US20220334546A1 - Monitoring and control of proppant storage from a datavan - Google Patents

Monitoring and control of proppant storage from a datavan Download PDF

Info

Publication number
US20220334546A1
US20220334546A1 US17/533,279 US202117533279A US2022334546A1 US 20220334546 A1 US20220334546 A1 US 20220334546A1 US 202117533279 A US202117533279 A US 202117533279A US 2022334546 A1 US2022334546 A1 US 2022334546A1
Authority
US
United States
Prior art keywords
proppant
container
datavan
serial
fracturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/533,279
Inventor
Jared Oehring
Brandon N. Hinderliter
Arthur Baron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Well Services LLC
Original Assignee
US Well Services LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57397583&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20220334546(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US13/679,689 external-priority patent/US9410410B2/en
Application filed by US Well Services LLC filed Critical US Well Services LLC
Priority to US17/533,279 priority Critical patent/US20220334546A1/en
Publication of US20220334546A1 publication Critical patent/US20220334546A1/en
Assigned to PIPER SANDLER FINANCE LLC reassignment PIPER SANDLER FINANCE LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: U.S. Well Services, LLC
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: U.S. WELL SERVICE HOLDINGS, LLC, U.S. Well Services, LLC, USWS FLEET 10, LLC, USWS FLEET 11, LLC, USWS HOLDINGS LLC
Assigned to U.S. BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment U.S. BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS COLLATERAL AGENT INTELLECTUAL PROPERTY SECURITY AGREEMENT Assignors: BEST PUMP AND FLOW, LLC, FTS INTERNATIONAL SERVICES, LLC, PROFRAC SERVICES, LLC, U.S. WELL SERVICES HOLDINGS, LLC, U.S. Well Services, LLC
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0428Safety, monitoring
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/43Programme-control systems fluidic
    • G05B19/46Programme-control systems fluidic hydraulic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37303Two measurements, speed of motor and speed of load
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45004Mining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • Embodiments of the present disclosure relate to systems and methods for wirelessly monitoring and controlling proppant usage in real time in a hydraulic fracturing operation.
  • Hydraulic fracturing (fracking) operations typically require powering numerous components in order to recover oil and gas resources from the ground. For example, pumps that inject fracking fluid down the wellbore, blenders that mix proppant into the fluid, cranes, wireline units, and many other components all must perform different functions in concert to carry out fracturing operations.
  • Fracturing operations are highly complex and involve pumping fracturing fluid at a high pressure to hydraulically fracture the reservoir rock in the well in order to form fractures and stimulate production of hydrocarbons.
  • the formed fractures can then be used to access hydrocarbons that could not have been accessed with traditional oil & gas well techniques.
  • the fracturing fluid that is pumped down into the well usually includes a proppant that is a solid particulate such as sand or ceramic beads.
  • proppant such as sand, glass beads, ceramic material, bauxite, dry powders, rock salt, benzoic acid, fiber material, or cement plastics, is mixed with other materials and enhances the flow capacity of the fractures.
  • the proppant props open the fractures and remains in the fractures after the end of the hydraulic fracturing operation.
  • the proppant is supplied to the blenders and mixers and then to the well through a proppant delivery system located at the wellsite.
  • the proppant is usually stored in large containers that are heavy and are connected to conveyor belts which lead to other mixing equipment and finally into the wellbore, where the mixture is pumped into the reservoir.
  • the containers usually are refilled at the site by trucks that come in and empty the proppant into them. Gates are controlled by the user to open and close the proppant containers.
  • operators of the hydraulic fracturing system need to be stationed outside at the containers using hydraulic valves, or a short range wireless remote control that is hand held for controls.
  • the method and system of the present invention provide real-time remote monitoring of proppant, such as sand and glass beads, as it is being fed from proppant containers and mixed into the fracturing fluid.
  • Operators inside a datavan are able to wirelessly monitor the weight, container level or volume of the proppant and control the proppants in the proppant containers through remote monitoring software in a datavan.
  • Embodiments of systems and methods of the present disclosure include a proppant container with control box connected to a sensor for monitoring the amount of proppant, an RS232 or RS435 serial data protocol on the control box, a wireless Ethernet converter to send the signal from the control box located at the proppant container, a wireless receiver with signal out ports for serial or Ethernet ports to receive the data from the sensor to the datavan and a piece of software on an information handling system in the datavan that computes the total and allows the user to interface with the fracturing control software to schedule proppant usage and flow.
  • Embodiments of the invention include software that acquires and displays the proppant data to a user in a datavan, and power supplies that supply power to the serial to Ethernet converter, measuring sensor, and transmitter.
  • Embodiments of the invention also include wireless control of the storage containers and conveyor belts.
  • Embodiments of the invention include a serial to Ethernet converter that takes the serial data output from a sensor at a proppant container and converts it to the Ethernet protocol to be sent to a datavan with an Ethernet receiver where it is processed and displayed to a user who is monitoring and controlling the proppant flow.
  • the software also allows for scheduling and remote monitoring of the weight, volume and amount of proppant in each proppant container.
  • the monitoring software which receives the signal from the proppant equipment can also communicate with fracturing software in the datavan to allow for more automation of the fracturing process as a whole.
  • Embodiments of the invention can schedule and automate which containers to run the proppant from, allowing for the proper mixture of proppants from different containers to make up the fracturing fluid.
  • Embodiments of the invention can relay the container weight to a datavan information handling system, a personal laptop or a separate Human Machine Interface (HMI) mounted in the datavan.
  • a datavan information handling system a personal laptop or a separate Human Machine Interface (HMI) mounted in the datavan.
  • HMI Human Machine Interface
  • Embodiments of the present invention measure the containers weight by gamma ray gauges, radar gauges, laser gauges, and ultrasonic gauges. Also weight measuring load cells and pressure sensors along the vertical height of the vessel can be used.
  • Embodiments of the invention include that the communications can be wired or wireless.
  • Embodiments of the invention can convert the serial data to wireless, but it is possible to transmit the signal without converting it first.
  • Embodiments of the invention can include only the monitoring of the proppant flow and not control.
  • Embodiments of the invention can be used on several type of proppant storage containers including silos, capable of holding 200,000 lbs to 300,000 lbs, kings, or sand hogs, large trailer mounted containers similar to a fracturing tank on wheels that holds from 300,000 lbs to 400,000 lbs, or smaller individual proppant boxes, which hold from 40,000 lbs to 60,000 lbs and can be set directly on a conveyor belt.
  • silos capable of holding 200,000 lbs to 300,000 lbs, kings, or sand hogs
  • large trailer mounted containers similar to a fracturing tank on wheels that holds from 300,000 lbs to 400,000 lbs
  • smaller individual proppant boxes which hold from 40,000 lbs to 60,000 lbs and can be set directly on a conveyor belt.
  • FIG. 1 is a block diagram of an embodiment of the present invention.
  • FIG. 2 is a block diagram of a second embodiment of the invention.
  • the present invention provides a system and method for wirelessly monitoring and controlling proppant flow from proppant storage containers in a hydraulic fracturing operation.
  • the proppant can include sand, glass beads and other known materials that is mixed into a fracturing fluid and that is pumped through a wellbore into a well in order to create fractures and extract hydrocarbons.
  • the proppant storage containers can be stationary or attached to a trailer and can be of various sizes depending on the application.
  • Components of a system for monitoring proppant usage and flow can include a control box at the proppant container with sensors which are coupled to the proppant storage container and have serial connections, such as RS232 or RS485 serial connectors, a wireless Ethernet converter to send data signals indicating the readings of the sensors that monitor the weight of the container in real time, and a wireless receiver with signal out ports for serial or Ethernet that receives the signals sent from the control box and formulates them for viewing to a user in a datavan.
  • a variety of power supplies can be used to power the converters.
  • the software to acquire and display the data, as well as to communicate with the fracturing control software can be included as well.
  • FIG. 1 shows in schematic form an embodiment of a system 100 for remote and real-time monitoring of proppant storage in a container.
  • a datavan 102 where a user operates an information handling system 107 with a processor and memory for storing computer readable media accessible by the processor with instructions and with a display 106 .
  • the information handling system 107 may also include nonvolatile storage area accessible by the processor, and logics for performing each of the steps described herein.
  • the information handling system 107 interfaces with a wireless receiver 108 that can be connected to a LAN or other type of wireless network through normal wireless connections or serial to Ethernet devices. Serial to Ethernet devices can be provided by Moxa (640 Herman Road, Suite 5, Jackson, N.J.
  • Ethernet may not be reliable and therefore another suitable long range protocol may be used such as Radio Frequency (AM or FM).
  • AM or FM Radio Frequency
  • the datavan 102 communicates with a proppant container 114 through a control box 104 at a well site 112 .
  • the proppant monitoring system 100 includes a control box 104 shown connected to a proppant container 114 .
  • the control box 104 can contain circuitry and wiring along with computer readable media for storing instructions and a processor and input means for the user to manually operate the container 114 . In most embodiments the control box 104 will be attached to and be a part of the proppant container 114 .
  • Included in the control box 104 is a serial receiver 128 that can connect to a serial to Ethernet converter 110 , also potentially produced by Moxa.
  • the control box 104 can further contain a wireless transmitter 130 for transmitting information to the datavan 102 .
  • control box 104 has a serial receiver 128 that is connected via a serial cable to a serial transmitter 126 in a proppant container 114 .
  • the proppant container has a sensor 118 which monitors the weight of the proppant container 114 and its contents.
  • the sensor 118 gathers information about the weight of the proppant in the container and sends it via serial or analog connection to the serial transmitter 126 to the control box 104 through its own serial receiver 128 . That information is then converted by a serial to Ethernet converter 110 and sent via wireless transmitter 130 to the datavan 102 .
  • Proppant can be selectively dispensed from proppant container 114 by opening and closing gate 120 , such as with an actuator 122 . Sensor readings from sensor 118 are constantly sent back to the datavan 102 through the serial to Ethernet converter 110 .
  • the weight of the proppant container 114 and its contents can be relayed to one or more of the datavan information handling system 107 , a personal laptop, and/or a separate human machine interface (HMI) mounted in the datavan 102 through the control box 104 .
  • a wireless receiver 108 receives the data (wireless transmission is indicated by a dashed line in FIG. 1 ) and then the information is sent to the information handling system 107 and displayed to the user via a display 106 in multiple formats.
  • the connections between the wireless receiver 108 and the information handling system 107 can be Ethernet or the wireless receiver can be directly installed in the information handling system 107 . Further the connection between the information handling system 107 and the display 106 can be Ethernet or serial connection types.
  • the amount of proppant in the proppant container 114 can be gauged by measuring its total weight and subtracting the weight of the proppant container 114 itself, such as with a load cell.
  • a load cell includes a strain gauge that mounts to the proppant container 114 and emits a signal that is representative of the weight of proppant in the proppant container 114 .
  • This embodiment is not limited to any one sensor and there are several different ways an accurate weight measurement can be obtained.
  • volume of the proppant can be measured.
  • Gamma ray (radioactive) gauges, radar gauges, laser gauges, and ultrasonic gauges can optionally be used in place of weight measuring load cells or as a redundancy to load cells.
  • Even pressure sensors along the vertical height of the proppant container 114 can be used. Furthermore, the communications can be either wired or wireless. Although the above-discussed embodiments seek to convert the serial communications to Ethernet, it is possible to transmit serial data wirelessly without converting it. Proppant is tracked based on weight using load cells, and if a level sensor is used such as a gamma, radar, laser or sonic sensor, then the geometry of the container is taken into consideration when the weight is calculated. An algorithm is used that takes into account the current proppant level, the proppant weight per volume, the density of the proppant and the geometry of the container.
  • a level sensor such as a gamma, radar, laser or sonic sensor
  • the signal and electrical characteristics of communications associated with the control box 104 and weight sensor 118 can be in accordance with Serial RS232 or RS485 protocol standards.
  • Serial RS232 or RS485 protocols are standard communications protocols within the industry and other embodiments of the invention can include different standards.
  • the operation of the control box 104 and weight sensor 118 can be in accordance with Ethernet standards, and the data from these devices transmitted wirelessly to the datavan 102 .
  • the datavan 102 can then receive the wireless signal and output it to display 106 .
  • the display 106 shows a representation of each container and a number with the appropriate scale weight. To keep each container unconfused and receiving properly, an output signal and an input signal can be separated on respectively numbered com ports.
  • container one can be received through com port one
  • container two can be routed to com port two
  • Another option is to order the data sent in the serial stream so that the first value in the data packet can pertain to the weight of the first container, the second value can pertain to the second container, and so on.
  • the weight or volume of the proppant (or sand) in the proppant container 114 is monitored, either instantaneously or over time, and compared to a designated weight (or volume) or change in weight (or volume) over time.
  • a threshold low point of proppant in the container 114 is established, and operations protocol is to keep the amount of proppant in the container 114 to be at least or greater than the threshold low point.
  • an advantage of employing the monitoring system 100 described herein is that by monitoring the proppant amount in the container 114 with the controls described herein, if the threshold low point is approached, or soon to be approached, proppant can be added to that particular container 114 .
  • the gate 120 on the particular proppant container 114 can be adjusted so that the rate change of weight is at or close to the designated value.
  • Excursions of the rate change of weight from the designated value can indicate that the amount of proppant being dispensed from the container 114 exceeds a capacity of proppant handling hardware, such as a conveyor, thereby resulting in spillage of proppant, or generating proppant dust.
  • This can be corrected (via monitoring software in the information handling system) that identifies the rate of weight change excursion and contains instructions to send controlling commands to the actuator 122 that in turn adjust a position of the gate 120 to affect a flow of proppant from the container 114 .
  • monitoring a rate of weight change of a proppant container 114 can provide an indication of how much, if any, proppant is being dispensed from the container 114 .
  • logics in the information handling system 107 can compare monitored rate weight changes of proppants in the containers 114 to determine if proppant is being dispensed from designated proppant containers 114 , and if not, command signals can be transmitted from the information handling system 107 to the actuator 122 to open a gate 120 on a container 114 from which proppant is to be dispensed, and close a gate 120 on a container 114 from which proppant is not to be dispensed.
  • FIG. 2 shows in schematic form an alternate embodiment of a system 200 for monitoring and controlling proppant flow.
  • the wireless proppant monitoring and controlling system 200 of FIG. 2 includes a datavan 202 with a wireless connection inside via a wireless transceiver 208 .
  • the datavan 202 can contain a human machine interface (HMI) 206 such as a display and an information handling system (IHS) 207 with a processor, memory and storage for storing the data gathered through the wireless connection.
  • HMI human machine interface
  • IHS information handling system
  • a control box 204 contains a serial transceiver 228 that selectively communicates with a sensor 218 for monitoring the weight of the proppant container 214 and its contents via a serial transceiver 226 .
  • the information is transmitted after it is sent from the sensor 218 via analog connection from a serial transceiver 226 to another serial transceiver 228 in the control box 204 .
  • the information is then sent through a serial connection to another information handling system (IHS) 234 in the control box 204 .
  • This IHS 234 may have another human machine interface (HMI) 232 connected to it for access by a user.
  • HMI human machine interface
  • the IHS 234 then selectively converts the data through a serial to Ethernet converter 210 and sends it back to the datavan 202 through a wireless transceiver 230 on the control box 204 where it is processed by the wireless transceiver 208 .
  • the datavan 202 can control an actuator 222 on the proppant container 214 by sending a control command through the HMI 206 connected to the IHS 207 at the datavan 202 through the wireless transceiver 208 to the control box 204 .
  • the wireless transceiver 230 in the control box 204 receives the command, converts it to serial through the serial to Ethernet converter 210 , sends it to the IHS 234 , which then sends it to the proppant container 214 through the serial transceiver 228 .
  • a serial transceiver 226 at the proppant container receives the command and actuates the actuator 222 connected to the gate 220 .
  • the serial transceiver 226 can also actuate the conveyor 224 as shown in FIG. 2 .
  • the information related to the weight of the container from the sensor 218 can also be catalogued and displayed to a user in the datavan 202 .
  • the information can be updated in real time through the wireless connection in the datavan 202 and the user can also control the operations of the conveyor belts 224 and actuator 222 that release the proppant through an actuator 222 , which in some embodiments is an proportional hydraulic valve, into the mixing system by interfacing with fracturing software that is also stored in the datavan 202 .
  • there are multiple computers in the datavan one that is in charge of proppant delivery and another for the fracturing operation. These different computers run programs that can share data between themselves.
  • the proppant monitoring and control system will be integrated into fracturing software which monitors the entire fracturing operation.
  • the same software can be modified to send commands through the same wireless transceiver 208 on the datavan 202 to the wireless transceiver 230 at the control box 204 at the well site 212 where it can then be converted back to serial for use by the control box's own IHS 234 to open/close sand gates, speed up/slow down the conveyor belt 224 , etc.
  • the monitoring and control system that receives the signal from the control box 204 and proppant container 214 can also communicate with a portion of the fracturing system in the datavan 202 to allow for a higher level of automation if desired (as described below).
  • Proppant in the container 214 may be released through the wireless control of the valve gate 220 located at the container 214 . This can release proppant onto a conveyor 224 for mixing into the fracturing slurry.
  • This data can be used with the data that is gathered from the weight sensor 218 to more accurately control the proppant flow.
  • system 200 allows for two way communications to allow for monitoring and control of the container 214 and conveyor belt (also referred to as a dual belt) 224 .
  • system 200 can be used on several different types of proppant storage containers including silos (tall containers similar to farm silos capable of holding 200,000 lbs to 300,000 lbs), sand kings (sometimes called sand hogs, large trailer mounted containers similar in idea to a frac tank on wheels, capable of holding 300,000 lbs to 400,000 lbs), or sand boxes (which are smaller containers which are set on top of the conveyor belt and unloaded which can contain 40,000 lbs to 60,000 lbs).
  • the sand equipment units can be electric powered, diesel powered, gravity fed, and/or solar powered.
  • system 200 is not limited to use with vertical sand silos, but the can be applied to other sand storage equipment as well.
  • Various sensors can be added to the system to control the flow of proppant and weight and the embodiment described above should not be limited to a single configuration.
  • One advantage of the system 200 is the ability to keep personnel away from air born silica that exists around proppant storage units, and which can cause silicosis or other health problems.
  • Silicosis is lung fibrosis caused by the inhalation of dust containing silica. Operators can also be kept out of the weather in extremely cold, hot, or hazardous environments.
  • Another advantage is the removal of human error of dispensing proppant from the wrong storage container.
  • a live video feed can be directed from the container 214 to the datavan 202 through a camera 236 that sends a Radio-Frequency (RF) signal back to the IHS 234 at the control box 204 , thereby making it possible to know instantly if a gate 220 was left open, spilling product on the ground and costing profit loss or causing an environmental or safety hazard, or conversely, if a gate commanded to open was stuck shut due to a mechanism failure. An improperly operating gate can cause the failure of a fracturing operation. This information is converted to wireless and transmitted to the datavan 202 .
  • RF Radio-Frequency
  • Datavan operators can also use the video feed to determine if the wrong container was opened, causing an incorrect aggregate to be mixed into the fracturing slurry.
  • the same weight monitoring can also allow datavan operators to see if a certain container is being unloaded into which will help prevent confusion regarding logistics and pre-stage planning.
  • Set points for proppant delivery and conveyor speed can be a simple PID closed feedback loop.
  • a sensor can monitor the speed of the conveyor and that sensor sends a signal to the datavan via the system to indicate if the desired speed has been reached. If the sensor indicates it has reached the proper speed, then the conveyor will hold the speed. If it indicates the speed value has been overshot, the system will send out a command signal to slow down the belt. This process is repeated multiple times until the correct weight goal has been achieved by the system
  • the P, I, and D values will determine the stability and response time of the control system, and these values are dependent upon the user's desired response times, and the determined amount of overshoot and undershoot that is tolerable in the positioning of the gate.
  • the fracturing system can issue a command to close a 40/70 aggregate sand container, while simultaneously issuing a command to open a 20/40 aggregate container.
  • closing a particular sand (or proppant) container involves closing the gate 220 on the container 214 through which proppant/sand is dispensed from the container 214 to suspend the flow of proppant from the container 214 .
  • opening a container 214 is done by opening the respective gate 220 on the container 214 so that proppant can be dispensed to a designated conveyor 224 .
  • Opening and closing the gates 220 can be performed by activating the respective actuators 222 coupled with the gates 220 .
  • the speed of a belt on conveyor 224 can be controlled remotely, as well as the container outlet gate 220 which can be choked to control the amount of sand being fed to the belt. If wellhead pressure exceeds a set point, or if an emergency stop (E-Stop/E-Kill) button or emergency power off (EPO) button is pressed, the gates 220 on the containers can be automatically closed thereby preventing lost product (proppant).
  • the conveyor belt 224 can also be linked to the E-Stop and EPO in case of an emergency.
  • the connections between the HMI 206 and the IHS 207 can be serial or Ethernet.
  • the dashed line in FIG. 2 represents wireless communications between the wireless transceiver 230 in the control box 204 and the wireless transceiver in the datavan 202 , but also wired communications can be used as well.
  • the HMI 232 on the control box 204 can also be external or internal and the IHS 234 can be a small programmable logic control device.
  • the actuator 222 can also be an electrical or air actuator instead of a proportional hydraulic valve.
  • the conveyor can be a part of the proppant container, or a separate piece of equipment.
  • a further embodiment of the invention includes a blender that is connected to the IHS 207 of the datavan 202 .
  • the blender can have an information handling system and a human machine interface that communicates with the datavan 202 in order to further control the proppant flow.
  • the blender is capable of making changes to the proppant flow in a similar manner as the datavan 202 .
  • the blender can send control signals to the datavan 202 through its own information handling system to the IHS 207 of the datavan indicating a certain flow of proppant and these signals can be sent to the control box 204 and the proppant container 214 . Therefore any changes requested by a user operating the blender are taken into consideration when delivering the proppant.
  • the connections can be either serial or Ethernet, but are not limited in this embodiment.
  • Embodiments of the system 200 described herein allow for the wireless monitoring and control of proppant and proppant storage containers 214 in a remote location.
  • Proppant container 214 in the embodiment of FIG. 2 contains a single type of proppant, however, it is possible to have multiple proppants in multiple containers with multiple valves actuated remotely, or different compartments in the same container which contain different aggregates of proppant, so that the user in the datavan 202 can schedule a different mixture of proppants for the desired fracturing fluid and application.
  • Persons of ordinary skill in the art will appreciate that the systems and methods described herein are not limited to the particular structures described but that changes to the invention can be made that are consistent with this disclosure.

Abstract

A system and method that remotely monitors and controls proppant usage in a fracturing operation. The system and method allow operators to wirelessly monitor and control proppant storage units from inside a datavan through sensors and control mechanisms that interface with fracturing software to schedule the flow of the proppant. A sensor monitors the weight, container level, or volume of the proppant being used to keep the induced hydraulic fracture open. A serial to Ethernet converter converts this information and sends it wirelessly to a datavan. A user at the datavan controls the proppant usage through a display in the datavan of the storage units with the appropriate weight. The container monitoring software links with the fracturing software, providing real-time information about proppant usage so that the user can properly schedule proppant flow to the well through valves, conveyor belts, and other control mechanisms.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 16/377,861, filed on Apr. 8, 20219, which is now U.S. Pat. No. 11,181,879, issued on Nov. 23, 2021, which is a continuation of U.S. patent application Ser. No. 15/235,716, filed on Aug. 12, 2016, which is now U.S. Pat. No. 10,254,732, issued Apr. 9, 2019, which claims priority to U.S. Provisional Patent Application No. 62/204,331 filed on Aug. 12, 2015 and is a continuation-in-part of, and claims priority to and the benefit of U.S. patent application Ser. No. 15/202,085 filed Jul. 5, 2016, which is now U.S. Pat. No. 10,337,308, issued on Jul. 2, 2019, which is a continuation of U.S. patent application Ser. No. 13/679,689, filed on Nov. 16, 2012, which is now U.S. Pat. No. 9,410,410, issued Aug. 9, 2016, the full disclosures of which are hereby incorporated by reference herein for all purposes.
  • BACKGROUND OF THE INVENTION 1. Technical Field
  • Embodiments of the present disclosure relate to systems and methods for wirelessly monitoring and controlling proppant usage in real time in a hydraulic fracturing operation.
  • 2. Description of Related Art
  • Horizontal drilling and hydraulic fracturing are two ways in which unconventional sources of hydrocarbons can be tapped to provide energy resources. Hydraulic fracturing (fracking) operations typically require powering numerous components in order to recover oil and gas resources from the ground. For example, pumps that inject fracking fluid down the wellbore, blenders that mix proppant into the fluid, cranes, wireline units, and many other components all must perform different functions in concert to carry out fracturing operations.
  • Fracturing operations are highly complex and involve pumping fracturing fluid at a high pressure to hydraulically fracture the reservoir rock in the well in order to form fractures and stimulate production of hydrocarbons. The formed fractures can then be used to access hydrocarbons that could not have been accessed with traditional oil & gas well techniques. The fracturing fluid that is pumped down into the well usually includes a proppant that is a solid particulate such as sand or ceramic beads. In many known fracking systems, proppant, such as sand, glass beads, ceramic material, bauxite, dry powders, rock salt, benzoic acid, fiber material, or cement plastics, is mixed with other materials and enhances the flow capacity of the fractures. The proppant props open the fractures and remains in the fractures after the end of the hydraulic fracturing operation.
  • The proppant is supplied to the blenders and mixers and then to the well through a proppant delivery system located at the wellsite. The proppant is usually stored in large containers that are heavy and are connected to conveyor belts which lead to other mixing equipment and finally into the wellbore, where the mixture is pumped into the reservoir. The containers usually are refilled at the site by trucks that come in and empty the proppant into them. Gates are controlled by the user to open and close the proppant containers. However, in this operational scenario operators of the hydraulic fracturing system need to be stationed outside at the containers using hydraulic valves, or a short range wireless remote control that is hand held for controls.
  • The operators report in to the datavan using a radio headset to communicate the container weights or fill levels. This is inconvenient and there are not always extra personnel available for the task. Also, having a worker walk over to the container to adjust the flow takes minutes, which is a long time to have to manually check the proppant level. Further there is airborne silica around the container, which can cause silicosis. Silicosis is lung fibrosis caused by inhalation of dust containing silica. Silica is usually found in the sand used as a proppant. Operators are also exposed to dangerous weather in extremely cold, hot, or hazardous environments. Also, operators would normally have to determine what container and how much to use manually, which can lead to operator error. The incorrect aggregate of proppant could be used by selecting the wrong container.
  • Another issue with the manual control of the containers is that when the gates controlling proppant flow from the containers are left open spilling product, this causes profit loss. It also causes environmental harm and there is a major safety concern. When a wrong container is open and the incorrect aggregate or proppant is sent out to be mixed with the fracturing slurry, it is hard to figure out what tank the proppant came from and can result in a violation of customer contract. There is also confusion that occurs at the pre-stage planning because operators are unsure what container is being used and how the containers are being scheduled for later use.
  • These and other problems with manually monitoring and controlling the proppant usage have been observed in the field.
  • SUMMARY OF THE INVENTION
  • The method and system of the present invention provide real-time remote monitoring of proppant, such as sand and glass beads, as it is being fed from proppant containers and mixed into the fracturing fluid. Operators inside a datavan are able to wirelessly monitor the weight, container level or volume of the proppant and control the proppants in the proppant containers through remote monitoring software in a datavan.
  • Embodiments of systems and methods of the present disclosure include a proppant container with control box connected to a sensor for monitoring the amount of proppant, an RS232 or RS435 serial data protocol on the control box, a wireless Ethernet converter to send the signal from the control box located at the proppant container, a wireless receiver with signal out ports for serial or Ethernet ports to receive the data from the sensor to the datavan and a piece of software on an information handling system in the datavan that computes the total and allows the user to interface with the fracturing control software to schedule proppant usage and flow.
  • Embodiments of the invention include software that acquires and displays the proppant data to a user in a datavan, and power supplies that supply power to the serial to Ethernet converter, measuring sensor, and transmitter.
  • Embodiments of the invention also include wireless control of the storage containers and conveyor belts.
  • Embodiments of the invention include a serial to Ethernet converter that takes the serial data output from a sensor at a proppant container and converts it to the Ethernet protocol to be sent to a datavan with an Ethernet receiver where it is processed and displayed to a user who is monitoring and controlling the proppant flow. The software also allows for scheduling and remote monitoring of the weight, volume and amount of proppant in each proppant container. The monitoring software, which receives the signal from the proppant equipment can also communicate with fracturing software in the datavan to allow for more automation of the fracturing process as a whole.
  • Embodiments of the invention can schedule and automate which containers to run the proppant from, allowing for the proper mixture of proppants from different containers to make up the fracturing fluid.
  • Embodiments of the invention can relay the container weight to a datavan information handling system, a personal laptop or a separate Human Machine Interface (HMI) mounted in the datavan.
  • Embodiments of the present invention measure the containers weight by gamma ray gauges, radar gauges, laser gauges, and ultrasonic gauges. Also weight measuring load cells and pressure sensors along the vertical height of the vessel can be used.
  • Embodiments of the invention include that the communications can be wired or wireless.
  • Embodiments of the invention can convert the serial data to wireless, but it is possible to transmit the signal without converting it first.
  • Embodiments of the invention can include only the monitoring of the proppant flow and not control.
  • Embodiments of the invention can be used on several type of proppant storage containers including silos, capable of holding 200,000 lbs to 300,000 lbs, kings, or sand hogs, large trailer mounted containers similar to a fracturing tank on wheels that holds from 300,000 lbs to 400,000 lbs, or smaller individual proppant boxes, which hold from 40,000 lbs to 60,000 lbs and can be set directly on a conveyor belt.
  • BRIEF DESCRIPTION OF DRAWINGS
  • The foregoing aspects, features, and advantages of embodiments of the present disclosure will further be appreciated when considered with reference to the following description of embodiments and accompanying drawings. In describing embodiments of the disclosure illustrated in the appended drawings, specific terminology will be used for the sake of clarity. However, the disclosure is not intended to be limited to the specific terms used, and it is to be understood that each specific term includes equivalents that operate in a similar manner to accomplish a similar purpose.
  • FIG. 1 is a block diagram of an embodiment of the present invention.
  • FIG. 2 is a block diagram of a second embodiment of the invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The foregoing aspects, features, and advantages of the present disclosure will be further appreciated when considered with reference to the following description of embodiments and accompanying drawings. In describing the embodiments of the disclosure illustrated in the appended drawings, specific terminology will be used for the sake of clarity. However, the disclosure is not intended to be limited to the specific terms used, and it is to be understood that each specific term includes equivalents that operate in a similar manner to accomplish a similar purpose.
  • The present invention provides a system and method for wirelessly monitoring and controlling proppant flow from proppant storage containers in a hydraulic fracturing operation. The proppant can include sand, glass beads and other known materials that is mixed into a fracturing fluid and that is pumped through a wellbore into a well in order to create fractures and extract hydrocarbons. The proppant storage containers can be stationary or attached to a trailer and can be of various sizes depending on the application.
  • Components of a system for monitoring proppant usage and flow can include a control box at the proppant container with sensors which are coupled to the proppant storage container and have serial connections, such as RS232 or RS485 serial connectors, a wireless Ethernet converter to send data signals indicating the readings of the sensors that monitor the weight of the container in real time, and a wireless receiver with signal out ports for serial or Ethernet that receives the signals sent from the control box and formulates them for viewing to a user in a datavan. A variety of power supplies can be used to power the converters. In addition, the software to acquire and display the data, as well as to communicate with the fracturing control software can be included as well. For the control of the storage, there can be a control box outside or inside the proppant storage containers that can contain wiring and a display for operations that is wirelessly connected to the datavan.
  • FIG. 1 shows in schematic form an embodiment of a system 100 for remote and real-time monitoring of proppant storage in a container. In one example of the system 100, there is a datavan 102 where a user operates an information handling system 107 with a processor and memory for storing computer readable media accessible by the processor with instructions and with a display 106. The information handling system 107 may also include nonvolatile storage area accessible by the processor, and logics for performing each of the steps described herein. In the illustrated example, the information handling system 107 interfaces with a wireless receiver 108 that can be connected to a LAN or other type of wireless network through normal wireless connections or serial to Ethernet devices. Serial to Ethernet devices can be provided by Moxa (640 Herman Road, Suite 5, Jackson, N.J. 08527, http://www.moxastore.com), which manufactures serial to Ethernet devices and servers. Other wireless receivers can also be customized for this particular application. Due to the distances between equipment being up to 400 feet, and other electromagnetic inference, Ethernet may not be reliable and therefore another suitable long range protocol may be used such as Radio Frequency (AM or FM).
  • In the exhibit shown in FIG. 1, the datavan 102 communicates with a proppant container 114 through a control box 104 at a well site 112. The proppant monitoring system 100 includes a control box 104 shown connected to a proppant container 114. The control box 104 can contain circuitry and wiring along with computer readable media for storing instructions and a processor and input means for the user to manually operate the container 114. In most embodiments the control box 104 will be attached to and be a part of the proppant container 114. Included in the control box 104 is a serial receiver 128 that can connect to a serial to Ethernet converter 110, also potentially produced by Moxa. The control box 104 can further contain a wireless transmitter 130 for transmitting information to the datavan 102.
  • Further, the control box 104 has a serial receiver 128 that is connected via a serial cable to a serial transmitter 126 in a proppant container 114. The proppant container has a sensor 118 which monitors the weight of the proppant container 114 and its contents. The sensor 118 gathers information about the weight of the proppant in the container and sends it via serial or analog connection to the serial transmitter 126 to the control box 104 through its own serial receiver 128. That information is then converted by a serial to Ethernet converter 110 and sent via wireless transmitter 130 to the datavan 102. Proppant can be selectively dispensed from proppant container 114 by opening and closing gate 120, such as with an actuator 122. Sensor readings from sensor 118 are constantly sent back to the datavan 102 through the serial to Ethernet converter 110. There is also a conveyor 124 that can be selectively activated in this embodiment.
  • The weight of the proppant container 114 and its contents can be relayed to one or more of the datavan information handling system 107, a personal laptop, and/or a separate human machine interface (HMI) mounted in the datavan 102 through the control box 104. In the datavan a wireless receiver 108 receives the data (wireless transmission is indicated by a dashed line in FIG. 1) and then the information is sent to the information handling system 107 and displayed to the user via a display 106 in multiple formats. The connections between the wireless receiver 108 and the information handling system 107 can be Ethernet or the wireless receiver can be directly installed in the information handling system 107. Further the connection between the information handling system 107 and the display 106 can be Ethernet or serial connection types.
  • In addition, the amount of proppant in the proppant container 114 can be gauged by measuring its total weight and subtracting the weight of the proppant container 114 itself, such as with a load cell. In one example a load cell includes a strain gauge that mounts to the proppant container 114 and emits a signal that is representative of the weight of proppant in the proppant container 114. This embodiment is not limited to any one sensor and there are several different ways an accurate weight measurement can be obtained. Optionally, volume of the proppant can be measured. Gamma ray (radioactive) gauges, radar gauges, laser gauges, and ultrasonic gauges can optionally be used in place of weight measuring load cells or as a redundancy to load cells. Even pressure sensors along the vertical height of the proppant container 114 can be used. Furthermore, the communications can be either wired or wireless. Although the above-discussed embodiments seek to convert the serial communications to Ethernet, it is possible to transmit serial data wirelessly without converting it. Proppant is tracked based on weight using load cells, and if a level sensor is used such as a gamma, radar, laser or sonic sensor, then the geometry of the container is taken into consideration when the weight is calculated. An algorithm is used that takes into account the current proppant level, the proppant weight per volume, the density of the proppant and the geometry of the container.
  • According to one embodiment of the invention shown in FIG. 1, the signal and electrical characteristics of communications associated with the control box 104 and weight sensor 118 can be in accordance with Serial RS232 or RS485 protocol standards. Serial RS232 or RS485 protocols are standard communications protocols within the industry and other embodiments of the invention can include different standards. Optionally the operation of the control box 104 and weight sensor 118 can be in accordance with Ethernet standards, and the data from these devices transmitted wirelessly to the datavan 102. The datavan 102 can then receive the wireless signal and output it to display 106. The display 106 shows a representation of each container and a number with the appropriate scale weight. To keep each container unconfused and receiving properly, an output signal and an input signal can be separated on respectively numbered com ports. For example, container one can be received through com port one, container two can be routed to com port two, etc. Another option is to order the data sent in the serial stream so that the first value in the data packet can pertain to the weight of the first container, the second value can pertain to the second container, and so on.
  • In an example of operation, the weight or volume of the proppant (or sand) in the proppant container 114 is monitored, either instantaneously or over time, and compared to a designated weight (or volume) or change in weight (or volume) over time. To ensure a sufficient amount of proppant is on hand in the container(s) 114 for use in the fracturing process, a threshold low point of proppant in the container 114 is established, and operations protocol is to keep the amount of proppant in the container 114 to be at least or greater than the threshold low point. Thus an advantage of employing the monitoring system 100 described herein is that by monitoring the proppant amount in the container 114 with the controls described herein, if the threshold low point is approached, or soon to be approached, proppant can be added to that particular container 114. In another example of operation, if a rate change of weight of a proppant container 114 deviates from a designated value, the gate 120 on the particular proppant container 114 can be adjusted so that the rate change of weight is at or close to the designated value. Excursions of the rate change of weight from the designated value, which can be less than or greater than the designated rate change of weight of the proppant container, can indicate that the amount of proppant being dispensed from the container 114 exceeds a capacity of proppant handling hardware, such as a conveyor, thereby resulting in spillage of proppant, or generating proppant dust. This can be corrected (via monitoring software in the information handling system) that identifies the rate of weight change excursion and contains instructions to send controlling commands to the actuator 122 that in turn adjust a position of the gate 120 to affect a flow of proppant from the container 114. Additionally, monitoring a rate of weight change of a proppant container 114 can provide an indication of how much, if any, proppant is being dispensed from the container 114. Thus if it is desired that proppant be dispensed from a one of the containers 114, but not from another one of the containers 114, logics in the information handling system 107 can compare monitored rate weight changes of proppants in the containers 114 to determine if proppant is being dispensed from designated proppant containers 114, and if not, command signals can be transmitted from the information handling system 107 to the actuator 122 to open a gate 120 on a container 114 from which proppant is to be dispensed, and close a gate 120 on a container 114 from which proppant is not to be dispensed.
  • FIG. 2 shows in schematic form an alternate embodiment of a system 200 for monitoring and controlling proppant flow. The wireless proppant monitoring and controlling system 200 of FIG. 2 includes a datavan 202 with a wireless connection inside via a wireless transceiver 208. The datavan 202 can contain a human machine interface (HMI) 206 such as a display and an information handling system (IHS) 207 with a processor, memory and storage for storing the data gathered through the wireless connection. A control box 204 contains a serial transceiver 228 that selectively communicates with a sensor 218 for monitoring the weight of the proppant container 214 and its contents via a serial transceiver 226.
  • In the example of FIG. 2, the information is transmitted after it is sent from the sensor 218 via analog connection from a serial transceiver 226 to another serial transceiver 228 in the control box 204. The information is then sent through a serial connection to another information handling system (IHS) 234 in the control box 204. This IHS 234 may have another human machine interface (HMI) 232 connected to it for access by a user. The IHS 234 then selectively converts the data through a serial to Ethernet converter 210 and sends it back to the datavan 202 through a wireless transceiver 230 on the control box 204 where it is processed by the wireless transceiver 208. The datavan 202 can control an actuator 222 on the proppant container 214 by sending a control command through the HMI 206 connected to the IHS 207 at the datavan 202 through the wireless transceiver 208 to the control box 204. The wireless transceiver 230 in the control box 204 receives the command, converts it to serial through the serial to Ethernet converter 210, sends it to the IHS 234, which then sends it to the proppant container 214 through the serial transceiver 228. A serial transceiver 226 at the proppant container receives the command and actuates the actuator 222 connected to the gate 220. The serial transceiver 226 can also actuate the conveyor 224 as shown in FIG. 2.
  • The information related to the weight of the container from the sensor 218 can also be catalogued and displayed to a user in the datavan 202. The information can be updated in real time through the wireless connection in the datavan 202 and the user can also control the operations of the conveyor belts 224 and actuator 222 that release the proppant through an actuator 222, which in some embodiments is an proportional hydraulic valve, into the mixing system by interfacing with fracturing software that is also stored in the datavan 202. In one embodiment there are multiple computers in the datavan, one that is in charge of proppant delivery and another for the fracturing operation. These different computers run programs that can share data between themselves. In another embodiment the proppant monitoring and control system will be integrated into fracturing software which monitors the entire fracturing operation.
  • To control proppant flow from the containers, the same software can be modified to send commands through the same wireless transceiver 208 on the datavan 202 to the wireless transceiver 230 at the control box 204 at the well site 212 where it can then be converted back to serial for use by the control box's own IHS 234 to open/close sand gates, speed up/slow down the conveyor belt 224, etc. The monitoring and control system that receives the signal from the control box 204 and proppant container 214 can also communicate with a portion of the fracturing system in the datavan 202 to allow for a higher level of automation if desired (as described below). Proppant in the container 214 may be released through the wireless control of the valve gate 220 located at the container 214. This can release proppant onto a conveyor 224 for mixing into the fracturing slurry. This data can be used with the data that is gathered from the weight sensor 218 to more accurately control the proppant flow.
  • In some alternate embodiments, the system 200 allows for two way communications to allow for monitoring and control of the container 214 and conveyor belt (also referred to as a dual belt) 224. In addition, system 200 can be used on several different types of proppant storage containers including silos (tall containers similar to farm silos capable of holding 200,000 lbs to 300,000 lbs), sand kings (sometimes called sand hogs, large trailer mounted containers similar in idea to a frac tank on wheels, capable of holding 300,000 lbs to 400,000 lbs), or sand boxes (which are smaller containers which are set on top of the conveyor belt and unloaded which can contain 40,000 lbs to 60,000 lbs). The sand equipment units can be electric powered, diesel powered, gravity fed, and/or solar powered. In addition, the system 200 is not limited to use with vertical sand silos, but the can be applied to other sand storage equipment as well. Various sensors can be added to the system to control the flow of proppant and weight and the embodiment described above should not be limited to a single configuration.
  • One advantage of the system 200 is the ability to keep personnel away from air born silica that exists around proppant storage units, and which can cause silicosis or other health problems. Silicosis is lung fibrosis caused by the inhalation of dust containing silica. Operators can also be kept out of the weather in extremely cold, hot, or hazardous environments. Another advantage is the removal of human error of dispensing proppant from the wrong storage container. In some embodiments of the invention, there are multiple gates on the container or containers and different levels of open and close for the multiple gates that can be set by the user at the datavan. Some gates can only open fully or close fully as well depending on the application.
  • In some embodiments, a live video feed can be directed from the container 214 to the datavan 202 through a camera 236 that sends a Radio-Frequency (RF) signal back to the IHS 234 at the control box 204, thereby making it possible to know instantly if a gate 220 was left open, spilling product on the ground and costing profit loss or causing an environmental or safety hazard, or conversely, if a gate commanded to open was stuck shut due to a mechanism failure. An improperly operating gate can cause the failure of a fracturing operation. This information is converted to wireless and transmitted to the datavan 202. Datavan operators can also use the video feed to determine if the wrong container was opened, causing an incorrect aggregate to be mixed into the fracturing slurry. The same weight monitoring can also allow datavan operators to see if a certain container is being unloaded into which will help prevent confusion regarding logistics and pre-stage planning.
  • Set points for proppant delivery and conveyor speed can be a simple PID closed feedback loop. A sensor can monitor the speed of the conveyor and that sensor sends a signal to the datavan via the system to indicate if the desired speed has been reached. If the sensor indicates it has reached the proper speed, then the conveyor will hold the speed. If it indicates the speed value has been overshot, the system will send out a command signal to slow down the belt. This process is repeated multiple times until the correct weight goal has been achieved by the system The P, I, and D values will determine the stability and response time of the control system, and these values are dependent upon the user's desired response times, and the determined amount of overshoot and undershoot that is tolerable in the positioning of the gate. User entered set points for the desired weight of sand remaining in the container(s) will signal the end of the job once that weight is reached and will trigger the gate(s) to close, thus ending the feedback control loop. Further, other components in the fracturing system, such as the blender can alter these values as part of the overall fracturing software depending on the uses of the system.
  • According to certain embodiments, which include multiple containers, it is possible to schedule and automate which of these containers to access. For example, the fracturing system can issue a command to close a 40/70 aggregate sand container, while simultaneously issuing a command to open a 20/40 aggregate container. In an embodiment, closing a particular sand (or proppant) container involves closing the gate 220 on the container 214 through which proppant/sand is dispensed from the container 214 to suspend the flow of proppant from the container 214. Similarly, in one example, opening a container 214 is done by opening the respective gate 220 on the container 214 so that proppant can be dispensed to a designated conveyor 224. Opening and closing the gates 220 can be performed by activating the respective actuators 222 coupled with the gates 220. The speed of a belt on conveyor 224 can be controlled remotely, as well as the container outlet gate 220 which can be choked to control the amount of sand being fed to the belt. If wellhead pressure exceeds a set point, or if an emergency stop (E-Stop/E-Kill) button or emergency power off (EPO) button is pressed, the gates 220 on the containers can be automatically closed thereby preventing lost product (proppant). The conveyor belt 224 can also be linked to the E-Stop and EPO in case of an emergency.
  • The connections between the HMI 206 and the IHS 207 can be serial or Ethernet. The dashed line in FIG. 2 represents wireless communications between the wireless transceiver 230 in the control box 204 and the wireless transceiver in the datavan 202, but also wired communications can be used as well. The HMI 232 on the control box 204 can also be external or internal and the IHS 234 can be a small programmable logic control device. The actuator 222 can also be an electrical or air actuator instead of a proportional hydraulic valve. Additionally, the conveyor can be a part of the proppant container, or a separate piece of equipment.
  • A further embodiment of the invention includes a blender that is connected to the IHS 207 of the datavan 202. The blender can have an information handling system and a human machine interface that communicates with the datavan 202 in order to further control the proppant flow. The blender is capable of making changes to the proppant flow in a similar manner as the datavan 202. The blender can send control signals to the datavan 202 through its own information handling system to the IHS 207 of the datavan indicating a certain flow of proppant and these signals can be sent to the control box 204 and the proppant container 214. Therefore any changes requested by a user operating the blender are taken into consideration when delivering the proppant. The connections can be either serial or Ethernet, but are not limited in this embodiment.
  • Embodiments of the system 200 described herein allow for the wireless monitoring and control of proppant and proppant storage containers 214 in a remote location. Proppant container 214 in the embodiment of FIG. 2 contains a single type of proppant, however, it is possible to have multiple proppants in multiple containers with multiple valves actuated remotely, or different compartments in the same container which contain different aggregates of proppant, so that the user in the datavan 202 can schedule a different mixture of proppants for the desired fracturing fluid and application. Persons of ordinary skill in the art will appreciate that the systems and methods described herein are not limited to the particular structures described but that changes to the invention can be made that are consistent with this disclosure.

Claims (1)

What is claimed is:
1. A system for use with a fracturing operation comprising:
a weight monitoring system in selective cooperation with a proppant container that selectively contains proppant used in fracturing;
an information handling system in communication with the weight monitoring system; and
a proppant dispensing system coupled with the proppant container and that is in communication with and selectively activated by the information handling system.
US17/533,279 2012-11-16 2021-11-23 Monitoring and control of proppant storage from a datavan Pending US20220334546A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/533,279 US20220334546A1 (en) 2012-11-16 2021-11-23 Monitoring and control of proppant storage from a datavan

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US13/679,689 US9410410B2 (en) 2012-11-16 2012-11-16 System for pumping hydraulic fracturing fluid using electric pumps
US201562204331P 2015-08-12 2015-08-12
US15/202,085 US10337308B2 (en) 2012-11-16 2016-07-05 System for pumping hydraulic fracturing fluid using electric pumps
US15/235,716 US10254732B2 (en) 2012-11-16 2016-08-12 Monitoring and control of proppant storage from a datavan
US16/377,861 US11181879B2 (en) 2012-11-16 2019-04-08 Monitoring and control of proppant storage from a datavan
US17/533,279 US20220334546A1 (en) 2012-11-16 2021-11-23 Monitoring and control of proppant storage from a datavan

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/377,861 Continuation US11181879B2 (en) 2012-11-16 2019-04-08 Monitoring and control of proppant storage from a datavan

Publications (1)

Publication Number Publication Date
US20220334546A1 true US20220334546A1 (en) 2022-10-20

Family

ID=57397583

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/235,716 Active 2033-03-17 US10254732B2 (en) 2012-11-16 2016-08-12 Monitoring and control of proppant storage from a datavan
US16/377,861 Active US11181879B2 (en) 2012-11-16 2019-04-08 Monitoring and control of proppant storage from a datavan
US17/533,279 Pending US20220334546A1 (en) 2012-11-16 2021-11-23 Monitoring and control of proppant storage from a datavan

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/235,716 Active 2033-03-17 US10254732B2 (en) 2012-11-16 2016-08-12 Monitoring and control of proppant storage from a datavan
US16/377,861 Active US11181879B2 (en) 2012-11-16 2019-04-08 Monitoring and control of proppant storage from a datavan

Country Status (1)

Country Link
US (3) US10254732B2 (en)

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9650871B2 (en) 2012-11-16 2017-05-16 Us Well Services Llc Safety indicator lights for hydraulic fracturing pumps
US11476781B2 (en) 2012-11-16 2022-10-18 U.S. Well Services, LLC Wireline power supply during electric powered fracturing operations
US9611728B2 (en) 2012-11-16 2017-04-04 U.S. Well Services Llc Cold weather package for oil field hydraulics
US10526882B2 (en) 2012-11-16 2020-01-07 U.S. Well Services, LLC Modular remote power generation and transmission for hydraulic fracturing system
US10232332B2 (en) 2012-11-16 2019-03-19 U.S. Well Services, Inc. Independent control of auger and hopper assembly in electric blender system
US10254732B2 (en) 2012-11-16 2019-04-09 U.S. Well Services, Inc. Monitoring and control of proppant storage from a datavan
US11449018B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC System and method for parallel power and blackout protection for electric powered hydraulic fracturing
US10036238B2 (en) 2012-11-16 2018-07-31 U.S. Well Services, LLC Cable management of electric powered hydraulic fracturing pump unit
US9650879B2 (en) 2012-11-16 2017-05-16 Us Well Services Llc Torsional coupling for electric hydraulic fracturing fluid pumps
US9970278B2 (en) 2012-11-16 2018-05-15 U.S. Well Services, LLC System for centralized monitoring and control of electric powered hydraulic fracturing fleet
US9893500B2 (en) 2012-11-16 2018-02-13 U.S. Well Services, LLC Switchgear load sharing for oil field equipment
US10407990B2 (en) 2012-11-16 2019-09-10 U.S. Well Services, LLC Slide out pump stand for hydraulic fracturing equipment
US9745840B2 (en) 2012-11-16 2017-08-29 Us Well Services Llc Electric powered pump down
US9840901B2 (en) 2012-11-16 2017-12-12 U.S. Well Services, LLC Remote monitoring for hydraulic fracturing equipment
US9995218B2 (en) 2012-11-16 2018-06-12 U.S. Well Services, LLC Turbine chilling for oil field power generation
US10020711B2 (en) 2012-11-16 2018-07-10 U.S. Well Services, LLC System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources
US9410410B2 (en) 2012-11-16 2016-08-09 Us Well Services Llc System for pumping hydraulic fracturing fluid using electric pumps
US10119381B2 (en) 2012-11-16 2018-11-06 U.S. Well Services, LLC System for reducing vibrations in a pressure pumping fleet
PL3426888T3 (en) 2016-03-08 2021-07-26 Typhon Technology Solutions, Llc Utilizing wet fracturing sand for hydraulic fracturing operations
US11421673B2 (en) 2016-09-02 2022-08-23 Halliburton Energy Services, Inc. Hybrid drive systems for well stimulation operations
US10293488B2 (en) * 2016-11-28 2019-05-21 Hall Labs Llc Container and robot communication in inventory system
US11181107B2 (en) 2016-12-02 2021-11-23 U.S. Well Services, LLC Constant voltage power distribution system for use with an electric hydraulic fracturing system
US11624326B2 (en) 2017-05-21 2023-04-11 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US10280724B2 (en) 2017-07-07 2019-05-07 U.S. Well Services, Inc. Hydraulic fracturing equipment with non-hydraulic power
WO2019071086A1 (en) 2017-10-05 2019-04-11 U.S. Well Services, LLC Instrumented fracturing slurry flow system and method
US10408031B2 (en) 2017-10-13 2019-09-10 U.S. Well Services, LLC Automated fracturing system and method
US10655435B2 (en) 2017-10-25 2020-05-19 U.S. Well Services, LLC Smart fracturing system and method
CA3084596A1 (en) 2017-12-05 2019-06-13 U.S. Well Services, LLC Multi-plunger pumps and associated drive systems
CA3084607A1 (en) 2017-12-05 2019-06-13 U.S. Well Services, LLC High horsepower pumping configuration for an electric hydraulic fracturing system
AR114091A1 (en) 2018-02-05 2020-07-22 Us Well Services Inc ELECTRICAL CHARGE MANAGEMENT IN MICROGRID
CA3097051A1 (en) 2018-04-16 2019-10-24 U.S. Well Services, LLC Hybrid hydraulic fracturing fleet
US11211801B2 (en) 2018-06-15 2021-12-28 U.S. Well Services, LLC Integrated mobile power unit for hydraulic fracturing
WO2020056258A1 (en) 2018-09-14 2020-03-19 U.S. Well Services, LLC Riser assist for wellsites
US11208878B2 (en) 2018-10-09 2021-12-28 U.S. Well Services, LLC Modular switchgear system and power distribution for electric oilfield equipment
CN109656713B (en) * 2018-11-30 2022-09-16 河海大学 Container scheduling method based on edge computing framework
US10753153B1 (en) 2019-02-14 2020-08-25 National Service Alliance—Houston LLC Variable frequency drive configuration for electric driven hydraulic fracking system
US11578577B2 (en) 2019-03-20 2023-02-14 U.S. Well Services, LLC Oversized switchgear trailer for electric hydraulic fracturing
US11728709B2 (en) 2019-05-13 2023-08-15 U.S. Well Services, LLC Encoderless vector control for VFD in hydraulic fracturing applications
US11560845B2 (en) 2019-05-15 2023-01-24 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11506126B2 (en) 2019-06-10 2022-11-22 U.S. Well Services, LLC Integrated fuel gas heater for mobile fuel conditioning equipment
CA3148987A1 (en) 2019-08-01 2021-02-04 U.S. Well Services, LLC High capacity power storage system for electric hydraulic fracturing
US10961914B1 (en) 2019-09-13 2021-03-30 BJ Energy Solutions, LLC Houston Turbine engine exhaust duct system and methods for noise dampening and attenuation
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
CA3092859A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11015536B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US10989180B2 (en) 2019-09-13 2021-04-27 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
CA3092865C (en) 2019-09-13 2023-07-04 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11555756B2 (en) 2019-09-13 2023-01-17 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
CA3191280A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US11459863B2 (en) 2019-10-03 2022-10-04 U.S. Well Services, LLC Electric powered hydraulic fracturing pump system with single electric powered multi-plunger fracturing pump
US11009162B1 (en) 2019-12-27 2021-05-18 U.S. Well Services, LLC System and method for integrated flow supply line
US11708829B2 (en) 2020-05-12 2023-07-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
CN111580484A (en) * 2020-05-22 2020-08-25 绵阳钢猫科技有限公司 Online monitoring and fault analysis system and method for cement production enterprise equipment
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US10961908B1 (en) 2020-06-05 2021-03-30 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US11022526B1 (en) 2020-06-09 2021-06-01 Bj Energy Solutions, Llc Systems and methods for monitoring a condition of a fracturing component section of a hydraulic fracturing unit
US11111768B1 (en) 2020-06-09 2021-09-07 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11466680B2 (en) * 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11193361B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods
US11913317B2 (en) 2022-05-05 2024-02-27 Colton Willis Proppants processing system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7494263B2 (en) * 2005-04-14 2009-02-24 Halliburton Energy Services, Inc. Control system design for a mixing system with multiple inputs
US20090078410A1 (en) * 2007-09-21 2009-03-26 David Krenek Aggregate Delivery Unit
US7845413B2 (en) * 2006-06-02 2010-12-07 Schlumberger Technology Corporation Method of pumping an oilfield fluid and split stream oilfield pumping systems
US9562420B2 (en) * 2014-12-19 2017-02-07 Evolution Well Services, Llc Mobile electric power generation for hydraulic fracturing of subsurface geological formations
US10247182B2 (en) * 2016-02-04 2019-04-02 Caterpillar Inc. Well stimulation pump control and method
US10254732B2 (en) * 2012-11-16 2019-04-09 U.S. Well Services, Inc. Monitoring and control of proppant storage from a datavan

Family Cites Families (449)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1656861A (en) 1923-09-15 1928-01-17 Doherty Res Co Derrick
US1671436A (en) 1926-11-10 1928-05-29 John M Melott Flexible coupling
US2004077A (en) 1934-07-16 1935-06-04 William J Mccartney Coupling
US2183364A (en) 1936-04-13 1939-12-12 Thermal Engineering Company Control means for a plurality of power units
US2220622A (en) 1937-06-10 1940-11-05 Homer Paul Aitken Flexible insulated coupling
US2248051A (en) 1938-12-28 1941-07-08 Sun Oil Co Offshore drilling rig
US2416848A (en) 1943-02-23 1947-03-04 Rothery James Stewart Lifting jack
US2407796A (en) 1943-08-17 1946-09-17 Herbert E Page Tripod jack
US2610741A (en) 1950-06-17 1952-09-16 J A Zurn Mfg Company Strainer
US2753940A (en) 1953-05-11 1956-07-10 Exxon Research Engineering Co Method and apparatus for fracturing a subsurface formation
US3055682A (en) 1955-10-11 1962-09-25 Aeroquip Corp Adjustment fitting for reinforced hose in which a seal is maintained during adjustment
US3061039A (en) 1957-11-14 1962-10-30 Joseph J Mascuch Fluid line sound-absorbing structures
US3066503A (en) 1961-05-23 1962-12-04 Gen Tire & Rubber Co Formed tube coupling
GB1102759A (en) 1964-06-25 1968-02-07 Merz And Mclellan Services Ltd Improvements relating to electric switchgear
US3334495A (en) 1965-12-03 1967-08-08 Carrier Corp Breach-lock coupling
US3722595A (en) 1971-01-25 1973-03-27 Exxon Production Research Co Hydraulic fracturing method
US3764233A (en) 1971-11-15 1973-10-09 Us Navy Submersible motor-pump assembly
DE2211512A1 (en) 1972-03-10 1973-10-18 Barth Harald ELASTIC CLAW COUPLING WITH TWO COUPLING DISCS IN ESSENTIAL DESIGN
US3773140A (en) 1972-05-30 1973-11-20 Continental Can Co Noise attenuating kit
US3849662A (en) 1973-01-02 1974-11-19 Combustion Eng Combined steam and gas turbine power plant having gasified coal fuel supply
US3878884A (en) 1973-04-02 1975-04-22 Cecil B Raleigh Formation fracturing method
US3881551A (en) 1973-10-12 1975-05-06 Ruel C Terry Method of extracting immobile hydrocarbons
JPS5325062Y2 (en) 1975-05-20 1978-06-27
US4100822A (en) 1976-04-19 1978-07-18 Allan Rosman Drive system for a moving mechanism
US4151575A (en) 1977-03-07 1979-04-24 Hogue Maurice A Motor protective device
US4226299A (en) 1978-05-22 1980-10-07 Alphadyne, Inc. Acoustical panel
US4265266A (en) * 1980-01-23 1981-05-05 Halliburton Company Controlled additive metering system
JPS601236Y2 (en) 1980-09-22 1985-01-14 日産自動車株式会社 engine surface shielding plate
US4442665A (en) 1980-10-17 1984-04-17 General Electric Company Coal gasification power generation plant
US4432064A (en) 1980-10-27 1984-02-14 Halliburton Company Apparatus for monitoring a plurality of operations
US4506982A (en) 1981-08-03 1985-03-26 Union Oil Company Of California Apparatus for continuously blending viscous liquids with particulate solids
US4512387A (en) 1982-05-28 1985-04-23 Rodriguez Larry A Power transformer waste heat recovery system
FI86435C (en) 1983-05-31 1992-08-25 Siemens Ag Medium load power plant with an integrated carbon gasification plant
US4529887A (en) 1983-06-20 1985-07-16 General Electric Company Rapid power response turbine
US4538916A (en) 1984-06-20 1985-09-03 Zimmerman Harold M Motor mounting arrangement on a mixing auger
DE3513999C1 (en) 1985-04-18 1986-10-09 Deutsche Gesellschaft für Wiederaufarbeitung von Kernbrennstoffen mbH, 3000 Hannover Remote-controlled positioning and carrying device for remote handling devices
US5006044A (en) 1987-08-19 1991-04-09 Walker Sr Frank J Method and system for controlling a mechanical pump to monitor and optimize both reservoir and equipment performance
US4793386A (en) 1987-09-03 1988-12-27 Sloan Pump Company, Inc. Apparatus and method using portable pump
US4922463A (en) 1988-08-22 1990-05-01 Del Zotto Manufacturing Co. Portable volumetric concrete mixer/silo
US4845981A (en) 1988-09-13 1989-07-11 Atlantic Richfield Company System for monitoring fluids during well stimulation processes
US5004400A (en) * 1989-04-13 1991-04-02 Halliburton Company Automatic rate matching system
US5114239A (en) 1989-09-21 1992-05-19 Halliburton Company Mixing apparatus and method
US5025861A (en) 1989-12-15 1991-06-25 Schlumberger Technology Corporation Tubing and wireline conveyed perforating method and apparatus
US5050673A (en) 1990-05-15 1991-09-24 Halliburton Company Lift through plug container for slant rig
US5130628A (en) 1990-06-28 1992-07-14 Southwest Electric Company Transformer providing two multiple phase outputs out of phase with each other, and pumping system using the same
GB2250763B (en) 1990-12-13 1995-08-02 Ltv Energy Prod Co Riser tensioner system for use on offshore platforms using elastomeric pads or helical metal compression springs
US5172009A (en) 1991-02-25 1992-12-15 Regents Of The University Of Minnesota Standby power supply with load-current harmonics neutralizer
US5189388A (en) 1991-03-04 1993-02-23 Mosley Judy A Oil well pump start-up alarm
US5131472A (en) 1991-05-13 1992-07-21 Oryx Energy Company Overbalance perforating and stimulation method for wells
US5334899A (en) 1991-09-30 1994-08-02 Dymytro Skybyk Polyphase brushless DC and AC synchronous machines
US5230366A (en) 1992-07-09 1993-07-27 Griswold Controls Automatic fluid flow control device
US5433243A (en) 1992-07-09 1995-07-18 Griswold Controls Fluid flow control device and method
US5422550A (en) 1993-05-27 1995-06-06 Southwest Electric Company Control of multiple motors, including motorized pumping system and method
US5517822A (en) 1993-06-15 1996-05-21 Applied Energy Systems Of Oklahoma, Inc. Mobile congeneration apparatus including inventive valve and boiler
JPH0763132A (en) 1993-08-20 1995-03-07 Toyoda Gosei Co Ltd Muffling hose for air intake system of internal combustion engine
DE69318734D1 (en) 1993-12-06 1998-06-25 Thermo Instr Controls Ltd SYSTEM AND METHOD FOR INJECTING CELLULOSE
US5469045A (en) 1993-12-07 1995-11-21 Dove; Donald C. High speed power factor controller
US5439066A (en) 1994-06-27 1995-08-08 Fleet Cementers, Inc. Method and system for downhole redirection of a borehole
EP0702141B1 (en) 1994-09-14 2002-05-08 Mitsubishi Jukogyo Kabushiki Kaisha Wall assembly for an exhaust gas nozzle of a supersonic jet engine
US5716260A (en) 1995-02-03 1998-02-10 Ecolab Inc. Apparatus and method for cleaning and restoring floor surfaces
US5590976A (en) 1995-05-30 1997-01-07 Akzo Nobel Ashpalt Applications, Inc. Mobile paving system using an aggregate moisture sensor and method of operation
US5790972A (en) 1995-08-24 1998-08-04 Kohlenberger; Charles R. Method and apparatus for cooling the inlet air of gas turbine and internal combustion engine prime movers
SE9602079D0 (en) 1996-05-29 1996-05-29 Asea Brown Boveri Rotating electric machines with magnetic circuit for high voltage and a method for manufacturing the same
US5798596A (en) 1996-07-03 1998-08-25 Pacific Scientific Company Permanent magnet motor with enhanced inductance
US5755096A (en) 1996-07-15 1998-05-26 Holleyman; John E. Filtered fuel gas for pressurized fluid engine systems
US5950726A (en) 1996-08-06 1999-09-14 Atlas Tool Company Increased oil and gas production using elastic-wave stimulation
US6121705A (en) 1996-12-31 2000-09-19 Hoong; Fong Chean Alternating pole AC motor/generator with two inner rotating rotors and an external static stator
US5879137A (en) 1997-01-22 1999-03-09 Jetec Corporation Method and apparatus for pressurizing fluids
US5894888A (en) 1997-08-21 1999-04-20 Chesapeake Operating, Inc Horizontal well fracture stimulation methods
US6035265A (en) 1997-10-08 2000-03-07 Reliance Electric Industrial Company System to provide low cost excitation to stator winding to generate impedance spectrum for use in stator diagnostics
US5907970A (en) 1997-10-15 1999-06-01 Havlovick; Bradley J. Take-off power package system
US6273193B1 (en) 1997-12-16 2001-08-14 Transocean Sedco Forex, Inc. Dynamically positioned, concentric riser, drilling method and apparatus
US6097310A (en) 1998-02-03 2000-08-01 Baker Hughes Incorporated Method and apparatus for mud pulse telemetry in underbalanced drilling systems
US6208098B1 (en) 1998-03-02 2001-03-27 Yaskawa Electric America, Inc. Variable frequency drive noise attenuation circuit
US6193402B1 (en) 1998-03-06 2001-02-27 Kristian E. Grimland Multiple tub mobile blender
US6758231B1 (en) 1998-06-17 2004-07-06 Light Wave Ltd. Redundant array control system for water rides
US6164910A (en) 1998-09-22 2000-12-26 Itt Manufacturing Enterprises, Inc. Housing assembly for a fluid-working device such as a rotary pump
US6142878A (en) 1998-11-23 2000-11-07 Barin; Jose Florian B. Flexible coupling with elastomeric belt
US6138764A (en) 1999-04-26 2000-10-31 Camco International, Inc. System and method for deploying a wireline retrievable tool in a deviated well
US6985750B1 (en) 1999-04-27 2006-01-10 Bj Services Company Wireless network system
US6271637B1 (en) 1999-09-17 2001-08-07 Delphi Technologies, Inc. Diagnostic system for electric motor
US6529135B1 (en) 1999-10-12 2003-03-04 Csi Technology, Inc. Integrated electric motor monitor
CA2294679C (en) 2000-01-06 2007-10-09 Shishiai-Kabushikigaisha Acoustic damping pipe cover
US6315523B1 (en) 2000-02-18 2001-11-13 Djax Corporation Electrically isolated pump-off controller
JP3750474B2 (en) 2000-03-08 2006-03-01 株式会社日立製作所 Cogeneration facility and operation method thereof
US8760657B2 (en) 2001-04-11 2014-06-24 Gas Sensing Technology Corp In-situ detection and analysis of methane in coal bed methane formations with spectrometers
CA2406801C (en) 2000-04-26 2007-01-02 Pinnacle Technologies, Inc. Treatment well tiltmeter system
US6484490B1 (en) 2000-05-09 2002-11-26 Ingersoll-Rand Energy Systems Corp. Gas turbine system and method
CA2381045C (en) 2000-06-09 2009-12-15 Agricultural Products, Inc. An agricultural or industrial spin filter and a method of operation for same
US6937923B1 (en) 2000-11-01 2005-08-30 Weatherford/Lamb, Inc. Controller system for downhole applications
US6491098B1 (en) 2000-11-07 2002-12-10 L. Murray Dallas Method and apparatus for perforating and stimulating oil wells
CA2428447C (en) 2000-11-10 2010-11-30 John Cunningham Universal support and vibration isolator
US6757590B2 (en) 2001-03-15 2004-06-29 Utc Fuel Cells, Llc Control of multiple fuel cell power plants at a site to provide a distributed resource in a utility grid
US6802690B2 (en) 2001-05-30 2004-10-12 M & I Heat Transfer Products, Ltd. Outlet silencer structures for turbine
US6901735B2 (en) 2001-08-01 2005-06-07 Pipeline Controls, Inc. Modular fuel conditioning system
US6705398B2 (en) 2001-08-03 2004-03-16 Schlumberger Technology Corporation Fracture closure pressure determination
US7336514B2 (en) 2001-08-10 2008-02-26 Micropulse Technologies Electrical power conservation apparatus and method
US8413262B2 (en) 2004-05-28 2013-04-09 Matscitechno Licensing Company Sound dissipating material
US6765304B2 (en) 2001-09-26 2004-07-20 General Electric Co. Mobile power generation unit
CA2359441C (en) 2001-10-19 2005-10-18 Robert C. Rajewski In-line gas compression system
US20030138327A1 (en) 2002-01-18 2003-07-24 Robert Jones Speed control for a pumping system
CA2375565C (en) 2002-03-08 2004-06-22 Rodney T. Beida Wellhead heating apparatus and method
US20030205376A1 (en) 2002-04-19 2003-11-06 Schlumberger Technology Corporation Means and Method for Assessing the Geometry of a Subterranean Fracture During or After a Hydraulic Fracturing Treatment
US20080017369A1 (en) 2002-07-18 2008-01-24 Sarada Steven A Method and apparatus for generating pollution free electrical energy from hydrocarbons
US6820702B2 (en) 2002-08-27 2004-11-23 Noble Drilling Services Inc. Automated method and system for recognizing well control events
JP3661671B2 (en) 2002-09-03 2005-06-15 日産自動車株式会社 Vehicle drive control device
US20050061548A1 (en) 2002-09-05 2005-03-24 Hooper Robert C. Apparatus for positioning and stabbing pipe in a drilling rig derrick
GB2392762A (en) 2002-09-06 2004-03-10 Schlumberger Holdings Mud pump noise attenuation in a borehole telemetry system
AU2003299537A1 (en) 2002-09-18 2004-06-07 Sure Power Corporation Dc power system for marine vessels
US6788022B2 (en) 2002-10-21 2004-09-07 A. O. Smith Corporation Electric motor
US6882960B2 (en) 2003-02-21 2005-04-19 J. Davis Miller System and method for power pump performance monitoring and analysis
JP3680061B2 (en) 2003-02-28 2005-08-10 株式会社東芝 Wall member
US6808303B2 (en) 2003-03-18 2004-10-26 Suzanne Medley Ready mix batch hauler system
US7562025B2 (en) 2003-09-19 2009-07-14 Vesta Medical, Llc Waste sorting system with query function, and method thereof
US7388303B2 (en) 2003-12-01 2008-06-17 Conocophillips Company Stand-alone electrical system for large motor loads
US7170262B2 (en) 2003-12-24 2007-01-30 Foundation Enterprises Ltd. Variable frequency power system and method of use
US7284898B2 (en) 2004-03-10 2007-10-23 Halliburton Energy Services, Inc. System and method for mixing water and non-aqueous materials using measured water concentration to control addition of ingredients
CA2501664A1 (en) 2004-04-22 2005-10-22 Briggs And Stratton Corporation Engine oil heater
US7320374B2 (en) 2004-06-07 2008-01-22 Varco I/P, Inc. Wellbore top drive systems
US7633772B2 (en) 2004-09-20 2009-12-15 Ullrich Joseph Arnold AC power distribution system with transient suppression and harmonic attenuation
US20060065319A1 (en) 2004-09-24 2006-03-30 Mikulas Csitari QuickFlush valve kit for flushing of inboard/outboard marine engine cooling system
US7563076B2 (en) 2004-10-27 2009-07-21 Halliburton Energy Services, Inc. Variable rate pumping system
JP4509742B2 (en) 2004-11-04 2010-07-21 株式会社日立製作所 Gas turbine power generation equipment
US7308933B1 (en) 2004-11-10 2007-12-18 Paal, L.L.C. Power assisted lift for lubricator assembly
US7353874B2 (en) 2005-04-14 2008-04-08 Halliburton Energy Services, Inc. Method for servicing a well bore using a mixing control system
US7173399B2 (en) 2005-04-19 2007-02-06 General Electric Company Integrated torsional mode damping system and method
CA2507073A1 (en) 2005-05-11 2006-11-11 Frac Source Inc. Transportable nitrogen pumping unit
ATE452462T1 (en) 2005-07-06 2010-01-15 Elckon Ltd ELECTRIC MOTOR
US7525264B2 (en) 2005-07-26 2009-04-28 Halliburton Energy Services, Inc. Shunt regulation apparatus, systems, and methods
US7836949B2 (en) 2005-12-01 2010-11-23 Halliburton Energy Services, Inc. Method and apparatus for controlling the manufacture of well treatment fluid
NO20055727L (en) 2005-12-05 2007-06-06 Norsk Hydro Produksjon As Electric underwater compression system
US7370703B2 (en) 2005-12-09 2008-05-13 Baker Hughes Incorporated Downhole hydraulic pipe cutter
BRPI0706580A2 (en) 2006-01-20 2011-03-29 Landmark Graphics Corp dynamic production system management
US7445041B2 (en) 2006-02-06 2008-11-04 Shale And Sands Oil Recovery Llc Method and system for extraction of hydrocarbons from oil shale
CA2577684A1 (en) 2006-02-09 2007-08-09 Jerry R. Collette Thermal recovery of petroleum crude oil from tar sands and oil shale deposits
US20070187163A1 (en) 2006-02-10 2007-08-16 Deere And Company Noise reducing side shields
US20070201305A1 (en) * 2006-02-27 2007-08-30 Halliburton Energy Services, Inc. Method and apparatus for centralized proppant storage and metering
US9738461B2 (en) 2007-03-20 2017-08-22 Pump Truck Industrial LLC System and process for delivering building materials
US20070226089A1 (en) 2006-03-23 2007-09-27 Degaray Stephen System and method for distributing building materials in a controlled manner
EP2010751B1 (en) 2006-04-21 2018-12-12 Shell International Research Maatschappij B.V. Temperature limited heaters using phase transformation of ferromagnetic material
US7683499B2 (en) 2006-04-27 2010-03-23 S & W Holding, Inc. Natural gas turbine generator
JP4790801B2 (en) 2006-06-19 2011-10-12 三菱電機株式会社 Gas insulated power equipment
US20080006089A1 (en) 2006-07-07 2008-01-10 Sarmad Adnan Pump integrity monitoring
US20080041596A1 (en) 2006-08-18 2008-02-21 Conocophillips Company Coiled tubing well tool and method of assembly
US7312593B1 (en) 2006-08-21 2007-12-25 Rockwell Automation Technologies, Inc. Thermal regulation of AC drive
US20080217024A1 (en) 2006-08-24 2008-09-11 Western Well Tool, Inc. Downhole tool with closed loop power systems
US20080137266A1 (en) 2006-09-29 2008-06-12 Rockwell Automation Technologies, Inc. Motor control center with power and data distribution bus
US7642663B2 (en) 2006-10-19 2010-01-05 Bidell Equipment Limited Partnership Mobile wear and tear resistant gas compressor
US7681399B2 (en) 2006-11-14 2010-03-23 General Electric Company Turbofan engine cowl assembly and method of operating the same
ES2358686T3 (en) 2007-02-02 2011-05-12 Abb Research Ltd. SWITCHING DEVICE, USE OF THE SAME AND SWITCHING PROCEDURE.
EP2132842A4 (en) 2007-03-14 2016-12-28 Zonit Structured Solutions Llc Smart nema outlets and associated networks
US8016041B2 (en) 2007-03-28 2011-09-13 Kerfoot William B Treatment for recycling fracture water gas and oil recovery in shale deposits
US20080257449A1 (en) 2007-04-17 2008-10-23 Halliburton Energy Services, Inc. Dry additive metering into portable blender tub
US20080264625A1 (en) 2007-04-26 2008-10-30 Brian Ochoa Linear electric motor for an oilfield pump
US20080264649A1 (en) 2007-04-29 2008-10-30 Crawford James D Modular well servicing combination unit
US8261834B2 (en) 2007-04-30 2012-09-11 Schlumberger Technology Corporation Well treatment using electric submersible pumping system
CN101682188B (en) 2007-05-04 2012-12-05 艾利森电话股份有限公司 Power station for power transmission to remotely located load
US7806175B2 (en) 2007-05-11 2010-10-05 Stinger Wellhead Protection, Inc. Retrivevable frac mandrel and well control stack to facilitate well completion, re-completion or workover and method of use
US8774972B2 (en) 2007-05-14 2014-07-08 Flowserve Management Company Intelligent pump system
NL1034120C2 (en) 2007-07-12 2009-01-13 B B A Participaties B V Soundproof housing for a pump and a drive motor for that pump.
US7675189B2 (en) 2007-07-17 2010-03-09 Baseload Energy, Inc. Power generation system including multiple motors/generators
US20120205301A1 (en) 2007-08-02 2012-08-16 Mcguire Dennis Apparatus for treating fluids
US20090045782A1 (en) 2007-08-16 2009-02-19 General Electric Company Power conversion system
US8506267B2 (en) 2007-09-10 2013-08-13 Schlumberger Technology Corporation Pump assembly
US7755310B2 (en) 2007-09-11 2010-07-13 Gm Global Technology Operations, Inc. Method and apparatus for electric motor torque monitoring
FR2920817B1 (en) 2007-09-11 2014-11-21 Total Sa INSTALLATION AND PROCESS FOR PRODUCING HYDROCARBONS
AU2008299076B2 (en) 2007-09-13 2012-05-17 M-I Llc Method and system for injecting a slurry downhole
US8288916B2 (en) 2007-09-13 2012-10-16 Eric Stephane Quere Composite electromechanical machines with uniform magnets
US7832257B2 (en) 2007-10-05 2010-11-16 Halliburton Energy Services Inc. Determining fluid rheological properties
JP2009092121A (en) 2007-10-05 2009-04-30 Enplas Corp Rotary shaft coupling
EP2205877B1 (en) 2007-10-05 2017-09-27 Weatherford Technology Holdings, LLC Quintuplex mud pump
US7931082B2 (en) 2007-10-16 2011-04-26 Halliburton Energy Services Inc., Method and system for centralized well treatment
US7717193B2 (en) 2007-10-23 2010-05-18 Nabors Canada AC powered service rig
US8146665B2 (en) 2007-11-13 2012-04-03 Halliburton Energy Services Inc. Apparatus and method for maintaining boost pressure to high-pressure pumps during wellbore servicing operations
US8333243B2 (en) 2007-11-15 2012-12-18 Vetco Gray Inc. Tensioner anti-rotation device
US8154419B2 (en) 2007-12-14 2012-04-10 Halliburton Energy Services Inc. Oilfield area network communication system and method
US8162051B2 (en) 2008-01-04 2012-04-24 Intelligent Tools Ip, Llc Downhole tool delivery system with self activating perforation gun
US8037936B2 (en) 2008-01-16 2011-10-18 Baker Hughes Incorporated Method of heating sub sea ESP pumping system
US20090188181A1 (en) 2008-01-28 2009-07-30 Forbis Jack R Innovative, modular, highly-insulating panel and method of use thereof
WO2009101125A1 (en) 2008-02-15 2009-08-20 Shell Internationale Research Maatschappij B.V. Method of producing hydrocarbons through a smart well
GB2458637A (en) 2008-03-25 2009-09-30 Adrian Bowen Wiper ball launcher
US9051822B2 (en) 2008-04-15 2015-06-09 Schlumberger Technology Corporation Formation treatment evaluation
US7926562B2 (en) 2008-05-15 2011-04-19 Schlumberger Technology Corporation Continuous fibers for use in hydraulic fracturing applications
CA2634861C (en) 2008-06-11 2011-01-04 Hitman Holdings Ltd. Combined three-in-one fracturing system
GB2465505C (en) 2008-06-27 2020-10-14 Rasheed Wajid Electronically activated underreamer and calliper tool
US8534235B2 (en) 2008-07-07 2013-09-17 Ronald L. Chandler Oil-fired frac water heater
US20130189629A1 (en) 2008-07-07 2013-07-25 Ronald L. Chandler Frac water heater and fuel oil heating system
US20100019574A1 (en) 2008-07-24 2010-01-28 John Baldassarre Energy management system for auxiliary power source
US20100038907A1 (en) 2008-08-14 2010-02-18 EncoGen LLC Power Generation
US20100051272A1 (en) 2008-09-02 2010-03-04 Gas-Frac Energy Services Inc. Liquified petroleum gas fracturing methods
CA2739409A1 (en) 2008-10-03 2010-04-08 Schlumberger Canada Limited Configurable hydraulic system
US8360152B2 (en) 2008-10-21 2013-01-29 Encana Corporation Process and process line for the preparation of hydraulic fracturing fluid
US20100101785A1 (en) 2008-10-28 2010-04-29 Evgeny Khvoshchev Hydraulic System and Method of Monitoring
JP2010107636A (en) 2008-10-29 2010-05-13 Kyocera Mita Corp Image forming apparatus
US8692408B2 (en) 2008-12-03 2014-04-08 General Electric Company Modular stacked subsea power system architectures
US8795525B2 (en) 2008-12-03 2014-08-05 Oasys Water, Inc. Utility scale osmotic grid storage
US9470149B2 (en) 2008-12-11 2016-10-18 General Electric Company Turbine inlet air heat pump-type system
WO2010078350A1 (en) 2008-12-30 2010-07-08 Kirk Hobbs Mobile platform for monitoring a wellsite
US8177411B2 (en) * 2009-01-08 2012-05-15 Halliburton Energy Services Inc. Mixer system controlled based on density inferred from sensed mixing tub weight
CA2689820A1 (en) 2009-01-13 2010-07-13 Miva Engineering Ltd. Reciprocating pump
US8091928B2 (en) 2009-02-26 2012-01-10 Eaton Corporation Coupling assembly for connection to a hose
US8851860B1 (en) 2009-03-23 2014-10-07 Tundra Process Solutions Ltd. Adaptive control of an oil or gas well surface-mounted hydraulic pumping system and method
US20100293973A1 (en) 2009-04-20 2010-11-25 Donald Charles Erickson Combined cycle exhaust powered turbine inlet air chilling
US8054084B2 (en) 2009-05-19 2011-11-08 GM Global Technology Operations LLC Methods and systems for diagnosing stator windings in an electric motor
US8807960B2 (en) 2009-06-09 2014-08-19 Halliburton Energy Services, Inc. System and method for servicing a wellbore
US9556874B2 (en) 2009-06-09 2017-01-31 Pentair Flow Technologies, Llc Method of controlling a pump and motor
US8354817B2 (en) 2009-06-18 2013-01-15 GM Global Technology Operations LLC Methods and systems for diagnosing stator windings in an electric motor
WO2011005571A2 (en) 2009-06-23 2011-01-13 Weir Spm, Inc. Readily removable pump crosshead
CA2767762C (en) 2009-07-11 2018-10-23 Stephen Degaray System and process for delivering building materials
US8310272B2 (en) 2009-07-29 2012-11-13 GM Global Technology Operations LLC Method and system for testing electric automotive drive systems
US8763387B2 (en) 2009-08-10 2014-07-01 Howard K. Schmidt Hydraulic geofracture energy storage system
US10669471B2 (en) 2009-08-10 2020-06-02 Quidnet Energy Inc. Hydraulic geofracture energy storage system with desalination
US8601687B2 (en) 2009-08-13 2013-12-10 Schlumberger Technology Corporation Pump body
US9207143B2 (en) 2009-08-18 2015-12-08 Innovative Pressure Testing, Llc System and method for determining leaks in a complex system
US8874383B2 (en) 2009-09-03 2014-10-28 Schlumberger Technology Corporation Pump assembly
US8616005B1 (en) 2009-09-09 2013-12-31 Dennis James Cousino, Sr. Method and apparatus for boosting gas turbine engine performance
US8834012B2 (en) * 2009-09-11 2014-09-16 Halliburton Energy Services, Inc. Electric or natural gas fired small footprint fracturing fluid blending and pumping equipment
US20110085924A1 (en) 2009-10-09 2011-04-14 Rod Shampine Pump assembly vibration absorber system
US8899940B2 (en) 2009-11-06 2014-12-02 Schlumberger Technology Corporation Suction stabilizer for pump assembly
US8232892B2 (en) 2009-11-30 2012-07-31 Tiger General, Llc Method and system for operating a well service rig
US20130180722A1 (en) 2009-12-04 2013-07-18 Schlumberger Technology Corporation Technique of fracturing with selective stream injection
US20110166046A1 (en) 2010-01-06 2011-07-07 Weaver Jimmie D UV Light Treatment Methods and System
US20110005757A1 (en) 2010-03-01 2011-01-13 Jeff Hebert Device and method for flowing back wellbore fluids
US20120018016A1 (en) 2010-03-01 2012-01-26 Robin Gibson Basin flushing system
US8261528B2 (en) 2010-04-09 2012-09-11 General Electric Company System for heating an airstream by recirculating waste heat of a turbomachine
EA201291142A1 (en) 2010-04-30 2013-08-30 Эс.Пи.Эм. ФЛОУ КОНТРОЛ, ИНК. MACHINES, SYSTEMS, COMPUTER IMPLEMENTED METHODS AND COMPUTER SOFTWARE PRODUCTS FOR TESTING AND CERTIFICATION OF OIL AND GAS EQUIPMENT
US8616274B2 (en) 2010-05-07 2013-12-31 Halliburton Energy Services, Inc. System and method for remote wellbore servicing operations
US20110272158A1 (en) 2010-05-07 2011-11-10 Halliburton Energy Services, Inc. High pressure manifold trailer and methods and systems employing the same
CN201687513U (en) 2010-05-31 2010-12-29 河南理工大学 Underground borehole hydraulic fracturing system
US8604639B2 (en) 2010-08-25 2013-12-10 Omron Oilfield and Marine, Inc. Power limiting control for multiple drilling rig tools
US8465268B2 (en) 2010-09-10 2013-06-18 Phoinix Global LLC Compression clamp for a modular fluid end for a multiplex plunger pump
US8905056B2 (en) 2010-09-15 2014-12-09 Halliburton Energy Services, Inc. Systems and methods for routing pressurized fluid
WO2012051309A2 (en) 2010-10-12 2012-04-19 Qip Holdings, Llc Method and apparatus for hydraulically fracturing wells
JP5636255B2 (en) 2010-10-20 2014-12-03 株式会社ユーシン Electric steering lock device
SE536618C2 (en) 2010-10-22 2014-04-01 Alfa Laval Corp Ab Heat exchanger plate and plate heat exchanger
CN101977016A (en) 2010-10-22 2011-02-16 天津理工大学 Singlechip-based induction motor variable frequency speed regulation control system
US20120127635A1 (en) 2010-11-18 2012-05-24 Bruce William Grindeland Modular Pump Control Panel Assembly
JP5211147B2 (en) 2010-12-20 2013-06-12 株式会社日立製作所 Switchgear
US9324049B2 (en) 2010-12-30 2016-04-26 Schlumberger Technology Corporation System and method for tracking wellsite equipment maintenance data
US8474521B2 (en) 2011-01-13 2013-07-02 T-3 Property Holdings, Inc. Modular skid system for manifolds
EA032858B1 (en) 2011-01-17 2019-07-31 Хэллибертон Энерджи Сервисиз, Инк. Method for fracturing a formation in a reservoir
US8746349B2 (en) 2011-03-01 2014-06-10 Vetco Gray Inc. Drilling riser adapter connection with subsea functionality
US8738268B2 (en) 2011-03-10 2014-05-27 The Boeing Company Vehicle electrical power management and distribution
US8579034B2 (en) 2011-04-04 2013-11-12 The Technologies Alliance, Inc. Riser tensioner system
EP2726705B1 (en) 2011-04-07 2018-08-29 Evolution Well Services, LLC Mobile, modular, electrically powered system for use in fracturing underground formations
US9140110B2 (en) 2012-10-05 2015-09-22 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US9628016B2 (en) 2011-04-14 2017-04-18 Craig Lamascus Electrical apparatus and control system
US9513055B1 (en) 2011-04-28 2016-12-06 Differential Engineering Inc. Systems and methods for changing the chemistry in heaps, piles, dumps and components
CN202023547U (en) 2011-04-29 2011-11-02 中国矿业大学 Coal mine underground pulsed hydraulic fracturing equipment
WO2012158653A2 (en) 2011-05-13 2012-11-22 Ietip Llc System and methods for cooling electronic equipment
US9553452B2 (en) 2011-07-06 2017-01-24 Carla R. Gillett Hybrid energy system
WO2013012984A2 (en) 2011-07-20 2013-01-24 Sbs Product Technologies, Llc System and process for delivering building materials
US9976351B2 (en) 2011-08-05 2018-05-22 Coiled Tubing Specialties, Llc Downhole hydraulic Jetting Assembly
US10309205B2 (en) 2011-08-05 2019-06-04 Coiled Tubing Specialties, Llc Method of forming lateral boreholes from a parent wellbore
US8978763B2 (en) 2011-09-23 2015-03-17 Cameron International Corporation Adjustable fracturing system
US9068450B2 (en) 2011-09-23 2015-06-30 Cameron International Corporation Adjustable fracturing system
US9051923B2 (en) 2011-10-03 2015-06-09 Chang Kuo Dual energy solar thermal power plant
US8800652B2 (en) 2011-10-09 2014-08-12 Saudi Arabian Oil Company Method for real-time monitoring and transmitting hydraulic fracture seismic events to surface using the pilot hole of the treatment well as the monitoring well
US8926252B2 (en) * 2011-10-24 2015-01-06 Solaris Oilfield Site Services Operating Llc Fracture sand silo system and methods of deployment and retraction of same
US10300830B2 (en) * 2011-10-24 2019-05-28 Solaris Oilfield Site Services Operating Llc Storage and blending system for multi-component granular compositions
US9533723B2 (en) 2011-12-16 2017-01-03 Entro Industries, Inc. Mounting structure with storable transport system
EP2607609A1 (en) 2011-12-21 2013-06-26 Welltec A/S Stimulation method
US9467297B2 (en) 2013-08-06 2016-10-11 Bedrock Automation Platforms Inc. Industrial control system redundant communications/control modules authentication
US8839867B2 (en) 2012-01-11 2014-09-23 Cameron International Corporation Integral fracturing manifold
US9175554B1 (en) 2012-01-23 2015-11-03 Alvin Watson Artificial lift fluid system
US20130204546A1 (en) 2012-02-02 2013-08-08 Ghd Pty Ltd. On-line pump efficiency determining system and related method for determining pump efficiency
US9803457B2 (en) 2012-03-08 2017-10-31 Schlumberger Technology Corporation System and method for delivering treatment fluid
US9863228B2 (en) * 2012-03-08 2018-01-09 Schlumberger Technology Corporation System and method for delivering treatment fluid
CN102602322B (en) 2012-03-19 2014-04-30 西安邦普工业自动化有限公司 Electrically-driven fracturing pump truck
CN202832796U (en) 2012-03-30 2013-03-27 通用电气公司 Fuel supply system
US9706185B2 (en) 2012-04-16 2017-07-11 Canrig Drilling Technology Ltd. Device control employing three-dimensional imaging
WO2013163401A2 (en) 2012-04-26 2013-10-31 Ge Oil & Gas Pressure Control Lp Delivery system for fracture applications
FR2990233B1 (en) 2012-05-04 2014-05-09 Snf Holding Company IMPROVED POLYMER DISSOLUTION EQUIPMENT SUITABLE FOR IMPORTANT FRACTURING OPERATIONS
CA3190714A1 (en) 2012-05-14 2013-11-14 Step Energy Services Ltd. Hybrid lpg frac
US20130306322A1 (en) 2012-05-21 2013-11-21 General Electric Company System and process for extracting oil and gas by hydraulic fracturing
US8905138B2 (en) 2012-05-23 2014-12-09 H2O Inferno, Llc System to heat water for hydraulic fracturing
AU2013266252B2 (en) 2012-05-25 2017-07-06 Spm Oil & Gas Inc. Evaluating systems associated with wellheads
US9249626B2 (en) 2012-06-21 2016-02-02 Superior Energy Services-North America Services, Inc. Method of deploying a mobile rig system
US9062545B2 (en) 2012-06-26 2015-06-23 Lawrence Livermore National Security, Llc High strain rate method of producing optimized fracture networks in reservoirs
US8997904B2 (en) 2012-07-05 2015-04-07 General Electric Company System and method for powering a hydraulic pump
US9340353B2 (en) * 2012-09-27 2016-05-17 Oren Technologies, Llc Methods and systems to transfer proppant for fracking with reduced risk of production and release of silica dust at a well site
US9260253B2 (en) * 2012-08-07 2016-02-16 Baker Hughes Incorporated Apparatus and methods for assisting in controlling material discharged from a conveyor
WO2014028674A1 (en) 2012-08-15 2014-02-20 Schlumberger Canada Limited System, method, and apparatus for managing fracturing fluids
US20170212535A1 (en) 2012-08-17 2017-07-27 S.P.M. Flow Control, Inc. Field pressure test control system and methods
CA2787814C (en) 2012-08-21 2019-10-15 Daniel R. Pawlick Radiator configuration
US9130406B2 (en) 2012-08-24 2015-09-08 Ainet Registry, Llc System and method for efficient power distribution and backup
US8951019B2 (en) 2012-08-30 2015-02-10 General Electric Company Multiple gas turbine forwarding system
DE102012018368A1 (en) 2012-09-18 2014-03-20 Cornelius Lungu Hybrid sound-absorbing structures and their applications
US20140095114A1 (en) 2012-09-28 2014-04-03 Hubertus V. Thomeer System And Method For Tracking And Displaying Equipment Operations Data
CA2885320C (en) 2012-10-17 2017-08-22 Global Energy Services, Inc. Segmented fluid end
US9206684B2 (en) 2012-11-01 2015-12-08 Schlumberger Technology Corporation Artificial lift equipment power line communication
US20140124162A1 (en) 2012-11-05 2014-05-08 Andrew B. Leavitt Mobile Heat Dispersion Apparatus and Process
WO2014077948A1 (en) 2012-11-13 2014-05-22 Exxonmobil Upstream Research Company Drag enhancing structures for downhole operations, and systems and methods including the same
US8789601B2 (en) 2012-11-16 2014-07-29 Us Well Services Llc System for pumping hydraulic fracturing fluid using electric pumps
US11449018B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC System and method for parallel power and blackout protection for electric powered hydraulic fracturing
US9745840B2 (en) 2012-11-16 2017-08-29 Us Well Services Llc Electric powered pump down
US9650879B2 (en) 2012-11-16 2017-05-16 Us Well Services Llc Torsional coupling for electric hydraulic fracturing fluid pumps
US10020711B2 (en) 2012-11-16 2018-07-10 U.S. Well Services, LLC System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources
US10526882B2 (en) 2012-11-16 2020-01-07 U.S. Well Services, LLC Modular remote power generation and transmission for hydraulic fracturing system
US9970278B2 (en) 2012-11-16 2018-05-15 U.S. Well Services, LLC System for centralized monitoring and control of electric powered hydraulic fracturing fleet
US10232332B2 (en) 2012-11-16 2019-03-19 U.S. Well Services, Inc. Independent control of auger and hopper assembly in electric blender system
US9611728B2 (en) 2012-11-16 2017-04-04 U.S. Well Services Llc Cold weather package for oil field hydraulics
US9995218B2 (en) 2012-11-16 2018-06-12 U.S. Well Services, LLC Turbine chilling for oil field power generation
US9840901B2 (en) 2012-11-16 2017-12-12 U.S. Well Services, LLC Remote monitoring for hydraulic fracturing equipment
US10119381B2 (en) 2012-11-16 2018-11-06 U.S. Well Services, LLC System for reducing vibrations in a pressure pumping fleet
US10407990B2 (en) 2012-11-16 2019-09-10 U.S. Well Services, LLC Slide out pump stand for hydraulic fracturing equipment
US11476781B2 (en) 2012-11-16 2022-10-18 U.S. Well Services, LLC Wireline power supply during electric powered fracturing operations
US10036238B2 (en) 2012-11-16 2018-07-31 U.S. Well Services, LLC Cable management of electric powered hydraulic fracturing pump unit
US9410410B2 (en) 2012-11-16 2016-08-09 Us Well Services Llc System for pumping hydraulic fracturing fluid using electric pumps
US9650871B2 (en) 2012-11-16 2017-05-16 Us Well Services Llc Safety indicator lights for hydraulic fracturing pumps
US9893500B2 (en) 2012-11-16 2018-02-13 U.S. Well Services, LLC Switchgear load sharing for oil field equipment
WO2014099723A1 (en) 2012-12-18 2014-06-26 Schlumberger Canada Limited Pump down conveyance
US9018881B2 (en) 2013-01-10 2015-04-28 GM Global Technology Operations LLC Stator winding diagnostic systems and methods
US20140219824A1 (en) 2013-02-06 2014-08-07 Baker Hughes Incorporated Pump system and method thereof
US20140238683A1 (en) 2013-02-27 2014-08-28 Nabors Alaska Drilling, Inc. Integrated Arctic Fracking Apparatus and Methods
US9322397B2 (en) 2013-03-06 2016-04-26 Baker Hughes Incorporated Fracturing pump assembly and method thereof
US20160230525A1 (en) 2013-03-07 2016-08-11 Prostim Labs, Llc Fracturing system layouts
US20140251623A1 (en) 2013-03-07 2014-09-11 Prostim Labs, Llc Fracturing systems and methods for a wellbore
US9850422B2 (en) 2013-03-07 2017-12-26 Prostim Labs, Llc Hydrocarbon-based fracturing fluid composition, system, and method
US20150114652A1 (en) 2013-03-07 2015-04-30 Prostim Labs, Llc Fracturing systems and methods for a wellbore
US20160281484A1 (en) 2013-03-07 2016-09-29 Prostim Labs, Llc Fracturing system layouts
US9534604B2 (en) 2013-03-14 2017-01-03 Schlumberger Technology Corporation System and method of controlling manifold fluid flow
US20140290768A1 (en) 2013-03-27 2014-10-02 Fts International Services, Llc Frac Pump Isolation Safety System
US20130284278A1 (en) 2013-04-09 2013-10-31 Craig V. Winborn Chemical Tank Adapter and Method of Use
US9395049B2 (en) 2013-07-23 2016-07-19 Baker Hughes Incorporated Apparatus and methods for delivering a high volume of fluid into an underground well bore from a mobile pumping unit
EP2830171A1 (en) 2013-07-25 2015-01-28 Siemens Aktiengesellschaft Subsea switchgear
US9702247B2 (en) 2013-09-17 2017-07-11 Halliburton Energy Services, Inc. Controlling an injection treatment of a subterranean region based on stride test data
US9322246B2 (en) 2013-09-20 2016-04-26 Schlumberger Technology Corporation Solids delivery apparatus and method for a well
US9482086B2 (en) 2013-09-27 2016-11-01 Well Checked Systems International LLC Remote visual and auditory monitoring system
CN105637198A (en) 2013-10-16 2016-06-01 通用电气公司 Gas turbine system and method of operation
US10107455B2 (en) 2013-11-20 2018-10-23 Khaled Shaaban LNG vaporization
US9728354B2 (en) 2013-11-26 2017-08-08 Electric Motion Company, Inc. Isolating ground switch
WO2015081328A1 (en) 2013-11-28 2015-06-04 Data Automated Water Systems, LLC Automated system for monitoring and controlling water transfer during hydraulic fracturing
US9428995B2 (en) 2013-12-09 2016-08-30 Freedom Oilfield Services, Inc. Multi-channel conduit and method for heating a fluid
US9528360B2 (en) 2013-12-24 2016-12-27 Baker Hughes Incorporated Using a combination of a perforating gun with an inflatable to complete multiple zones in a single trip
US9506333B2 (en) 2013-12-24 2016-11-29 Baker Hughes Incorporated One trip multi-interval plugging, perforating and fracking method
WO2015099736A1 (en) 2013-12-26 2015-07-02 Landmark Graphics Corporation Real-time monitoring of health hazards during hydraulic fracturing
US10815978B2 (en) 2014-01-06 2020-10-27 Supreme Electrical Services, Inc. Mobile hydraulic fracturing system and related methods
US10227854B2 (en) 2014-01-06 2019-03-12 Lime Instruments Llc Hydraulic fracturing system
US20150211512A1 (en) 2014-01-29 2015-07-30 General Electric Company System and method for driving multiple pumps electrically with a single prime mover
US9714741B2 (en) 2014-02-20 2017-07-25 Pcs Ferguson, Inc. Method and system to volumetrically control additive pump
EP3122997B1 (en) 2014-02-25 2021-03-24 Services Petroliers Schlumberger Wirelessly transmitting data representing downhole operation
WO2015130272A1 (en) 2014-02-26 2015-09-03 Halliburton Energy Services, Inc. Optimizing diesel fuel consumption for dual-fuel engines
US20170096889A1 (en) 2014-03-28 2017-04-06 Schlumberger Technology Corporation System and method for automation of detection of stress patterns and equipment failures in hydrocarbon extraction and production
US10393108B2 (en) 2014-03-31 2019-08-27 Schlumberger Technology Corporation Reducing fluid pressure spikes in a pumping system
WO2015153537A1 (en) 2014-03-31 2015-10-08 Schlumberger Canada Limited Systems, methods and apparatus for downhole monitoring
EP3105440A1 (en) 2014-03-31 2016-12-21 Siemens Aktiengesellschaft Pressure regulating device for a gas supply system of a gas turbine plant
WO2015153621A1 (en) 2014-04-03 2015-10-08 Schlumberger Canada Limited State estimation and run life prediction for pumping system
US9945365B2 (en) 2014-04-16 2018-04-17 Bj Services, Llc Fixed frequency high-pressure high reliability pump drive
WO2015164230A1 (en) 2014-04-25 2015-10-29 Key Consultants, Llc Liquid solids separator
WO2015167532A1 (en) 2014-04-30 2015-11-05 Halliburton Energy Services, Inc. Equipment monitoring using enhanced video
WO2015168505A1 (en) 2014-05-02 2015-11-05 Donaldson Company, Inc. Fluid filter housing assembly
US10816137B2 (en) 2014-05-30 2020-10-27 Ge Oil & Gas Pressure Control Lp Remote well servicing systems and methods
US10260327B2 (en) 2014-05-30 2019-04-16 Ge Oil & Gas Pressure Control Lp Remote mobile operation and diagnostic center for frac services
US10008880B2 (en) 2014-06-06 2018-06-26 Bj Services, Llc Modular hybrid low emissions power for hydrocarbon extraction
KR20170018883A (en) 2014-06-10 2017-02-20 제네럴 일렉트릭 컴퍼니 Gas turbine system and method
CA2951695A1 (en) 2014-06-13 2015-12-17 Lord Corporation System and method for monitoring component service life
US9909398B2 (en) * 2014-06-17 2018-03-06 Schlumberger Technology Corporation Oilfield material mixing and metering system with auger
US20160006311A1 (en) 2014-06-19 2016-01-07 Turboroto Inc. Electric motor, generator and commutator system, device and method
CN104117308A (en) 2014-07-28 2014-10-29 丹阳市海信涂料化工厂 Device for mixing and preparing coating
WO2016019219A1 (en) * 2014-08-01 2016-02-04 Schlumberger Canada Limited Monitoring health of additive systems
AU2014403390B2 (en) 2014-08-12 2018-05-10 Halliburton Energy Services, Inc. Methods and systems for routing pressurized fluid utilizing articulating arms
CN104196613A (en) 2014-08-22 2014-12-10 中石化石油工程机械有限公司第四机械厂 Cooling device of fracturing truck
US9982523B2 (en) 2014-08-26 2018-05-29 Gas Technology Institute Hydraulic fracturing system and method
US9061223B2 (en) 2014-09-12 2015-06-23 Craig V. Winborn Multi-port valve device with dual directional strainer
WO2016043760A1 (en) 2014-09-18 2016-03-24 Halliburton Energy Services, Inc. Model-based pump-down of wireline tools
US10597991B2 (en) 2014-10-13 2020-03-24 Schlumberger Technology Corporation Control systems for fracturing operations
US10695950B2 (en) 2014-10-17 2020-06-30 Stone Table, Llc Portable cement mixing apparatus with precision controls
US10337424B2 (en) 2014-12-02 2019-07-02 Electronic Power Design, Inc. System and method for energy management using linear programming
US10465717B2 (en) * 2014-12-05 2019-11-05 Energy Recovery, Inc. Systems and methods for a common manifold with integrated hydraulic energy transfer systems
CN105737916B (en) 2014-12-08 2019-06-18 通用电气公司 Ultrasonic fluid measuring system and method
US10392918B2 (en) 2014-12-10 2019-08-27 Baker Hughes, A Ge Company, Llc Method of and system for remote diagnostics of an operational system
JP6689277B2 (en) 2014-12-12 2020-04-28 ドレッサー ランド カンパニーDresser−Rand Company System and method for liquefying natural gas
US10378326B2 (en) 2014-12-19 2019-08-13 Typhon Technology Solutions, Llc Mobile fracturing pump transport for hydraulic fracturing of subsurface geological formations
WO2016108872A1 (en) 2014-12-31 2016-07-07 Halliburton Energy Services, Inc. Hydraulic fracturing apparatus, methods, and systems
US9587649B2 (en) 2015-01-14 2017-03-07 Us Well Services Llc System for reducing noise in a hydraulic fracturing fleet
US10036233B2 (en) 2015-01-21 2018-07-31 Baker Hughes, A Ge Company, Llc Method and system for automatically adjusting one or more operational parameters in a borehole
US20160221220A1 (en) 2015-02-02 2016-08-04 Omega Mixers, L.L.C. Volumetric mixer with monitoring system and control system
US9822626B2 (en) 2015-02-05 2017-11-21 Baker Hughes, A Ge Company, Llc Planning and performing re-fracturing operations based on microseismic monitoring
CA2978706C (en) 2015-03-04 2023-09-26 Stewart & Stevenson, LLC Well fracturing systems with electrical motors and methods of use
US11041579B2 (en) 2015-03-09 2021-06-22 Schlumberger Technology Corporation Automated operation of wellsite equipment
CA2981632C (en) 2015-03-30 2022-05-03 Schlumberger Canada Limited Automated operation of wellsite equipment
US9784411B2 (en) 2015-04-02 2017-10-10 David A. Diggins System and method for unloading compressed natural gas
US20160326853A1 (en) 2015-05-08 2016-11-10 Schlumberger Technology Corporation Multiple wellbore perforation and stimulation
US20160341281A1 (en) 2015-05-18 2016-11-24 Onesubsea Ip Uk Limited Subsea gear train system
US9932799B2 (en) 2015-05-20 2018-04-03 Canadian Oilfield Cryogenics Inc. Tractor and high pressure nitrogen pumping unit
CA2988463C (en) 2015-06-05 2024-02-13 Schlumberger Canada Limited Wellsite equipment health monitoring
US10569242B2 (en) 2015-07-22 2020-02-25 Halliburton Energy Services, Inc. Blender unit with integrated container support frame
US10919428B2 (en) 2015-08-07 2021-02-16 Ford Global Technologies, Llc Powered sliding platform assembly
CA2944980C (en) 2015-08-12 2022-07-12 Us Well Services Llc Monitoring and control of proppant storage from a datavan
US10221856B2 (en) 2015-08-18 2019-03-05 Bj Services, Llc Pump system and method of starting pump
EA201890528A1 (en) 2015-08-20 2018-07-31 Кобольд Корпорейшн WELLS OPERATIONS WITH APPLICATION OF REMOTELY CONTROLLED CLUTCHES AND THEIR DEVICE
US11049051B2 (en) 2015-09-14 2021-06-29 Schlumberger Technology Corporation Wellsite power mapping and optimization
WO2017053491A1 (en) 2015-09-24 2017-03-30 Schlumberger Technology Corporation Field equipment model driven system
MX2018003477A (en) 2015-10-02 2018-06-20 Halliburton Energy Services Inc Setting valve configurations in a manifold system.
WO2017058258A1 (en) 2015-10-02 2017-04-06 Halliburton Energy Services, Inc. Remotely operated and multi-functional down-hole control tools
CA2945579C (en) 2015-10-16 2019-10-08 Us Well Services, Llc Remote monitoring for hydraulic fracturing equipment
US10597573B2 (en) 2015-11-02 2020-03-24 Heartland Technology Partners Llc Apparatus for concentrating wastewater and for creating brines
US10557482B2 (en) 2015-11-10 2020-02-11 Energy Recovery, Inc. Pressure exchange system with hydraulic drive system
US20170145918A1 (en) 2015-11-20 2017-05-25 Us Well Services Llc System for gas compression on electric hydraulic fracturing fleets
GB2544799A (en) 2015-11-27 2017-05-31 Swellfix Uk Ltd Autonomous control valve for well pressure control
US10221639B2 (en) 2015-12-02 2019-03-05 Exxonmobil Upstream Research Company Deviated/horizontal well propulsion for downhole devices
US10415562B2 (en) 2015-12-19 2019-09-17 Schlumberger Technology Corporation Automated operation of wellsite pumping equipment
CA2998338C (en) 2015-12-22 2020-03-10 Halliburton Energy Services, Inc. System and method for determining slurry sand concentration and continuous calibration of metering mechanisms for transferring same
US10669804B2 (en) 2015-12-29 2020-06-02 Cameron International Corporation System having fitting with floating seal insert
US10184470B2 (en) 2016-01-15 2019-01-22 W. H. Barnett, JR. Segmented fluid end
WO2017136841A1 (en) 2016-02-05 2017-08-10 Ge Oil & Gas Pressure Control Lp Remote well servicing systems and methods
PL3426888T3 (en) 2016-03-08 2021-07-26 Typhon Technology Solutions, Llc Utilizing wet fracturing sand for hydraulic fracturing operations
US10584698B2 (en) 2016-04-07 2020-03-10 Schlumberger Technology Corporation Pump assembly health assessment
CA2964593C (en) 2016-04-15 2021-11-16 Us Well Services Llc Switchgear load sharing for oil field equipment
US10882732B2 (en) 2016-04-22 2021-01-05 American Energy Innovations, Llc System and method for automatic fueling of hydraulic fracturing and other oilfield equipment
GB201609285D0 (en) 2016-05-26 2016-07-13 Metrol Tech Ltd Method to manipulate a well
GB2550862B (en) 2016-05-26 2020-02-05 Metrol Tech Ltd Method to manipulate a well
GB201609286D0 (en) 2016-05-26 2016-07-13 Metrol Tech Ltd An apparatus and method for pumping fluid in a borehole
US9920615B2 (en) 2016-08-05 2018-03-20 Caterpillar Inc. Hydraulic fracturing system and method for detecting pump failure of same
US10577910B2 (en) 2016-08-12 2020-03-03 Halliburton Energy Services, Inc. Fuel cells for powering well stimulation equipment
CN205986303U (en) 2016-08-16 2017-02-22 镇江大全赛雪龙牵引电气有限公司 Portable direct current emergency power source car
CA3035171C (en) 2016-08-31 2021-08-17 Evolution Well Services, Llc Mobile fracturing pump transport for hydraulic fracturing of subsurface geological formations
US11421673B2 (en) 2016-09-02 2022-08-23 Halliburton Energy Services, Inc. Hybrid drive systems for well stimulation operations
US10305262B2 (en) 2016-09-26 2019-05-28 Bethel Idiculla Johnson Medium voltage switchgear enclosure
CA3040459C (en) 2016-10-14 2021-02-16 Dresser-Rand Company Hydraulic fracturing system
NO343276B1 (en) 2016-11-30 2019-01-14 Impact Solutions As A method of controlling a prime mover and a plant for controlling the delivery of a pressurized fluid in a conduit
US11181107B2 (en) 2016-12-02 2021-11-23 U.S. Well Services, LLC Constant voltage power distribution system for use with an electric hydraulic fracturing system
US10914139B2 (en) 2017-02-22 2021-02-09 Weatherford Technology Holdings, Llc Systems and methods for optimization of the number of diverter injections and the timing of the diverter injections relative to stimulant injection
US10627003B2 (en) 2017-03-09 2020-04-21 The E3 Company LLC Valves and control systems for pressure relief
EP3376022A1 (en) 2017-03-17 2018-09-19 GE Renewable Technologies Method for operating hydraulic machine and corresponding installation for converting hydraulic energy into electrical energy
US20180284817A1 (en) 2017-04-03 2018-10-04 Fmc Technologies, Inc. Universal frac manifold power and control system
US10711576B2 (en) 2017-04-18 2020-07-14 Mgb Oilfield Solutions, Llc Power system and method
US10184465B2 (en) 2017-05-02 2019-01-22 EnisEnerGen, LLC Green communities
US10415348B2 (en) 2017-05-02 2019-09-17 Caterpillar Inc. Multi-rig hydraulic fracturing system and method for optimizing operation thereof
CA2967921A1 (en) 2017-05-23 2018-11-23 Rouse Industries Inc. Drilling rig power supply management
AR112485A1 (en) 2017-06-29 2019-11-06 Evolution Well Services Llc ELECTRIC ENERGY DISTRIBUTION FOR FRACTURING OPERATION
US10280724B2 (en) 2017-07-07 2019-05-07 U.S. Well Services, Inc. Hydraulic fracturing equipment with non-hydraulic power
US10371012B2 (en) 2017-08-29 2019-08-06 On-Power, Inc. Mobile power generation system including fixture assembly
US20190063309A1 (en) 2017-08-29 2019-02-28 On-Power, Inc. Mobile power generation system including integral air conditioning assembly
US11401929B2 (en) 2017-10-02 2022-08-02 Spm Oil & Gas Inc. System and method for monitoring operations of equipment by sensing deformity in equipment housing
US10408031B2 (en) 2017-10-13 2019-09-10 U.S. Well Services, LLC Automated fracturing system and method
US10655435B2 (en) 2017-10-25 2020-05-19 U.S. Well Services, LLC Smart fracturing system and method
US11473711B2 (en) 2017-10-26 2022-10-18 Performance Pulsation Control, Inc. System pulsation dampener device(s) substituting for pulsation dampeners utilizing compression material therein
US10563494B2 (en) 2017-11-02 2020-02-18 Caterpillar Inc. Method of remanufacturing fluid end block
CA3023906A1 (en) 2017-11-13 2019-05-13 Wesley W. JOHNSON Hydraulic fracturing
WO2019108177A1 (en) 2017-11-29 2019-06-06 Halliburton Energy Services, Inc. Automated pressure control system
CA3084607A1 (en) 2017-12-05 2019-06-13 U.S. Well Services, LLC High horsepower pumping configuration for an electric hydraulic fracturing system
CN108049999A (en) 2018-01-25 2018-05-18 凯龙高科技股份有限公司 A kind of methanol heater
AR114091A1 (en) 2018-02-05 2020-07-22 Us Well Services Inc ELECTRICAL CHARGE MANAGEMENT IN MICROGRID
US20190249527A1 (en) 2018-02-09 2019-08-15 Crestone Peak Resources Simultaneous Fracturing Process
CA3097051A1 (en) 2018-04-16 2019-10-24 U.S. Well Services, LLC Hybrid hydraulic fracturing fleet
US10794165B2 (en) 2019-02-14 2020-10-06 National Service Alliance—Houston LLC Power distribution trailer for an electric driven hydraulic fracking system
CN112196508A (en) 2020-09-30 2021-01-08 中国石油天然气集团有限公司 Full-automatic liquid adding device for fracturing construction and adding calibration method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7494263B2 (en) * 2005-04-14 2009-02-24 Halliburton Energy Services, Inc. Control system design for a mixing system with multiple inputs
US7845413B2 (en) * 2006-06-02 2010-12-07 Schlumberger Technology Corporation Method of pumping an oilfield fluid and split stream oilfield pumping systems
US20090078410A1 (en) * 2007-09-21 2009-03-26 David Krenek Aggregate Delivery Unit
US10254732B2 (en) * 2012-11-16 2019-04-09 U.S. Well Services, Inc. Monitoring and control of proppant storage from a datavan
US11181879B2 (en) * 2012-11-16 2021-11-23 U.S. Well Services, LLC Monitoring and control of proppant storage from a datavan
US9562420B2 (en) * 2014-12-19 2017-02-07 Evolution Well Services, Llc Mobile electric power generation for hydraulic fracturing of subsurface geological formations
US10247182B2 (en) * 2016-02-04 2019-04-02 Caterpillar Inc. Well stimulation pump control and method

Also Published As

Publication number Publication date
US20200073353A1 (en) 2020-03-05
US10254732B2 (en) 2019-04-09
US20160349728A1 (en) 2016-12-01
US11181879B2 (en) 2021-11-23

Similar Documents

Publication Publication Date Title
US20220334546A1 (en) Monitoring and control of proppant storage from a datavan
CA2944980C (en) Monitoring and control of proppant storage from a datavan
US11808125B2 (en) Smart fracturing system and method
US10836568B2 (en) Blender hopper control system for multi-component granular compositions
US11512989B2 (en) System and method for determining slurry sand concentration and continuous calibration of metering mechanisms for transferring same
US10300830B2 (en) Storage and blending system for multi-component granular compositions
CA2957076C (en) Proppant delivery system and related method
US20200141219A1 (en) Automated fracturing system and method
US20070084283A1 (en) Safety tank level gauging system
MX2008011938A (en) Aggregate delivery unit.
US11186452B2 (en) Sequencing bulk material containers for continuous material usage
KR20200075229A (en) Control system for apparatus for making drilling mud
CA3014580A1 (en) Logistics method and system for planning sequencing of bulk material containers
CN202165054U (en) Continuous charging device of particle or dry powder-shaped solid
CA2971339C (en) A delivery, storage and blending system for multi-component granular compositions
CN201615338U (en) Raw material storage and conveying control device
CA3048238C (en) A blender hopper control system for multi-component granular compositions
US10346791B2 (en) Automated additive inventory and delivery logistics control system and method thereof
CN207489083U (en) A kind of swinging packing machine counts release management system
US20220045793A1 (en) Sensor signal replication systems and methods
JP2021070305A (en) Stirrer system capable of confirming concentration of cement milk in semi-dry type rock wool spray construction
CN109368287A (en) A kind of control system of the bulk transport system docked with environment monitoring data
WO2024018002A1 (en) Mortar mixing system and method for preparing mortar

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: PIPER SANDLER FINANCE LLC, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:U.S. WELL SERVICES, LLC;REEL/FRAME:061875/0001

Effective date: 20221101

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNORS:U.S. WELL SERVICE HOLDINGS, LLC;USWS HOLDINGS LLC;U.S. WELL SERVICES, LLC;AND OTHERS;REEL/FRAME:062142/0927

Effective date: 20221101

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

AS Assignment

Owner name: U.S. BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS COLLATERAL AGENT, TEXAS

Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:FTS INTERNATIONAL SERVICES, LLC;U.S. WELL SERVICES, LLC;PROFRAC SERVICES, LLC;AND OTHERS;REEL/FRAME:066186/0752

Effective date: 20231227

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED