US20220316467A1 - Piezoelectric pump and pump unit - Google Patents

Piezoelectric pump and pump unit Download PDF

Info

Publication number
US20220316467A1
US20220316467A1 US17/641,564 US202017641564A US2022316467A1 US 20220316467 A1 US20220316467 A1 US 20220316467A1 US 202017641564 A US202017641564 A US 202017641564A US 2022316467 A1 US2022316467 A1 US 2022316467A1
Authority
US
United States
Prior art keywords
elastic plate
piezoelectric
piezoelectric pump
pump
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/641,564
Other languages
English (en)
Inventor
Kazuhiro Ogata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Assigned to KYOCERA CORPORATION reassignment KYOCERA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OGATA, KAZUHIRO
Publication of US20220316467A1 publication Critical patent/US20220316467A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/025Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms two or more plate-like pumping members in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/028Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms with in- or outlet valve arranged in the plate-like flexible member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/043Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms two or more plate-like pumping flexible members in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/045Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms with in- or outlet valve arranged in the plate-like pumping flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/09Flow through the pump

Definitions

  • the present disclosure relates to a piezoelectric pump and a pump unit.
  • the piezoelectric device vibrates the diaphragm with a known technique.
  • This pump thus has the same characteristics as a diaphragm pump. Further, the pump may operate unstably when a piezoelectric vibrating plate including the piezoelectric device and the diaphragm vibrates out of synchronization with the entire pump chamber. Piezoelectric pumps are to have improved pump characteristics such as operational stability.
  • a piezoelectric pump includes a piezoelectric device having a through-hole, a first elastic plate covering an end of the through-hole and having a communication hole communicating with the through-hole, and a second elastic plate covering another end of the through-hole.
  • a pump unit includes the piezoelectric pump described above, and a housing accommodating the piezoelectric pump.
  • the housing includes an outlet facing the communication hole in the first elastic plate.
  • FIG. 1 is a schematic perspective view of a pump unit.
  • FIG. 2 is a cross-sectional view taken along line A-A in FIG. 1 .
  • FIG. 3 is a schematic perspective view of a piezoelectric pump.
  • FIG. 4A is a schematic cross-sectional view of a piezoelectric pump according to a first embodiment in an operating state.
  • FIG. 4B is a schematic cross-sectional view of the piezoelectric pump according to the first embodiment in an operating state.
  • FIG. 5A is a schematic cross-sectional view of a piezoelectric pump according to a second embodiment in an operating state.
  • FIG. 5B is a schematic cross-sectional view of the piezoelectric pump according to the second embodiment in an operating state.
  • FIG. 6A is a schematic cross-sectional view of a piezoelectric pump according to a third embodiment in an operating state.
  • FIG. 6B is a schematic cross-sectional view of the piezoelectric pump according to the third embodiment in an operating state.
  • FIG. 6C is a schematic cross-sectional view of the piezoelectric pump according to the third embodiment in an operating state.
  • FIG. 7A is a schematic cross-sectional view of a piezoelectric pump according to a fourth embodiment in an operating state.
  • FIG. 7B is a schematic cross-sectional view of the piezoelectric pump according to the fourth embodiment in an operating state.
  • FIG. 8A is a schematic cross-sectional view of a piezoelectric pump according to a fifth embodiment in an operating state.
  • FIG. 8B is a schematic cross-sectional view of the piezoelectric pump according to the fifth embodiment in an operating state.
  • FIG. 8C is a schematic cross-sectional view of the piezoelectric pump according to the fifth embodiment in an operating state.
  • FIG. 9A is a schematic cross-sectional view of a piezoelectric pump according to a sixth embodiment in an operating state.
  • FIG. 9B is a schematic cross-sectional view of the piezoelectric pump according to the sixth embodiment in an operating state.
  • FIG. 10A is a schematic cross-sectional view of a piezoelectric pump according to a seventh embodiment in an operating state.
  • FIG. 10B is a schematic cross-sectional view of the piezoelectric pump according to the seventh embodiment in an operating state.
  • FIG. 1 is a schematic perspective view of a pump unit
  • FIG. 2 is a cross-sectional view taken along line A-A in FIG. 1
  • FIG. 3 is a schematic perspective view of a piezoelectric pump.
  • FIGS. 4A and 4B each are a schematic cross-sectional view of a piezoelectric pump according to a first embodiment in an operating state.
  • a pump unit 100 includes a piezoelectric pump 1 and a housing 2 accommodating the piezoelectric pump 1 .
  • the piezoelectric pump 1 includes a piezoelectric device 10 having a through-hole 10 a , a first elastic plate 11 covering one end of the through-hole 10 a , and a second elastic plate 12 covering the other end of the through-hole 10 a .
  • the first elastic plate 11 includes a communication hole 11 a communicating with the through-hole 10 a of the piezoelectric device 10 .
  • the piezoelectric device 10 includes, for example, a piezoelectric member having the through-hole 10 a and surface electrodes mounted on a pair of main surfaces of the piezoelectric member opposite to each other.
  • the piezoelectric member included in the piezoelectric device 10 may be formed from piezoelectric ceramics based on lead zirconate titanate, barium titanate, or potassium sodium niobate or a piezoelectric single crystal such as quartz or lithium tantalate.
  • the surface electrodes included in the piezoelectric device 10 may be formed from, for example, silver, nickel, copper, or a silver-palladium alloy.
  • the piezoelectric device 10 may have any shape that has the through-hole 10 a .
  • the piezoelectric device 10 may be a plate or a column.
  • the piezoelectric device 10 being a plate may be circular or polygonal.
  • the piezoelectric device 10 being columnar may be circular or polygonal.
  • the through-hole 10 a may be at any position.
  • the through-hole 10 a is coaxial with the piezoelectric member.
  • the piezoelectric device 10 is a circular plate and the through-hole 10 a is coaxial with the piezoelectric member.
  • the piezoelectric device 10 is connected with an external circuit with, for example, a wiring member 5 .
  • the piezoelectric pump 1 can be driven by controlling an applied voltage and vibrating the piezoelectric device 10 .
  • the piezoelectric device 10 may have the surface electrodes on the pair of surfaces of the piezoelectric member opposite to each other mounted in the manner described below.
  • the piezoelectric device 10 may be separately excited and may include surface electrodes (a pair of surface electrodes) that are separately mounted on the respective two surfaces to spread in the planar direction on the surfaces.
  • the piezoelectric device 10 may also be self-excited and may include, on one surface, a surface electrode including a main surface electrode and a sub-surface electrode separated from the main surface electrode.
  • This structure can drive, for example, multiple piezoelectric pumps 1 with optimum frequencies and thus can reduce differences in the fluid flow rate between the individual piezoelectric pumps 1 .
  • This structure also reduces changes in the fluid flow rate resulting from varying environmental temperatures of, for example, ⁇ 20 to +80° C.
  • the first elastic plate 11 is formed from an elastically deformable material and may have any shape that covers one end of the through-hole 10 a .
  • the second elastic plate 12 is formed from an elastically deformable material and may have any shape that covers the other end of the through-hole 10 a .
  • the first elastic plate 11 includes the communication hole 11 a communicating with the through-hole 10 a of the piezoelectric device 10 .
  • the first elastic plate 11 and the second elastic plate 12 elastically deform to follow deformation (vibration) of the piezoelectric device 10 .
  • the first elastic plate 11 and the second elastic plate 12 may also deform elastically to extend in the radial direction.
  • the first elastic plate 11 and the second elastic plate 12 may also deform elastically to shrink in the radial direction.
  • the piezoelectric device 10 may deform and extend in the thickness direction.
  • the piezoelectric device 10 may deform and shrink in the thickness direction.
  • the piezoelectric device 10 Upon receiving an applied voltage, the piezoelectric device 10 deforms and repeatedly changes between the states shown in FIGS. 4A and 4B . As the volume of an internal space defined by the piezoelectric device 10 , the first elastic plate 11 , and the second elastic plate 12 changes, the fluid in the internal space is repeatedly drawn in and out through the communication hole 11 a to function as pump.
  • the piezoelectric device 10 in the state shown in FIG. 4B deforms more outward in the radial direction to have a larger volume in the internal space than in the state shown in FIG. 4A (first state).
  • the deformation from the first state to the second state causes external fluid to be drawn in.
  • the deformation from the second state to the first state reduces the volume of the internal space and causes the fluid inside to be out.
  • the first elastic plate 11 and the second elastic plate 12 may be formed from a metal material such as stainless steel (SUS), brass, or alloy 42 or a resin material such as polybutylene terephthalate (PBT) or a liquid crystal polymer.
  • SUS stainless steel
  • alloy 42 a resin material such as polybutylene terephthalate (PBT) or a liquid crystal polymer.
  • PBT polybutylene terephthalate
  • the use of alloy 42 reduces the difference in thermal expansion from the piezoelectric device 10 , effectively reducing changes in the fluid flow rate resulting from changes in environmental temperature.
  • the first elastic plate 11 and the second elastic plate 12 may have any thickness that allows the plates to deform to follow the deformation of the piezoelectric device 10 .
  • the first elastic plate 11 and the second elastic plate may have a thickness of 50 to 500 ⁇ m.
  • the first elastic plate 11 may have one communication hole 11 a as in the present embodiment or multiple communication holes 11 a.
  • the piezoelectric pump 1 in one or more embodiments of the present disclosure repeatedly draws fluid in and out in accordance with changes in the volume of the through-hole 10 a as the piezoelectric device 10 deforms.
  • the characteristics of the piezoelectric device 10 directly affect the operation of the piezoelectric pump 1 , allowing the piezoelectric pump 1 to operate stably. Further, controlling the changes in the volume allows precise control of the flow rate. In this manner, the characteristics of the piezoelectric pump 1 can be improved.
  • the housing 2 accommodates the piezoelectric pump 1 described above and has an outlet 2 a facing the communication hole 11 a in the first elastic plate 11 .
  • the housing 2 in the present embodiment includes a top plate 21 facing the first elastic plate 11 and a cylindrical frame 22 supporting the top plate 21 and surrounding the piezoelectric pump 1 .
  • the housing 2 in the present embodiment covers and accommodates the piezoelectric pump 1 placed on, for example, a platform.
  • the housing 2 may additionally include a bottom plate to entirely cover and accommodate the piezoelectric pump 1 .
  • the gap between the accommodated piezoelectric pump 1 and the housing 2 in the internal space of the housing 2 serves as a fluid channel 4 , through which fluid flows in and out of the housing 2 with the piezoelectric pump 1 .
  • the piezoelectric pump 1 is driven and deforms from the first state to the second state as described above, the fluid in the fluid channel 4 is drawn in through the communication hole 11 a .
  • the piezoelectric pump 1 deforms from the second state to the first state, the fluid drawn in is discharged through the communication hole 11 a .
  • the fluid is discharged out of the housing 2 through the outlet 2 a facing the communication hole 11 a.
  • the pump unit 100 may discharge any fluid. Fluid to be discharged may be, for example, air or a functional fluid containing an aromatic agent, a disinfectant agent, or an antibacterial agent.
  • the pump unit 100 is, for example, installed inside an electronic device to cool electronic components, or may be installed in a vehicle such as an automobile, in a house, or in a living space such as in a theater or other entertainment facilities to discharge a functional fluid.
  • the housing 2 may be formed from a metal material such as stainless steel (SUS), brass, or alloy 42 or a resin material such as PBT or a liquid crystal polymer.
  • the frame 22 is bonded to the outer periphery of the top plate 21 and supports the top plate 21 .
  • the frame 22 has a step on the inner surface in the example shown in FIG. 2 .
  • the frame 22 may have an axially constant thickness and support the top plate 21 on its end face, or may have, on the inner surface, a grooved portion engaged with the periphery of the top plate 21 to support the top plate 21 .
  • the wiring member 5 extends outside through insertion ports in the frame 22 in the example shown in FIG. 1 , the wiring member 5 may extend outside in any other manner.
  • FIGS. 5A and 5B each are a schematic cross-sectional view of a piezoelectric pump according to a second embodiment in an operating state.
  • a piezoelectric pump 1 A in the present embodiment includes the same components as the piezoelectric pump 1 in the first embodiment except a first elastic plate 11 A and a second elastic plate 12 A.
  • the components that are the same as those of the piezoelectric pump 1 in the first embodiment are given the same reference numerals and will not be described in detail.
  • the first elastic plate 11 A includes a protrusion 13
  • the second elastic plate 12 A includes a protrusion 14 .
  • the protrusions 13 and 14 protrude outward in the axial direction of the through-hole 10 a of the piezoelectric device 10 .
  • Each of the protrusions 13 and 14 in the present embodiment has a shape with a peak (highest point) at the center of the first elastic plate 11 A or the second elastic plate 12 A, which may be, for example, a cone, a truncated cone, or a hemisphere.
  • the piezoelectric pump 1 A in the second embodiment operates in the same manner as the piezoelectric pump 1 in the first embodiment.
  • the piezoelectric device 10 Upon receiving an applied voltage, the piezoelectric device 10 deforms and repeatedly changes between a first state shown in FIG. 5A and a second state shown in FIG. 5B .
  • the first state the internal space defined by the piezoelectric device 10 , the first elastic plate 11 A, and the second elastic plate 12 A has a larger volume due to the protrusions 13 and 14 than in the first embodiment.
  • the volume of the internal space changes between the first state and the second state more largely than in the first embodiment. This structure can increase the fluid flow rate while precisely controlling the flow rate.
  • the first elastic plate 11 A including the protrusion 13 and the second elastic plate 12 A including the protrusion 14 with the shape as described in the present embodiment may be formed from a metal material with, for example, a known processing method such as pressing.
  • a known processing method such as pressing.
  • a resin material a known processing method such as molding may be used.
  • FIGS. 6A to 6C each are a schematic cross-sectional view of a piezoelectric pump according to a third embodiment in an operating state.
  • a piezoelectric pump 1 B in the present embodiment includes the same components as the piezoelectric pump 1 A in the second embodiment except a first elastic plate 11 B and a second elastic plate 12 B.
  • the components that are the same as those of the piezoelectric pump 1 A in the second embodiment are given the same reference numerals and will not be described in detail.
  • the first elastic plate 11 B includes a protrusion 13 A and the second elastic plate 12 B includes a protrusion 14 A.
  • the protrusions 13 A and 14 A are circular and concentric with the first elastic plate 11 B and the second elastic plate 12 B.
  • the piezoelectric pump 1 B in the third embodiment operates in the same manner as the piezoelectric pump 1 A in the second embodiment.
  • the piezoelectric device 10 Upon receiving an applied voltage, the piezoelectric device 10 deforms to a first state shown in FIG. 6A , a second state shown in FIG. 6B , or a third state shown in FIG. 6C .
  • the piezoelectric device 10 In the second state, the piezoelectric device 10 deforms and extends more outward in the radial direction than in the first state.
  • the piezoelectric device 10 deforms and shrinks more inward in the radial direction than in the first state.
  • the state of the piezoelectric device 10 changes to change the volume of the internal space in response to a change in the voltage applied to the piezoelectric device 10 .
  • the piezoelectric pump 1 B repeatedly draws fluid in and out of the internal space through the communication hole 11 a to function as a pump.
  • the piezoelectric device 10 can change between the three states in the present embodiment, the piezoelectric device 10 in operation may switch between two of the states repeatedly, or may switch between the three states repeatedly.
  • the volume of the internal space differs depending on the state of the piezoelectric device 10 .
  • the state is thus selected from the three states to control the fluid flow rate.
  • the first elastic plate 11 B including the protrusion 13 A and the second elastic plate 12 B including the protrusion 14 A with the shape as described in the present embodiment may be formed from a metal material with, for example, a known processing method such as pressing.
  • a known processing method such as pressing.
  • a resin material a known processing method such as molding may be used.
  • FIGS. 7A and 7B each are a schematic cross-sectional view of a piezoelectric pump according to a fourth embodiment in an operating state.
  • a piezoelectric pump 1 C in the present embodiment includes the same components as the piezoelectric pump 1 in the first embodiment except a first elastic plate 11 C and a second elastic plate 12 C.
  • the components that are the same as those of the piezoelectric pump 1 in the first embodiment are given the same reference numerals and will not be described in detail.
  • the first elastic plate 11 C includes a recess 15
  • the second elastic plate 12 C includes a recess 16 .
  • the recesses 15 and 16 are inward in the axial direction of the through-hole 10 a of the piezoelectric device 10 .
  • Each of the recesses 15 and 16 in the present embodiment may have a shape with a peak (lowest point) at the center of the first elastic plate 11 C or the second elastic plate 12 C, which may be, for example, a cone, a truncated cone, or a hemisphere.
  • the piezoelectric pump 1 C in the fourth embodiment operates in the same manner as the piezoelectric pump 1 in the first embodiment.
  • the piezoelectric device 10 Upon receiving an applied voltage, the piezoelectric device 10 repeatedly deforms between a first state shown in FIG. 7A and a second state shown in FIG. 7B .
  • the first state the volume of the internal space defined by the piezoelectric device 10 , the first elastic plate 11 C, and the second elastic plate 12 C is smaller than in the first embodiment due to the recesses 15 and 16 inward in the through-hole 10 a .
  • the volume of the internal space changes between the first state and the second state more largely than in the first embodiment. This structure can increase the fluid flow rate while precisely controlling the flow rate.
  • the first elastic plate 11 C including the recess 15 and the second elastic plate 12 C including the recess 16 may be formed from a metal material with, for example, a known processing method such as pressing.
  • a known processing method such as pressing.
  • a resin material a known processing method such as molding may be used.
  • FIGS. 8A to 8C each are a schematic cross-sectional view of a piezoelectric pump according to a fifth embodiment in an operating state.
  • a piezoelectric pump 1 D in the present embodiment includes the same components as the piezoelectric pump 1 C in the fourth embodiment except a first elastic plate 11 D and a second elastic plate 12 D.
  • the components that are the same as those of the piezoelectric pump 1 C in the fourth embodiment are given the same reference numerals and will not be described in detail.
  • the first elastic plate 11 D includes a recess 15 A
  • the second elastic plate 12 D includes a recess 16 A.
  • the recesses 15 A and 16 A are cylindrical and coaxial with the first elastic plate 11 D and the second elastic plate 12 D.
  • the piezoelectric pump 1 D in the fifth embodiment operates in the same manner as the piezoelectric pump 1 C in the fourth embodiment.
  • the piezoelectric device 10 Upon receiving an applied voltage, the piezoelectric device 10 deforms to a first state shown in FIG. 8A , a second state shown in FIG. 8B , or a third state shown in FIG. 8C .
  • the piezoelectric device 10 In the second state, the piezoelectric device 10 deforms and extends more outward in the radial direction than in the first state.
  • the piezoelectric device 10 deforms and shrinks more inward in the radial direction than in the first state.
  • the state of the piezoelectric device 10 changes to change the volume of the internal space in response to a change in the voltage applied to the piezoelectric device 10 .
  • the piezoelectric pump 1 D repeatedly draws the fluid in and out of the internal space through the communication hole 11 a to function as a pump.
  • the piezoelectric device 10 can change between the three states as the piezoelectric pump 1 B in the third embodiment, the piezoelectric device 10 in operation may switch between two of the states repeatedly, or may switch between the three states repeatedly.
  • the volume of the internal space differs depending on the state of the piezoelectric device 10 . The state is thus selected from the three states to control the fluid flow rate.
  • the first elastic plate 11 D including the recess 15 A and the second elastic plate 12 D including the recess 16 A with the shape as described in the present embodiment may be formed from a metal material with, for example, a known processing method such as pressing.
  • a known processing method such as pressing.
  • a resin material a known processing method such as molding may be used.
  • FIGS. 9A and 9B each are a schematic cross-sectional view of a piezoelectric pump according to a sixth embodiment in an operating state.
  • a piezoelectric pump 1 E in the present embodiment includes the same components as the piezoelectric pump 1 A in the second embodiment except a first elastic plate 11 E and a second elastic plate 12 E.
  • the components that are the same as those of the piezoelectric pump 1 A in the second embodiment are given the same reference numerals and will not be described in detail.
  • the first elastic plate 11 E includes the protrusion 13 , a flat portion 17 , and a groove G.
  • the second elastic plate 12 E includes the protrusion 14 , a flat portion 18 , and a groove G.
  • the protrusions 13 and 14 protrude outward in the axial direction of the through-hole 10 a of the piezoelectric device 10 .
  • the flat portions 17 and 18 surround the protrusions 13 and 14 .
  • the grooves G are located between the protrusion 13 and the flat portion 17 and between the protrusion 14 and the flat portion 18 .
  • the piezoelectric pump 1 E in the sixth embodiment operates in the same manner as the piezoelectric pump 1 A in the second embodiment.
  • the piezoelectric device 10 Upon receiving an applied voltage, the piezoelectric device 10 repeatedly deforms between a first state shown in FIG. 9A and a second state shown in FIG. 9B .
  • the volume of the internal space changes between the first state and the second state in the same manner as in the second embodiment.
  • the first elastic plate 11 E and the second elastic plate 12 E including the grooves G may deform with a smaller force than the structure in the second embodiment with no grooves G.
  • a lower voltage applied to the piezoelectric device 10 than in the second embodiment can deform the first elastic plate 11 E and the second elastic plate 12 E in the same manner as in the second embodiment to control the fluid flow rate in the same manner.
  • the first elastic plate 11 E and the second elastic plate 12 E including the grooves G may be formed from a metal material with, for example, a known processing method such as pressing.
  • a known processing method such as pressing.
  • a resin material a known processing method such as molding may be used.
  • FIGS. 10A and 10B each are a schematic cross-sectional view of a piezoelectric pump according to a seventh embodiment in an operating state.
  • a piezoelectric pump 1 F in the present embodiment includes the same components as the piezoelectric pump 1 C in the fourth embodiment except a first elastic plate 11 F and a second elastic plate 12 F.
  • the components that are the same as those of the piezoelectric pump 1 C in the fourth embodiment are given the same reference numerals and will not be described in detail.
  • the first elastic plate 11 F includes the recess 15 , a flat portion 17 , and a groove G.
  • the second elastic plate 12 F includes the recess 16 , a flat portion 18 , and a groove G.
  • the recesses 15 and 16 are inward in the axial direction of the through-hole 10 a of the piezoelectric device 10 .
  • the flat portions 17 and 18 surround the recesses 15 and 16 .
  • the grooves G are located between the recess 15 and the flat portion 17 and between the recess 16 and the flat portion 18 .
  • the piezoelectric pump 1 F in the seventh embodiment operates in the same manner as the piezoelectric pump 1 C in the fourth embodiment.
  • the piezoelectric device 10 Upon receiving an applied voltage, the piezoelectric device 10 repeatedly deforms between a first state shown in FIG. 10A and a second state shown in FIG. 10B .
  • the volume of the internal space changes between the first state and the second state in the same manner as in the fourth embodiment.
  • the first elastic plate 11 F and the second elastic plate 12 F including the grooves G may deform with a smaller force than the structure in the fourth embodiment with no grooves G.
  • a lower voltage applied to the piezoelectric device 10 than in the fourth embodiment can deform the first elastic plate 11 F and the second elastic plate 12 F in the same manner as in the fourth embodiment to control the fluid flow rate in the same manner.
  • the first elastic plate 11 F and the second elastic plate 12 F including the grooves G may be formed from a metal material with, for example, a known processing method such as pressing.
  • a known processing method such as pressing.
  • a resin material a known processing method such as molding may be used.
  • Materials for forming the piezoelectric device 10 such as lead zirconate titanate, are mixed with, for example, a ball mill.
  • the resultant mixture is then calcinated at 700 to 1200° C.
  • the calcinated material is milled with, for example, a ball mill, mixed with a forming binder, and then granulated with a spray dryer.
  • the resultant granules are pressed with a mold having an axis pin around the center to form a compact with a through-hole.
  • the compact is degreased and then fired to form a piezoelectric member.
  • the resultant piezoelectric member is processed with, for example, lapping to an intended shape.
  • the piezoelectric member is baked at 500 to 800° C. to form surface electrodes.
  • a voltage of about 3 kV/mm is then applied to form the piezoelectric device 10 with intended piezoelectric characteristics.
  • plates of alloy 42 are, for example, pressed to an intended shape to form the first elastic plate 11 and the second elastic plate 12 .
  • a thermosetting epoxy adhesive is then printed onto the first elastic plate 11 and the second elastic plate 12 .
  • the printed portion of the adhesive is then heated at 80 to 200° C. while being in contact with the piezoelectric device 10 . This bonds the first elastic plate 11 and the second elastic plate 12 to the piezoelectric device 10 .
  • the wiring member 5 is prepared for inputting an external electric signal into the piezoelectric device 10 , such as a lead wire with its side surface coated with resin.
  • the wiring member 5 is electrically and mechanically bonded to the surface electrodes of the piezoelectric device 10 with a bond material such as solder. This completes the piezoelectric pump 1 .
  • the housing 2 formed from alloy 42 may be prepared.
  • the piezoelectric pump 1 may be accommodated in the housing 2 .
  • the piezoelectric pump 1 and the housing 2 may then be bonded with each other as appropriate. This completes the pump unit 100 .
  • the piezoelectric pump repeatedly draws fluid in and out in accordance with changes in the volume of the through-hole as the piezoelectric device deforms.
  • the characteristics of the piezoelectric device directly affect the operation of the piezoelectric pump, allowing the piezoelectric pump to operate stably. Further, the flow rate can be controlled precisely by controlling the changes in the volume. In other words, the characteristics of the piezoelectric pump may be improved.
  • the pump unit according to embodiments of the present disclosure includes any of the piezoelectric pumps described above, and may have improved characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
US17/641,564 2019-09-11 2020-09-07 Piezoelectric pump and pump unit Abandoned US20220316467A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019-165693 2019-09-11
JP2019165693 2019-09-11
PCT/JP2020/033802 WO2021049460A1 (ja) 2019-09-11 2020-09-07 圧電ポンプおよびポンプユニット

Publications (1)

Publication Number Publication Date
US20220316467A1 true US20220316467A1 (en) 2022-10-06

Family

ID=74865677

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/641,564 Abandoned US20220316467A1 (en) 2019-09-11 2020-09-07 Piezoelectric pump and pump unit

Country Status (5)

Country Link
US (1) US20220316467A1 (enrdf_load_stackoverflow)
EP (1) EP4030055B1 (enrdf_load_stackoverflow)
JP (1) JP7337180B2 (enrdf_load_stackoverflow)
CN (1) CN114222859A (enrdf_load_stackoverflow)
WO (1) WO2021049460A1 (enrdf_load_stackoverflow)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD991984S1 (en) * 2021-11-30 2023-07-11 Murata Manufacturing Co., Ltd. Piezoelectric pump
US20240026872A1 (en) * 2020-12-08 2024-01-25 Sony Group Corporation Fluid control apparatus and electronic apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024015459A (ja) * 2020-12-09 2024-02-02 ソニーグループ株式会社 ダイヤフラムポンプ、電子機器、製造装置及び製造方法

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018307A1 (fr) * 1993-12-28 1995-07-06 Westonbridge International Limited Micropompe
US5767612A (en) * 1994-12-21 1998-06-16 Ngk Insulators, Ltd. Piezoelectric/electrostrictive film element with a diaphragm having at least one stress releasing end section
US6394363B1 (en) * 1998-04-17 2002-05-28 The Technology Partnership Plc Liquid projection apparatus
US20030152469A1 (en) * 2002-02-14 2003-08-14 Dante Henry M. Piezoelectrically driven fluids pump
US7482733B2 (en) * 2003-09-04 2009-01-27 Thinxxs Microtechnology Ag Piezoactuator
US20090232682A1 (en) * 2006-12-09 2009-09-17 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
US8123502B2 (en) * 2005-04-22 2012-02-28 The Technology Partnership Plc Acoustic pump utilizing radial pressure oscillations
US8596998B2 (en) * 2008-06-03 2013-12-03 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
US8721303B2 (en) * 2009-10-01 2014-05-13 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
WO2014148103A1 (ja) * 2013-03-22 2014-09-25 株式会社村田製作所 圧電ブロア
US20150071797A1 (en) * 2012-06-11 2015-03-12 Murata Manufacturing Co., Ltd. Blower
US9408991B2 (en) * 2011-05-31 2016-08-09 Metran Co. Ltd. Pump unit and breathing assistance device
US20160348666A1 (en) * 2014-02-21 2016-12-01 Murata Manufacturing Co., Ltd. Blower
CN107923385A (zh) * 2015-08-31 2018-04-17 株式会社村田制作所 鼓风机
CA2985913A1 (en) * 2017-01-11 2018-07-11 The Boeing Company Piezoelectric bimorph disk outer boundary design and method for performance optimization
US20200055087A1 (en) * 2017-05-12 2020-02-20 Murata Manufacturing Co., Ltd. Vibration device
US10697449B2 (en) * 2016-09-05 2020-06-30 Microjet Technology Co., Ltd. Fluid control device
US10788028B2 (en) * 2016-09-05 2020-09-29 Microjet Technology Co., Ltd. Fluid control device with alignment features on the flexible plate and communication plate
US20200370544A1 (en) * 2018-02-13 2020-11-26 Murata Manufacturing Co., Ltd. Fluid control device
US11067073B2 (en) * 2016-09-05 2021-07-20 Microjet Technology Co., Ltd. Fluid control device
US20210355930A1 (en) * 2019-03-27 2021-11-18 Murata Manufacturing Co., Ltd. Piezoelectric pump
US20230235733A1 (en) * 2020-09-30 2023-07-27 Murata Manufacturing Co., Ltd. Fluid control device
US11867166B2 (en) * 2019-03-27 2024-01-09 Murata Manufacturing Co., Ltd. Piezoelectric pump with annular valve arrangement
US20240026872A1 (en) * 2020-12-08 2024-01-25 Sony Group Corporation Fluid control apparatus and electronic apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140491A (ja) * 1982-02-16 1983-08-20 Matsushita Electric Ind Co Ltd 流れ発生装置
CN102057163B (zh) * 2008-06-05 2013-10-30 株式会社村田制作所 压电微型鼓风机
JP5928160B2 (ja) * 2012-05-29 2016-06-01 オムロンヘルスケア株式会社 圧電ポンプおよびこれを備えた血圧情報測定装置
JP5692468B2 (ja) * 2012-08-10 2015-04-01 株式会社村田製作所 ブロア
CN103925199B (zh) * 2014-05-06 2016-06-15 吉林大学 一种新型叠层式压电隔膜泵
WO2015178104A1 (ja) * 2014-05-20 2015-11-26 株式会社村田製作所 ブロア
CN103994059B (zh) * 2014-06-05 2015-04-08 吉林大学 一种铙钹形腔体的共振式压电风机
CN105508207B (zh) * 2016-01-20 2019-01-22 吉林大学 一种钹型泵体压电泵
CN108344198B (zh) * 2018-02-01 2024-02-27 浙江师范大学 一种基于新型气体压缩装置的微型节流制冷系统

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018307A1 (fr) * 1993-12-28 1995-07-06 Westonbridge International Limited Micropompe
US5767612A (en) * 1994-12-21 1998-06-16 Ngk Insulators, Ltd. Piezoelectric/electrostrictive film element with a diaphragm having at least one stress releasing end section
US6394363B1 (en) * 1998-04-17 2002-05-28 The Technology Partnership Plc Liquid projection apparatus
US20030152469A1 (en) * 2002-02-14 2003-08-14 Dante Henry M. Piezoelectrically driven fluids pump
US7482733B2 (en) * 2003-09-04 2009-01-27 Thinxxs Microtechnology Ag Piezoactuator
EP1661190B1 (de) * 2003-09-04 2016-11-23 Thinxxs Microtechnology Ag Piezoaktor
US8123502B2 (en) * 2005-04-22 2012-02-28 The Technology Partnership Plc Acoustic pump utilizing radial pressure oscillations
US20090232682A1 (en) * 2006-12-09 2009-09-17 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
US8596998B2 (en) * 2008-06-03 2013-12-03 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
US8721303B2 (en) * 2009-10-01 2014-05-13 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
US9408991B2 (en) * 2011-05-31 2016-08-09 Metran Co. Ltd. Pump unit and breathing assistance device
US20150071797A1 (en) * 2012-06-11 2015-03-12 Murata Manufacturing Co., Ltd. Blower
WO2014148103A1 (ja) * 2013-03-22 2014-09-25 株式会社村田製作所 圧電ブロア
US20160348666A1 (en) * 2014-02-21 2016-12-01 Murata Manufacturing Co., Ltd. Blower
CN107923385A (zh) * 2015-08-31 2018-04-17 株式会社村田制作所 鼓风机
US10788028B2 (en) * 2016-09-05 2020-09-29 Microjet Technology Co., Ltd. Fluid control device with alignment features on the flexible plate and communication plate
US11067073B2 (en) * 2016-09-05 2021-07-20 Microjet Technology Co., Ltd. Fluid control device
US10697449B2 (en) * 2016-09-05 2020-06-30 Microjet Technology Co., Ltd. Fluid control device
CA2985913A1 (en) * 2017-01-11 2018-07-11 The Boeing Company Piezoelectric bimorph disk outer boundary design and method for performance optimization
US20200055087A1 (en) * 2017-05-12 2020-02-20 Murata Manufacturing Co., Ltd. Vibration device
US20200370544A1 (en) * 2018-02-13 2020-11-26 Murata Manufacturing Co., Ltd. Fluid control device
US20210355930A1 (en) * 2019-03-27 2021-11-18 Murata Manufacturing Co., Ltd. Piezoelectric pump
US11867166B2 (en) * 2019-03-27 2024-01-09 Murata Manufacturing Co., Ltd. Piezoelectric pump with annular valve arrangement
US20230235733A1 (en) * 2020-09-30 2023-07-27 Murata Manufacturing Co., Ltd. Fluid control device
US20240026872A1 (en) * 2020-12-08 2024-01-25 Sony Group Corporation Fluid control apparatus and electronic apparatus

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Machine Translation EP1661190 (Obtained USPTO Search) (Year: 2024) *
Machine Translation of CN107923385 (Obtained from USPTO Search) (Year: 2024) *
Machine Translation of WO2014148103 (Obtained from USPTO Search) (Year: 2024) *
Machine Translation WO-9518307 (Obtained from USPTO Search) (Year: 2024) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240026872A1 (en) * 2020-12-08 2024-01-25 Sony Group Corporation Fluid control apparatus and electronic apparatus
USD991984S1 (en) * 2021-11-30 2023-07-11 Murata Manufacturing Co., Ltd. Piezoelectric pump

Also Published As

Publication number Publication date
EP4030055A1 (en) 2022-07-20
WO2021049460A1 (ja) 2021-03-18
JPWO2021049460A1 (enrdf_load_stackoverflow) 2021-03-18
EP4030055A4 (en) 2023-10-04
EP4030055B1 (en) 2025-03-12
JP7337180B2 (ja) 2023-09-01
CN114222859A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
US20220316467A1 (en) Piezoelectric pump and pump unit
CN102979703B (zh) 流体控制装置
EP3346131B1 (en) Fluid control apparatus and method for adjusting fluid control apparatus
US9028226B2 (en) Fluid control device
EP2568177B1 (en) Fluid control device
EP2568175B1 (en) Fluid control device
KR101320136B1 (ko) 진동 액추에이터
US20180066650A1 (en) Pump
JP6028779B2 (ja) 流体制御装置
WO2019221121A1 (ja) 圧電ガスポンプ
KR100816011B1 (ko) 정전 마이크
CN112700759A (zh) 适于pcb上安装电声元件的方法及电声元件结构
JP6595248B2 (ja) 音響発生器

Legal Events

Date Code Title Description
AS Assignment

Owner name: KYOCERA CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OGATA, KAZUHIRO;REEL/FRAME:059212/0704

Effective date: 20200908

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION