2010-01-13 | 2015-07-10 | Конинклейке Филипс Электроникс Н.В. | Image integration based superposition and navigation for endoscopic surgery |
US9030444B2 (en) | 2010-01-14 | 2015-05-12 | Brainlab Ag | Controlling and/or operating a medical device by means of a light pointer |
US9039769B2 (en) | 2010-03-17 | 2015-05-26 | Globus Medical, Inc. | Intervertebral nucleus and annulus implants and method of use thereof |
US20110238080A1 (en) | 2010-03-25 | 2011-09-29 | Date Ranjit | Robotic Surgical Instrument System |
US20140330288A1 (en) | 2010-03-25 | 2014-11-06 | Precision Automation And Robotics India Ltd. | Articulating Arm for a Robotic Surgical Instrument System |
IT1401669B1 (en) | 2010-04-07 | 2013-08-02 | Sofar Spa | ROBOTIC SURGERY SYSTEM WITH PERFECT CONTROL. |
US8870880B2 (en) | 2010-04-12 | 2014-10-28 | Globus Medical, Inc. | Angling inserter tool for expandable vertebral implant |
IT1399603B1 (en) | 2010-04-26 | 2013-04-26 | Scuola Superiore Di Studi Universitari E Di Perfez | ROBOTIC SYSTEM FOR MINIMUM INVASIVE SURGERY INTERVENTIONS |
US8717430B2 (en) | 2010-04-26 | 2014-05-06 | Medtronic Navigation, Inc. | System and method for radio-frequency imaging, registration, and localization |
CA2797302C (en) | 2010-04-28 | 2019-01-15 | Ryerson University | System and methods for intraoperative guidance feedback |
WO2012169990A2 (en) | 2010-05-04 | 2012-12-13 | Pathfinder Therapeutics, Inc. | System and method for abdominal surface matching using pseudo-features |
US8738115B2 (en) | 2010-05-11 | 2014-05-27 | Siemens Aktiengesellschaft | Method and apparatus for selective internal radiation therapy planning and implementation |
DE102010020284A1 (en) | 2010-05-12 | 2011-11-17 | Siemens Aktiengesellschaft | Determination of 3D positions and orientations of surgical objects from 2D X-ray images |
US8603077B2 (en) | 2010-05-14 | 2013-12-10 | Intuitive Surgical Operations, Inc. | Force transmission for robotic surgical instrument |
US8883210B1 (en) | 2010-05-14 | 2014-11-11 | Musculoskeletal Transplant Foundation | Tissue-derived tissuegenic implants, and methods of fabricating and using same |
KR101181569B1 (en) | 2010-05-25 | 2012-09-10 | 정창욱 | Surgical robot system capable of implementing both of single port surgery mode and multi-port surgery mode and method for controlling same |
US20110295370A1 (en) | 2010-06-01 | 2011-12-01 | Sean Suh | Spinal Implants and Methods of Use Thereof |
DE102010026674B4 (en) | 2010-07-09 | 2012-09-27 | Siemens Aktiengesellschaft | Imaging device and radiotherapy device |
US8675939B2 (en) | 2010-07-13 | 2014-03-18 | Stryker Leibinger Gmbh & Co. Kg | Registration of anatomical data sets |
EP2593922A1 (en) | 2010-07-14 | 2013-05-22 | BrainLAB AG | Method and system for determining an imaging direction and calibration of an imaging apparatus |
US20120035507A1 (en) | 2010-07-22 | 2012-02-09 | Ivan George | Device and method for measuring anatomic geometries |
US8740882B2 (en) | 2010-07-30 | 2014-06-03 | Lg Electronics Inc. | Medical robotic system and method of controlling the same |
EP2605693B1 (en) | 2010-08-20 | 2019-11-06 | Veran Medical Technologies, Inc. | Apparatus for four dimensional soft tissue navigation |
JP2012045278A (en) | 2010-08-30 | 2012-03-08 | Fujifilm Corp | X-ray imaging apparatus and x-ray imaging method |
WO2012030304A1 (en) | 2010-09-01 | 2012-03-08 | Agency For Science, Technology And Research | A robotic device for use in image-guided robot assisted surgical training |
KR20120030174A (en) | 2010-09-17 | 2012-03-28 | 삼성전자주식회사 | Surgery robot system and surgery apparatus and method for providing tactile feedback |
EP2431003B1 (en) | 2010-09-21 | 2018-03-21 | Medizinische Universität Innsbruck | Registration device, system, kit and method for a patient registration |
US8679125B2 (en) | 2010-09-22 | 2014-03-25 | Biomet Manufacturing, Llc | Robotic guided femoral head reshaping |
US8657809B2 (en) | 2010-09-29 | 2014-02-25 | Stryker Leibinger Gmbh & Co., Kg | Surgical navigation system |
US8718346B2 (en) | 2011-10-05 | 2014-05-06 | Saferay Spine Llc | Imaging system and method for use in surgical and interventional medical procedures |
US8526700B2 (en) | 2010-10-06 | 2013-09-03 | Robert E. Isaacs | Imaging system and method for surgical and interventional medical procedures |
US9913693B2 (en) | 2010-10-29 | 2018-03-13 | Medtronic, Inc. | Error correction techniques in surgical navigation |
US8876866B2 (en) | 2010-12-13 | 2014-11-04 | Globus Medical, Inc. | Spinous process fusion devices and methods thereof |
EP3649937A1 (en) | 2010-12-13 | 2020-05-13 | Statera Spine, Inc. | Methods, systems and devices for clinical data reporting and surgical navigation |
WO2012088321A1 (en) | 2010-12-22 | 2012-06-28 | Viewray Incorporated | System and method for image guidance during medical procedures |
US20130281821A1 (en) | 2011-01-13 | 2013-10-24 | Koninklijke Philips Electronics N.V. | Intraoperative camera calibration for endoscopic surgery |
KR101181613B1 (en) | 2011-02-21 | 2012-09-10 | 윤상진 | Surgical robot system for performing surgery based on displacement information determined by user designation and control method therefor |
US20120226145A1 (en) | 2011-03-03 | 2012-09-06 | National University Of Singapore | Transcutaneous robot-assisted ablation-device insertion navigation system |
US9026247B2 (en) | 2011-03-30 | 2015-05-05 | University of Washington through its Center for Communication | Motion and video capture for tracking and evaluating robotic surgery and associated systems and methods |
US9308050B2 (en) | 2011-04-01 | 2016-04-12 | Ecole Polytechnique Federale De Lausanne (Epfl) | Robotic system and method for spinal and other surgeries |
US20150213633A1 (en) | 2011-04-06 | 2015-07-30 | The Trustees Of Columbia University In The City Of New York | System, method and computer-accessible medium for providing a panoramic cone beam computed tomography (cbct) |
US20120256092A1 (en) | 2011-04-06 | 2012-10-11 | General Electric Company | Ct system for use in multi-modality imaging system |
WO2012149548A2 (en) | 2011-04-29 | 2012-11-01 | The Johns Hopkins University | System and method for tracking and navigation |
US20140096369A1 (en) | 2011-06-06 | 2014-04-10 | Ono & Co., Ltd. | Method for manufacturing registration template |
US8498744B2 (en) | 2011-06-30 | 2013-07-30 | Mako Surgical Corporation | Surgical robotic systems with manual and haptic and/or active control modes |
WO2013009887A1 (en) | 2011-07-11 | 2013-01-17 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems and related methods |
US8818105B2 (en) | 2011-07-14 | 2014-08-26 | Accuray Incorporated | Image registration for image-guided surgery |
KR20130015146A (en) | 2011-08-02 | 2013-02-13 | 삼성전자주식회사 | Method and apparatus for processing medical image, robotic surgery system using image guidance |
US10866783B2 (en) | 2011-08-21 | 2020-12-15 | Transenterix Europe S.A.R.L. | Vocally activated surgical control system |
US9427330B2 (en) | 2011-09-06 | 2016-08-30 | Globus Medical, Inc. | Spinal plate |
US8864833B2 (en) | 2011-09-30 | 2014-10-21 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US9060794B2 (en) | 2011-10-18 | 2015-06-23 | Mako Surgical Corp. | System and method for robotic surgery |
US8894688B2 (en) | 2011-10-27 | 2014-11-25 | Globus Medical Inc. | Adjustable rod devices and methods of using the same |
DE102011054910B4 (en) | 2011-10-28 | 2013-10-10 | Ovesco Endoscopy Ag | Magnetic end effector and means for guiding and positioning same |
CA3041707C (en) | 2011-11-15 | 2021-04-06 | Manickam UMASUTHAN | Method of real-time tracking of moving/flexible surfaces |
FR2983059B1 (en) | 2011-11-30 | 2014-11-28 | Medtech | ROBOTIC-ASSISTED METHOD OF POSITIONING A SURGICAL INSTRUMENT IN RELATION TO THE BODY OF A PATIENT AND DEVICE FOR CARRYING OUT SAID METHOD |
US9713499B2 (en) | 2011-12-05 | 2017-07-25 | Mazor Robotics Ltd. | Active bed mount for surgical robot |
KR101901580B1 (en) | 2011-12-23 | 2018-09-28 | 삼성전자주식회사 | Surgical robot and control method thereof |
US9265583B2 (en) | 2011-12-30 | 2016-02-23 | Mako Surgical Corp. | Method for image-based robotic surgery |
CA2862402C (en) | 2011-12-30 | 2020-01-07 | Mako Surgical Corp. | System for image-based robotic surgery |
FR2985167A1 (en) | 2011-12-30 | 2013-07-05 | Medtech | ROBOTISE MEDICAL METHOD FOR MONITORING PATIENT BREATHING AND CORRECTION OF ROBOTIC TRAJECTORY. |
KR20130080909A (en) | 2012-01-06 | 2013-07-16 | 삼성전자주식회사 | Surgical robot and method for controlling the same |
US9138297B2 (en) | 2012-02-02 | 2015-09-22 | Intuitive Surgical Operations, Inc. | Systems and methods for controlling a robotic surgical system |
US9972082B2 (en) | 2012-02-22 | 2018-05-15 | Veran Medical Technologies, Inc. | Steerable surgical catheter having biopsy devices and related systems and methods for four dimensional soft tissue navigation |
US11207132B2 (en) | 2012-03-12 | 2021-12-28 | Nuvasive, Inc. | Systems and methods for performing spinal surgery |
US8855822B2 (en) | 2012-03-23 | 2014-10-07 | Innovative Surgical Solutions, Llc | Robotic surgical system with mechanomyography feedback |
KR101946000B1 (en) | 2012-03-28 | 2019-02-08 | 삼성전자주식회사 | Robot system and Control Method thereof for surgery |
US8888821B2 (en) | 2012-04-05 | 2014-11-18 | Warsaw Orthopedic, Inc. | Spinal implant measuring system and method |
US20130272488A1 (en) | 2012-04-16 | 2013-10-17 | Neurologica Corp. | Wireless imaging system |
JP6338570B2 (en) | 2012-04-16 | 2018-06-06 | ニューロロジカ・コーポレーション | Imaging system with fixedly mounted reference markers |
US10383765B2 (en) | 2012-04-24 | 2019-08-20 | Auris Health, Inc. | Apparatus and method for a global coordinate system for use in robotic surgery |
US20140142591A1 (en) | 2012-04-24 | 2014-05-22 | Auris Surgical Robotics, Inc. | Method, apparatus and a system for robotic assisted surgery |
US9020613B2 (en) | 2012-05-01 | 2015-04-28 | The Johns Hopkins University | Method and apparatus for robotically assisted cochlear implant surgery |
JP2015519108A (en) | 2012-05-02 | 2015-07-09 | 医百科技股▲ふん▼有限公司 | Auxiliary guide method during intraoral surgery |
US9125556B2 (en) | 2012-05-14 | 2015-09-08 | Mazor Robotics Ltd. | Robotic guided endoscope |
WO2013173666A1 (en) | 2012-05-18 | 2013-11-21 | Carestream Health, Inc. | Cone beam computed tomography volumetric imaging system |
KR20130132109A (en) | 2012-05-25 | 2013-12-04 | 삼성전자주식회사 | Supporting device and surgical robot system adopting the same |
CN107595392B (en) | 2012-06-01 | 2020-11-27 | 直观外科手术操作公司 | Avoidance of manipulator arm collisions with patient using null space |
CN108113755B (en) | 2012-06-01 | 2020-11-27 | 直观外科手术操作公司 | Multi-port surgical robot system architecture |
JP6228196B2 (en) | 2012-06-22 | 2017-11-08 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | Locally controlled robotic surgical device |
US20130345757A1 (en) | 2012-06-22 | 2013-12-26 | Shawn D. Stad | Image Guided Intra-Operative Contouring Aid |
US9364230B2 (en) | 2012-06-28 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with rotary joint assemblies |
US8880223B2 (en) | 2012-07-16 | 2014-11-04 | Florida Institute for Human & Maching Cognition | Anthro-centric multisensory interface for sensory augmentation of telesurgery |
US20140031664A1 (en) | 2012-07-30 | 2014-01-30 | Mako Surgical Corp. | Radiographic imaging device |
KR101997566B1 (en) | 2012-08-07 | 2019-07-08 | 삼성전자주식회사 | Surgical robot system and control method thereof |
EP2882331A4 (en) | 2012-08-08 | 2016-03-23 | Univ Nebraska | Robotic surgical devices, systems, and related methods |
US9770305B2 (en) | 2012-08-08 | 2017-09-26 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
US10110785B2 (en) | 2012-08-10 | 2018-10-23 | Karl Storz Imaging, Inc. | Deployable imaging system equipped with solid state imager |
CN108524001B (en) | 2012-08-15 | 2021-06-29 | 直观外科手术操作公司 | System for cancelling joint motion by utilizing null space |
WO2014032046A1 (en) | 2012-08-24 | 2014-02-27 | University Of Houston | Robotic device and systems for image-guided and robot-assisted surgery |
US20140080086A1 (en) | 2012-09-20 | 2014-03-20 | Roger Chen | Image Navigation Integrated Dental Implant System |
US8892259B2 (en) | 2012-09-26 | 2014-11-18 | Innovative Surgical Solutions, LLC. | Robotic surgical system with mechanomyography feedback |
US9757160B2 (en) | 2012-09-28 | 2017-09-12 | Globus Medical, Inc. | Device and method for treatment of spinal deformity |
KR102038632B1 (en) | 2012-11-06 | 2019-10-30 | 삼성전자주식회사 | surgical instrument, supporting device, and surgical robot system adopting the same |
EP2919699A4 (en) | 2012-11-14 | 2016-06-15 | Intuitive Surgical Operations | Smart drapes for collision avoidance |
KR102079945B1 (en) | 2012-11-22 | 2020-02-21 | 삼성전자주식회사 | Surgical robot and method for controlling the surgical robot |
US9008752B2 (en) | 2012-12-14 | 2015-04-14 | Medtronic, Inc. | Method to determine distribution of a material by an infused magnetic resonance image contrast agent |
US9393361B2 (en) | 2012-12-14 | 2016-07-19 | Medtronic, Inc. | Method to determine a material distribution |
DE102012025101A1 (en) | 2012-12-20 | 2014-06-26 | avateramedical GmBH | Active positioning device of a surgical instrument and a surgical robotic system comprising it |
US20150005784A2 (en) | 2012-12-20 | 2015-01-01 | avateramedical GmBH | Device for Supporting and Positioning of a Surgical Instrument and/or an Endoscope for Use in Minimal-Invasive Surgery and a Surgical Robotic System |
US9001962B2 (en) | 2012-12-20 | 2015-04-07 | Triple Ring Technologies, Inc. | Method and apparatus for multiple X-ray imaging applications |
US9002437B2 (en) | 2012-12-27 | 2015-04-07 | General Electric Company | Method and system for position orientation correction in navigation |
CA2896873A1 (en) | 2012-12-31 | 2014-07-03 | Mako Surgical Corp. | System for image-based robotic surgery |
KR20140090374A (en) | 2013-01-08 | 2014-07-17 | 삼성전자주식회사 | Single port surgical robot and control method thereof |
CN103969269B (en) | 2013-01-31 | 2018-09-18 | Ge医疗系统环球技术有限公司 | Method and apparatus for geometric calibration CT scanner |
US20140221819A1 (en) | 2013-02-01 | 2014-08-07 | David SARMENT | Apparatus, system and method for surgical navigation |
EP2951743B1 (en) | 2013-02-04 | 2020-04-29 | Children's National Medical Center | Hybrid control surgical robotic system |
KR20140102465A (en) | 2013-02-14 | 2014-08-22 | 삼성전자주식회사 | Surgical robot and method for controlling the same |
KR102117270B1 (en) | 2013-03-06 | 2020-06-01 | 삼성전자주식회사 | Surgical robot system and method for controlling the same |
KR20140110685A (en) | 2013-03-08 | 2014-09-17 | 삼성전자주식회사 | Method for controlling of single port surgical robot |
KR20140110620A (en) | 2013-03-08 | 2014-09-17 | 삼성전자주식회사 | surgical robot system and operating method thereof |
KR102119534B1 (en) | 2013-03-13 | 2020-06-05 | 삼성전자주식회사 | Surgical robot and method for controlling the same |
KR20140112207A (en) | 2013-03-13 | 2014-09-23 | 삼성전자주식회사 | Augmented reality imaging display system and surgical robot system comprising the same |
US9314308B2 (en) | 2013-03-13 | 2016-04-19 | Ethicon Endo-Surgery, Llc | Robotic ultrasonic surgical device with articulating end effector |
WO2014160086A2 (en) | 2013-03-14 | 2014-10-02 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers |
US9629595B2 (en) | 2013-03-15 | 2017-04-25 | Hansen Medical, Inc. | Systems and methods for localizing, tracking and/or controlling medical instruments |
JP2016513556A (en) | 2013-03-15 | 2016-05-16 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | Robotic surgical devices, systems, and related methods |
KR102117273B1 (en) | 2013-03-21 | 2020-06-01 | 삼성전자주식회사 | Surgical robot system and method for controlling the same |
KR20140121581A (en) | 2013-04-08 | 2014-10-16 | 삼성전자주식회사 | Surgical robot system |
KR20140123122A (en) | 2013-04-10 | 2014-10-22 | 삼성전자주식회사 | Surgical Robot and controlling method of thereof |
US9414859B2 (en) | 2013-04-19 | 2016-08-16 | Warsaw Orthopedic, Inc. | Surgical rod measuring system and method |
US8964934B2 (en) | 2013-04-25 | 2015-02-24 | Moshe Ein-Gal | Cone beam CT scanning |
KR20140129702A (en) | 2013-04-30 | 2014-11-07 | 삼성전자주식회사 | Surgical robot system and method for controlling the same |
US20140364720A1 (en) | 2013-06-10 | 2014-12-11 | General Electric Company | Systems and methods for interactive magnetic resonance imaging |
DE102013012397B4 (en) | 2013-07-26 | 2018-05-24 | Rg Mechatronics Gmbh | Surgical robot system |
US10786283B2 (en) | 2013-08-01 | 2020-09-29 | Musc Foundation For Research Development | Skeletal bone fixation mechanism |
US20150085970A1 (en) | 2013-09-23 | 2015-03-26 | General Electric Company | Systems and methods for hybrid scanning |
WO2015052719A1 (en) | 2013-10-07 | 2015-04-16 | Technion Research & Development Foundation Ltd. | Needle steering by shaft manipulation |
US9848922B2 (en) | 2013-10-09 | 2017-12-26 | Nuvasive, Inc. | Systems and methods for performing spine surgery |
JP6456936B2 (en) | 2013-10-09 | 2019-01-23 | ニューヴェイジヴ,インコーポレイテッド | Surgical spine correction |
ITBO20130599A1 (en) | 2013-10-31 | 2015-05-01 | Cefla Coop | METHOD AND APPARATUS TO INCREASE THE FIELD OF VIEW IN A COMPUTERIZED TOMOGRAPHIC ACQUISITION WITH CONE-BEAM TECHNIQUE |
US20150146847A1 (en) | 2013-11-26 | 2015-05-28 | General Electric Company | Systems and methods for providing an x-ray imaging system with nearly continuous zooming capability |
KR102457538B1 (en) | 2014-03-17 | 2022-10-24 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | System and method for breakaway clutching in an articulated arm |
EP3157425A4 (en) | 2014-06-17 | 2017-11-15 | Nuvasive, Inc. | Systems and methods for planning, performing, and assessing spinal correction during surgery |
US10327855B2 (en) | 2014-09-17 | 2019-06-25 | Intuitive Surgical Operations, Inc. | Systems and methods for utilizing augmented Jacobian to control manipulator joint movement |
WO2016088130A1 (en) | 2014-12-04 | 2016-06-09 | Mazor Robotics Ltd. | Shaper for vertebral fixation rods |
US20160166329A1 (en) | 2014-12-15 | 2016-06-16 | General Electric Company | Tomographic imaging for interventional tool guidance |
EP3282997B1 (en) | 2015-04-15 | 2021-06-16 | Mobius Imaging, LLC | Integrated medical imaging and surgical robotic system |
US10180404B2 (en) | 2015-04-30 | 2019-01-15 | Shimadzu Corporation | X-ray analysis device |
US20170143284A1 (en) | 2015-11-25 | 2017-05-25 | Carestream Health, Inc. | Method to detect a retained surgical object |
US10070939B2 (en) | 2015-12-04 | 2018-09-11 | Zaki G. Ibrahim | Methods for performing minimally invasive transforaminal lumbar interbody fusion using guidance |
CN108601530A (en) | 2016-01-22 | 2018-09-28 | 纽文思公司 | System and method for promoting spinal operation |
US11058378B2 (en) | 2016-02-03 | 2021-07-13 | Globus Medical, Inc. | Portable medical imaging system |
US10448910B2 (en) | 2016-02-03 | 2019-10-22 | Globus Medical, Inc. | Portable medical imaging system |
US10842453B2 (en) | 2016-02-03 | 2020-11-24 | Globus Medical, Inc. | Portable medical imaging system |
US9962133B2 (en) | 2016-03-09 | 2018-05-08 | Medtronic Navigation, Inc. | Transformable imaging system |
US9931025B1 (en) | 2016-09-30 | 2018-04-03 | Auris Surgical Robotics, Inc. | Automated calibration of endoscopes with pull wires |
-
2022
- 2022-03-18 US US17/655,370 patent/US12103480B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2450062A (en) * | 1946-06-17 | 1948-09-28 | Voss Grace | Caster guard |
US5702117A (en) * | 1994-12-19 | 1997-12-30 | U.S. Philips Corporation | Trolley intended for a medical apparatus and comprising wheels provided with a cable pusher |
US9701269B1 (en) * | 2015-08-10 | 2017-07-11 | Bryan D. Dubas | Wheel guard |
US11820170B2 (en) * | 2021-07-01 | 2023-11-21 | Alcon Inc. | Retractable guard assemblies |
Also Published As
Publication number | Publication date |
---|---|
US12103480B2 (en) | 2024-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11066090B2 (en) | Stabilizer wheel assembly and methods of use | |
CN110167443B (en) | Cantilever type X-ray CT system for multi-axis imaging | |
US11504022B2 (en) | MRI compatible patient trolley | |
US20200375557A1 (en) | Ct imaging systems | |
EP3142593B1 (en) | Surgical robotic arm support systems and methods of use | |
US20170071692A1 (en) | Surgical robotic arm support systems and methods of use | |
US20190125284A1 (en) | Radiological imaging device with improved maneuverability | |
US9707334B2 (en) | Transformable intravenous pole and boom combination and method thereof | |
CN107645924A (en) | Integrated medical imaging and surgical robotic system | |
US20080101546A1 (en) | method and arrangement for a mobile imaging system | |
CN109288589B (en) | Surgical robot | |
US20160183898A1 (en) | A mammographic device | |
US20120104264A1 (en) | Anatomical imaging system with centipede belt drive and bottom notch to accommodate base of patient support | |
US20200129250A1 (en) | Robotic surgical cart | |
US12103480B2 (en) | Omni-wheel cable pusher | |
US20090261215A1 (en) | Intravenous pole and base protection system | |
WO2009110906A1 (en) | A method and arrangement for a mobile imaging system | |
US9857024B1 (en) | Overhead support for medical equipment | |
CN210871658U (en) | Universal magnetic type lead clothes suspension device | |
CN113456101A (en) | Animal detection CT machine convenient to use | |
US20060010597A1 (en) | Track supported ceiling lift turntable | |
CN118319341A (en) | Movable X-ray machine | |
WO2013071045A1 (en) | Cable management system for x-ray imaging holonome robot | |
CN110691552A (en) | Mobile C-arm X-ray imaging system | |
TW201350164A (en) | A mobile X-ray unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |