US20130306322A1 - System and process for extracting oil and gas by hydraulic fracturing - Google Patents

System and process for extracting oil and gas by hydraulic fracturing Download PDF

Info

Publication number
US20130306322A1
US20130306322A1 US13/708,206 US201213708206A US2013306322A1 US 20130306322 A1 US20130306322 A1 US 20130306322A1 US 201213708206 A US201213708206 A US 201213708206A US 2013306322 A1 US2013306322 A1 US 2013306322A1
Authority
US
United States
Prior art keywords
fracturing
sub
pumping
power generation
wellbore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/708,206
Inventor
Stephen Duane Sanborn
David Kamensky
John Andrew Westerheide
Christopher Edward Wolfe
Hareesh Kumar Reddy Kommepalli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US13/708,206 priority Critical patent/US20130306322A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAMENSKY, David, KOMMEPALLI, HAREESH KUMAR REDDY, SANBORN, STEPHEN DUANE, WOLFE, CHRISTOPHER EDWARD, WESTERHEIDE, JOHN ANDREW
Priority to PCT/US2013/041920 priority patent/WO2013177094A2/en
Priority to CN201380032225.9A priority patent/CN104364465A/en
Publication of US20130306322A1 publication Critical patent/US20130306322A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2607Surface equipment specially adapted for fracturing operations

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

A fracturing system is described. The system includes an electric motor-driven pumping sub-system, configured to pump a pressurized fracturing fluid into at least one wellbore, under high pressure conditions sufficient to increase the downhole pressure of the wellbore, to exceed that of the fracture gradient of the solid matter surrounding the wellbore. The system also includes an electric power generation sub-system that provides energy to the pumping sub-system. The electric power generation sub-system includes a multitude of electric motors that are powered by a single electrical feed source. A related process for extracting hydrocarbons from a reservoir rock formation by the fracturing operation is also described.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This Application claims the benefit of U.S. Provisional Application No. 61/649,563, filed May 21, 2012, which is herein incorporated in its entirety by reference.
  • TECHNICAL FIELD
  • This invention relates generally to the extraction of hydrocarbons from reservoir rock formations. In some specific embodiments, the invention relates to a portable and modular system that can be transported to an oil or gas field, and used to stimulate production from an oil or gas well.
  • BACKGROUND OF THE INVENTION
  • Hydraulic fracturing or “fracing” is a process for increasing the flow of oil or gas from a well. It is usually carried out by pumping specific types of liquids into a well, under pressures that are high enough to fracture the rock. A network of interconnected fractures are formed, and they serve as pore spaces for the movement of oil and natural gas to the wellbore. When used in combination with techniques such as horizontal drilling, hydraulic fracturing is capable of converting previously-unproductive rock formations into large natural gas fields, for example.
  • A hydraulic fracture is typically formed by pumping the fracturing fluid into the wellbore at a rate sufficient to create a downhole pressure that exceeds the fracture gradient of the surrounding rock. The rock cracks, and the fracture fluid continues farther into the rock, extending the crack into the depth of the well. Often, a proppant (as discussed below) is added into the injected fluid, to prevent the fractures from closing when the injection is stopped. The fracture that remains open is permeable enough to allow the flow of the desired gas or oil to the well, and eventually, to the surface for collection. The fracturing technique can be especially productive in the case of wells formed by horizontal drilling. These types of wells are formed by drilling holes that are substantially lateral, i.e., parallel with the rock layer that contains the fuels to be extracted. The lateral wells can have tremendous lengths, e.g., up to about 10,000 feet, after an initial, vertical depth into the rock formation.
  • Hydraulic fracturing equipment that is used in oil and natural gas fields includes a large number of components. Blenders, high-volume fracturing pumps, monitoring units, material tanks, hoses, electronics systems, and power units are just some of the components required for these operations. In a typical fracturing operation currently practiced, a large number of tractor trailers are used to support individual sets of diesel engines and fracturing pumps, along with associated equipment, such as transmission systems. As one example, 16 tractor trailers may support 16 diesel-powered, 2000 hp fracturing pumps. (Two of the engine/pump sets are typically employed for back-up purposes). High-capacity, high-power hydraulic pumps (e.g., triplex or quintuplex types) are commercially available from a number of sources. Collectively, the pumps provide sufficient pressure into one or more wellbores, to allow for the injection and movement of the slurry (water, proppants, and chemical additives), through thousands of feet of earth and rock. Fracturing equipment needs to be designed to operate over a wide range of pressures and injection rates, and can operate at about 100 Mpa (15,000 psi) or higher; and 265 L/s (100 barrels per minute), or higher. The power needed for these operations can exceed 20-30 megawatts.
  • A number of drawbacks are associated with most of the current types of fracturing equipment and systems. For example, the mechanical collection of many diesel engines and many pumps can lead to high inefficiencies in the overall pumping operation. Part of this inefficiency is due to maintenance requirements for each of a multitude of engines, and the potential for engine break-downs.
  • The use of large amounts of diesel fuel can also require extra safeguards, to address potential safety, noise, and environmental problems. Moreover, the number of tractor trailers required for the conventional fracturing system represents a relatively large and undesirable “footprint” at the drilling/fracturing site. (Since the use of diesel engines mandates the use of diesel fuel, additional space is required for diesel fuel tankers). This potentially large truck fleet also has significant “community impact”, in terms of traffic congestion and road-surface wear and tear.
  • In view of some of these concerns and challenges, new hydraulic fracturing systems would be welcome in the industry. The new systems should reduce the number of diesel engines required for the pumping sub-system in a fracturing operation. The new systems should also simplify the power-delivery mechanism for energizing all of the pumps required for the fracturing process. In some preferred embodiments, the new systems should also reduce the amount of large equipment required at a hydraulic fracturing site, thereby reducing the ecological footprint at the site.
  • BRIEF DESCRIPTION
  • One embodiment of the invention is directed to a fracturing system, comprising:
      • a) an electric motor-driven pumping sub-system, configured to pump a pressurized fracturing fluid into at least one wellbore, under high pressure conditions sufficient to increase the downhole pressure of the wellbore, to exceed that of the fracture gradient of the solid matter surrounding the wellbore; and
      • b) an electric power generation sub-system that provides energy to the pumping sub-system, comprising a multitude of electric motors that are powered by a single electrical feed source.
  • Another embodiment of the invention is directed to a process for extracting hydrocarbons from a reservoir rock formation by a hydraulic fracturing operation, comprising the step of introducing a hydraulic fracturing treatment fluid into a subterranean formation at a pressure sufficient to form or to enhance at least one fracture within the subterranean formation. In this method, the fracturing treatment fluid is pumped into at least one wellbore in the subterranean formation by an electric motor-driven pumping sub-system, configured to pump the fluid into the wellbore under high pressure conditions sufficient to increase the downhole pressure of the wellbore, to exceed that of the fracture gradient of the solid matter surrounding the wellbore. The pumping sub-system is energized by an electric power generation sub-system that provides energy to the pumping sub-system, and the power generation sub-system comprises a multitude of electric motors that are powered by a single electrical feed source.
  • DRAWINGS
  • FIG. 1 is a schematic representation of a hydraulic fracturing system according to some embodiments of this invention.
  • FIG. 2 is a schematic representation of a hydraulic fracturing system according to other embodiments of the invention.
  • DESCRIPTION OF THE INVENTION
  • Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary, without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about”, is not limited to the precise value specified. In some instances, the approximating language may correspond to the precision of an instrument for measuring the value. The terms “first,” “second,” and the like, herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another.
  • As used herein, the terms “may” and “may be” indicate a possibility of an occurrence within a set of circumstances; a possession of a specified property, characteristic or function; and/or qualify another verb by expressing one or more of an ability, capability, or possibility associated with the qualified verb. Accordingly, usage of “may” and “may be” indicates that a modified term is apparently appropriate, capable, or suitable for an indicated capacity, function, or usage, while taking into account that in some circumstances, the modified term may sometimes not be appropriate, capable, or suitable. For example, in some circumstances, an event or capacity can be expected, while in other circumstances, the event or capacity cannot occur. This distinction is captured by the terms “may” and “may be”, or “can” or “can be”.
  • A hydraulic fracturing system is described herein. The system can be used as a drilling and stimulation technique, e.g., as a procedure that can increase the flow of oil or gas (e.g., natural gas) from a well within subsurface rock. The system comprises an electric motor-driven pumping sub-system. The sub-system is configured to pump a pressurized fracturing fluid into at least one wellbore, under high pressure conditions sufficient to increase the downhole pressure to exceed that of the fracture gradient of the rock surrounding the wellbore. The system further comprises an electric power generation sub-system that provides energy to the pumping sub-system. (For simplicity, the pumping sub-system and power sub-system may be referred to herein as the “pumping system” and the “power system”, respectively).
  • In some preferred embodiments, the pumping system comprises a multitude of electric motors that are powered by a single electrical feed source, e.g., an electrical feeder. The source of the electrical feeder (directly or indirectly) may be a transmission line, sub-station, power generation facility, or a dedicated power generation sub-system, for example. (As exemplified herein, the power generation system or sub-system may be located on-site or off-site).
  • Moreover, in some specific cases, the electrical feed source may comprise at least one gas turbine engine. The gas turbine engine could be situated in a location remote from the pumping system. Alternatively, the gas turbine could be located on the same site (sometimes referred to as a “wellpad”) as the pumping system. In some embodiments, the gas turbine can be fueled by natural gas, oil, or other carbon-based fuels that are obtained at the site, e.g., after drilling and stimulation of some of the well(s). (In other embodiments, the fuel can be piped to the site, or transported there via truck, and the like).
  • The pumping system may be arranged in many different ways, depending in part on various factors. They include: the size of the hydraulic fracturing operation, and any associated drilling operations. The size of the operations depends, in turn, on other factors as well, such as the vertical depth and horizontal length of the drilling and fracturing operations; the type and composition of earth and rock through which the drilling/fracturing operations will proceed; as well as the general drilling/fracturing system design. As briefly described herein, hydraulic fracturing operations often require a great deal of power for the pumping operation.
  • In one embodiment, the pumping system comprises one or more platforms, which can be mobile. Each platform can support one or more pumps, and one or more electrical motors, which together are sometimes referred to as pumping units or “pumpers”. An electrical motor could power multiple pumps. However, in some specific embodiments (though not all embodiments), each electrical motor provides power for one pump. Techniques for providing the physical and electrical connections between the pumps and the motors are known in the art.
  • Many different types of pumps may be used; and they are commercially available from well-fracturing companies, or other drilling and drilling-support companies. Examples of pump suppliers include Baker Hughes, Halliburton, Weatherford, Weir Oil & Gas, and Bosch Rexroth. The size of each pump will depend on various factors, such as the overall pumping requirements at the well site (in terms of pumping pressure and pumping rate, for example); and the size of the platform on which the pump will be located. In some embodiments, each pump has a capacity in the range of about 2,000 hp to about 3,000 hp, although this range can vary considerably.
  • As one non-limiting illustration, each mobile platform can be the bed of a truck, e.g., the bed of a tractor-trailer rig, or a trailer attached to such a rig. Heavy-duty tractor-trailers are often quite suitable for carrying pumps, motors, and drilling equipment. Their ability to travel on the highway and over many other roads is a distinct advantage for transport of the necessary equipment and materials to many drilling and fracturing sites.
  • Each tractor-trailer can accommodate at least one pump, and a motor to drive the pump. In some embodiments, each tractor-trailer supports two pumps and two electric motors, each associated with one of the pumps. As described briefly below, the ability to energize each motor from a single electrical feed source is a distinct advantage over prior art systems, e.g., those that rely on dedicated, direct-drive engines on each tractor-trailer.
  • Hydraulic fracturing operations include a number of different types of equipment and operational units, and substantially all of the equipment and materials must be located at the site of the fracturing operation. In general, the fracturing operations can include:
      • 1) supply containers for fracturing fluid components (including large water supplies), sand and/or other proppants, and various fracturing chemicals/additives;
      • 2) blending equipment for blending the fracturing fluid/solid components according to pre-selected proportions;
      • 3) at least one high-horsepower fracturing pump (“pumper”), as described above;
      • 4) at least one platform (and usually, and usually, a number of them), such as a tractor trailer bed; to support motors, generators, pumps; and blenders; and
      • 5) an operations and control unit, usually computer-based, and containing monitoring, data-recording, and communication equipment, as well as remote pumper controls to monitor and control each stage of the fracturing process, and to record data for each phase.
  • A variety of other equipment, tools, and the like, may be on site as well, such as transformers, power distribution components, switchgear (including fuses or circuit breakers), cables, hoses, air conditioning equipment, wireline, cranes, fluid pumps, and the like. Those familiar with drilling and fracturing operations understand the purpose of this other equipment, as well as the way in which it is deployed at the site.
  • In regard to some specific examples, the switchgear and power distribution components provide a number of important attributes to the fracturing operation. For example, they provide distribution and sharing of the total power from the generation sub-system, to and among the units of the pumping sub-system. They also control multiple lines of power flow, such that faults or failures in individual components or units do not cause secondary damage to other components or units. In this manner, the secondary damage within a component or unit with a fault or failure is minimized. Moreover, selected power flow can be interrupted for the purpose of maintenance and other field operations, while providing a safe working environment for the personnel involved. Moreover, this allows other units in the power generation or pumping sub-systems to be employed as appropriate, while such maintenance and field operations are being carried out.
  • As alluded to above, embodiments of the present invention eliminate or minimize many of these drawbacks. FIG. 1 is a schematic representation of a hydraulic fracturing system according to some embodiments of this invention. The figure is a non-limiting illustration of various components at a wellpad site 10. As a general means of simplifying the description, section 11 can be referred to as the power system; and section 13 can be referred to as the pumping system.
  • With continued reference to FIG. 1, wellpad site 10 contains one or more containers 12 for storing fracturing fluids. The site also contains one or more containers 14 for storing sand or other types of proppants (e.g., ceramic beads or other particulates). The fracturing fluids 12 primarily comprise water, e.g., supplied from storage containers 16. However, the fluids also contain various chemical additives, commercially available, that can aid in creating rock fractures; as well as protecting the wellbore surfaces.
  • The proppant materials can be ceramic beads, as mentioned above, or grains of sand or other particulates. As those skilled in the art understand, injection of the proppant materials prevents the hydraulic fractures from closing when the injection has stopped. In this manner, the process operators can maintain the “fracture width”, or slow the reduction in width. This can be especially important at deeper fracturing depths, where pressure and stresses on fractures are higher.
  • Pre-selected proportions of the fracturing fluid components (including chemical additives) and proppants are directed into at least one blender/mixing unit 18 (two such units are depicted in the figure). Typically, the blender thoroughly mixes the various components. At least one large capacity pump in the blending unit is employed to feed the mixture to the pumping sub-system. As in the case of the motor/pump platforms described below, the blender unit may be situated on the bed of a trailer-tractor, e.g., a truck having a trailer with an average length of about 35-50 feet; an average width of about 7-12 feet; and an average weight capacity of about 60,000 to about 100,000 pounds. (These dimensions may of course vary as well, in some circumstances).
  • The blended fracturing fluid composition is then directed (by pumping) into a piping array 20, that is capable of accommodating dense fluids under relatively high pressures and high capacities, e.g., about 100 psi to about 140 psi, at about 60-80 barrels per minute, or higher. The piping array 20 is then used to distribute the fracturing fluid into a number of pumpers 22 (six are illustrated here, as a general example). Each pumper accommodates an appropriate fraction of the fluid, and contributes to the task of bringing the fracturing material up to the high pressures required for entry into one or more wellheads.
  • As described above, each pumper 22 typically (though not always) includes at least one pump, and an electric motor to drive that pump. In some preferred embodiments (depending on the relative size of the platform, motors and pumps), each pumper comprises two pump-motor sets. The electric motors can all be powered by a single electrical feed source 24.
  • Electrical feed source 24 can comprise a power distribution unit, for example. In some embodiments, the power distribution unit is fed by a single electrical transmission cable 26, that may originate from any high-voltage transmission line (not shown) or other electrical power source. Feed source 24 may comprise a conventional distribution circuit, a transformer to reduce the voltage coming from electrical cable 26, or some combination of a distribution circuit and transformer (or multiple transformers).
  • In some embodiments, at least one variable-frequency drive (VFD) 28 is employed to control the current from electrical feed source 24, according to desired parameters. (Three of the VFD drives are depicted in FIG. 1, as part of the pumping sub-system. As with other components, they can be deployed on tractor trailers or other suitable platforms. For the sake of simplicity, the VFD drives are depicted as the trailers on which they might be situated). As those skilled in the art understand, the VFD's control the frequency of the electrical power supplied to motors, as well as controlling current and voltage. This “controllability” allows energy savings, and reduced strain on each motor, during variable demand in pumping power. The general design and use of VFD's for an application like that described herein can be carried out by those familiar with electric motor technology and electric power system technology, without undue effort.
  • Variable-frequency drives 28 direct the required electrical power to the pumpers 22, through one or more suitable electrical conduits (shown in simple form, in the figure). In one embodiment, each of the three VFD's is connected to two of the pumpers 22. The most appropriate ratio of VFD's (28) to pumpers (22) will depend on some of the other factors described herein, including the size and number of electrical motors employed.
  • As noted above, the electrical-based fracturing embodiments described herein can provide a number of important advantages over prior art, mechanical-based fracturing systems. With the elimination of individual diesel engines for pumping, each platform/trailer can accommodate much greater pumping-capacity. Thus, the number of trailers on the site can be greatly reduced. Moreover, the electric motors that deliver power to each pump—supplied by one primary power line and the associated distribution and VFD equipment—are generally cleaner and more reliable than the diesel power systems.
  • As alluded to previously, portions of the fracturing fluid are then directed to each pumper 22. The pumpers are capable of increasing the pressure of the fluid to the very high levels typically needed for fracturing, e.g., usually above about 5,000 psi, and often, about 10,000 psi or higher. The total fracturing fluid exiting pumpers 22 can then be directed through wellhead conduit (e.g., at least one pipe) 30, to at least one of the wellheads 32. (The number of wellheads and conduits depicted is exemplary, and can vary considerably, depending in part on the nature of the site being explored).
  • Those skilled in the art are familiar with the formation and use of wellbores drilled into reservoir rock formations, or into any type of subterranean formation. Each wellhead 32 may represent the terminus for a separate wellbore. Each wellbore may extend for some distance, vertically, into the earth, and then extend laterally (i.e., parallel with the rock layer) for thousands of feet, e.g., up to at least about 10,000 feet. The wellbores may, for example, extend in many different lateral (though underground) directions emanating from site 10. In this manner, a very large reservoir of rock-bearing fuel (e.g., petroleum and natural gas) can be stimulated for release and recovery, more efficiently than with other above-ground pumping and power systems.
  • Another embodiment of the hydraulic fracturing system is depicted in FIG. 2. Features and units that are identical to those of FIG. 1 are noted in the figure, and are usually provided with identical numbers. As in the previous embodiment, the system includes the power sub-system 11 and the pumping sub-system 13, along with an electrical feed source 24, electrical transmission cable 26; and VFD's 28. Other units of the pumping system 13 are the same as well, e.g., storage containers 12, 14; and pumpers 22.
  • In this embodiment of FIG. 2, power is provided on-site. As an example, a relatively large generator unit 50 can provide the power to electrical feed source 24, through cable 26. Many different types of generators can be used for this purpose, and the size will depend on a number of variables, including the size of the overall fracturing operation. As a non-limiting example, the generator can be one capable of providing about 15 MW to about 30 MW of power (i.e., usually greater than about 15 MW of power). The generator can be energized from any available source of mechanical energy, e.g., a turbine; hydro-power; compressed air, an internal combustion engine, and the like. In some embodiments, the turbine or combustion engine used to energize the generator can be supplied with fuel that is at least partially obtained from the fracturing site itself, as alluded to previously.
  • In addition to generator 50, this embodiment can include at least one smaller power generation unit 52 (FIG. 2). The smaller unit(s) can each provide about 1 MW to about 10 MW of power, although this range can vary as well. In FIG. 2, two of the smaller power generation units (52, 54) are depicted, and each can supply electricity directly to feed source 24. (In other embodiments, greater than two of the smaller power generation units may be employed). The smaller units can provide much greater flexibility, in terms of power requirements, during operation of the fracturing site.
  • In some cases, one or more of the smaller units may comprise a gas engine, attached to, or incorporated with, a suitable generator. As those skilled in the art understand, gas engines are internal combustion engines that can operate on a variety of fuels, such as natural gas, landfill gas, coal gas, bio-derived fuels, and the like. (Some of the smaller units can also use traditional hydrocarbon fuels, e.g., liquid hydrocarbons). The flexibility of both fuel sources and engine size can provide considerable advantages, in terms of the gas engines functioning as an accessory to generator 50. Non-limiting examples of commercial gas engines include various Jenbacher and Waukesha generation units. (In other instances, one or more of the smaller units can be a gas turbine, e.g., in the form of a gas turbine generator set, capable of providing power in the range described for units 52,54 (FIG. 2)).
  • It should be understood from the above teachings that a process for extracting oil and gas by hydraulic fracturing represents another embodiment of this invention. The process includes the use of a pumping system based primarily on electric motors that power fracturing pumps. In preferred embodiments, the electric motors are powered by a power generation sub-system that uses far fewer individual electrical generators and associated components than the conventional hydraulic fracturing systems, e.g., as compared to the conventional, dedicated engine-pump approach. Other, general details regarding hydraulic fracturing can be found in a large number of references. Non-limiting examples include U.S. Pat. No. 8,309,498 (Funkhouser et al); U.S. Pat. No. 7,901,314 (Salvaire et al); U.S. Pat. No. 5,551,516 (Norman et al); and U.S. Pat. No. 3,888,311 (Cooke), all incorporated herein by reference.
  • Coordination between the power generation sub-system and the pumping sub-system is carried out by a control system. The control system provides sufficient power quantity and “quality” (i.e., in terms of frequency, voltage, and harmonics) to each pump/electric motor set (i.e, pumper 22). The control system also prevents the power generation units from being operated beyond their safety- and reliabilty-limits.
  • The control systems should often include a mechanism that allows for highly-adjustable variable speed drive settings. This adjustability is sometimes critical, since the load on the pumpers is also highly variable, based on required fracturing forces that may be occuring thousands of feet away from the pumpers themselves. As an example, the variable speed drive mechanisms, sometimes referred to as adjustable speed drives (ASD's), allow for ramping up power and ramping down power in starting and stopping stages, respectively. Moreover, VSD/ASD mechanisms as applied to the present invention are also capable of delivering relatively short bursts (e.g., about several seconds to several minutes) of high-torque power, e.g., if the fracturing fluid streams encounter challenging rock and sand conditions.
  • The present invention has been described in terms of some specific embodiments. They are intended for illustration only, and should not be construed as being limiting in any way. Thus, it should be understood that modifications can be made thereto, which are within the scope of the invention and the appended claims. Furthermore, all of the patents, patent applications, articles, and texts which are mentioned above are incorporated herein by reference.

Claims (16)

What is claimed:
1. A hydraulic fracturing system, comprising
a) an electric motor-driven pumping sub-system, configured to pump a pressurized fracturing fluid into at least one wellbore, under high pressure conditions sufficient to increase the downhole pressure of the wellbore, to exceed that of the fracture gradient of the solid matter surrounding the wellbore; and
b) an electric power generation sub-system that provides energy to the pumping sub-system, comprising a multitude of electric motors that are powered by a single electrical feed source.
2. The fracturing system of claim 1, wherein the pumping sub-system comprises one or more platforms, and each platform supports one or more pumping units that each comprise at least one pump and at least one electric motor.
3. The fracturing system of claim 2, wherein each electric motor is configured to provide power for one pump.
4. The fracturing system of claim 2, wherein each pumping unit comprises two pump-motor sets.
5. The fracturing system of claim 1, wherein the electrical feed source comprises an electrical feeder that is connected, directly or indirectly, to an electrical transmission line, a power sub-station, a power generation facility, or a dedicated power generation sub-system.
6. The fracturing system of claim 1, wherein the electrical feed source comprises at least one gas turbine engine.
7. The fracturing system of claim 1, wherein the electric power generation sub-system is powered by a large generator capable of supplying greater than about 15 MW of power.
8. The fracturing system of claim 7, where the electric power generation sub-system is further powered by at least one gas engine capable of supplying about 1 MW to about 10 MW of power.
9. The fracturing system of claim 1, wherein the pumping sub-system comprises at least one variable-frequency drive (VFD).
10. The fracturing system of claim 9, wherein the variable-frequency drive is configured to control electrical current from the electrical feed source, according to desired parameters.
11. The fracturing system of claim 10, wherein the variable-frequency drive is configured to direct the electrical current to at least one designated pumping unit.
12. A process for extracting hydrocarbons from a reservoir rock formation by a hydraulic fracturing operation, comprising the step of introducing a hydraulic fracturing treatment fluid into a subterranean formation at a pressure sufficient to form or to enhance at least one fracture within the subterranean formation,
wherein the fracturing treatment fluid is pumped into at least one wellbore in the subterranean formation by an electric motor-driven pumping sub-system, configured to pump the fluid into the wellbore under high pressure conditions sufficient to increase the downhole pressure of the wellbore, to exceed that of the fracture gradient of the solid matter surrounding the wellbore; and
wherein the pumping sub-system is energized by an electric power generation sub-system that provides energy to the pumping sub-system, and the power generation sub-system comprises a multitude of electric motors that are powered by a single electrical feed source.
13. The process of claim 12, wherein the pumping sub-system comprises one or more platforms, and each platform supports one or more pumping units that each comprise at least one pump and at least one electric motor.
14. The process of claim 13, wherein each electric motor is configured to provide power for one pump.
15. The process of claim 13, wherein each pumping unit comprises two pump-motor sets.
16. The process of claim 12, wherein the electrical feed source comprises an electrical feeder that is connected, directly or indirectly, to an electrical transmission line, a power sub-station, a power generation facility, or a dedicated power generation sub-system.
US13/708,206 2012-05-21 2012-12-07 System and process for extracting oil and gas by hydraulic fracturing Abandoned US20130306322A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/708,206 US20130306322A1 (en) 2012-05-21 2012-12-07 System and process for extracting oil and gas by hydraulic fracturing
PCT/US2013/041920 WO2013177094A2 (en) 2012-05-21 2013-05-21 System and process for extracting oil and gas by hydraulic fracturing
CN201380032225.9A CN104364465A (en) 2012-05-21 2013-05-21 System and process for extracting oil and gas by hydraulic fracturing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261649563P 2012-05-21 2012-05-21
US13/708,206 US20130306322A1 (en) 2012-05-21 2012-12-07 System and process for extracting oil and gas by hydraulic fracturing

Publications (1)

Publication Number Publication Date
US20130306322A1 true US20130306322A1 (en) 2013-11-21

Family

ID=49580356

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/708,206 Abandoned US20130306322A1 (en) 2012-05-21 2012-12-07 System and process for extracting oil and gas by hydraulic fracturing

Country Status (3)

Country Link
US (1) US20130306322A1 (en)
CN (1) CN104364465A (en)
WO (1) WO2013177094A2 (en)

Cited By (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103742381A (en) * 2013-12-30 2014-04-23 三一重型能源装备有限公司 Fracturing pump system and fracturing truck
CN103742382A (en) * 2013-12-30 2014-04-23 三一重型能源装备有限公司 Fracturing pump transmission system and fracturing truck
US20140138079A1 (en) * 2012-11-16 2014-05-22 Us Well Services Llc System for Pumping Hydraulic Fracturing Fluid Using Electric Pumps
US20140174717A1 (en) * 2012-11-16 2014-06-26 Us Well Services Llc System for pumping hydraulic fracturing fluid using electric pumps
US8782995B1 (en) * 2012-03-27 2014-07-22 Enviro Storage Solutions, LLC Collapsible storage container
US20150027712A1 (en) * 2013-07-23 2015-01-29 Baker Hughes Incorporated Apparatus and methods for delivering a high volume of fluid into an underground well bore from a mobile pumping unit
WO2015054603A1 (en) * 2013-10-10 2015-04-16 Prostim Labs, Llc Fracturing systems and methods for a wellbore
WO2015103626A1 (en) * 2014-01-06 2015-07-09 Lime Instruments Llc Hydraulic fracturing system
US20150299596A1 (en) * 2014-03-12 2015-10-22 Rustam H. Sethna Methods for removing contaminants from natural gas
CN105090423A (en) * 2015-09-08 2015-11-25 三一重型能源装备有限公司 Hydraulic transmission system for fracturing truck and fracturing truck
US20150369017A1 (en) * 2014-06-18 2015-12-24 General Electric Company Exploration drilling system and method for supplying power thereto
US20160195082A1 (en) * 2015-01-02 2016-07-07 General Electric Company System and method for health management of pumping system
US9475021B2 (en) 2012-10-05 2016-10-25 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US20160312108A1 (en) * 2013-03-07 2016-10-27 Prostim Labs, Llc Hydrocarbon-based fracturing fluid composition, system, and method
WO2016141205A3 (en) * 2015-03-04 2016-10-27 Stewart & Stevenson, LLC Well fracturing systems with electrical motors and methods of use
US20160348479A1 (en) * 2012-11-16 2016-12-01 Us Well Services Llc Wireline power supply during electric powered fracturing operations
WO2016199075A1 (en) * 2015-06-10 2016-12-15 Prostim Labs, Llc Fracturing system layouts
US9534473B2 (en) * 2014-12-19 2017-01-03 Evolution Well Services, Llc Mobile electric power generation for hydraulic fracturing of subsurface geological formations
US9611728B2 (en) * 2012-11-16 2017-04-04 U.S. Well Services Llc Cold weather package for oil field hydraulics
WO2017075935A1 (en) * 2015-11-06 2017-05-11 中国矿业大学 Method of increasing permeability of coal seam using high-power electric blasting assisted by hydraulic fracturing from bottom drainage roadway
US9650871B2 (en) * 2012-11-16 2017-05-16 Us Well Services Llc Safety indicator lights for hydraulic fracturing pumps
US9650879B2 (en) 2012-11-16 2017-05-16 Us Well Services Llc Torsional coupling for electric hydraulic fracturing fluid pumps
US9745840B2 (en) 2012-11-16 2017-08-29 Us Well Services Llc Electric powered pump down
US9840901B2 (en) 2012-11-16 2017-12-12 U.S. Well Services, LLC Remote monitoring for hydraulic fracturing equipment
US9893500B2 (en) 2012-11-16 2018-02-13 U.S. Well Services, LLC Switchgear load sharing for oil field equipment
WO2018044307A1 (en) * 2016-08-31 2018-03-08 Evolution Well Services, Llc Mobile fracturing pump transport for hydraulic fracturing of subsurface geological formations
US9970278B2 (en) 2012-11-16 2018-05-15 U.S. Well Services, LLC System for centralized monitoring and control of electric powered hydraulic fracturing fleet
US9995218B2 (en) 2012-11-16 2018-06-12 U.S. Well Services, LLC Turbine chilling for oil field power generation
US10008880B2 (en) 2014-06-06 2018-06-26 Bj Services, Llc Modular hybrid low emissions power for hydrocarbon extraction
US10020711B2 (en) 2012-11-16 2018-07-10 U.S. Well Services, LLC System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources
US10036238B2 (en) * 2012-11-16 2018-07-31 U.S. Well Services, LLC Cable management of electric powered hydraulic fracturing pump unit
US20180284817A1 (en) * 2017-04-03 2018-10-04 Fmc Technologies, Inc. Universal frac manifold power and control system
US10119381B2 (en) 2012-11-16 2018-11-06 U.S. Well Services, LLC System for reducing vibrations in a pressure pumping fleet
EP3447238A1 (en) * 2013-03-07 2019-02-27 Prostim Labs, LLC Fracturing systems and methods for a wellbore
US10221856B2 (en) 2015-08-18 2019-03-05 Bj Services, Llc Pump system and method of starting pump
US10232332B2 (en) 2012-11-16 2019-03-19 U.S. Well Services, Inc. Independent control of auger and hopper assembly in electric blender system
US10254732B2 (en) 2012-11-16 2019-04-09 U.S. Well Services, Inc. Monitoring and control of proppant storage from a datavan
US10280724B2 (en) 2017-07-07 2019-05-07 U.S. Well Services, Inc. Hydraulic fracturing equipment with non-hydraulic power
US20190154020A1 (en) * 2014-01-06 2019-05-23 Supreme Electrical Services, Inc. dba Lime Instruments Mobile Hydraulic Fracturing System and Related Methods
US20190211814A1 (en) * 2016-10-17 2019-07-11 Halliburton Energy Services, Inc. Improved distribution unit
US10378326B2 (en) 2014-12-19 2019-08-13 Typhon Technology Solutions, Llc Mobile fracturing pump transport for hydraulic fracturing of subsurface geological formations
US10408031B2 (en) 2017-10-13 2019-09-10 U.S. Well Services, LLC Automated fracturing system and method
US10407990B2 (en) 2012-11-16 2019-09-10 U.S. Well Services, LLC Slide out pump stand for hydraulic fracturing equipment
CN110608030A (en) * 2019-10-30 2019-12-24 烟台杰瑞石油装备技术有限公司 Electric drive fracturing semitrailer of frequency conversion all-in-one machine
CN110644964A (en) * 2019-10-25 2020-01-03 北京天地玛珂电液控制系统有限公司 Variable-frequency hydraulic fracturing system and pressure adjusting method thereof
US10526882B2 (en) 2012-11-16 2020-01-07 U.S. Well Services, LLC Modular remote power generation and transmission for hydraulic fracturing system
US20200087997A1 (en) * 2017-06-29 2020-03-19 Typhon Technology Solutions, Llc Electric power distribution for fracturing operation
US10598258B2 (en) 2017-12-05 2020-03-24 U.S. Well Services, LLC Multi-plunger pumps and associated drive systems
US10648270B2 (en) 2018-09-14 2020-05-12 U.S. Well Services, LLC Riser assist for wellsites
US10648311B2 (en) 2017-12-05 2020-05-12 U.S. Well Services, LLC High horsepower pumping configuration for an electric hydraulic fracturing system
US10655435B2 (en) 2017-10-25 2020-05-19 U.S. Well Services, LLC Smart fracturing system and method
US10724353B2 (en) 2011-04-07 2020-07-28 Typhon Technology Solutions, Llc Dual pump VFD controlled system for electric fracturing operations
US10738580B1 (en) 2019-02-14 2020-08-11 Service Alliance—Houston LLC Electric driven hydraulic fracking system
US10753153B1 (en) 2019-02-14 2020-08-25 National Service Alliance—Houston LLC Variable frequency drive configuration for electric driven hydraulic fracking system
US10753165B1 (en) 2019-02-14 2020-08-25 National Service Alliance—Houston LLC Parameter monitoring and control for an electric driven hydraulic fracking system
US10794165B2 (en) 2019-02-14 2020-10-06 National Service Alliance—Houston LLC Power distribution trailer for an electric driven hydraulic fracking system
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US10914155B2 (en) 2018-10-09 2021-02-09 U.S. Well Services, LLC Electric powered hydraulic fracturing pump system with single electric powered multi-plunger pump fracturing trailers, filtration units, and slide out platform
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US10961908B1 (en) 2020-06-05 2021-03-30 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US10989180B2 (en) * 2019-09-13 2021-04-27 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US10988998B2 (en) 2019-02-14 2021-04-27 National Service Alliance—Houston LLC Electric driven hydraulic fracking operation
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US20210140423A1 (en) * 2016-12-02 2021-05-13 U.S. Well Services, LLC Constant voltage power distribution system for use with an electric hydraulic fracturing system
US11009162B1 (en) 2019-12-27 2021-05-18 U.S. Well Services, LLC System and method for integrated flow supply line
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US11015536B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11022526B1 (en) 2020-06-09 2021-06-01 Bj Energy Solutions, Llc Systems and methods for monitoring a condition of a fracturing component section of a hydraulic fracturing unit
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11035207B2 (en) 2018-04-16 2021-06-15 U.S. Well Services, LLC Hybrid hydraulic fracturing fleet
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US11067481B2 (en) 2017-10-05 2021-07-20 U.S. Well Services, LLC Instrumented fracturing slurry flow system and method
US11098651B1 (en) 2019-09-13 2021-08-24 Bj Energy Solutions, Llc Turbine engine exhaust duct system and methods for noise dampening and attenuation
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11111768B1 (en) 2020-06-09 2021-09-07 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US11114857B2 (en) 2018-02-05 2021-09-07 U.S. Well Services, LLC Microgrid electrical load management
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11193360B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11208878B2 (en) 2018-10-09 2021-12-28 U.S. Well Services, LLC Modular switchgear system and power distribution for electric oilfield equipment
US11211801B2 (en) 2018-06-15 2021-12-28 U.S. Well Services, LLC Integrated mobile power unit for hydraulic fracturing
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11236739B2 (en) * 2019-09-13 2022-02-01 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11255173B2 (en) 2011-04-07 2022-02-22 Typhon Technology Solutions, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US11268346B2 (en) 2019-09-13 2022-03-08 Bj Energy Solutions, Llc Fuel, communications, and power connection systems
US11408794B2 (en) 2019-09-13 2022-08-09 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11415125B2 (en) 2020-06-23 2022-08-16 Bj Energy Solutions, Llc Systems for utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11421673B2 (en) 2016-09-02 2022-08-23 Halliburton Energy Services, Inc. Hybrid drive systems for well stimulation operations
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11449018B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC System and method for parallel power and blackout protection for electric powered hydraulic fracturing
US11459863B2 (en) 2019-10-03 2022-10-04 U.S. Well Services, LLC Electric powered hydraulic fracturing pump system with single electric powered multi-plunger fracturing pump
US20220330411A1 (en) * 2021-04-07 2022-10-13 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Fracturing well site system
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US20220342412A1 (en) * 2021-04-26 2022-10-27 Saudi Arabian Oil Company Instant power failure detection method and apparatus to discard power failure as case scenario in flare systems design
US11506126B2 (en) 2019-06-10 2022-11-22 U.S. Well Services, LLC Integrated fuel gas heater for mobile fuel conditioning equipment
US20220385074A1 (en) * 2021-05-27 2022-12-01 U.S. Well Services, LLC Electric hydraulic fracturing with battery power as primary source
US20220412379A1 (en) * 2021-06-29 2022-12-29 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Turbine fracturing apparatus
US11542786B2 (en) 2019-08-01 2023-01-03 U.S. Well Services, LLC High capacity power storage system for electric hydraulic fracturing
US11560845B2 (en) 2019-05-15 2023-01-24 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11578577B2 (en) 2019-03-20 2023-02-14 U.S. Well Services, LLC Oversized switchgear trailer for electric hydraulic fracturing
US11624326B2 (en) 2017-05-21 2023-04-11 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11635074B2 (en) 2020-05-12 2023-04-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods
US11708752B2 (en) 2011-04-07 2023-07-25 Typhon Technology Solutions (U.S.), Llc Multiple generator mobile electric powered fracturing system
US20230235653A1 (en) * 2022-01-24 2023-07-27 Caterpillar Inc. Asymmetric power management and load management
US11715951B2 (en) 2019-08-27 2023-08-01 Halliburton Energy Services, Inc. Grid power for hydrocarbon service applications
US11728709B2 (en) 2019-05-13 2023-08-15 U.S. Well Services, LLC Encoderless vector control for VFD in hydraulic fracturing applications
US11725582B1 (en) 2022-04-28 2023-08-15 Typhon Technology Solutions (U.S.), Llc Mobile electric power generation system
US11859480B2 (en) * 2022-03-11 2024-01-02 Caterpillar Inc. Controlling fluid pressures at multiple well heads for continuous pumping
US11867118B2 (en) 2019-09-13 2024-01-09 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11955782B1 (en) 2022-11-01 2024-04-09 Typhon Technology Solutions (U.S.), Llc System and method for fracturing of underground formations using electric grid power
US11959371B2 (en) 2012-11-16 2024-04-16 Us Well Services, Llc Suction and discharge lines for a dual hydraulic fracturing unit
US11971028B2 (en) 2023-05-25 2024-04-30 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113748255A (en) * 2019-04-26 2021-12-03 西门子能源美国公司 System for hydraulic fracturing integrated with electrical energy storage and black start capability

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3560053A (en) * 1968-11-19 1971-02-02 Exxon Production Research Co High pressure pumping system
US20070277982A1 (en) * 2006-06-02 2007-12-06 Rod Shampine Split stream oilfield pumping systems
US20090226308A1 (en) * 2008-03-05 2009-09-10 Expansion Energy, Llc Combined cold and power (ccp) system and method for improved turbine performance
US20120255734A1 (en) * 2011-04-07 2012-10-11 Todd Coli Mobile, modular, electrically powered system for use in fracturing underground formations
US20140096974A1 (en) * 2012-10-05 2014-04-10 Evolution Well Services Mobile, Modular, Electrically Powered System For Use in Fracturing Underground Formations Using Liquid Petroleum Gas
US20140138079A1 (en) * 2012-11-16 2014-05-22 Us Well Services Llc System for Pumping Hydraulic Fracturing Fluid Using Electric Pumps
US20140174717A1 (en) * 2012-11-16 2014-06-26 Us Well Services Llc System for pumping hydraulic fracturing fluid using electric pumps

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888311A (en) 1973-10-01 1975-06-10 Exxon Production Research Co Hydraulic fracturing method
US4311395A (en) * 1979-06-25 1982-01-19 Halliburton Company Pivoting skid blender trailer
US5551516A (en) 1995-02-17 1996-09-03 Dowell, A Division Of Schlumberger Technology Corporation Hydraulic fracturing process and compositions
US7678744B2 (en) * 2005-12-06 2010-03-16 Halliburton Energy Services, Inc. Hydrocarbon industry servicing fluid and methods of performing service operations
DE602006015054D1 (en) 2006-09-13 2010-08-05 Schlumberger Technology Bv Hydraulic fracturing procedure and fracturing pump device
CN201358774Y (en) * 2009-03-04 2009-12-09 赵正辉 Novel liquid supply system for oil filed hydraulic fracturing construction
US8309498B2 (en) 2009-09-24 2012-11-13 Halliburtn Energy Services, Inc. High temperature fracturing fluids and methods
US20110272158A1 (en) * 2010-05-07 2011-11-10 Halliburton Energy Services, Inc. High pressure manifold trailer and methods and systems employing the same
WO2012051309A2 (en) * 2010-10-12 2012-04-19 Qip Holdings, Llc Method and apparatus for hydraulically fracturing wells

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3560053A (en) * 1968-11-19 1971-02-02 Exxon Production Research Co High pressure pumping system
US20070277982A1 (en) * 2006-06-02 2007-12-06 Rod Shampine Split stream oilfield pumping systems
US7845413B2 (en) * 2006-06-02 2010-12-07 Schlumberger Technology Corporation Method of pumping an oilfield fluid and split stream oilfield pumping systems
US8336631B2 (en) * 2006-06-02 2012-12-25 Schlumberger Technology Corporation Split stream oilfield pumping systems
US20090226308A1 (en) * 2008-03-05 2009-09-10 Expansion Energy, Llc Combined cold and power (ccp) system and method for improved turbine performance
US20120255734A1 (en) * 2011-04-07 2012-10-11 Todd Coli Mobile, modular, electrically powered system for use in fracturing underground formations
US20140096974A1 (en) * 2012-10-05 2014-04-10 Evolution Well Services Mobile, Modular, Electrically Powered System For Use in Fracturing Underground Formations Using Liquid Petroleum Gas
US20140138079A1 (en) * 2012-11-16 2014-05-22 Us Well Services Llc System for Pumping Hydraulic Fracturing Fluid Using Electric Pumps
US20140174717A1 (en) * 2012-11-16 2014-06-26 Us Well Services Llc System for pumping hydraulic fracturing fluid using electric pumps
US8789601B2 (en) * 2012-11-16 2014-07-29 Us Well Services Llc System for pumping hydraulic fracturing fluid using electric pumps

Cited By (339)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10724353B2 (en) 2011-04-07 2020-07-28 Typhon Technology Solutions, Llc Dual pump VFD controlled system for electric fracturing operations
US10718195B2 (en) 2011-04-07 2020-07-21 Typhon Technology Solutions, Llc Dual pump VFD controlled motor electric fracturing system
US11939852B2 (en) 2011-04-07 2024-03-26 Typhon Technology Solutions (U.S.), Llc Dual pump VFD controlled motor electric fracturing system
US11255173B2 (en) 2011-04-07 2022-02-22 Typhon Technology Solutions, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US10876386B2 (en) 2011-04-07 2020-12-29 Typhon Technology Solutions, Llc Dual pump trailer mounted electric fracturing system
US11187069B2 (en) 2011-04-07 2021-11-30 Typhon Technology Solutions, Llc Multiple generator mobile electric powered fracturing system
US11613979B2 (en) 2011-04-07 2023-03-28 Typhon Technology Solutions, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US10502042B2 (en) 2011-04-07 2019-12-10 Typhon Technology Solutions, Llc Electric blender system, apparatus and method for use in fracturing underground formations using liquid petroleum gas
US11708752B2 (en) 2011-04-07 2023-07-25 Typhon Technology Solutions (U.S.), Llc Multiple generator mobile electric powered fracturing system
US11851998B2 (en) 2011-04-07 2023-12-26 Typhon Technology Solutions (U.S.), Llc Dual pump VFD controlled motor electric fracturing system
US11002125B2 (en) 2011-04-07 2021-05-11 Typhon Technology Solutions, Llc Control system for electric fracturing operations
US10648312B2 (en) 2011-04-07 2020-05-12 Typhon Technology Solutions, Llc Dual pump trailer mounted electric fracturing system
US11913315B2 (en) 2011-04-07 2024-02-27 Typhon Technology Solutions (U.S.), Llc Fracturing blender system and method using liquid petroleum gas
US10895138B2 (en) 2011-04-07 2021-01-19 Typhon Technology Solutions, Llc Multiple generator mobile electric powered fracturing system
US11391133B2 (en) * 2011-04-07 2022-07-19 Typhon Technology Solutions (U.S.), Llc Dual pump VFD controlled motor electric fracturing system
US10689961B2 (en) 2011-04-07 2020-06-23 Typhon Technology Solutions, Llc Multiple generator mobile electric powered fracturing system
US10982521B2 (en) 2011-04-07 2021-04-20 Typhon Technology Solutions, Llc Dual pump VFD controlled motor electric fracturing system
US10718194B2 (en) 2011-04-07 2020-07-21 Typhon Technology Solutions, Llc Control system for electric fracturing operations
US10851634B2 (en) 2011-04-07 2020-12-01 Typhon Technology Solutions, Llc Dual pump mobile electrically powered system for use in fracturing underground formations
US10837270B2 (en) 2011-04-07 2020-11-17 Typhon Technology Solutions, Llc VFD controlled motor mobile electrically powered system for use in fracturing underground formations for electric fracturing operations
US10774630B2 (en) 2011-04-07 2020-09-15 Typhon Technology Solutions, Llc Control system for electric fracturing operations
US11391136B2 (en) 2011-04-07 2022-07-19 Typhon Technology Solutions (U.S.), Llc Dual pump VFD controlled motor electric fracturing system
US8782995B1 (en) * 2012-03-27 2014-07-22 Enviro Storage Solutions, LLC Collapsible storage container
US10107085B2 (en) 2012-10-05 2018-10-23 Evolution Well Services Electric blender system, apparatus and method for use in fracturing underground formations using liquid petroleum gas
US9475020B2 (en) 2012-10-05 2016-10-25 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US20170037718A1 (en) * 2012-10-05 2017-02-09 Evolution Well Services, Llc System and method for dedicated electric source for use in fracturing underground formations using liquid petroleum gas
US9475021B2 (en) 2012-10-05 2016-10-25 Evolution Well Services, Llc Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US11118438B2 (en) * 2012-10-05 2021-09-14 Typhon Technology Solutions, Llc Turbine driven electric fracturing system and method
US10107084B2 (en) * 2012-10-05 2018-10-23 Evolution Well Services System and method for dedicated electric source for use in fracturing underground formations using liquid petroleum gas
US11674352B2 (en) 2012-11-16 2023-06-13 U.S. Well Services, LLC Slide out pump stand for hydraulic fracturing equipment
US20230109325A1 (en) * 2012-11-16 2023-04-06 U.S. Well Services, LLC Wireline power supply during electric powered fracturing operations
US20140138079A1 (en) * 2012-11-16 2014-05-22 Us Well Services Llc System for Pumping Hydraulic Fracturing Fluid Using Electric Pumps
US20220275716A1 (en) * 2012-11-16 2022-09-01 U.S. Well Services, LLC System for pumping hydraulic fracturing fluid using electric pumps
US9840901B2 (en) 2012-11-16 2017-12-12 U.S. Well Services, LLC Remote monitoring for hydraulic fracturing equipment
US11449018B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC System and method for parallel power and blackout protection for electric powered hydraulic fracturing
US9893500B2 (en) 2012-11-16 2018-02-13 U.S. Well Services, LLC Switchgear load sharing for oil field equipment
US11451016B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC Switchgear load sharing for oil field equipment
US20140174717A1 (en) * 2012-11-16 2014-06-26 Us Well Services Llc System for pumping hydraulic fracturing fluid using electric pumps
US9970278B2 (en) 2012-11-16 2018-05-15 U.S. Well Services, LLC System for centralized monitoring and control of electric powered hydraulic fracturing fleet
US9995218B2 (en) 2012-11-16 2018-06-12 U.S. Well Services, LLC Turbine chilling for oil field power generation
US11454170B2 (en) 2012-11-16 2022-09-27 U.S. Well Services, LLC Turbine chilling for oil field power generation
US11476781B2 (en) * 2012-11-16 2022-10-18 U.S. Well Services, LLC Wireline power supply during electric powered fracturing operations
US10020711B2 (en) 2012-11-16 2018-07-10 U.S. Well Services, LLC System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources
US10036238B2 (en) * 2012-11-16 2018-07-31 U.S. Well Services, LLC Cable management of electric powered hydraulic fracturing pump unit
US8789601B2 (en) * 2012-11-16 2014-07-29 Us Well Services Llc System for pumping hydraulic fracturing fluid using electric pumps
US9650879B2 (en) 2012-11-16 2017-05-16 Us Well Services Llc Torsional coupling for electric hydraulic fracturing fluid pumps
US9650871B2 (en) * 2012-11-16 2017-05-16 Us Well Services Llc Safety indicator lights for hydraulic fracturing pumps
US10107086B2 (en) 2012-11-16 2018-10-23 U.S. Well Services, LLC Remote monitoring for hydraulic fracturing equipment
US10119381B2 (en) 2012-11-16 2018-11-06 U.S. Well Services, LLC System for reducing vibrations in a pressure pumping fleet
US11181879B2 (en) 2012-11-16 2021-11-23 U.S. Well Services, LLC Monitoring and control of proppant storage from a datavan
US9745840B2 (en) 2012-11-16 2017-08-29 Us Well Services Llc Electric powered pump down
US11136870B2 (en) 2012-11-16 2021-10-05 U.S. Well Services, LLC System for pumping hydraulic fracturing fluid using electric pumps
US20220213772A1 (en) * 2012-11-16 2022-07-07 U.S. Well Services, LLC System for centralized monitoring and control of electric powered hydraulic fracturing fleet
US11091992B2 (en) 2012-11-16 2021-08-17 U.S. Well Services, LLC System for centralized monitoring and control of electric powered hydraulic fracturing fleet
US10232332B2 (en) 2012-11-16 2019-03-19 U.S. Well Services, Inc. Independent control of auger and hopper assembly in electric blender system
US10254732B2 (en) 2012-11-16 2019-04-09 U.S. Well Services, Inc. Monitoring and control of proppant storage from a datavan
US11713661B2 (en) 2012-11-16 2023-08-01 U.S. Well Services, LLC Electric powered pump down
US11066912B2 (en) 2012-11-16 2021-07-20 U.S. Well Services, LLC Torsional coupling for electric hydraulic fracturing fluid pumps
US11850563B2 (en) 2012-11-16 2023-12-26 U.S. Well Services, LLC Independent control of auger and hopper assembly in electric blender system
US10337308B2 (en) 2012-11-16 2019-07-02 U.S. Well Services, Inc. System for pumping hydraulic fracturing fluid using electric pumps
US11920449B2 (en) * 2012-11-16 2024-03-05 U.S. Well Services, LLC System for centralized monitoring and control of electric powered hydraulic fracturing fleet
US10947829B2 (en) 2012-11-16 2021-03-16 U.S. Well Services, LLC Cable management of electric powered hydraulic fracturing pump unit
US10934824B2 (en) 2012-11-16 2021-03-02 U.S. Well Services, LLC System for reducing vibrations in a pressure pumping fleet
US10927802B2 (en) 2012-11-16 2021-02-23 U.S. Well Services, LLC System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources
US10408030B2 (en) 2012-11-16 2019-09-10 U.S. Well Services, LLC Electric powered pump down
US10407990B2 (en) 2012-11-16 2019-09-10 U.S. Well Services, LLC Slide out pump stand for hydraulic fracturing equipment
US9410410B2 (en) * 2012-11-16 2016-08-09 Us Well Services Llc System for pumping hydraulic fracturing fluid using electric pumps
US11959371B2 (en) 2012-11-16 2024-04-16 Us Well Services, Llc Suction and discharge lines for a dual hydraulic fracturing unit
US20160348479A1 (en) * 2012-11-16 2016-12-01 Us Well Services Llc Wireline power supply during electric powered fracturing operations
US10526882B2 (en) 2012-11-16 2020-01-07 U.S. Well Services, LLC Modular remote power generation and transmission for hydraulic fracturing system
US10731561B2 (en) 2012-11-16 2020-08-04 U.S. Well Services, LLC Turbine chilling for oil field power generation
US9611728B2 (en) * 2012-11-16 2017-04-04 U.S. Well Services Llc Cold weather package for oil field hydraulics
US10686301B2 (en) 2012-11-16 2020-06-16 U.S. Well Services, LLC Switchgear load sharing for oil field equipment
EP3447238A1 (en) * 2013-03-07 2019-02-27 Prostim Labs, LLC Fracturing systems and methods for a wellbore
US9850422B2 (en) * 2013-03-07 2017-12-26 Prostim Labs, Llc Hydrocarbon-based fracturing fluid composition, system, and method
US20160312108A1 (en) * 2013-03-07 2016-10-27 Prostim Labs, Llc Hydrocarbon-based fracturing fluid composition, system, and method
US9395049B2 (en) * 2013-07-23 2016-07-19 Baker Hughes Incorporated Apparatus and methods for delivering a high volume of fluid into an underground well bore from a mobile pumping unit
US20150027712A1 (en) * 2013-07-23 2015-01-29 Baker Hughes Incorporated Apparatus and methods for delivering a high volume of fluid into an underground well bore from a mobile pumping unit
WO2015054603A1 (en) * 2013-10-10 2015-04-16 Prostim Labs, Llc Fracturing systems and methods for a wellbore
EP3055500A4 (en) * 2013-10-10 2017-10-25 Prostim Labs, LLC Fracturing systems and methods for a wellbore
CN103742382A (en) * 2013-12-30 2014-04-23 三一重型能源装备有限公司 Fracturing pump transmission system and fracturing truck
CN103742381A (en) * 2013-12-30 2014-04-23 三一重型能源装备有限公司 Fracturing pump system and fracturing truck
WO2015103626A1 (en) * 2014-01-06 2015-07-09 Lime Instruments Llc Hydraulic fracturing system
AU2015203937B2 (en) * 2014-01-06 2018-11-08 Lime Instruments Llc Hydraulic fracturing system
US20150252661A1 (en) * 2014-01-06 2015-09-10 Lime Instruments Llc Hydraulic fracturing system
US10227854B2 (en) * 2014-01-06 2019-03-12 Lime Instruments Llc Hydraulic fracturing system
CN106574495A (en) * 2014-01-06 2017-04-19 莱姆仪器有限责任公司 Hydraulic fracturing system
US20190154020A1 (en) * 2014-01-06 2019-05-23 Supreme Electrical Services, Inc. dba Lime Instruments Mobile Hydraulic Fracturing System and Related Methods
US10815978B2 (en) * 2014-01-06 2020-10-27 Supreme Electrical Services, Inc. Mobile hydraulic fracturing system and related methods
US20150299596A1 (en) * 2014-03-12 2015-10-22 Rustam H. Sethna Methods for removing contaminants from natural gas
US10008880B2 (en) 2014-06-06 2018-06-26 Bj Services, Llc Modular hybrid low emissions power for hydrocarbon extraction
US20150369017A1 (en) * 2014-06-18 2015-12-24 General Electric Company Exploration drilling system and method for supplying power thereto
US10017993B2 (en) * 2014-06-18 2018-07-10 General Electric Company Exploration drilling system and method for supplying power thereto
AU2015364678B2 (en) * 2014-12-19 2018-11-22 Typhon Technology Solutions, Llc Mobile electric power generation for hydraulic fracturing of subsurface geological formations
US9534473B2 (en) * 2014-12-19 2017-01-03 Evolution Well Services, Llc Mobile electric power generation for hydraulic fracturing of subsurface geological formations
US11891993B2 (en) 2014-12-19 2024-02-06 Typhon Technology Solutions (U.S.), Llc Mobile fracturing pump transport for hydraulic fracturing of subsurface geological formations
US11799356B2 (en) 2014-12-19 2023-10-24 Typhon Technology Solutions (U.S.), Llc Mobile electric power generation for hydraulic fracturing of subsurface geological formations
AU2019200899B2 (en) * 2014-12-19 2020-05-28 Typhon Technology Solutions, Llc Mobile electric power generation for hydraulic fracturing of subsurface geological formations
AU2021245123B2 (en) * 2014-12-19 2023-08-10 Typhon Technology Solutions, Llc Mobile electric power generation for hydraulic fracturing of subsurface geological formations
JP2018508705A (en) * 2014-12-19 2018-03-29 エヴォリューション ウェル サーヴィスィズ,エルエルシー Mobile power generation for hydraulic fracturing of underground formations
US11070109B2 (en) 2014-12-19 2021-07-20 Typhon Technology Solutions, Llc Mobile electric power generation for hydraulic fracturing of subsurface geological formations
US9562420B2 (en) * 2014-12-19 2017-02-07 Evolution Well Services, Llc Mobile electric power generation for hydraulic fracturing of subsurface geological formations
US11168554B2 (en) 2014-12-19 2021-11-09 Typhon Technology Solutions, Llc Mobile fracturing pump transport for hydraulic fracturing of subsurface geological formations
US10378326B2 (en) 2014-12-19 2019-08-13 Typhon Technology Solutions, Llc Mobile fracturing pump transport for hydraulic fracturing of subsurface geological formations
US10374485B2 (en) 2014-12-19 2019-08-06 Typhon Technology Solutions, Llc Mobile electric power generation for hydraulic fracturing of subsurface geological formations
US9777723B2 (en) * 2015-01-02 2017-10-03 General Electric Company System and method for health management of pumping system
US20160195082A1 (en) * 2015-01-02 2016-07-07 General Electric Company System and method for health management of pumping system
US10851638B2 (en) 2015-03-04 2020-12-01 Stewart & Stevenson Llc Well fracturing systems with electrical motors and methods of use
WO2016141205A3 (en) * 2015-03-04 2016-10-27 Stewart & Stevenson, LLC Well fracturing systems with electrical motors and methods of use
EP3265218A4 (en) * 2015-03-04 2019-06-05 Stewart & Stevenson, LLC Well fracturing systems with electrical motors and methods of use
WO2016199075A1 (en) * 2015-06-10 2016-12-15 Prostim Labs, Llc Fracturing system layouts
US10221856B2 (en) 2015-08-18 2019-03-05 Bj Services, Llc Pump system and method of starting pump
CN105090423A (en) * 2015-09-08 2015-11-25 三一重型能源装备有限公司 Hydraulic transmission system for fracturing truck and fracturing truck
WO2017075935A1 (en) * 2015-11-06 2017-05-11 中国矿业大学 Method of increasing permeability of coal seam using high-power electric blasting assisted by hydraulic fracturing from bottom drainage roadway
WO2018044307A1 (en) * 2016-08-31 2018-03-08 Evolution Well Services, Llc Mobile fracturing pump transport for hydraulic fracturing of subsurface geological formations
US11421673B2 (en) 2016-09-02 2022-08-23 Halliburton Energy Services, Inc. Hybrid drive systems for well stimulation operations
US11913316B2 (en) 2016-09-02 2024-02-27 Halliburton Energy Services, Inc. Hybrid drive systems for well stimulation operations
US11808127B2 (en) 2016-09-02 2023-11-07 Halliburton Energy Services, Inc. Hybrid drive systems for well stimulation operations
US20190211814A1 (en) * 2016-10-17 2019-07-11 Halliburton Energy Services, Inc. Improved distribution unit
US10900475B2 (en) * 2016-10-17 2021-01-26 Halliburton Energy Services, Inc. Distribution unit
US11181107B2 (en) 2016-12-02 2021-11-23 U.S. Well Services, LLC Constant voltage power distribution system for use with an electric hydraulic fracturing system
US20210140423A1 (en) * 2016-12-02 2021-05-13 U.S. Well Services, LLC Constant voltage power distribution system for use with an electric hydraulic fracturing system
US11952996B2 (en) * 2016-12-02 2024-04-09 U.S. Well Services, LLC Constant voltage power distribution system for use with an electric hydraulic fracturing system
US20180284817A1 (en) * 2017-04-03 2018-10-04 Fmc Technologies, Inc. Universal frac manifold power and control system
US11624326B2 (en) 2017-05-21 2023-04-11 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US20200087997A1 (en) * 2017-06-29 2020-03-19 Typhon Technology Solutions, Llc Electric power distribution for fracturing operation
US11608696B2 (en) * 2017-06-29 2023-03-21 Typhon Technology Solutions (U.S.), Llc Electric power distribution for fracturing operation
US10280724B2 (en) 2017-07-07 2019-05-07 U.S. Well Services, Inc. Hydraulic fracturing equipment with non-hydraulic power
US11067481B2 (en) 2017-10-05 2021-07-20 U.S. Well Services, LLC Instrumented fracturing slurry flow system and method
US10408031B2 (en) 2017-10-13 2019-09-10 U.S. Well Services, LLC Automated fracturing system and method
US11203924B2 (en) 2017-10-13 2021-12-21 U.S. Well Services, LLC Automated fracturing system and method
US10655435B2 (en) 2017-10-25 2020-05-19 U.S. Well Services, LLC Smart fracturing system and method
US11434737B2 (en) * 2017-12-05 2022-09-06 U.S. Well Services, LLC High horsepower pumping configuration for an electric hydraulic fracturing system
US11959533B2 (en) 2017-12-05 2024-04-16 U.S. Well Services Holdings, Llc Multi-plunger pumps and associated drive systems
US10598258B2 (en) 2017-12-05 2020-03-24 U.S. Well Services, LLC Multi-plunger pumps and associated drive systems
US10648311B2 (en) 2017-12-05 2020-05-12 U.S. Well Services, LLC High horsepower pumping configuration for an electric hydraulic fracturing system
US11114857B2 (en) 2018-02-05 2021-09-07 U.S. Well Services, LLC Microgrid electrical load management
US11035207B2 (en) 2018-04-16 2021-06-15 U.S. Well Services, LLC Hybrid hydraulic fracturing fleet
US11211801B2 (en) 2018-06-15 2021-12-28 U.S. Well Services, LLC Integrated mobile power unit for hydraulic fracturing
US11454079B2 (en) 2018-09-14 2022-09-27 U.S. Well Services Llc Riser assist for wellsites
US10648270B2 (en) 2018-09-14 2020-05-12 U.S. Well Services, LLC Riser assist for wellsites
US10914155B2 (en) 2018-10-09 2021-02-09 U.S. Well Services, LLC Electric powered hydraulic fracturing pump system with single electric powered multi-plunger pump fracturing trailers, filtration units, and slide out platform
US11208878B2 (en) 2018-10-09 2021-12-28 U.S. Well Services, LLC Modular switchgear system and power distribution for electric oilfield equipment
US11773664B1 (en) 2019-02-14 2023-10-03 National Service Alliance—Houston LLC Variable frequency drive configuration for electric driven hydraulic fracking system
US11053758B2 (en) 2019-02-14 2021-07-06 National Service Alliance—Houston LLC Electric driven hydraulic fracking system
US11708733B2 (en) * 2019-02-14 2023-07-25 National Service Alliance—Houston LLC Parameter monitoring and control for an electric driven hydraulic fracking system
US10988998B2 (en) 2019-02-14 2021-04-27 National Service Alliance—Houston LLC Electric driven hydraulic fracking operation
US11156044B2 (en) 2019-02-14 2021-10-26 National Service Alliance—Houston LLC Parameter monitoring and control for an electric driven hydraulic fracking system
US11492860B2 (en) 2019-02-14 2022-11-08 National Service Alliance—Houston LLC Variable frequency drive configuration for electric driven hydraulic fracking system
US11168556B2 (en) 2019-02-14 2021-11-09 National Service Alliance—Houston LLC Power distribution trailer for an electric driven hydraulic fracking system
US11220896B2 (en) * 2019-02-14 2022-01-11 National Service Alliance—Houston LLC Electric driven hydraulic fracking system
US11739602B2 (en) 2019-02-14 2023-08-29 National Service Alliance—Houston LLC Electric driven hydraulic fracking operation
US11668144B2 (en) 2019-02-14 2023-06-06 National Service Alliance—Houston LLC Variable frequency drive configuration for electric driven hydraulic fracking system
US11788396B2 (en) 2019-02-14 2023-10-17 National Service Alliance—Houston LLC Electric driven hydraulic fracking system
US11795800B2 (en) 2019-02-14 2023-10-24 National Service Alliance—Houston LLC Power distribution trailer for an electric driven hydraulic fracking system
US20220220816A1 (en) * 2019-02-14 2022-07-14 National Service Alliance-Houston LLC Parameter monitoring and control for an electric driven hydraulic fracking system
US20230033433A1 (en) * 2019-02-14 2023-02-02 National Service Alliance - Houston Llc Parameter monitoring and control for an electric driven hydraulic fracking system
US10989031B2 (en) 2019-02-14 2021-04-27 National Service Alliance-Houston LLC Power distribution trailer for an electric driven hydraulic fracking system
US11319762B2 (en) 2019-02-14 2022-05-03 National Service Alliance—Houston LLC Variable frequency drive configuration for electric driven hydraulic fracking system
US11560764B2 (en) 2019-02-14 2023-01-24 National Service Alliance—Houston LLC Electric driven hydraulic fracking operation
US10738580B1 (en) 2019-02-14 2020-08-11 Service Alliance—Houston LLC Electric driven hydraulic fracking system
US10753153B1 (en) 2019-02-14 2020-08-25 National Service Alliance—Houston LLC Variable frequency drive configuration for electric driven hydraulic fracking system
US11125034B2 (en) 2019-02-14 2021-09-21 National Service Alliance—Houston LLC Variable frequency drive configuration for electric driven hydraulic fracking system
US10753165B1 (en) 2019-02-14 2020-08-25 National Service Alliance—Houston LLC Parameter monitoring and control for an electric driven hydraulic fracking system
US11142972B1 (en) 2019-02-14 2021-10-12 National Service Alliance—Houston LLC Electric driven hydraulic fracking operation
US11286736B2 (en) * 2019-02-14 2022-03-29 National Service Alliance—Houston LLC Parameter monitoring and control for an electric driven hydraulic fracking system
US11473381B2 (en) * 2019-02-14 2022-10-18 National Service Alliance—Houston LLC Parameter monitoring and control for an electric driven hydraulic fracking system
US20240003208A1 (en) * 2019-02-14 2024-01-04 National Service Alliance – Houston LLC Variable frequency drive configuration for electric driven hydraulic fracking system
US11466550B2 (en) 2019-02-14 2022-10-11 National Service Alliance—Houston LLC Power distribution trailer for an electric driven hydraulic fracking system
US10982498B1 (en) 2019-02-14 2021-04-20 National Service Alliance—Houston LLC Parameter monitoring and control for an electric driven hydraulic fracking system
US10975641B1 (en) 2019-02-14 2021-04-13 National Service Alliance—Houston LLC Variable frequency drive configuration for electric driven hydraulic fracking system
US11939828B2 (en) * 2019-02-14 2024-03-26 Halliburton Energy Services, Inc. Variable frequency drive configuration for electric driven hydraulic fracking system
US10876358B2 (en) 2019-02-14 2020-12-29 National Service Alliance—Houston LLC Variable frequency drive configuration for electric driven hydraulic fracking system
US11274512B2 (en) 2019-02-14 2022-03-15 National Service Alliance—Houston LLC Electric driven hydraulic fracking operation
US10871045B2 (en) 2019-02-14 2020-12-22 National Service Alliance—Houston LLC Parameter monitoring and control for an electric driven hydraulic fracking system
US10851635B1 (en) 2019-02-14 2020-12-01 National Service Alliance—Houston LLC Electric driven hydraulic fracking system
US11434709B2 (en) 2019-02-14 2022-09-06 National Service Alliance—Houston LLC Electric driven hydraulic fracking operation
US10794165B2 (en) 2019-02-14 2020-10-06 National Service Alliance—Houston LLC Power distribution trailer for an electric driven hydraulic fracking system
US11578577B2 (en) 2019-03-20 2023-02-14 U.S. Well Services, LLC Oversized switchgear trailer for electric hydraulic fracturing
US11728709B2 (en) 2019-05-13 2023-08-15 U.S. Well Services, LLC Encoderless vector control for VFD in hydraulic fracturing applications
US11560845B2 (en) 2019-05-15 2023-01-24 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11506126B2 (en) 2019-06-10 2022-11-22 U.S. Well Services, LLC Integrated fuel gas heater for mobile fuel conditioning equipment
US11542786B2 (en) 2019-08-01 2023-01-03 U.S. Well Services, LLC High capacity power storage system for electric hydraulic fracturing
US11715951B2 (en) 2019-08-27 2023-08-01 Halliburton Energy Services, Inc. Grid power for hydrocarbon service applications
US11604113B2 (en) 2019-09-13 2023-03-14 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11459954B2 (en) 2019-09-13 2022-10-04 Bj Energy Solutions, Llc Turbine engine exhaust duct system and methods for noise dampening and attenuation
US11346280B1 (en) 2019-09-13 2022-05-31 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11608725B2 (en) 2019-09-13 2023-03-21 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US11613980B2 (en) 2019-09-13 2023-03-28 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US11560848B2 (en) 2019-09-13 2023-01-24 Bj Energy Solutions, Llc Methods for noise dampening and attenuation of turbine engine
US11098651B1 (en) 2019-09-13 2021-08-24 Bj Energy Solutions, Llc Turbine engine exhaust duct system and methods for noise dampening and attenuation
US11319878B2 (en) 2019-09-13 2022-05-03 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US11598263B2 (en) 2019-09-13 2023-03-07 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11401865B1 (en) 2019-09-13 2022-08-02 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US10907459B1 (en) 2019-09-13 2021-02-02 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US11408794B2 (en) 2019-09-13 2022-08-09 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11415056B1 (en) 2019-09-13 2022-08-16 Bj Energy Solutions, Llc Turbine engine exhaust duct system and methods for noise dampening and attenuation
US10961912B1 (en) 2019-09-13 2021-03-30 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11555756B2 (en) 2019-09-13 2023-01-17 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11149726B1 (en) 2019-09-13 2021-10-19 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US11156159B1 (en) 2019-09-13 2021-10-26 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11287350B2 (en) 2019-09-13 2022-03-29 Bj Energy Solutions, Llc Fuel, communications, and power connection methods
US11280266B2 (en) 2019-09-13 2022-03-22 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11619122B2 (en) 2019-09-13 2023-04-04 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US11280331B2 (en) 2019-09-13 2022-03-22 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US11629584B2 (en) 2019-09-13 2023-04-18 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11268346B2 (en) 2019-09-13 2022-03-08 Bj Energy Solutions, Llc Fuel, communications, and power connection systems
US11867118B2 (en) 2019-09-13 2024-01-09 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US10982596B1 (en) 2019-09-13 2021-04-20 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11655763B1 (en) 2019-09-13 2023-05-23 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11460368B2 (en) 2019-09-13 2022-10-04 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11649766B1 (en) 2019-09-13 2023-05-16 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11859482B2 (en) 2019-09-13 2024-01-02 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11852001B2 (en) 2019-09-13 2023-12-26 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US10989180B2 (en) * 2019-09-13 2021-04-27 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11236739B2 (en) * 2019-09-13 2022-02-01 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11578660B1 (en) 2019-09-13 2023-02-14 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11473503B1 (en) 2019-09-13 2022-10-18 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11473997B2 (en) 2019-09-13 2022-10-18 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11092152B2 (en) 2019-09-13 2021-08-17 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US11015536B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11767791B2 (en) 2019-09-13 2023-09-26 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11761846B2 (en) 2019-09-13 2023-09-19 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11725583B2 (en) 2019-09-13 2023-08-15 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11512642B1 (en) 2019-09-13 2022-11-29 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11060455B1 (en) 2019-09-13 2021-07-13 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11530602B2 (en) 2019-09-13 2022-12-20 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11719234B2 (en) 2019-09-13 2023-08-08 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US11459863B2 (en) 2019-10-03 2022-10-04 U.S. Well Services, LLC Electric powered hydraulic fracturing pump system with single electric powered multi-plunger fracturing pump
US11905806B2 (en) 2019-10-03 2024-02-20 U.S. Well Services, LLC Electric powered hydraulic fracturing pump system with single electric powered multi-plunger fracturing pump
CN110644964A (en) * 2019-10-25 2020-01-03 北京天地玛珂电液控制系统有限公司 Variable-frequency hydraulic fracturing system and pressure adjusting method thereof
CN110608030A (en) * 2019-10-30 2019-12-24 烟台杰瑞石油装备技术有限公司 Electric drive fracturing semitrailer of frequency conversion all-in-one machine
US11009162B1 (en) 2019-12-27 2021-05-18 U.S. Well Services, LLC System and method for integrated flow supply line
US11635074B2 (en) 2020-05-12 2023-04-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US11708829B2 (en) 2020-05-12 2023-07-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US11898504B2 (en) 2020-05-14 2024-02-13 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11698028B2 (en) 2020-05-15 2023-07-11 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11542868B2 (en) 2020-05-15 2023-01-03 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11624321B2 (en) 2020-05-15 2023-04-11 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11434820B2 (en) 2020-05-15 2022-09-06 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11959419B2 (en) 2020-05-15 2024-04-16 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11814940B2 (en) 2020-05-28 2023-11-14 Bj Energy Solutions Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11313213B2 (en) 2020-05-28 2022-04-26 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11603745B2 (en) 2020-05-28 2023-03-14 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11365616B1 (en) 2020-05-28 2022-06-21 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11627683B2 (en) 2020-06-05 2023-04-11 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11891952B2 (en) 2020-06-05 2024-02-06 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11378008B2 (en) 2020-06-05 2022-07-05 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11723171B2 (en) 2020-06-05 2023-08-08 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11598264B2 (en) 2020-06-05 2023-03-07 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11746698B2 (en) 2020-06-05 2023-09-05 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11129295B1 (en) 2020-06-05 2021-09-21 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11300050B2 (en) 2020-06-05 2022-04-12 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US10961908B1 (en) 2020-06-05 2021-03-30 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11629583B2 (en) 2020-06-09 2023-04-18 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11339638B1 (en) 2020-06-09 2022-05-24 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11261717B2 (en) 2020-06-09 2022-03-01 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11643915B2 (en) 2020-06-09 2023-05-09 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US11867046B2 (en) 2020-06-09 2024-01-09 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11015423B1 (en) 2020-06-09 2021-05-25 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11566506B2 (en) 2020-06-09 2023-01-31 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US11022526B1 (en) 2020-06-09 2021-06-01 Bj Energy Solutions, Llc Systems and methods for monitoring a condition of a fracturing component section of a hydraulic fracturing unit
US11512570B2 (en) 2020-06-09 2022-11-29 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11939854B2 (en) 2020-06-09 2024-03-26 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US11111768B1 (en) 2020-06-09 2021-09-07 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US11319791B2 (en) 2020-06-09 2022-05-03 Bj Energy Solutions, Llc Methods and systems for detection and mitigation of well screen out
US11085281B1 (en) 2020-06-09 2021-08-10 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11208881B1 (en) 2020-06-09 2021-12-28 Bj Energy Solutions, Llc Methods and systems for detection and mitigation of well screen out
US11174716B1 (en) 2020-06-09 2021-11-16 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11236598B1 (en) 2020-06-22 2022-02-01 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11598188B2 (en) 2020-06-22 2023-03-07 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11898429B2 (en) 2020-06-22 2024-02-13 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11572774B2 (en) 2020-06-22 2023-02-07 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11952878B2 (en) 2020-06-22 2024-04-09 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11732565B2 (en) 2020-06-22 2023-08-22 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11639655B2 (en) 2020-06-22 2023-05-02 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11208879B1 (en) 2020-06-22 2021-12-28 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11408263B2 (en) 2020-06-22 2022-08-09 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11939974B2 (en) 2020-06-23 2024-03-26 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11719085B1 (en) 2020-06-23 2023-08-08 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11566505B2 (en) 2020-06-23 2023-01-31 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11428218B2 (en) 2020-06-23 2022-08-30 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11415125B2 (en) 2020-06-23 2022-08-16 Bj Energy Solutions, Llc Systems for utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11466680B2 (en) 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11649820B2 (en) 2020-06-23 2023-05-16 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11661832B2 (en) 2020-06-23 2023-05-30 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11299971B2 (en) 2020-06-24 2022-04-12 Bj Energy Solutions, Llc System of controlling a hydraulic fracturing pump or blender using cavitation or pulsation detection
US11506040B2 (en) 2020-06-24 2022-11-22 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11668175B2 (en) 2020-06-24 2023-06-06 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11746638B2 (en) 2020-06-24 2023-09-05 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11512571B2 (en) 2020-06-24 2022-11-29 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11391137B2 (en) 2020-06-24 2022-07-19 Bj Energy Solutions, Llc Systems and methods to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11692422B2 (en) 2020-06-24 2023-07-04 Bj Energy Solutions, Llc System to monitor cavitation or pulsation events during a hydraulic fracturing operation
US11542802B2 (en) 2020-06-24 2023-01-03 Bj Energy Solutions, Llc Hydraulic fracturing control assembly to detect pump cavitation or pulsation
US11274537B2 (en) 2020-06-24 2022-03-15 Bj Energy Solutions, Llc Method to detect and intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11255174B2 (en) 2020-06-24 2022-02-22 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11608727B2 (en) 2020-07-17 2023-03-21 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11603744B2 (en) 2020-07-17 2023-03-14 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11193361B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11920450B2 (en) 2020-07-17 2024-03-05 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11365615B2 (en) 2020-07-17 2022-06-21 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11255175B1 (en) 2020-07-17 2022-02-22 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11193360B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11596047B2 (en) * 2021-04-07 2023-02-28 Yantai Jereh Petroleum Equipments Technologies Co., Ltd. Fracturing well site system
US20220330411A1 (en) * 2021-04-07 2022-10-13 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Fracturing well site system
US11683878B2 (en) 2021-04-07 2023-06-20 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Fracturing well site system
US11729893B2 (en) 2021-04-07 2023-08-15 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Fracturing well site system
US20220342412A1 (en) * 2021-04-26 2022-10-27 Saudi Arabian Oil Company Instant power failure detection method and apparatus to discard power failure as case scenario in flare systems design
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods
US11732563B2 (en) 2021-05-24 2023-08-22 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods
US11867045B2 (en) 2021-05-24 2024-01-09 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods
US11728657B2 (en) * 2021-05-27 2023-08-15 U.S. Well Services, LLC Electric hydraulic fracturing with battery power as primary source
US20220385074A1 (en) * 2021-05-27 2022-12-01 U.S. Well Services, LLC Electric hydraulic fracturing with battery power as primary source
US11686329B2 (en) * 2021-06-29 2023-06-27 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Turbine fracturing apparatus
US20220412379A1 (en) * 2021-06-29 2022-12-29 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Turbine fracturing apparatus
US20230235653A1 (en) * 2022-01-24 2023-07-27 Caterpillar Inc. Asymmetric power management and load management
US11802468B2 (en) * 2022-01-24 2023-10-31 Caterpillar Inc. Asymmetric power management and load management
US11859480B2 (en) * 2022-03-11 2024-01-02 Caterpillar Inc. Controlling fluid pressures at multiple well heads for continuous pumping
US11725582B1 (en) 2022-04-28 2023-08-15 Typhon Technology Solutions (U.S.), Llc Mobile electric power generation system
US11955782B1 (en) 2022-11-01 2024-04-09 Typhon Technology Solutions (U.S.), Llc System and method for fracturing of underground formations using electric grid power
US11971028B2 (en) 2023-05-25 2024-04-30 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump

Also Published As

Publication number Publication date
WO2013177094A3 (en) 2014-04-17
CN104364465A (en) 2015-02-18
WO2013177094A2 (en) 2013-11-28

Similar Documents

Publication Publication Date Title
US20130306322A1 (en) System and process for extracting oil and gas by hydraulic fracturing
US11713661B2 (en) Electric powered pump down
US10227854B2 (en) Hydraulic fracturing system
US20160230525A1 (en) Fracturing system layouts
US20160281484A1 (en) Fracturing system layouts
CA2955706C (en) Mobile, modular, electrically powered system for use in fracturing underground formations
US9140110B2 (en) Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US11073242B2 (en) Conditioning, compressing, and storing hydrocarbon gas for mobile, electric power generation
US20230112062A1 (en) Fracturing blender system and method using liquid petroleum gas
US11187058B2 (en) Pressure relief system for hydraulic pumping operations
WO2012122636A1 (en) Method and apparatus of hydraulic fracturing
US10612678B1 (en) Method of servicing an electronically controlled PRV system
CA2829422C (en) Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas
US11867043B1 (en) Remotely-controlled pressure bleed-off system
EP3353377A1 (en) Fracturing system layouts
CA2945281C (en) Electric powered pump down

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SANBORN, STEPHEN DUANE;KAMENSKY, DAVID;WESTERHEIDE, JOHN ANDREW;AND OTHERS;SIGNING DATES FROM 20121205 TO 20121206;REEL/FRAME:029568/0479

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION