US20210161970A1 - Methods and uses of biological tissues for various stent and other medical applications - Google Patents

Methods and uses of biological tissues for various stent and other medical applications Download PDF

Info

Publication number
US20210161970A1
US20210161970A1 US17/174,839 US202117174839A US2021161970A1 US 20210161970 A1 US20210161970 A1 US 20210161970A1 US 202117174839 A US202117174839 A US 202117174839A US 2021161970 A1 US2021161970 A1 US 2021161970A1
Authority
US
United States
Prior art keywords
tissue
product
pulmonary
frame
mammalian
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/174,839
Inventor
Ghassan S. Kassab
Jose A. Navia, SR.
Jorge Jordana
Zachary C. Berwick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CVDevices LLC
Original Assignee
CVDevices LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CVDevices LLC filed Critical CVDevices LLC
Priority to US17/174,839 priority Critical patent/US20210161970A1/en
Publication of US20210161970A1 publication Critical patent/US20210161970A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/42Respiratory system, e.g. lungs, bronchi or lung cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2415Manufacturing methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2475Venous valves

Definitions

  • SIS small intestinal submucosa
  • the method comprises the steps of acquiring a mammalian tissue comprising at least a portion of a pulmonary ligament, selecting a sample of pulmonary ligament tissue from the at least a portion of pulmonary ligament, and fixing the sample of pulmonary ligament tissue using a fixative, resulting in a fixed sample.
  • the method comprises the steps of acquiring a mammalian tissue comprising at least a portion of a pulmonary region tissue, selecting a sample of pulmonary region tissue from the at least a portion of a pulmonary region tissue, and fixing the sample of pulmonary region tissue using a fixative, resulting in a fixed sample.
  • the step of acquiring comprises acquiring the at least a portion of a pulmonary region tissue by way of dissecting or resecting tissue from a deceased mammal.
  • the step of acquiring comprises acquiring the at least a portion of a pulmonary region tissue from a mammal selected from the group consisting of a pig, a horse, a cow, a goat, a sheep, and a human.
  • the step of acquiring comprises acquiring the at least a portion of a pulmonary region tissue from a larger quantity of mammalian tissue comprising at least a portion of a lung, at least a portion of an aorta, and at least a portion of a pulmonary ligament.
  • the step of acquiring comprises acquiring the at least a portion of a pulmonary region tissue from a larger quantity of mammalian tissue comprising at least a portion of a lung, at least a portion of an esophagus, and at least a portion of a pulmonary ligament.
  • the step of selecting a sample of pulmonary region tissue comprises selecting a sample of pulmonary ligament tissue from the mammalian tissue.
  • the step of selecting a sample of pulmonary region tissue comprises selecting a sample of visceral pleura tissue from the mammalian tissue.
  • the step of selecting a sample of pulmonary region tissue comprises selecting the sample of pulmonary region tissue from the at least a portion of a pulmonary region tissue by cleaning the at least a portion of a pulmonary region tissue to remove blood from the at least a portion of a pulmonary region tissue.
  • the step of selecting a sample of pulmonary region tissue comprises selecting a sample of pulmonary ligament tissue from the at least a portion of a pulmonary region tissue by cleaning the at least a portion of a pulmonary region tissue to remove blood from the at least a portion of a pulmonary region tissue.
  • the step of selecting a sample of pulmonary region tissue comprises selecting a sample of visceral pleura tissue from the at least a portion of a pulmonary region tissue by cleaning the at least a portion of a pulmonary region tissue to remove blood from the at least a portion of a pulmonary region tissue.
  • the step of selecting a sample of pulmonary region tissue comprises selecting the sample of pulmonary region tissue from the at least a portion of a pulmonary region tissue by removing fatty material from the at least a portion of a pulmonary region tissue.
  • the step of selecting a sample of pulmonary region tissue comprises selecting a sample of pulmonary ligament tissue from the at least a portion of a pulmonary region tissue by removing fatty material from the at least a portion of a pulmonary region tissue. In an additional embodiment, the step of selecting a sample of pulmonary region tissue comprises selecting a sample of visceral pleura tissue from the at least a portion of a pulmonary region tissue by removing fatty material from the at least a portion of a pulmonary region tissue.
  • the step of selecting a sample of pulmonary region tissue comprises selecting the sample of pulmonary region tissue from the at least a portion of a pulmonary region tissue that is free or substantially free of perforations.
  • the step of selecting a sample of pulmonary region tissue comprises selecting a sample of pulmonary ligament tissue from the at least a portion of a pulmonary region tissue that is free or substantially free of perforations.
  • the step of selecting a sample of pulmonary region tissue comprises selecting a sample of visceral pleura tissue that is free or substantially free of perforations.
  • the step of selecting a sample of pulmonary region tissue comprises selecting the sample of pulmonary region tissue from the at least a portion of a pulmonary region tissue that is free or substantially free of blood or blood vessels.
  • the step of selecting a sample of pulmonary region tissue comprises selecting a sample of pulmonary ligament tissue from the at least a portion of a pulmonary region tissue that is free or substantially free of blood or blood vessels.
  • the step of selecting a sample of pulmonary region tissue comprises selecting a sample of visceral pleura tissue that is free or substantially free of blood or blood vessels.
  • the step of selecting a sample of pulmonary region tissue comprises selecting the sample of pulmonary region tissue from the at least a portion of a pulmonary region tissue that is free or substantially free of irregularities.
  • the step of selecting a sample of pulmonary region tissue further comprises placing the sample of pulmonary region tissue in a saline solution.
  • the step of selecting a sample of pulmonary region tissue further comprises placing the sample of pulmonary region tissue in a solution at least 20° F. below ambient temperature.
  • the method further comprises the step of placing the sample of pulmonary region tissue within or upon a mount having known dimensions, wherein the placing step is performed prior to the fixing step.
  • the step of placing the sample of pulmonary region tissue within or upon a mount is performed by placing the sample of pulmonary region tissue within or upon a circular or relatively circular mount and securing the sample of pulmonary region tissue to the mount.
  • the step of placing the sample of pulmonary region tissue within or upon a mount is performed by placing the sample of pulmonary region tissue within or upon a square or rectangular mount and securing the sample of pulmonary region tissue to the mount.
  • the step of placing the sample of pulmonary region tissue within or upon a mount is performed by placing the sample of pulmonary region tissue within or upon a multidimensional mount and securing the sample of pulmonary region tissue to the mount.
  • the fixed sample maintains or closely resembles the known dimensions of the mount.
  • the method further comprises the step of securing the sample of pulmonary region tissue within or upon the mount, wherein the securing step is performed prior to the fixing step.
  • the securing step performed using a securing member selected from the group consisting of one or more sutures, one or more clamps, and one or more forceps.
  • the step of fixing the sample of pulmonary region tissue using a fixative is performed by fixing the sample of pulmonary region tissue using the fixative selected from the group consisting of glutaraldehyde, formaldehyde, and glycerol.
  • the step of fixing the sample of pulmonary region tissue using a fixative is performed by fixing the sample of pulmonary region tissue using the fixative within a HEPES or phosphate buffer. In yet an additional embodiment, the step of fixing the sample of pulmonary region tissue using a fixative is performed by fixing the sample of pulmonary region tissue using a fixation procedure selected from the group consisting of aqueous fixation, cryo-preservation, and dry tissue fixation.
  • the method further comprises the step of placing at least two dots on the sample of pulmonary region tissue prior to performing the fixing step, wherein distance(s) between the at least two dots are known prior to performing the fixing step.
  • the method further comprises the step of measuring the distance(s) between the at least two dots after performing the fixing step, and comparing the distance(s) between the at least two dots after performing the fixing step to the distances between the at least two dots prior to performing the fixing step.
  • the method further comprises the step of determining an amount of shrinkage based upon data collected from the comparing step.
  • the acquiring step comprises separating the at least a portion of pulmonary region tissue.
  • the method further comprises the step of forming the fixed sample into a valve.
  • method further comprises the step of shaping the fixed sample so that the fixed sample will fit around portions of a frame.
  • the shaping step is performed by stretching the fixed tissue and cutting the fixed tissue to form a desired shape.
  • method further comprises the step of positioning the fixed sample upon portions of the frame, wherein the fixed sample and the frame collectively form a tissue product.
  • the method further comprises the step of positioning the fixed sample upon portions of a frame, wherein the fixed sample and the frame collectively form a tissue product.
  • method further comprises the step of securing a portion of the fixed sample to the frame using one or more sutures.
  • method further comprises the step of weaving a portion of the fixed sample around at least a portion of the frame to secure the portion of the fixed sample to the frame.
  • the weaving step is performed to secure the portion of the fixed sample to the frame without requiring sutures.
  • the method further comprises the step of weaving a portion of the fixed sample around at least a portion of the frame to secure the portion of the fixed sample to the frame, wherein when the tissue product is positioned within a mammalian luminal organ, the one or more sutures are not in contact with fluid flowing through the mammalian luminal organ.
  • the method further comprises the step of positioning the tissue product within a mammalian luminal organ so that fluid native to the mammalian luminal organ may pass through a lumen defined within the tissue product.
  • the frame comprises at least one superior arm and at least one inferior arm positioned at or near an inlet portion of the tissue product, the at least one superior arm and the at least one inferior arm configured to receive a first portion of the fixed sample thereon.
  • the at least one superior arm and the at least one inferior arm are configured to receive the first portion of the fixed sample thereon, and wherein the method further comprises the step of securing the first portion of the fixed sample to the frame using one or more sutures.
  • the frame further comprises at least one connection portion coupled to at least one of the at least one superior arm and/or the at least one inferior arm, the at least one connection portion extending along a longitudinal axis of the frame and configured to receive a second portion of the fixed sample thereon.
  • the connection portion is configured to receive the second portion of the mammalian tissue thereon, and wherein the method further comprises the step of securing the second portion of the fixed sample to the frame using one or more sutures.
  • the tissue product comprises a valve having a bileaflet configuration or a trileaflet configuration.
  • the desired shape results in a valve having symmetrical leaflets.
  • the fixed sample is sized and shaped to substantially or completely similar to an outer perimeter of the frame.
  • the frame further comprises at least one vertical bar coupled to at least one of the at least one superior arm and/or the at least one inferior arm.
  • the frame further comprises at least one lower arm coupled to at least one of the at least connection portion and the at least one vertical arm.
  • the frame (or tissue product) is configured to move from a first, closed configuration to a second, open configuration.
  • the frame when the frame is in the first, closed configuration, it is configured to fit within a mammalian luminal organ, such as by percutaneous delivery through the mammalian luminal organ.
  • the tissue product is configured as a stent valve.
  • the stent valve is configured for use as a venous valve.
  • the tissue product is configured so that the fluid native to the mammalian luminal organ can pass through an inlet portion of the tissue product and exit from an outlet portion of the tissue product
  • the fixed sample coupled to the frame operates as a valve.
  • the fluid native to the mammalian luminal organ is at least partially prevented from flowing from the outlet portion to the inlet portion due to a configuration of the tissue product.
  • the fixed sample comprises mammalian pulmonary ligament.
  • the fixed sample comprises visceral pleura.
  • the fixed sample comprises tissue having stretchability and durability properties to allow the fixed sample to move relative to the fluid flow through the lumen defined within the tissue product.
  • the frame is capable of expansion using a balloon catheter.
  • the frame is autoexpandable.
  • the frame comprises a material selected from the group consisting of nitinol, chromium, cadmium, molybdenum, nickel, a nickel composite, nickel-cadmium nickel-chromium, nitinol palladium, palladium, cobalt, platinum, and stainless steel.
  • the fixed samples is configured as a products selected from the group consisting of a stent cover, a diaphragm cover, a hernia repair cover, a brain cover, a general organ cover, a wound cover, a prosthetic device cover, a skull cover, a general tissue cover, a tissue valve, a patch, a surgical membrane, a skin substitute, a suture reinforcement, a tubular structure, a tendon replacement, a bladder tissue replacement, a urethra tissue replacement, a vaginal tissue replacement, a muscle replacement, and another tissue replacement.
  • a stent cover a diaphragm cover, a hernia repair cover, a brain cover, a general organ cover, a wound cover, a prosthetic device cover, a skull cover, a general tissue cover, a tissue valve, a patch, a surgical membrane, a skin substitute, a suture reinforcement, a tubular structure, a tendon replacement, a bladder tissue replacement, a ureth
  • the positioning step is performed by positioning at least part of the fixed sample around the at least part of the frame. In another embodiment, the positioning step is performed by positioning at least part of the fixed sample around one or more of a superior arm, an inferior arm, and a connection portion of the frame. In yet another embodiment, the positioning step is performed by positioning at least part of the fixed sample around at least part of the frame so that at least part of the fixed sample operates as one or more valve leaflets.
  • the method further comprises the step of forming the fixed sample into a product configured for mammalian treatment or therapy.
  • the step of fixing the sample of pulmonary region tissue comprises fixing a sample of pulmonary ligament tissue, resulting in a fixed pulmonary ligament sample.
  • the step of fixing the sample of pulmonary region tissue comprises fixing a sample of visceral pleura tissue, resulting in a fixed visceral pleura sample.
  • the placing step is performed in connection with stretching the fixed sample in a first direction. In another embodiment, the placing step is performed in connection with stretching the fixed sample in a second direction different from the first direction. In yet another embodiment, the method further comprises the step of determining lengths of one or more fibers of the sample of pulmonary region tissue prior to, during, or after the fixing step. In an additional embodiment, the method further comprises the step of determining desmosine content of the sample of pulmonary region tissue prior to, during, or after the fixing step.
  • the acquiring step is performed to acquire the at least a portion of pulmonary region tissue from a mammalian heart/lung block.
  • the method further comprises the step of preseeding the sample of pulmonary region tissue to facilitate endothelialization prior to performing the fixing step.
  • the fixed sample is between about 40 and about 300 microns in thickness.
  • the fixed sample comprises pulmonary ligament tissue having a thickness of between about 80 microns and about 120 microns, and even as high as about 300 microns.
  • the fixed sample comprises visceral pleura tissue having a thickness of between about 40 microns and about 80 microns.
  • the acquiring step is performed to acquire the at least a portion of a pulmonary region tissue from a middle-anterior portion of at least one lung of the mammal.
  • the acquiring step is performed to acquire the at least a portion of a pulmonary region tissue by making an incision in the at least one lung and pressing tissue of the at least one lung away from a visceral pleura.
  • the fixing step is performed using a fixative comprising a glutaraldehyde solution having a concentration of glutaraldehyde of less than 1%.
  • the method further comprising the step of storing the fixed sample in a storage solution.
  • fixative has a different fixative concentration than the storage solution.
  • the fixing step is performed using a fixative that is buffered.
  • the fixing step is performed using a fixative having a pH of between about 7.2 and about 7.6.
  • the fixing step is performed so that the sample of pulmonary region tissue contacts the fixative for at least about 24 hours.
  • the storage solution a glutaraldehyde solution having a concentration of glutaraldehyde of or about 0.5%.
  • the fixing step is performed within a tray lined with a silicone elastomer and by pinning the sample of pulmonary region tissue to the silicone elastomer.
  • the fixing step is performed using bovine serum albumin.
  • the method further comprises the step of removing the fixative from the fixed sample, and placing the fixed sample in a solution comprising at least one item selected from the group consisting of saline, a preservative, bovine serum albumin, and liquid nitrogen.
  • the method further comprises the step of decellularizing at least a portion of the sample of pulmonary region tissue prior to performing the fixing step. In an additional embodiment, the method further comprises the step of sterilizing the at least a portion of the sample of pulmonary region tissue prior to performing the fixing step. In an additional embodiment, method further comprises the step of sterilizing the fixed sample.
  • the method further comprises the step of treating a patient using the fixed sample.
  • the method further comprises the step of treating a patient using the product.
  • the fixed sample is acellular.
  • the product is configured for use in connection with transcatheter aortic-valve implantation.
  • the product is configured for percutaneous or surgical implantation.
  • the product is configured for use to replace a valve selected from the group consisting of an aortic valve, a mitral valve, a pulmonary valve, a tricuspid valve, and a percutaneous valve.
  • a valve selected from the group consisting of an aortic valve, a mitral valve, a pulmonary valve, a tricuspid valve, and a percutaneous valve.
  • the fixed sample has a thickness that is smaller than a thickness of pulmonary tissue.
  • the product has an overall bulk that is smaller than a bulk of a corresponding product made using fixed pericardial tissue instead of using the fixed sample.
  • the fixed visceral pleura product contains at least one valve leaflet, wherein a non-mesothelial side of the fixed visceral pleura sample is on a relative front of the at least one valve leaflet, and wherein a mesothelial side of the fixed visceral pleura sample is on a relative back of the at least one leaflet.
  • the fixed sample has a circumferential axis corresponding to a circumferential axis of the at least a portion of pulmonary region tissue, wherein the fixed sample has an axial axis corresponding to an axial axis of the at least a portion of pulmonary region tissue.
  • the fixed sample can stretch in a direction of the circumferential axis of the fixed sample a first distance, and wherein the fixed sample can stretch in a direction of the axial axis of the fixed sample a second distance, the second distance being less than the first distance.
  • the method further comprises the step of forming the fixed sample into a product configured for mammalian treatment or therapy, wherein the fixed sample is oriented so that the circumferential axis of the fixed sample is aligned within an axial axis of the product, the axial axis being perpendicular to a circumferential axis of a luminal organ to receive the product.
  • the method comprises the steps of acquiring at least a portion of a pulmonary region tissue from a mammal, selecting a sample of pulmonary region tissue from the at least a portion of a pulmonary region tissue, and forming the sample of pulmonary region tissue into a tissue product configured for mammalian treatment or therapy.
  • the step of selecting a sample of pulmonary region tissue comprises selecting a sample of pulmonary ligament tissue from the mammalian tissue.
  • the step of selecting a sample of pulmonary region tissue comprises selecting a sample of visceral pleura tissue from the mammalian tissue.
  • the processed tissue is obtained by acquiring at least a portion of a pulmonary region tissue from a mammal, selecting a sample of pulmonary region tissue from the at least a portion of a pulmonary region tissue, and fixing the sample of pulmonary region tissue using a fixative, resulting in a fixed sample.
  • the pulmonary region tissue is obtained by fixing a sample of pulmonary region tissue using a fixative, the sample of pulmonary region tissue selected from a larger quantity of pulmonary region tissue harvested from a mammal.
  • the sample of pulmonary region tissue comprises pulmonary ligament.
  • the sample of pulmonary region tissue comprises visceral pleura.
  • the pulmonary region tissue product is obtained by forming a sample of pulmonary region tissue fixed using a fixative into a pulmonary region tissue product, the sample of pulmonary region tissue selected from a larger quantity of pulmonary region tissue harvested from a mammal, wherein the pulmonary region tissue product is configured for mammalian treatment or therapy.
  • the sample of pulmonary region tissue comprises pulmonary ligament.
  • the sample of pulmonary region tissue comprises visceral pleura.
  • the product comprises a frame configured to retain a mammalian tissue thereon, and the mammalian tissue coupled to the frame, wherein when the product is positioned within a mammalian luminal organ, fluid native to the mammalian luminal organ may pass through a lumen defined within the product.
  • the frame comprises at least one superior arm and at least one inferior arm positioned at or near an inlet portion of the product, the at least one superior arm and the at least one inferior arm configured to receive a first portion of the mammalian tissue thereon.
  • the at least one superior arm and the at least one inferior arm is configured to receive the first portion of the mammalian tissue thereon and to retain said mammalian tissue using one or more sutures.
  • the frame further comprises at least one connection portion coupled to at least one of the at least one superior arm and/or the at least one inferior arm, the at least one connection portion extending along a longitudinal axis of the device and configured to receive a second portion of the mammalian tissue thereon.
  • connection portion is configured to receive the second portion of the mammalian tissue thereon and to retain said mammalian tissue using one or more sutures.
  • the product is configured as a bileaflet frame.
  • the product is configured as a trileaflet frame.
  • the mammalian tissue is sized and shaped to substantially or completely conform to an outer perimeter of the frame.
  • the frame further comprises at least one vertical bar coupled to at least one of the at least one superior arm and/or the at least one inferior arm.
  • the frame further comprises at least one lower arm coupled to at least one of the at least connection portion and the at least one vertical arm.
  • the frame is configured to move from a first, closed configuration to a second, open configuration.
  • the product is configured for percutaneous passage through the mammalian luminal organ.
  • the product is configured as a stent valve.
  • the stent valve is configured for use as a venous valve.
  • the fluid native to the mammalian luminal organ passes through an inlet portion of the product and exits from an outlet portion of the product when the product is positioned within the mammalian luminal organ.
  • the mammalian tissue coupled to the frame operates as a valve.
  • the fluid native to the mammalian luminal organ is at least partially prevented from flowing from the outlet portion to the inlet portion when the product is positioned within the mammalian luminal organ.
  • the mammalian tissue comprises mammalian pulmonary ligament.
  • the mammalian tissue comprises mammalian pulmonary viscera.
  • the mammalian tissue comprises tissue having stretchability and durability properties to allow the mammalian tissue to move relative to fluid flow through the lumen defined within the product.
  • the mammalian tissue is fixed.
  • the mammalian tissue is fixed using glutaraldehyde.
  • the frame is capable of expansion using a balloon catheter.
  • the frame is autoexpandable.
  • the frame comprises a material selected from the group consisting of nitinol, chromium, cadmium, molybdenum, nickel, a nickel composite, nickel-cadmium nickel-chromium, nitinol palladium, palladium, cobalt, platinum, and stainless steel.
  • the method comprises the steps of shaping an mammalian tissue so that the mammalian tissue will fit around portions of a frame, the mammalian tissue excised from a mammalian body, positioning the mammalian tissue around a mount, positioning at least part of a frame around the mammalian tissue positioned around the mount, and connecting the mammalian tissue to the at least part of the frame to form the product.
  • the method further comprises the step of processing the excised mammalian tissue prior to the shaping step.
  • the processing step is performed by excising the mammalian tissue from the mammalian body, removing any undesirable portions of the excised mammalian tissue, placing the excised mammalian tissue on a frame, and fixing the tissue using a fixative.
  • the shaping step is performed by stretching the mammalian tissue and cutting the mammalian tissue to form a desired shape.
  • connection step is performed by positioning at least part of the mammalian tissue around the at least part of the frame.
  • the connection step is performed by positioning at least part of the mammalian tissue around one or more of a superior arm, an inferior arm, and a connection portion of the frame.
  • the connection step is further performed by suturing at least part of the mammalian tissue around the at least part of the frame.
  • the connection step is performed by positioning at least part of the mammalian tissue around the at least part of the frame so that at least part of the mammalian tissue operates as one or more valve leaflets.
  • the mammalian tissue comprises pulmonary ligament.
  • the mammalian tissue comprises visceral pleura.
  • the method comprises the steps of acquiring a sample of pulmonary region tissue from a mammal, and fixing the sample of pulmonary region tissue using a fixative, resulting in a fixed sample.
  • the step of acquiring a sample of pulmonary region tissue comprises selecting a sample of pulmonary ligament tissue from the mammal.
  • the step of selecting a sample of pulmonary region tissue comprises selecting a sample of visceral pleura tissue from the mammal.
  • the processed pulmonary ligament is prepared by fixing a sample of pulmonary region tissue acquired from a mammal using a fixative, resulting in a fixed sample.
  • the method comprises the step of fixing a sample of pulmonary region tissue acquired from a mammal using a fixative, resulting in a fixed sample
  • the method comprises the step of decellularizing a segment of pulmonary region tissue.
  • the method further comprises the step of: sterilizing the pulmonary region tissue.
  • the method further comprises the step of fixing the pulmonary region tissue.
  • the pulmonary region tissue comprises pulmonary ligament tissue.
  • the pulmonary region tissue comprises visceral pleura tissue.
  • the medical article of manufacture comprises acellular pulmonary region tissue sterilely enclosed within packaging.
  • the pulmonary region tissue is chemically fixed.
  • the pulmonary region tissue is not chemically fixed.
  • the pulmonary region tissue comprises pulmonary ligament tissue.
  • the pulmonary region tissue comprises visceral pleura tissue.
  • the method comprises the step of introducing into a patient a medical device including pulmonary region tissue.
  • the tissue is acellular.
  • the pulmonary region tissue comprises pulmonary ligament tissue.
  • the pulmonary region tissue comprises visceral pleura tissue.
  • the method comprises the steps of acquiring at least a portion of a pulmonary region tissue from a mammal, selecting a sample of pulmonary region tissue from the at least a portion of a pulmonary region tissue, and fixing the sample of pulmonary region tissue using a fixative, resulting in a fixed sample.
  • FIGS. 1A and 1B show a swine pulmonary ligament connected to a lung, according to exemplary embodiments of the present disclosure
  • FIG. 2A shows a close-up view of a swine pulmonary ligament, according to an exemplary embodiment of the present disclosure
  • FIG. 2B shows a portion of a pulmonary ligament held in place upon a frame, according to an exemplary embodiment of the present disclosure
  • FIGS. 3A and 3B show a fixed product, according to exemplary embodiments of the present disclosure
  • FIGS. 4A-4D show various depictions of a portion of a pulmonary ligament, after fixation, formed into an exemplary constructed valve according to exemplary embodiments of the present disclosure
  • FIGS. 5A-5D show various processed lung ligament products in various configurations, according to exemplary embodiments of the present disclosure
  • FIG. 5E shows a block diagram of components of a kit, according to an exemplary embodiment of the present disclosure
  • FIGS. 5F and 5G show mammalian tissue and tissue harvest locations, according to exemplary embodiments of the present disclosure
  • FIGS. 6A and 6B show a bileaflet frame configuration, according to an exemplary embodiment of the present disclosure
  • FIG. 7A shows a portion of a mammalian tissue cut/shaped to fit along a bileaflet frame, according to an exemplary embodiment of the present disclosure
  • FIGS. 7B and 8A show how portions of mammalian tissue can be positioned within/around portions of a frame, according to exemplary embodiments of the present disclosure
  • FIG. 8B shows an exemplary product having a bileaflet frame and a tissue positioned thereon, according to an exemplary embodiment of the present disclosure
  • FIGS. 9A and 9B show a trileaflet frame configuration, according to an exemplary embodiment of the present disclosure
  • FIG. 10A shows a portion of a mammalian tissue cut/shaped to fit along a trileaflet frame, according to an exemplary embodiment of the present disclosure
  • FIG. 10B shows an exemplary product having a trileaflet frame and a tissue positioned thereon, according to an exemplary embodiment of the present disclosure
  • FIG. 10C shows an exemplary product configured as a valve and positioned within a mammalian luminal organ, according to an exemplary embodiment of the present disclosure.
  • FIG. 11 shows steps of a method to manufacture a product, according to an exemplary embodiment of the present disclosure.
  • the present disclosure contains disclosure of novel methods and uses for harvesting and applying certain mammalian tissue for use in connection with various medical applications.
  • the mammalian pulmonary ligament and the mammalian visceral pleura can be harvested, fixed, and used for a number of medical applications previously unknown and not identified in the medical arts.
  • pulmonary ligament tissue is identified, harvested, fixed, and ultimately used in connection with mammalian treatment/therapy.
  • pulmonary ligament and visceral pleura are both “pulmonary region” tissue.
  • tissue that consists of largely elastin and some collagen fibers (the converse of SIS), since elastin is not as prone to fixation as collagen fibers. Hence, fixation of tissue with elastin largely maintains its elasticity and hence biological mechanical activity. Furthermore, it is advantageous to identify a thin membraneous native tissue that does not require any processing, such as stripping of muscle or treatment with antibiotics given the bacteria flora such as present within the intestines. Finally, there is significant advantage to tissue that has epithelial layers on both sides of the tissue. As referenced in detail herein, the present disclosure includes uses and methods in connection with such a biological tissue and processing steps for various biological applications.
  • the visceral pleura that covers the lung extends to the hilum where it becomes continuous with the parietal pleura that covers the diaphragm, chest wall, and mediastinum.
  • the two layers of pleura come together to form the inferior pulmonary ligament.
  • the pulmonary ligament is a double layer of pleura that drapes caudally from the lung root and loosely tethers the medial aspect of the lower lobe of the lung to the mediastinum.
  • the pulmonary ligament does not functionally behave the same as two layers of pleura, as the non-isotropy of pulmonary ligament tissue is notably different than just two layers of pleura.
  • the degree of collagen within pulmonary ligament is also different than in two layers of pleura, and the function of pulmonary ligament is also different, as pulmonary ligament tissue resists load in one direction.
  • the pulmonary ligament tethers the lung and has substantial elasticity (over 200% extension, which may be a lateral extension) to expand with each inflation of the lung.
  • the significant elasticity stems from the high elastin content. Contrary to collagen, elastin cannot be fixed and largely retains its elasticity post fixation.
  • the novel nature of identifying, harvesting, fixing, and using processed lung ligament tissue can result in numerous therapies and treatments not previously considered or used in the medical arts.
  • said tissues can have a microarchitecture including non-randomly oriented collagen and elastin fibers, which can be retained from the native microarchitecture of the processed pulmonary ligament 50 and/or processed visceral pleura 60 , and/or the processed pulmonary ligament 50 and/or processed visceral pleura 60 can exhibit an anisotropic elastic character, for example as can be demonstrated in biaxial stretch testing and/or through optical and/or microscopic visualization of the tissue microstructure.
  • processed pulmonary ligament 50 tissue can have a thickness of about 80 microns to about 100 or 120 microns, and even as high as about 300 microns, including thicknesses between about 90 microns and 100 microns, which depends upon the species from which the pulmonary ligament tissue is obtained.
  • Processed visceral pleura 60 may have a smaller thickness, such as between about 40 microns and about 80 microns, as referenced further herein.
  • Other embodiments of processed pulmonary ligament 50 and/or processed visceral pleura 60 of the present disclosure may be up to 300 microns in thickness.
  • the average thickness was 102 microns, and the thickness range was from 22 microns to 269 microns.
  • Different thicknesses of tissue may be preferred for different embodiments, such as relatively thinner tissues for valve applications, and relatively thicker tissues for hernia repair, for example.
  • a predominant proportion of the collagen fibers in the tissue are oriented generally in a first direction, with that direction having extended substantially parallel to the median (or midsagittal) plane of the animal from which the tissue was harvested.
  • at least 75% of collagen fibers within the harvested pulmonary ligament 30 and/or visceral pleura 556 tissue are oriented in a first direction.
  • at least 60% of collagen fibers within the harvested pulmonary ligament 30 and/or visceral pleura 556 tissue are oriented in a first direction.
  • said tissues include elastin fibers that extend in a direction transverse to that of the predominating collagen fibers contained therein.
  • FIGS. 1A and 1B pictorially show a swine pulmonary ligament (an exemplary ligament 30 ) by way of gripping a portion of the pig (such as by the aorta and/or esophagus (collectively shown as 32 in FIG. 1A ) or tissue in that general vicinity) and pulling the same away from the lung 34 , as shown in FIG. 1B . Gripping and/or separation of tissue can be performed by hand, as shown in FIG. 1A , and/or by using forceps 40 , as shown in FIG. 1B .
  • the pulmonary ligament 30 is clearly shown and identified in FIGS. 1A and 1B .
  • FIG. 2A shows a closer view of a portion of the pulmonary ligament 30
  • FIG. 2B shows a portion of the pulmonary ligament 30 held in place using a series of clamps 42 positioned around a mount 44 , for example, and being fixed with a fixative, such as glutaraldehyde.
  • Post fixation pulmonary ligament (which could also be referred to as a processed ligament 50 of the present disclosure, potentially configured as an exemplary product 100 of the present disclosure as referenced below), as shown in FIGS. 3A and 3B , has high elasticity, and both sides of the ligament tissue are smooth and covered with an epithelial layer that secretes a lubricant.
  • FIGS. 4A-4D show various depictions of a portion of a porcine pulmonary ligament 30 , after glutaraldehyde fixation (to form processed ligament 50 and potentially an exemplary product 100 ), and formed into an exemplary constructed valve 400 of the present disclosure.
  • pulmonary ligament 30 can be placed upon a mount 44 , using one or more forceps 40 and/or clamps 42 (as shown in FIG. 2B ), and/or one or more sutures 800 (as shown in FIG. 4B in connection with use of a mount 44 , and as described in further detail herein in connection with one or more frames 600 of the present disclosure).
  • Placement may also include folding portions of pulmonary ligament 30 around portions of mount 44 , as shown by way of folded portion 48 in FIG. 4C .
  • said sutures 800 could comprise nylon or another suitable material, and could be placed using a needle (not shown), as described in further detail herein.
  • the valve 400 (comprising pulmonary ligament in the embodiment shown), which is an exemplary processed product 100 of the present disclosure, easily flexes and maintains its shape.
  • Products 100 can include processed ligament 50 or processed visceral pleura 60 , as referenced in further detail herein, and may also be referred to herein as medical articles of manufacture.
  • pulmonary ligament 30 refers to pulmonary ligament tissue that has not yet been processed
  • processed ligament 50 optionally configured as one or more processed products 100 of the present disclosure, refers to tissue that has been processed, such as by fixation, and optionally configured as products 100 .
  • visceral pleura 556 refers to visceral pleura tissue that has not yet been processed
  • processed visceral pleura 60 optionally configured as one or more processed products 100 of the present disclosure, refers to tissue that has been processed, such as by fixation, and optionally configured as products 100 .
  • Various valves 400 of the present disclosure may comprises any number of valves, including, but not limited to, aortic valves, mitral valves, pulmonary valves, tricuspid valves, and/or other percutaneous valves.
  • FIGS. 5A-5D show various processed products 100 in various configurations, according to exemplary embodiments of the present disclosure.
  • FIG. 5A shows an exemplary product 100 of the present disclosure configured as a patch, membrane, tissue replacement, cover, or reinforcement. Said embodiments (patch, membrane, tissue replacement, cover, or reinforcement) shall be referred to generally as patches 500 , as labeled in FIG. 5A .
  • FIG. 5B shows another exemplary product 100 of the present disclosure configured as a curved patch, membrane, tissue replacement, cover, or reinforcement (collectively curved patches 500 ).
  • FIG. 5C shows an exemplary product 100 configured as a tube 502
  • FIG. 5D shows an exemplary product 100 configured as a valve 400 .
  • Valve 400 as shown in FIG.
  • 5D is configured as a tri-leaflet valve 400 (including, for example, leaflets 802 , 804 , and 1000 , as referenced in further detail herein), but other valve 400 embodiments of the present disclosure may be single leaflet valves 400 , bileaflet valves 400 , or valves 400 with more than three leaflets.
  • products 100 comprise one or more processed ligaments 50 and/or one or more processed visceral pleura 60 .
  • a venous stent cover (an exemplary cover 502 ) with a membrane and valve 400 included is an exemplary product 100 of the present disclosure, with features shown in one or more figures referenced herein, such as FIGS. 5B, 5C , and 5 D.
  • a product 100 of the present disclosure could have an external shape shown in FIG. 5C and a valve 400 as shown in FIG. 5D .
  • the degree of pre-stretch was determined, in at least one method, by measuring the dimensions of the tissue before and after harvest. This was accomplished in this particular example by placing various dots/markings (such as dots/markings 575 shown in FIG. 5F ) on the ligament 30 and/or visceral pleura 556 itself in its in vivo state to determine the degree of stretch in the two principle directions (referred to herein as the x and y directions). Using such a method, one can characterize that the tissue shrinks by X and Y amount in the x and y directions.
  • the tissue can be pre-stretched by X and Y to the in vivo values to ensure optimal function of the tissue.
  • fiber lengths and/or desmosine contents could be measured/obtained in connection with various steps of fixation, including but not limited to determining an amount of tissue shrinkage due to fixation.
  • a stress-strain relation could be determined in fresh lung ligament 30 tissue and processed lung ligament 50 tissue, and a fixed strain could be selected that corresponds to the stress in fresh tissue, for example.
  • the heart/lung block can be extracted from a mammal (such as in connection with a meat processing facility), and the extracted tissue could then be placed in a relatively cold saline solution to help preserve the same.
  • the heart/lung block may be generally referred to herein a pulmonary region tissue, which may include, but is not limited to, lung tissue and one or more of the bronchi, pulmonary artery, pulmonary vein, and/or the heart, so long as the desired tissue to be harvested (pulmonary ligament 30 and/or visceral pleura 556 ) is contained therein.
  • the tissue can be inspected for blood infiltration, fatty material, perforations, and/or other irregularities, and portions of the tissue containing the same can be treated to either removed the undesired components or discarded/disregarded in view of other portions of the tissue that are relatively homogenous and free of undesired properties, such as perforations or fat.
  • the selected membranes can be mounted in mounts 44 (such as available circular or rectangular frame mounts) to prevent shrinkage and/or folding during fixation, and can be submerged in a fixation solution (such as glutaraldehyde, for example) for fixation.
  • a fixation solution such as glutaraldehyde, for example
  • the pulmonary ligament 30 and/or visceral pleura 556 can be pre-seeded to make it more likely to endothelialize.
  • pre-seeding also referred to as endothelial seeding
  • endothelial seeding could be performed on the non-mesothalial side of the tissue.
  • a relatively flat piece of fixed tissue will result.
  • the membranes can be placed on multidimensional molds, for example, allowing the user to stretch and/or otherwise fit the membrane so to mimic the mold shape, and then fix the membrane on the mold. With such a method, the resultant fixed material will maintain or closely resemble to multidimensional shape of the mold, and can be used for various purposes.
  • processed lung ligament 50 and/or processed visceral pleura 60 tissues could be used and be tailored to specific applications.
  • lung ligament 50 tissue of between about 80 microns and about 100 microns to about 300 microns could be used, while visceral pleura 60 between about 40 microns and about 80 microns could be used.
  • an exemplary method of the present disclosure includes the step of isolating tissue 556 from the middle-anterior portion of the lungs, 34 which tends to be relatively thicker and more uniform than other portions of the lung 34 .
  • a lateral incision can be made, and using forceps 40 for example, the lung 34 tissue can be carefully pressed away from the visceral pleura 556 .
  • FIG. 5F shows a diagram of a portion of a mammalian body 550 showing the lungs 34 and an identified harvest section 552 , generally comprising the middle-anterior portion of the lungs 34 .
  • Pulmonary region tissue 558 is also shown therein, which may include, but is not limited to, lung tissue and one or more of the bronchi, pulmonary artery, pulmonary vein, and/or the heart, as previously referenced herein.
  • the acquired pulmonary ligament 30 and/or visceral pleura 556 from said pulmonary region tissue may be referred to herein as “samples” of tissue from the pulmonary region tissue 558 .
  • the tissue can be gently worked away (manually using one's hand/fingers, for example), taking care/precautions not to overly stress or pull on the visceral pleura 556 tissue.
  • the general orientation Prior to removal of the visceral pleura 556 , the general orientation can be noted and potentially marked on the tissue, noting that visceral pleura 556 has different degrees of potential stretch depending on orientation.
  • FIG. 5F also demonstrates an exemplary harvesting method whereby pulmonary ligament 30 and/or visceral pleura 556 tissue is harvested and ultimately used in a desired orientation based upon an orientation of harvest.
  • the x-axis (identified as “X” in the figure) may also be referred to herein as a “circumferential” or “transverse” axis or direction/orientation of tissue
  • the y-axis (identified as “Y” in the figure) may also be referred to herein as a “vertical” or “axial” axis or direction/orientation of tissue.
  • the axial direction is notably stiffer than the circumferential direction, which is also referred to herein as being relatively softer than movement/stretch in the axial direction.
  • tissue orientation would be identified at the time of harvest and use accordingly in connection with one or more products 100 of the present disclosure.
  • processed pulmonary ligament 50 and/or processed visceral pleura 60 can be oriented on frame 600 , as referenced in further detail herein, so that the axial direction of the product 100 in a mammalian luminal organ (such as a blood vessel) is softer than the circumferential/radial direction, in reference to the product 100 , as the circumferential direction is, for example, constrained by the diameter of the blood vessel and cannot distend further, while the axial direction is the direction of opening and closing a valve 400 (in a product 100 embodiment configured as a valve), where more deformation would be needed or desired. Leveraging this non-isotropy (directionality) could be used in connection with various products 100 of the present disclosure depending on the application of interest.
  • a mammalian luminal organ such as a blood vessel
  • an exemplary method of the present disclosure includes the step of isolating tissue 30 from the relative middle section between the lungs 34 , as indicated by harvest sections 552 shown in FIG. 5G .
  • the specific harvest section 552 used may depend on mammalian species, the age of the mammal, and/or the thickness of tissue required for a particular application.
  • visceral pleura 556 referenced above and shown in FIG. 5F
  • pulmonary ligament 30 thickness varies with location within the body.
  • pulmonary ligament 30 or visceral pleura 556 can be obtained.
  • certain pulmonary ligament 30 or visceral pleura 556 tissue avoiding said tissues near the lungs 34 and/or the aorta/esophagus 32 may also lead to preferable pulmonary ligament 30 or visceral pleura 556 harvest. Similar to visceral pleura 556 harvest, and prior to removal of the pulmonary ligament 30 , the general orientation can be noted and potentially marked on the tissue, noting that pulmonary ligament 30 has different degrees of potential stretch depending on orientation, noting that as shown in FIG. 5G , ligament 30 is most elastic in the x-direction as shown in the figure.
  • Pulmonary ligament 30 may be generally described as a sheet of tissue, and not generally as a combined/bundled tissue.
  • the sections of pulmonary ligament 30 suitable for harvest are generally continuous with the aorta, and are generally not part of the bundled ligament that descends from the mammalian lung root.
  • General tissue harvesting can apply to several mammalian species, including, but not limited to, cattle, pigs, and horses, such as from blocks of tissue collected after animal slaughter. Harvesting is preferred using clean/sterile conditions, and can proceed after an initial inspection of the blocks of tissue for portions of suitable tissue not having any malformations, abnormalities, perforations, tears, calcifications, spots, etc., as generally referenced herein.
  • the desired tissue pulmonary ligament 30 or visceral pleura 556
  • a suitable solution water and/or saline, for example
  • fat and/or muscle covering the tissue can be removed, such as with the use of forceps 40 .
  • the removed tissue (pulmonary ligament 30 or visceral pleura 556 ) can be positioned about a mount 44 , as described and shown herein, and attached to the same using clamps 42 and/or sutures, such as those comprising Nylon 0, used as overcast stiches, with a needle such as a 333/5 needle.
  • the attachment step can be performed outside of a solution or within a solution, such as a fixative solution.
  • a fixative solution may comprise 0.65% glutaraldehyde solution BLUE.
  • the dissected tissue can then be stored, upon the mount 44 , within an appropriate fixative solution for an appropriate amount of time.
  • the tissue can be fixed in the fixative solution for at or approximately 24 hours, and the solution can be changed (to either the same fresh fixative solution or to another solution) and stored until the tissues are ready to be cut, formed, manipulated, or otherwise used. Keeping the tissue hydrated is important, as should the tissue completely or partially dry out, it would likely irretrievably lose desired mechanical properties.
  • Long term (or relatively long term) storage can be in, for example, 0.65% glutaraldehyde solution BLUE or another solution for an initial period of time, and then changed to a lower concentration solution (such as 0.50% glutaraldehyde solution CELESTE), for example, and stored until needed.
  • an exemplary fixative solution of the present disclosure can be prepared, resulting in a buffered glutaraldehyde solution, can be prepared as follows.
  • a fixative solution in at least one example of a fixative solution, and in less than 1 L of DDH 2 O), the following can be added: 1) 2.05 h of NaOH, 2) 9.08 g of PO 4 H 2 K, and 3) 13 mL of 50% glutaraldehyde solution (or 26 mL of 25% glutaraldehyde solution).
  • the desired pH would be at or near 7.4 for this exemplary fixative solution, and if the combined solution is not at 7.4, it can be adjusted using additional NaOH solution.
  • the overall volume of the flask can be increased to 1.0 L, resulting in the exemplary fixative solution.
  • Other fixative solutions may be optimal for use in connection with various fixation procedures of the present disclosure.
  • At least one fixation method comprises fixing the pulmonary ligament 30 or visceral pleura 556 in a fixation solution for at least 24 hours, and optionally at a reduced temperature (such as at or near 23° C.). Other fixation times and temperatures may be used as well.
  • a fixation solution for at least 24 hours, and optionally at a reduced temperature (such as at or near 23° C.).
  • Other fixation times and temperatures may be used as well.
  • fixation with minimal to no preload is recommended, as preloading may change the mechanical properties of the tissue during and/or after fixation.
  • flat or relatively-flat fixation would be recommended.
  • Flat or relatively-flat fixation can be performed, for example, using a tray lied with a silicone elastomer (such as Sylgard), allowing for the tissue to remain flat or relatively flat when pinned down during the fixation process.
  • glutaraldehyde is widely used, and can be used in connection with various buffers, such as HEPES and phosphate buffers.
  • glutaraldehyde is used around a neutral and slightly alkaline pH at or about 7.4, noting that other pH values or ranges can be used with various fixation methods.
  • formaldehyde (formalin) may be used, and/or glycerol may be used.
  • glycerol may be used to fix the tissue.
  • bovine serum albumin can be used to remove cytotoxicity in connection with fixation, such as fixation using glutaraldehyde and/or formaldehyde. Eliminating glutaraldehyde and/or formaldehyde from the storage solution may be beneficial as such compositions are quite cytotoxic, and storage of fixed tissue in non-toxic solutions or using dry tissue technologies can be useful to stored said fixed tissue for various amounts of time.
  • fixation methods may include, but are not limited to, various cryo-preservation or dry tissue fixation methods known are developed in the art for tissue fixation.
  • fixation could be performed at various loads or strains, such as in vivo stretch ratios, as determined by the markers (dots placed upon the tissue prior to harvest). For example, and as referenced above and at the time of or prior to harvest, markings could be placed on the lung ligament 30 or visceral pleura 556 tissue (using a marker, for example), and measurements between markings could provide the harvester with information relating to said tissue at a natural (non-stretched state).
  • said harvested tissue When placing said harvested tissue upon a frame for fixation, for example, said tissue could be stretched at various degrees of stretch, with either raw distance stretch being known and/or a percentage stretch being known based upon the distance between markings at the natural (non-stretched) and stretched states.
  • pulmonary ligament 30 and/or visceral pleura 556 preparation preservation of the tissue's elastin component is important so that the intended uses of the prepared pulmonary ligament 50 and/or processed visceral pleura 60 may still be considered.
  • overall flexibility of the processed pulmonary ligament 50 and/or processed visceral pleura 60 preparation is important for various uses, efforts to preserve the elastin component may be reflected in the overall preparation methods. Different methods may be used to generate different products 100 of the present disclosure, such as different frames, tissue stretching, fixation duration, and/or a combination of the same.
  • decellularization of the epithelial layer or layers of pulmonary ligament 30 for example, can be performed while also preserving/keeping the elastin scaffolds.
  • the biologically occurring pulmonary ligament includes a layer of mesothelial cells (a specialized type of epithelial cells) on each side of the ligament.
  • mesothelial cells a specialized type of epithelial cells
  • storage can be had using saline and/or an additional preservative, so that the product 100 is safe to use when needed.
  • Pulmonary ligaments 30 and/or visceral pleura 556 can be harvested from any number of mammalian species and used in the same or other species.
  • pulmonary ligaments 30 and/or visceral pleura 556 can be harvested from pigs, horses, cows, goats, sheep, etc., and used to treat the same species or different species, including humans.
  • pulmonary ligaments 30 and/or visceral pleura 556 could be harvested from one human and used to treat another human.
  • pulmonary ligaments 30 and/or visceral pleura 556 may be preserved by freezing in liquid nitrogen ( ⁇ 198° C. in at least one example). So to ensure that fixed tissue thickness, stiffness, strength, and/or micro-structure do not change (or substantially change) over time, various short- and/or long-term storage mechanisms may be used.
  • the method includes the steps of obtaining a heart/lung block (such as from a slaughterhouse), placing the heart/lung block in cold saline (or another suitable solution at various temperatures) for transport as needed, isolating the lung ligament 30 and/or visceral pleura 556 tissue, and fixing the same as referenced herein.
  • a heart/lung block such as from a slaughterhouse
  • cold saline or another suitable solution at various temperatures
  • isolating the lung ligament 30 and/or visceral pleura 556 tissue and fixing the same as referenced herein.
  • Such a method may be performed while taking precautions/steps to avoid tissue, perforations, fenestrations, and/or blood vessels or infiltrations therein.
  • the product is not treated with a fixative. Instead, the product, in at least one embodiment, is harvested from a mammal and used in connection with one or more procedures or as one or more products reference herein without the use of a fixative.
  • such non-fixed pulmonary ligament products can be acellular, e.g., after treatment with one or more decellularization agents, and/or sterile.
  • kits 525 shown in block diagram form in FIG. 5E , that may include processed pulmonary ligament 50 , processed visceral pleura 60 tissue, and/or a product 100 , sterilely enclosed within packaging 530 .
  • a sterile condition of pulmonary ligament 50 , processed visceral pleura 60 tissue, and/or a product 100 within the packaging 525 may be achieved, for example, by terminal sterilization using irradiation, ethylene oxide gas, or any other suitable sterilization technique, and the materials and other properties of the medical packaging can be selected accordingly.
  • stents such for as coronary stents, peripheral stents (porto cava shunts), aortic stents, neurological stents, esophageal stents, biliary tract stents, and the like.
  • venous and/or arterial valves which may have various leaflet configurations, such as monocusp, bileaflet, trileaflet, and others.
  • a patch in various cardiac and other surgical procedures, such as ventricular reconstruction, an arterial patch, a venous patch (such as a carotid endarterectomy), or to repair other holes.
  • LVAD left ventricular assist device
  • CABG coronary artery bypass graft
  • pediatric surgery or general surgery.
  • j As a cover for organs such as the heart (to limit dilation of the left ventricle, for example), stomach, urinary bladder, and to avoid overdistension and/or to prevent adhesion especially in laparoscopic procedures of diabetic patients.
  • organs such as the heart (to limit dilation of the left ventricle, for example), stomach, urinary bladder, and to avoid overdistension and/or to prevent adhesion especially in laparoscopic procedures of diabetic patients.
  • a suture line As a reinforcement of a suture line, such as with ventricular aneurysm repair, bariatric surgery, and fistulae repair for intestines, bronchus, and esophagus.
  • biological composite tubes such as stented or stentless valves for inclusion within a biological tube, which can be used, for example, in ascending aortic aneurysm (AAA) replacement or pulmonary artery replacement.
  • AAA ascending aortic aneurysm
  • n As a cover for neurosurgical applications, such as a cover of part of the brain surface during tumor resection or resection of the skull.
  • FIGS. 6A and 6B show closed and opened stent valve frames, respectively, for use with various products 100 of the present disclosure.
  • an exemplary product 100 of the present disclosure comprises a frame 600 , with said frames 600 , in various embodiments, comprising at least one superior arm 602 and at least one inferior arm 604 . Arms 602 , 604 , as shown in FIGS.
  • Frames 600 may be positioned at or near a relative end of frame 600 , and may be parallel or substantially parallel to one another.
  • Frames 600 as shown in FIGS. 6A and 6B , further comprise a connection portion 606 , and optionally one or more vertical bars 608 extending along an elongate axis (A-A′ as shown therein) to provide additional overall stability.
  • an exemplary frame 600 comprises three vertical bars 608 extending along axis A-A′ along a portion of a length of frame 600 from a first end 610 to a second end 612 .
  • one or more lower arms 614 may be present, which may, as shown in FIG. 6B , connect to one or more vertical bars 608 and/or one or more elements of connection portion 606 .
  • a combination of vertical bars 608 may comprise a connection portion 606 .
  • Frames 600 , or portions thereof, may comprise a number of biologically-compatible materials including, but not limited to, nitinol, chromium, cadmium, molybdenum, nickel, a nickel composite (such as, for example, nickel-cadmium and/or nickel-chromium), nitinol palladium, palladium, cobalt, platinum, and/or stainless steel.
  • Connection portion 606 is shown in FIG. 6B as being an element of an exemplary frame 600 coupling to one or more of superior arm(s) 602 , inferior arm(s) 604 , vertical bar(s) 608 , and lower arm(s) 614 .
  • connection portion 606 comprises a plurality of connection bars 616 , which are used to connect one or more processed ligaments 50 and/or visceral pleura 60 , or one or more other bodily tissues having the necessary stretchability and durability properties necessary to be useful in connection with one or more products 100 of the present disclosure, to frame 600 as referenced in further detail herein.
  • a “tissue” may be referred to as a ligament 50 and/or visceral pleura 60 , and ligament 50 and/or visceral pleura 60 , in at least one embodiment, may comprise another non-ligament tissue having the necessary properties noted above.
  • a plurality of vertical bars 608 may also comprise a connection portion 606 of the present disclosure. Therefore, and depending on how portions of frame 600 are viewed, the exemplary frame shown in FIGS. 6A and 6B may comprise one connection portion 606 and a plurality of vertical bars 606 , or they may comprise two connection portions 606 , with one connection portion 606 comprising connection bars 616 and the other connection portion 606 comprising vertical bars 608 . In addition, and as shown in FIG.
  • various frames 600 of the present disclosure may comprise one or more barbs 618 positioned along various portions of frames 600 (such as vertical bars 608 , connection bars 616 , and/or other components) to facilitate securing a product 100 within a mammalian luminal organ (to prevent migration), and/or to facilitate securing the tissue (such as ligament 50 and/or visceral pleura 60 ) to frame 600 .
  • frames 600 such as vertical bars 608 , connection bars 616 , and/or other components
  • FIG. 7A shows an exemplary processed ligament 50 and/or visceral pleura 60 of the present disclosure molded for use with or as a bileaflet valve 400 .
  • frame 600 is configured as two leaves with one connection portion 606 .
  • other frame 600 embodiments such as being configured as a trileaflet valve 400 and as potentially a valve 400 with even more leaflets, may be produced consistent with the present disclosure.
  • the processed ligament 50 and/or visceral pleura 60 is shaped substantially similar to an outer perimeter of frame 600 shown in FIGS. 6A and 6B .
  • the shape shown in FIG. 7A represents processed ligament 50 and/or visceral pleura 60 configured so to create symmetrical valve leaflets upon placement of processed ligament 50 and/or visceral pleura 60 upon frame 600 .
  • FIG. 7B shows a cross-section of a portion of an exemplary product 100 of the present disclosure, whereby individual connection bars 616 of an exemplary frame 600 are shown with a portion of a processed ligament 50 and/or visceral pleura 60 positioned therebetween.
  • This view may be considered as an upper or lower cross-sectional view, and demonstrates an exemplary method of positioning a portion of processed ligament 50 and/or visceral pleura 60 within said connection bars 616 to secure the processed ligament 50 and/or visceral pleura 60 at that particular location within device 100 .
  • FIG. 8A shows another cross-section of a portion of an exemplary product 100 of the present disclosure, whereby a superior arm 602 and an inferior arm 604 of an exemplary frame 600 are shown with a portion of a processed ligament 50 and/or visceral pleura 60 positioned therebetween.
  • This view shows an exemplary method of positioning a portion of processed ligament 50 and/or visceral pleura 60 within said arms 602 , 604 to secure the processed ligament 50 and/or visceral pleura 60 at that particular location within device 100 .
  • One or more sutures 800 may be used to connect two portions of processed ligament 50 and/or visceral pleura 60 to one another to prevent movement of the same.
  • an end portion of processed ligament 50 and/or visceral pleura 60 may be positioned upon or adjacent to inferior arm 604 , and wrapped counter-clockwise (as shown in FIG. 8A ) around inferior arm 604 .
  • the wrapped portion of processed ligament 50 and/or visceral pleura 60 may continue being wrapped around frame 600 by way of wrapping clockwise (as shown in FIG. 8A ) around superior arm 602 , and the processed ligament 50 and/or visceral pleura 60 may be sutured to itself as shown in the figure.
  • FIG. 8B An exemplary embodiment of a product 100 of the present disclosure comprising a frame 600 and processed ligament 50 and/or visceral pleura 60 attached thereto is shown in FIG. 8B .
  • Product 100 is shown in a closed configuration in FIG. 8B , whereby processed ligament 50 and/or visceral pleura 60 is sutured to itself and/or to portions of frame 600 at multiple locations to hold the processed ligament 50 and/or visceral pleura 60 in place.
  • product 100 is configured as a bileaflet valve 400 , which may be used, for example, as a venous valve or another type of valve.
  • Leaflets 802 and 804 are identified in FIG. 8B .
  • processed ligament 50 and/or visceral pleura 60 is sutured to frame 600 , but sutures 800 are outside of the bloodstream (are not in contact with blood flow) when frame 600 with processed ligament 50 and/or visceral pleura 60 thereon (an exemplary product 100 ) is positioned within a mammalian luminal organ having blood flowing therethrough.
  • a completed product 100 may be configured as a stent or stent valve 400 .
  • Configurations as a stent valve 400 would utilize leaflets 802 and 804 to control the flow of fluid through a lumen 806 defined within product 100 .
  • the direction of fluid flow of such an embodiment would be such that fluid would enter inlet portion 808 of product 100 and exit from outlet portion 810 of product 100 , as shown in FIG. 8B .
  • product 100 could be positioned within a mammalian luminal organ, and fluid flow through said organ could continue through lumen 806 of product 100 .
  • FIGS. 9A and 9B show additional exemplary closed and opened stent valve frames, respectively, for use with various products 100 of the present disclosure.
  • an exemplary product 100 of the present disclosure comprises a frame 600 configured for ultimate use as a trileaflet valve 400 , with said frames 600 , in various embodiments, comprising at least one superior arm 602 and at least one inferior arm 604 .
  • Arms 602 , 604 as shown in FIGS. 9A and 9B , may be positioned at or near a relative end of frame 600 .
  • Frames 600 as shown in FIGS.
  • connection portions 606 further comprise two or more connection portions 606 (as referenced in further detail below), and optionally one or more vertical bars 608 extending along an elongate axis to provide additional overall stability.
  • such an exemplary frame comprises three vertical bars 608 extending along a portion of a length of frame 600 from a first end 610 to a second end 612 .
  • one or more lower arms 614 may be present, which may, as shown in FIG. 6B , connect to one or more vertical bars 608 and/or one or more elements of connection portion 606 .
  • a combination of vertical bars 608 may comprise a connection portion 606 .
  • the exemplary frame 600 shown in FIGS. 9A and 9B may comprise two connection portions 606 and a plurality of vertical bars 608 , or they may comprise three connection portions 606 , with two connection portions 606 comprising connection bars 616 and the other connection portion 606 comprising vertical bars 608 .
  • FIG. 9A shows frame 600 as having three connection portions 606
  • the same frame 600 shown in FIG. 9B
  • the frames shown in FIGS. 9A and 9B are identical, however, with one being shown in a closed configuration ( FIG. 9A ) and the other being shown in a closed configuration ( FIG. 9B ).
  • Connection portions 606 are shown in FIG. 9B , for example, as being elements of an exemplary frame 600 coupling to one or more of superior arm(s) 602 , inferior arm(s) 604 , vertical bar(s) 608 , and lower arm(s) 614 .
  • connection portions 606 comprise a plurality of connection bars 616 , which are used to connect one or more processed ligaments 50 and/or visceral pleura 60 to frame 600 as referenced herein with respect to other frame 600 and/or product 100 embodiments.
  • FIG. 10A shows an exemplary processed ligament 50 and/or visceral pleura 60 of the present disclosure molded for use with as a trileaflet valve 400 .
  • frame 600 is configured as three leaves with two or three connection portions 606 , depending on how the frame 600 is viewed.
  • the processed ligament 50 and/or visceral pleura 60 as shown in FIG. 10A , is shaped substantially similar to an outer perimeter of frame 600 shown in FIG. 9A and 9 B.
  • the shape shown in FIG. 7A represents processed ligament 50 and/or visceral pleura 60 configured so to create symmetrical valve leaflets upon placement of processed ligament 50 and/or visceral pleura 60 upon frame 600 .
  • FIG. 10B An exemplary embodiment of a product 100 of the present disclosure comprising a frame 600 as shown in FIGS. 9A and 9B and a processed ligament 50 and/or visceral pleura 60 attached thereto is shown in FIG. 10B .
  • Product 100 is shown in a closed configuration in FIG. 10B , whereby processed ligament 50 and/or visceral pleura 60 is sutured to itself and/or to portions of frame 600 at multiple locations to hold the processed ligament 50 and/or visceral pleura 60 in place.
  • product 100 is configured as a trileaflet valve 400 , which may be used, for example, as a venous valve or another type of valve.
  • Leaflets 802 , 804 , and 1000 are identified in FIG. 10B .
  • Various products 100 of the present disclosure configured as valves 400 can have the processed ligament 50 and/or visceral pleura 60 positioned in specific configuration(s) to improve overall operation, effectiveness, and/or size of said products 100 .
  • Visceral pleura 556 and therefore processed visceral pleura 60 , has one side with mesothelium (also referred to herein as a relatively smooth “mesothelial side”), and has an opposite side without mesothelium (also referred to herein as a relatively rough “non-mesothelial side”). As shown in FIG.
  • the mesothelial side 860 of visceral pleura 556 is on a relative outside of the lung 34
  • the non-mesothelial side 862 of visceral pleura 556 is on the relative inside of the lung 34 .
  • processed visceral pleura 60 can be positioned in a way/configuration so that the side of processed visceral pleura 60 having mesothelium would be on the relative back of the valve 400 leaflet(s) 802 , 804 , and/or 1000 , and so that the side of processed visceral pleura 60 without mesothelium would be on the relative front of the valve 400 leaflet(s) 802 , 804 , and/or 1000 .
  • the mesothelial side 860 of processed visceral pleura 60 is on the back of leaflet(s) 802 , 804 , and/or 1000 , where blood flow reversal exists as the valve 400 closes.
  • the relatively smooth mesothelial side 860 would be in contact with blood flows more slowly, where shear stresses may be lower and reversing.
  • the rougher non-mesothelial 862 side of processed visceral pleura 60 would then be on the front of leaflet(s) 802 , 804 , and/or 1000 , in contact with fast moving blood, because there is less of a risk of thrombosis as compared with the slower moving blood or shear stress.
  • valve 400 exemplary product 100
  • FIG. 10C Such a valve 400 (exemplary product 100 ) embodiment is shown in FIG. 10C positioned within a luminal organ 850 , where valve leaflets 802 , 804 (or more, less, or different leaflets, depending on valve 400 configuration) are shown therein.
  • valve 400 is in contact with the wall(s) 852 of luminal organ 850 , positioned within a lumen 854 defined therethrough.
  • a mesothelial side 860 of processed visceral pleura 60 is on a relative back of leaflets 802 , 804
  • a non-mesothelial side 862 of processed visceral pleura 60 is on a relative front of leaflets 802 , 804 , as described above.
  • Such a device embodiment 100 is one such embodiment referenced herein where processed ligament 50 and/or visceral pleura 60 is oriented in a specific direction.
  • mesothelial side 860 of processed visceral pleura 60 would be on a relative front of leaflets 802 , 804
  • a non-mesothelial side 862 of processed visceral pleura 60 would be on a relative back of leaflets 802 , 804 .
  • Exemplary products 100 of the present disclosure may be prepared as follows.
  • the method 1100 comprises the steps of preparing a bodily tissue (such as a processed ligament 50 and/or visceral pleura 60 or another bodily tissue having the necessary stretchability and durability properties necessary to be useful in connection with one or more products 100 of the present disclosure) (an exemplary tissue preparation step 1102 , which may be optional, as the tissue may have been previously prepared and subsequently used in connection with method 1100 ), and shaping the bodily tissue (an exemplary tissue shaping step 1104 ) so that the tissue will fit around portions of an exemplary frame 600 .
  • a bodily tissue such as a processed ligament 50 and/or visceral pleura 60 or another bodily tissue having the necessary stretchability and durability properties necessary to be useful in connection with one or more products 100 of the present disclosure
  • an exemplary tissue preparation step 1102 which may be optional, as the tissue may have been previously prepared and subsequently used in connection with method 1100
  • shaping the bodily tissue an exemplary tissue shaping step 1104
  • tissue preparation step comprises preparing a portion of tissue (such as pulmonary ligament 50 and/or visceral pleura 60 ) by way of excising the tissue from a mammalian body, removing any undesirable portions of tissue (such as those with holes or vessels therein), placing the tissue on a frame (to maintain a desired shape and/or amount of stretch), and fixing the tissue using glutaraldehyde and buffer, for example.
  • Tissue shaping step 1104 comprises stretching the tissue (such as lung ligament 50 , visceral pleura 60 , lung viscera, and/or another tissue) and cutting the tissue using a flat mold, for example.
  • method 1100 further comprises the step of positioning the tissue around a mount (such as a cylindrical or conical mount, which may be made of acrylic or another suitable material) (an exemplary mounting step 1106 ), and positioning at least part of an exemplary frame 600 around the tissue positioned upon the mount (an exemplary frame positioning step 1108 ).
  • Tissue may then be passed around various bars of frame 600 (such as connection bars 616 of connection portion 606 or other components of frame 600 ), such as shown in FIG. 7B (an exemplary tissue connection step 1110 ), and various sutures 800 may be used to suture portions of tissue together to form the overall relatively cylindrical shape (an exemplary suturing step 1112 ).
  • Tissue connection step 1110 may be repeated, such as by allowing the inflow portion of the tissue cylinder to pass through the superior and inferior parallel arms (arms 602 , 604 ) to cover arms 602 , 604 , as shown in FIG. 8A , for example. Additional sutures may then be used, by way of repeating suturing step 1112 , so that the border of the tissue is sutured with, for example, a continuing suture line facilitated by using a polypropylene 7-0 or 8-0 needle, for example, or another type/size of needle, to result in a product 100 as shown in FIG. 8B, 10B , or in other product 100 embodiments.
  • product 100 After product 100 is prepared, it can be delivered into a mammalian luminal organ in a number of ways.
  • One method of delivery involves gently crimping or compressing product 100 so that its overall cross-section decreases, to facilitate delivery into the luminal organ. This delivery may be facilitated using a catheter or a wire, for example.
  • a balloon catheter may be used, with product 100 positioned at the balloon. Inflation of the balloon, using a gas or a liquid, for example, can cause the balloon to expand and thus cause product 100 to expand and be positioned within the luminal organ. Deflation of the balloon can then facilitate removal of the catheter.
  • products 100 of the present disclosure may be autoexpandable, such as those comprising nitinol, whereby delivery using a balloon catheter may not be necessary. Delivery of products 100 of the present disclosure is not limited to the aforementioned delivery methods, as other methods of delivering implantable devices into a mammalian luminal organ may be used to deliver products 100 .
  • the present disclosure also includes disclosure of uses of various processed ligaments 50 , processed visceral pleura 60 , and/or products 100 in connection with various Transcatheter Aortic-Valve Implantation (TAVI) and other percutaneous approaches.
  • TAVI involves the placement of an aortic valve within a patient using a catheter to avoid a traditional open surgical procedure and to minimize general stresses to the patient during the procedure. This procedure is used when a patient's aortic valve fails to operate as desired, and can effectively prolong the patient's life without requiring additional surgical and non-surgical procedures, including but not limited to heart transplant. Certain patients may not be suitable for surgery, such as those with such a severe aortic stenosis that would preclude an open surgical procedure, allowing TAVI to be considered.
  • Processed ligaments 50 and/or processed visceral pleura 60 of the present disclosure can be used with current or potentially developed aortic valve frames/housings, or products 100 of the present disclosure comprising one or more frames 600 , can be used as aortic or other valves as referenced herein. Furthermore, various processed ligaments 50 , processed visceral pleura 60 , and/or products 100 can be delivered percutaneously or surgically, using various catheters or wires or other surgical tools for example, avoiding more invasive surgical procedures.
  • processed lung ligaments 50 and processed visceral pleura 60 of the present disclosure are thinner than pericardium, which is currently used in TAVI or used with any number of valve procedures to replace and/or insert various aortic, mitral, pulmonary, tricuspid, and/or other percutaneous valves
  • the overall dimensions of the final delivery system whether it be a product 100 of the present disclosure or processed ligament 50 and/or processed visceral pleura 60 of the present disclosure coupled with another type of frame or housing, can be significantly reduced by using processed ligaments 50 and/or processed visceral pleura 60 instead of pericardium.
  • the bulk of a traditional TAVI product is not the stent frame itself, but the pericardial tissue, and using processed ligament 50 and/or processed visceral pleura 60 of the present disclosure instead of pericardial tissue would notably and beneficially decrease the overall bulk of said product 100 .
  • Having a product 100 configured smaller than a traditional TAVI product, for example, would not only allow for more potential manipulation of said product 100 in connection with delivery, expansion, and/or placement as compared to traditional products, but also would allow for smaller delivery devices (catheters, for example) to be used, therefore decreasing the potential aperture/opening made into a femoral or iliac artery, for example, during product 100 delivery.
  • reducing a catheter from 18 French to 12 French, or from 12 French to 8 French would permit a smaller delivery aperture/opening to be used. This would also reduce or eliminate the need for a potential closure device, reduce patient bleeding, reduce overall patient trauma, and/or simplify delivery, placement, and/or expansion of relatively smaller products 100 .
  • products 100 of the present disclosure are configured to avoid suture of commissure and thus spread out the stress, and there is may be no sutures 800 that come in contact with blood.
  • Frames 600 may have a less metallic stent design, and may also comprise a completed inflow metal stent tissue cover.
  • various products 100 of the present disclosure have no suture line at the inflow border, and no tissue (such as processed lung ligament 50 and/or visceral pleura 60 ) fixation at the stent border.
  • the double parallel (or relatively/substantially parallel) arms are configured so that a tissue (such as ligament 50 and/or visceral pleura 60 ) can be passed around them. Furthermore, and in at least one product 100 embodiment, the suture line is not submitted to the inflow stress and blood flow, and the suture knot is not in contact with the inflow blood.
  • the commissure are obtained by passing the tissue around the various vertical arms with the advantage of no suture and diffuse tissue stress along the vertical length of the bars.
  • the various frame 600 designs and their tissue covers have the advantage of very little contact of any metallic frame material with the blood flow.
  • the valves themselves have excellent leaflet coaptation, good valve sinus formation, and no blood stagnation areas when developed/configured as described herein and used within a mammalian blood vessel.
  • the inflow stent area covered with tissue is in broad contact with the venous wall with the advantage of tissue-tissue contact when positioned within a mammalian vein.
  • the present disclosure may have presented a method and/or a process as a particular sequence of steps.
  • the method or process should not be limited to the particular sequence of steps described, as other sequences of steps may be possible. Therefore, the particular order of the steps disclosed herein should not be construed as limitations of the present disclosure.
  • disclosure directed to a method and/or process should not be limited to the performance of their steps in the order written. Such sequences may be varied and still remain within the scope of the present disclosure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Cardiology (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Urology & Nephrology (AREA)
  • Manufacturing & Machinery (AREA)
  • Surgery (AREA)
  • Pulmonology (AREA)
  • Physiology (AREA)
  • Biotechnology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Methods and uses of biological tissues for various stent and other medical applications. In an exemplary embodiment of a method of processing a tissue of the present disclosure, the method comprises the steps of acquiring a mammalian tissue comprising at least a portion of a pulmonary region tissue, selecting a sample of pulmonary region tissue from the at least a portion of a pulmonary region tissue, and fixing the sample of pulmonary region tissue using a fixative, resulting in a fixed sample. In at least one embodiment, the step of selecting a sample of pulmonary region tissue comprises selecting a sample of pulmonary ligament tissue from the mammalian tissue.

Description

    PRIORITY
  • The present application is a continuation of U.S. patent application Ser. No. 14/377,619, filed Aug. 8, 2014, which was the National Stage of International Application No. PCT/US13/25591, filed Feb. 11, 2013, which claims the benefit of U.S. Provisional Application No. 61/640,381, filed Apr. 30, 2012 and U.S. Provisional Application No. 61/597,406, filed Feb. 10, 2012. Each of these related applications is incorporated by reference into this disclosure in its entirety.
  • BACKGROUND
  • To date, the small intestinal submucosa (SIS) is the major biological tissue scaffold that has garnered some biological applications to replace or augment injured or damaged biological tissues. Once the smooth muscles are stripped away, the SIS consists of largely collagen and some elastin fibers. The fixation of the tissue, however, renders the scaffold stiff and can result in losses of some of its biological advantages.
  • In view of the same, it would be advantageous to identify and process an effective alternative tissue that would maintain its elasticity, keep its biological advantages, and be useful for various bodily purposes, including as part of various medical devices.
  • BRIEF SUMMARY
  • In an exemplary embodiment of a method of processing pulmonary ligament tissue of the present disclosure, the method comprises the steps of acquiring a mammalian tissue comprising at least a portion of a pulmonary ligament, selecting a sample of pulmonary ligament tissue from the at least a portion of pulmonary ligament, and fixing the sample of pulmonary ligament tissue using a fixative, resulting in a fixed sample.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the method comprises the steps of acquiring a mammalian tissue comprising at least a portion of a pulmonary region tissue, selecting a sample of pulmonary region tissue from the at least a portion of a pulmonary region tissue, and fixing the sample of pulmonary region tissue using a fixative, resulting in a fixed sample. In another embodiment, the step of acquiring comprises acquiring the at least a portion of a pulmonary region tissue by way of dissecting or resecting tissue from a deceased mammal. In yet another embodiment, the step of acquiring comprises acquiring the at least a portion of a pulmonary region tissue from a mammal selected from the group consisting of a pig, a horse, a cow, a goat, a sheep, and a human. In an additional embodiment, the step of acquiring comprises acquiring the at least a portion of a pulmonary region tissue from a larger quantity of mammalian tissue comprising at least a portion of a lung, at least a portion of an aorta, and at least a portion of a pulmonary ligament.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the step of acquiring comprises acquiring the at least a portion of a pulmonary region tissue from a larger quantity of mammalian tissue comprising at least a portion of a lung, at least a portion of an esophagus, and at least a portion of a pulmonary ligament. In an additional embodiment, the step of selecting a sample of pulmonary region tissue comprises selecting a sample of pulmonary ligament tissue from the mammalian tissue. In yet an additional embodiment, the step of selecting a sample of pulmonary region tissue comprises selecting a sample of visceral pleura tissue from the mammalian tissue. In another embodiment, the step of selecting a sample of pulmonary region tissue comprises selecting the sample of pulmonary region tissue from the at least a portion of a pulmonary region tissue by cleaning the at least a portion of a pulmonary region tissue to remove blood from the at least a portion of a pulmonary region tissue. In yet another embodiment, the step of selecting a sample of pulmonary region tissue comprises selecting a sample of pulmonary ligament tissue from the at least a portion of a pulmonary region tissue by cleaning the at least a portion of a pulmonary region tissue to remove blood from the at least a portion of a pulmonary region tissue.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the step of selecting a sample of pulmonary region tissue comprises selecting a sample of visceral pleura tissue from the at least a portion of a pulmonary region tissue by cleaning the at least a portion of a pulmonary region tissue to remove blood from the at least a portion of a pulmonary region tissue. In another embodiment, the step of selecting a sample of pulmonary region tissue comprises selecting the sample of pulmonary region tissue from the at least a portion of a pulmonary region tissue by removing fatty material from the at least a portion of a pulmonary region tissue. In yet another embodiment, the step of selecting a sample of pulmonary region tissue comprises selecting a sample of pulmonary ligament tissue from the at least a portion of a pulmonary region tissue by removing fatty material from the at least a portion of a pulmonary region tissue. In an additional embodiment, the step of selecting a sample of pulmonary region tissue comprises selecting a sample of visceral pleura tissue from the at least a portion of a pulmonary region tissue by removing fatty material from the at least a portion of a pulmonary region tissue.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the step of selecting a sample of pulmonary region tissue comprises selecting the sample of pulmonary region tissue from the at least a portion of a pulmonary region tissue that is free or substantially free of perforations. In an additional embodiment, the step of selecting a sample of pulmonary region tissue comprises selecting a sample of pulmonary ligament tissue from the at least a portion of a pulmonary region tissue that is free or substantially free of perforations. In yet an additional embodiment, the step of selecting a sample of pulmonary region tissue comprises selecting a sample of visceral pleura tissue that is free or substantially free of perforations. In another embodiment, the step of selecting a sample of pulmonary region tissue comprises selecting the sample of pulmonary region tissue from the at least a portion of a pulmonary region tissue that is free or substantially free of blood or blood vessels.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the step of selecting a sample of pulmonary region tissue comprises selecting a sample of pulmonary ligament tissue from the at least a portion of a pulmonary region tissue that is free or substantially free of blood or blood vessels. In another embodiment, the step of selecting a sample of pulmonary region tissue comprises selecting a sample of visceral pleura tissue that is free or substantially free of blood or blood vessels. In yet another embodiment, the step of selecting a sample of pulmonary region tissue comprises selecting the sample of pulmonary region tissue from the at least a portion of a pulmonary region tissue that is free or substantially free of irregularities. In an additional embodiment, the step of selecting a sample of pulmonary region tissue further comprises placing the sample of pulmonary region tissue in a saline solution.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the step of selecting a sample of pulmonary region tissue further comprises placing the sample of pulmonary region tissue in a solution at least 20° F. below ambient temperature. In an additional embodiment, the method further comprises the step of placing the sample of pulmonary region tissue within or upon a mount having known dimensions, wherein the placing step is performed prior to the fixing step. In yet an additional embodiment, the step of placing the sample of pulmonary region tissue within or upon a mount is performed by placing the sample of pulmonary region tissue within or upon a circular or relatively circular mount and securing the sample of pulmonary region tissue to the mount. In another embodiment, the step of placing the sample of pulmonary region tissue within or upon a mount is performed by placing the sample of pulmonary region tissue within or upon a square or rectangular mount and securing the sample of pulmonary region tissue to the mount. In yet another embodiment, the step of placing the sample of pulmonary region tissue within or upon a mount is performed by placing the sample of pulmonary region tissue within or upon a multidimensional mount and securing the sample of pulmonary region tissue to the mount. In an additional embodiment, the fixed sample maintains or closely resembles the known dimensions of the mount.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the method further comprises the step of securing the sample of pulmonary region tissue within or upon the mount, wherein the securing step is performed prior to the fixing step. In another embodiment, the securing step performed using a securing member selected from the group consisting of one or more sutures, one or more clamps, and one or more forceps. In yet another embodiment, the step of fixing the sample of pulmonary region tissue using a fixative is performed by fixing the sample of pulmonary region tissue using the fixative selected from the group consisting of glutaraldehyde, formaldehyde, and glycerol. In an additional embodiment, the step of fixing the sample of pulmonary region tissue using a fixative is performed by fixing the sample of pulmonary region tissue using the fixative within a HEPES or phosphate buffer. In yet an additional embodiment, the step of fixing the sample of pulmonary region tissue using a fixative is performed by fixing the sample of pulmonary region tissue using a fixation procedure selected from the group consisting of aqueous fixation, cryo-preservation, and dry tissue fixation.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the method further comprises the step of placing at least two dots on the sample of pulmonary region tissue prior to performing the fixing step, wherein distance(s) between the at least two dots are known prior to performing the fixing step. In an additional embodiment, the method further comprises the step of measuring the distance(s) between the at least two dots after performing the fixing step, and comparing the distance(s) between the at least two dots after performing the fixing step to the distances between the at least two dots prior to performing the fixing step. In yet an additional embodiment, the method further comprises the step of determining an amount of shrinkage based upon data collected from the comparing step. In another embodiment, the acquiring step comprises separating the at least a portion of pulmonary region tissue.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the method further comprises the step of forming the fixed sample into a valve. In another embodiment, method further comprises the step of shaping the fixed sample so that the fixed sample will fit around portions of a frame. In yet another embodiment, the shaping step is performed by stretching the fixed tissue and cutting the fixed tissue to form a desired shape. In an additional embodiment, method further comprises the step of positioning the fixed sample upon portions of the frame, wherein the fixed sample and the frame collectively form a tissue product.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the method further comprises the step of positioning the fixed sample upon portions of a frame, wherein the fixed sample and the frame collectively form a tissue product. In an additional embodiment, method further comprises the step of securing a portion of the fixed sample to the frame using one or more sutures. In yet an additional embodiment, method further comprises the step of weaving a portion of the fixed sample around at least a portion of the frame to secure the portion of the fixed sample to the frame. In another embodiment, the weaving step is performed to secure the portion of the fixed sample to the frame without requiring sutures.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the method further comprises the step of weaving a portion of the fixed sample around at least a portion of the frame to secure the portion of the fixed sample to the frame, wherein when the tissue product is positioned within a mammalian luminal organ, the one or more sutures are not in contact with fluid flowing through the mammalian luminal organ. In another embodiment, the method further comprises the step of positioning the tissue product within a mammalian luminal organ so that fluid native to the mammalian luminal organ may pass through a lumen defined within the tissue product. In yet another embodiment, the frame comprises at least one superior arm and at least one inferior arm positioned at or near an inlet portion of the tissue product, the at least one superior arm and the at least one inferior arm configured to receive a first portion of the fixed sample thereon.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the at least one superior arm and the at least one inferior arm are configured to receive the first portion of the fixed sample thereon, and wherein the method further comprises the step of securing the first portion of the fixed sample to the frame using one or more sutures. In an additional embodiment, the frame further comprises at least one connection portion coupled to at least one of the at least one superior arm and/or the at least one inferior arm, the at least one connection portion extending along a longitudinal axis of the frame and configured to receive a second portion of the fixed sample thereon. In yet an additional embodiment, the connection portion is configured to receive the second portion of the mammalian tissue thereon, and wherein the method further comprises the step of securing the second portion of the fixed sample to the frame using one or more sutures.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the tissue product comprises a valve having a bileaflet configuration or a trileaflet configuration. In another embodiment, the desired shape results in a valve having symmetrical leaflets. In yet another embodiment, the fixed sample is sized and shaped to substantially or completely similar to an outer perimeter of the frame. In an additional embodiment, the frame further comprises at least one vertical bar coupled to at least one of the at least one superior arm and/or the at least one inferior arm. In yet an additional embodiment, the frame further comprises at least one lower arm coupled to at least one of the at least connection portion and the at least one vertical arm.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the frame (or tissue product) is configured to move from a first, closed configuration to a second, open configuration. In an additional embodiment, when the frame is in the first, closed configuration, it is configured to fit within a mammalian luminal organ, such as by percutaneous delivery through the mammalian luminal organ. In yet an additional embodiment, the tissue product is configured as a stent valve. In another embodiment, the stent valve is configured for use as a venous valve. In yet another embodiment, the tissue product is configured so that the fluid native to the mammalian luminal organ can pass through an inlet portion of the tissue product and exit from an outlet portion of the tissue product
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the fixed sample coupled to the frame operates as a valve. In another embodiment, the fluid native to the mammalian luminal organ is at least partially prevented from flowing from the outlet portion to the inlet portion due to a configuration of the tissue product. In yet another embodiment, the fixed sample comprises mammalian pulmonary ligament. In an additional embodiment, the fixed sample comprises visceral pleura. In yet an additional embodiment, the fixed sample comprises tissue having stretchability and durability properties to allow the fixed sample to move relative to the fluid flow through the lumen defined within the tissue product.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the frame is capable of expansion using a balloon catheter. In an additional embodiment, the frame is autoexpandable. In yet an additional embodiment, the frame comprises a material selected from the group consisting of nitinol, chromium, cadmium, molybdenum, nickel, a nickel composite, nickel-cadmium nickel-chromium, nitinol palladium, palladium, cobalt, platinum, and stainless steel. In various embodiments, the fixed samples is configured as a products selected from the group consisting of a stent cover, a diaphragm cover, a hernia repair cover, a brain cover, a general organ cover, a wound cover, a prosthetic device cover, a skull cover, a general tissue cover, a tissue valve, a patch, a surgical membrane, a skin substitute, a suture reinforcement, a tubular structure, a tendon replacement, a bladder tissue replacement, a urethra tissue replacement, a vaginal tissue replacement, a muscle replacement, and another tissue replacement.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the positioning step is performed by positioning at least part of the fixed sample around the at least part of the frame. In another embodiment, the positioning step is performed by positioning at least part of the fixed sample around one or more of a superior arm, an inferior arm, and a connection portion of the frame. In yet another embodiment, the positioning step is performed by positioning at least part of the fixed sample around at least part of the frame so that at least part of the fixed sample operates as one or more valve leaflets.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the method further comprises the step of forming the fixed sample into a product configured for mammalian treatment or therapy. In an additional embodiment, the step of fixing the sample of pulmonary region tissue comprises fixing a sample of pulmonary ligament tissue, resulting in a fixed pulmonary ligament sample. In yet an additional embodiment, the step of fixing the sample of pulmonary region tissue comprises fixing a sample of visceral pleura tissue, resulting in a fixed visceral pleura sample.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the placing step is performed in connection with stretching the fixed sample in a first direction. In another embodiment, the placing step is performed in connection with stretching the fixed sample in a second direction different from the first direction. In yet another embodiment, the method further comprises the step of determining lengths of one or more fibers of the sample of pulmonary region tissue prior to, during, or after the fixing step. In an additional embodiment, the method further comprises the step of determining desmosine content of the sample of pulmonary region tissue prior to, during, or after the fixing step.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the acquiring step is performed to acquire the at least a portion of pulmonary region tissue from a mammalian heart/lung block. In another embodiment, the method further comprises the step of preseeding the sample of pulmonary region tissue to facilitate endothelialization prior to performing the fixing step. In yet another embodiment, wherein the fixed sample is between about 40 and about 300 microns in thickness. In an additional embodiment, the fixed sample comprises pulmonary ligament tissue having a thickness of between about 80 microns and about 120 microns, and even as high as about 300 microns. In yet an additional embodiment, the fixed sample comprises visceral pleura tissue having a thickness of between about 40 microns and about 80 microns.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the acquiring step is performed to acquire the at least a portion of a pulmonary region tissue from a middle-anterior portion of at least one lung of the mammal. In another embodiment, the acquiring step is performed to acquire the at least a portion of a pulmonary region tissue by making an incision in the at least one lung and pressing tissue of the at least one lung away from a visceral pleura. In yet another embodiment, the fixing step is performed using a fixative comprising a glutaraldehyde solution having a concentration of glutaraldehyde of less than 1%.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the method further comprising the step of storing the fixed sample in a storage solution. In another embodiment, fixative has a different fixative concentration than the storage solution. In yet another embodiment, the fixing step is performed using a fixative that is buffered. In an additional embodiment, the fixing step is performed using a fixative having a pH of between about 7.2 and about 7.6. In yet an additional embodiment, the fixing step is performed so that the sample of pulmonary region tissue contacts the fixative for at least about 24 hours.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the storage solution a glutaraldehyde solution having a concentration of glutaraldehyde of or about 0.5%. In another embodiment, the fixing step is performed within a tray lined with a silicone elastomer and by pinning the sample of pulmonary region tissue to the silicone elastomer. In yet another embodiment, the fixing step is performed using bovine serum albumin. In an additional embodiment, the method further comprises the step of removing the fixative from the fixed sample, and placing the fixed sample in a solution comprising at least one item selected from the group consisting of saline, a preservative, bovine serum albumin, and liquid nitrogen.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the method further comprises the step of decellularizing at least a portion of the sample of pulmonary region tissue prior to performing the fixing step. In an additional embodiment, the method further comprises the step of sterilizing the at least a portion of the sample of pulmonary region tissue prior to performing the fixing step. In an additional embodiment, method further comprises the step of sterilizing the fixed sample.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the method further comprises the step of treating a patient using the fixed sample. In an additional embodiment, the method further comprises the step of treating a patient using the product. In yet an additional embodiment, the fixed sample is acellular. In another embodiment, the product is configured for use in connection with transcatheter aortic-valve implantation. In yet another embodiment, the product is configured for percutaneous or surgical implantation.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the product is configured for use to replace a valve selected from the group consisting of an aortic valve, a mitral valve, a pulmonary valve, a tricuspid valve, and a percutaneous valve. In another embodiment, the fixed sample has a thickness that is smaller than a thickness of pulmonary tissue. In yet another embodiment, the product has an overall bulk that is smaller than a bulk of a corresponding product made using fixed pericardial tissue instead of using the fixed sample. In an additional embodiment, the fixed visceral pleura product contains at least one valve leaflet, wherein a non-mesothelial side of the fixed visceral pleura sample is on a relative front of the at least one valve leaflet, and wherein a mesothelial side of the fixed visceral pleura sample is on a relative back of the at least one leaflet.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the fixed sample has a circumferential axis corresponding to a circumferential axis of the at least a portion of pulmonary region tissue, wherein the fixed sample has an axial axis corresponding to an axial axis of the at least a portion of pulmonary region tissue. In an additional embodiment, the fixed sample can stretch in a direction of the circumferential axis of the fixed sample a first distance, and wherein the fixed sample can stretch in a direction of the axial axis of the fixed sample a second distance, the second distance being less than the first distance. In an additional embodiment, the method further comprises the step of forming the fixed sample into a product configured for mammalian treatment or therapy, wherein the fixed sample is oriented so that the circumferential axis of the fixed sample is aligned within an axial axis of the product, the axial axis being perpendicular to a circumferential axis of a luminal organ to receive the product.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the method comprises the steps of acquiring at least a portion of a pulmonary region tissue from a mammal, selecting a sample of pulmonary region tissue from the at least a portion of a pulmonary region tissue, and forming the sample of pulmonary region tissue into a tissue product configured for mammalian treatment or therapy. In another embodiment, the step of selecting a sample of pulmonary region tissue comprises selecting a sample of pulmonary ligament tissue from the mammalian tissue. In yet another embodiment, the step of selecting a sample of pulmonary region tissue comprises selecting a sample of visceral pleura tissue from the mammalian tissue.
  • In an exemplary embodiment of a processed tissue of the present disclosure, the processed tissue is obtained by acquiring at least a portion of a pulmonary region tissue from a mammal, selecting a sample of pulmonary region tissue from the at least a portion of a pulmonary region tissue, and fixing the sample of pulmonary region tissue using a fixative, resulting in a fixed sample.
  • In an exemplary embodiment of a processed pulmonary region tissue of the present disclosure, the pulmonary region tissue is obtained by fixing a sample of pulmonary region tissue using a fixative, the sample of pulmonary region tissue selected from a larger quantity of pulmonary region tissue harvested from a mammal. In an additional embodiment, the sample of pulmonary region tissue comprises pulmonary ligament. In yet an additional embodiment, the sample of pulmonary region tissue comprises visceral pleura.
  • In an exemplary embodiment of a processed pulmonary region tissue product of the present disclosure, the pulmonary region tissue product is obtained by forming a sample of pulmonary region tissue fixed using a fixative into a pulmonary region tissue product, the sample of pulmonary region tissue selected from a larger quantity of pulmonary region tissue harvested from a mammal, wherein the pulmonary region tissue product is configured for mammalian treatment or therapy. In another embodiment, the sample of pulmonary region tissue comprises pulmonary ligament. In yet another embodiment, the sample of pulmonary region tissue comprises visceral pleura.
  • In an exemplary embodiment of a product of the present disclosure, the product comprises a frame configured to retain a mammalian tissue thereon, and the mammalian tissue coupled to the frame, wherein when the product is positioned within a mammalian luminal organ, fluid native to the mammalian luminal organ may pass through a lumen defined within the product. In another embodiment, the frame comprises at least one superior arm and at least one inferior arm positioned at or near an inlet portion of the product, the at least one superior arm and the at least one inferior arm configured to receive a first portion of the mammalian tissue thereon. In yet another embodiment, the at least one superior arm and the at least one inferior arm is configured to receive the first portion of the mammalian tissue thereon and to retain said mammalian tissue using one or more sutures. In an additional embodiment, the frame further comprises at least one connection portion coupled to at least one of the at least one superior arm and/or the at least one inferior arm, the at least one connection portion extending along a longitudinal axis of the device and configured to receive a second portion of the mammalian tissue thereon.
  • In an exemplary embodiment of a product of the present disclosure, the connection portion is configured to receive the second portion of the mammalian tissue thereon and to retain said mammalian tissue using one or more sutures. In an additional embodiment, the product is configured as a bileaflet frame. In yet an additional embodiment, the product is configured as a trileaflet frame. In another embodiment, the mammalian tissue is sized and shaped to substantially or completely conform to an outer perimeter of the frame. In yet another embodiment, the frame further comprises at least one vertical bar coupled to at least one of the at least one superior arm and/or the at least one inferior arm.
  • In an exemplary embodiment of a product of the present disclosure, the frame further comprises at least one lower arm coupled to at least one of the at least connection portion and the at least one vertical arm. In another embodiment, the frame is configured to move from a first, closed configuration to a second, open configuration. In yet another embodiment, wherein when the frame is in the first, closed configuration, the product is configured for percutaneous passage through the mammalian luminal organ. In an additional embodiment, the product is configured as a stent valve. In yet an additional embodiment, the stent valve is configured for use as a venous valve.
  • In an exemplary embodiment of a product of the present disclosure, the fluid native to the mammalian luminal organ passes through an inlet portion of the product and exits from an outlet portion of the product when the product is positioned within the mammalian luminal organ. In an additional embodiment, the mammalian tissue coupled to the frame operates as a valve. In yet an additional embodiment, the fluid native to the mammalian luminal organ is at least partially prevented from flowing from the outlet portion to the inlet portion when the product is positioned within the mammalian luminal organ. In another embodiment, the mammalian tissue comprises mammalian pulmonary ligament. In yet another embodiment, the mammalian tissue comprises mammalian pulmonary viscera.
  • In an exemplary embodiment of a product of the present disclosure, the mammalian tissue comprises tissue having stretchability and durability properties to allow the mammalian tissue to move relative to fluid flow through the lumen defined within the product. In another embodiment, the mammalian tissue is fixed. In yet another embodiment, the mammalian tissue is fixed using glutaraldehyde. In an additional embodiment, the frame is capable of expansion using a balloon catheter. In yet an additional embodiment, the frame is autoexpandable.
  • In an exemplary embodiment of a product of the present disclosure, the frame comprises a material selected from the group consisting of nitinol, chromium, cadmium, molybdenum, nickel, a nickel composite, nickel-cadmium nickel-chromium, nitinol palladium, palladium, cobalt, platinum, and stainless steel.
  • In an exemplary embodiment of a method of the present disclosure, the method comprises the steps of shaping an mammalian tissue so that the mammalian tissue will fit around portions of a frame, the mammalian tissue excised from a mammalian body, positioning the mammalian tissue around a mount, positioning at least part of a frame around the mammalian tissue positioned around the mount, and connecting the mammalian tissue to the at least part of the frame to form the product. In another embodiment, the method further comprises the step of processing the excised mammalian tissue prior to the shaping step. In yet another embodiment, the processing step is performed by excising the mammalian tissue from the mammalian body, removing any undesirable portions of the excised mammalian tissue, placing the excised mammalian tissue on a frame, and fixing the tissue using a fixative. In an additional embodiment, the shaping step is performed by stretching the mammalian tissue and cutting the mammalian tissue to form a desired shape.
  • In an exemplary embodiment of a method of the present disclosure, the connection step is performed by positioning at least part of the mammalian tissue around the at least part of the frame. In another embodiment, the connection step is performed by positioning at least part of the mammalian tissue around one or more of a superior arm, an inferior arm, and a connection portion of the frame. In yet another embodiment, the connection step is further performed by suturing at least part of the mammalian tissue around the at least part of the frame. In an additional embodiment, the connection step is performed by positioning at least part of the mammalian tissue around the at least part of the frame so that at least part of the mammalian tissue operates as one or more valve leaflets. In yet an additional embodiment, the mammalian tissue comprises pulmonary ligament. In an exemplary embodiment of a method of the present disclosure, the mammalian tissue comprises visceral pleura.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the method comprises the steps of acquiring a sample of pulmonary region tissue from a mammal, and fixing the sample of pulmonary region tissue using a fixative, resulting in a fixed sample. In another embodiment, the step of acquiring a sample of pulmonary region tissue comprises selecting a sample of pulmonary ligament tissue from the mammal. In yet another embodiment, the step of selecting a sample of pulmonary region tissue comprises selecting a sample of visceral pleura tissue from the mammal.
  • In an exemplary embodiment of a processed pulmonary ligament of the present disclosure, the processed pulmonary ligament is prepared by fixing a sample of pulmonary region tissue acquired from a mammal using a fixative, resulting in a fixed sample.
  • In an exemplary embodiment of a method of the present disclosure, the method comprises the step of fixing a sample of pulmonary region tissue acquired from a mammal using a fixative, resulting in a fixed sample In an exemplary embodiment of a method for preparing a tissue material of the present disclosure, the method comprises the step of decellularizing a segment of pulmonary region tissue. In another embodiment, the method further comprises the step of: sterilizing the pulmonary region tissue. In yet another embodiment, the method further comprises the step of fixing the pulmonary region tissue. In an additional embodiment, the pulmonary region tissue comprises pulmonary ligament tissue. In yet an additional embodiment, the pulmonary region tissue comprises visceral pleura tissue.
  • In an exemplary embodiment of a medical article of manufacture, the medical article of manufacture comprises acellular pulmonary region tissue sterilely enclosed within packaging. In another embodiment, the pulmonary region tissue is chemically fixed. In yet another embodiment, the pulmonary region tissue is not chemically fixed. In an additional embodiment, the pulmonary region tissue comprises pulmonary ligament tissue. In yet an additional embodiment, the pulmonary region tissue comprises visceral pleura tissue.
  • In an exemplary embodiment of a method for treating a patient of the present disclosure, the method comprises the step of introducing into a patient a medical device including pulmonary region tissue. In another embodiment, the tissue is acellular. In yet another embodiment, the pulmonary region tissue comprises pulmonary ligament tissue. In an additional embodiment, the pulmonary region tissue comprises visceral pleura tissue.
  • In an exemplary embodiment of a method of processing a tissue of the present disclosure, the method comprises the steps of acquiring at least a portion of a pulmonary region tissue from a mammal, selecting a sample of pulmonary region tissue from the at least a portion of a pulmonary region tissue, and fixing the sample of pulmonary region tissue using a fixative, resulting in a fixed sample.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The disclosed embodiments and other features, advantages, and disclosures contained herein, and the matter of attaining them, will become apparent and the present disclosure will be better understood by reference to the following description of various exemplary embodiments of the present disclosure taken in conjunction with the accompanying drawings, wherein:
  • FIGS. 1A and 1B show a swine pulmonary ligament connected to a lung, according to exemplary embodiments of the present disclosure;
  • FIG. 2A shows a close-up view of a swine pulmonary ligament, according to an exemplary embodiment of the present disclosure;
  • FIG. 2B shows a portion of a pulmonary ligament held in place upon a frame, according to an exemplary embodiment of the present disclosure;
  • FIGS. 3A and 3B show a fixed product, according to exemplary embodiments of the present disclosure;
  • FIGS. 4A-4D show various depictions of a portion of a pulmonary ligament, after fixation, formed into an exemplary constructed valve according to exemplary embodiments of the present disclosure;
  • FIGS. 5A-5D show various processed lung ligament products in various configurations, according to exemplary embodiments of the present disclosure;
  • FIG. 5E shows a block diagram of components of a kit, according to an exemplary embodiment of the present disclosure;
  • FIGS. 5F and 5G show mammalian tissue and tissue harvest locations, according to exemplary embodiments of the present disclosure;
  • FIGS. 6A and 6B show a bileaflet frame configuration, according to an exemplary embodiment of the present disclosure;
  • FIG. 7A shows a portion of a mammalian tissue cut/shaped to fit along a bileaflet frame, according to an exemplary embodiment of the present disclosure;
  • FIGS. 7B and 8A show how portions of mammalian tissue can be positioned within/around portions of a frame, according to exemplary embodiments of the present disclosure;
  • FIG. 8B shows an exemplary product having a bileaflet frame and a tissue positioned thereon, according to an exemplary embodiment of the present disclosure;
  • FIGS. 9A and 9B show a trileaflet frame configuration, according to an exemplary embodiment of the present disclosure;
  • FIG. 10A shows a portion of a mammalian tissue cut/shaped to fit along a trileaflet frame, according to an exemplary embodiment of the present disclosure;
  • FIG. 10B shows an exemplary product having a trileaflet frame and a tissue positioned thereon, according to an exemplary embodiment of the present disclosure;
  • FIG. 10C shows an exemplary product configured as a valve and positioned within a mammalian luminal organ, according to an exemplary embodiment of the present disclosure; and
  • FIG. 11 shows steps of a method to manufacture a product, according to an exemplary embodiment of the present disclosure.
  • An overview of the features, functions and/or configurations of the components depicted in the various figures will now be presented. It should be appreciated that not all of the features of the components of the figures are necessarily described. Some of these non-discussed features, such as various couplers, etc., as well as discussed features are inherent from the figures themselves. Other non-discussed features may be inherent in component geometry and/or configuration.
  • DETAILED DESCRIPTION
  • For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the embodiments illustrated in the drawings, and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of this disclosure is thereby intended.
  • The present disclosure contains disclosure of novel methods and uses for harvesting and applying certain mammalian tissue for use in connection with various medical applications. The mammalian pulmonary ligament and the mammalian visceral pleura, as referenced in detail below and disclosed within the present application, can be harvested, fixed, and used for a number of medical applications previously unknown and not identified in the medical arts. In at least one embodiment of the present disclosure, pulmonary ligament tissue is identified, harvested, fixed, and ultimately used in connection with mammalian treatment/therapy. As referenced herein, pulmonary ligament and visceral pleura are both “pulmonary region” tissue.
  • As referenced in detail herein, it is advantageous to identify and process thin scaffold biological tissue that consists of largely elastin and some collagen fibers (the converse of SIS), since elastin is not as prone to fixation as collagen fibers. Hence, fixation of tissue with elastin largely maintains its elasticity and hence biological mechanical activity. Furthermore, it is advantageous to identify a thin membraneous native tissue that does not require any processing, such as stripping of muscle or treatment with antibiotics given the bacteria flora such as present within the intestines. Finally, there is significant advantage to tissue that has epithelial layers on both sides of the tissue. As referenced in detail herein, the present disclosure includes uses and methods in connection with such a biological tissue and processing steps for various biological applications.
  • The visceral pleura that covers the lung extends to the hilum where it becomes continuous with the parietal pleura that covers the diaphragm, chest wall, and mediastinum. As the anterior and posterior pleural extend below the pulmonary veins, the two layers of pleura come together to form the inferior pulmonary ligament. Hence, the pulmonary ligament is a double layer of pleura that drapes caudally from the lung root and loosely tethers the medial aspect of the lower lobe of the lung to the mediastinum. However, and importantly, the pulmonary ligament does not functionally behave the same as two layers of pleura, as the non-isotropy of pulmonary ligament tissue is notably different than just two layers of pleura. Furthermore, the degree of collagen within pulmonary ligament is also different than in two layers of pleura, and the function of pulmonary ligament is also different, as pulmonary ligament tissue resists load in one direction. The pulmonary ligament tethers the lung and has substantial elasticity (over 200% extension, which may be a lateral extension) to expand with each inflation of the lung. The significant elasticity stems from the high elastin content. Contrary to collagen, elastin cannot be fixed and largely retains its elasticity post fixation. As such, and as described above and otherwise herein, the novel nature of identifying, harvesting, fixing, and using processed lung ligament tissue can result in numerous therapies and treatments not previously considered or used in the medical arts.
  • In certain embodiments of processed pulmonary ligament 50 and/or processed visceral pleura 60 of the present disclosure, said tissues can have a microarchitecture including non-randomly oriented collagen and elastin fibers, which can be retained from the native microarchitecture of the processed pulmonary ligament 50 and/or processed visceral pleura 60, and/or the processed pulmonary ligament 50 and/or processed visceral pleura 60 can exhibit an anisotropic elastic character, for example as can be demonstrated in biaxial stretch testing and/or through optical and/or microscopic visualization of the tissue microstructure. As well, in these and other embodiments, processed pulmonary ligament 50 tissue can have a thickness of about 80 microns to about 100 or 120 microns, and even as high as about 300 microns, including thicknesses between about 90 microns and 100 microns, which depends upon the species from which the pulmonary ligament tissue is obtained. Processed visceral pleura 60 may have a smaller thickness, such as between about 40 microns and about 80 microns, as referenced further herein. Other embodiments of processed pulmonary ligament 50 and/or processed visceral pleura 60 of the present disclosure may be up to 300 microns in thickness. In an actual exemplary sample of 15 harvested processed pulmonary ligament samples obtained according to the present disclosure, the average thickness was 102 microns, and the thickness range was from 22 microns to 269 microns. Different thicknesses of tissue may be preferred for different embodiments, such as relatively thinner tissues for valve applications, and relatively thicker tissues for hernia repair, for example.
  • For various pulmonary ligament 30 and/or visceral pleura 556 samples, a predominant proportion of the collagen fibers in the tissue are oriented generally in a first direction, with that direction having extended substantially parallel to the median (or midsagittal) plane of the animal from which the tissue was harvested. For example, and in at least one embodiment, at least 75% of collagen fibers within the harvested pulmonary ligament 30 and/or visceral pleura 556 tissue are oriented in a first direction. In at least another embodiment, at least 60% of collagen fibers within the harvested pulmonary ligament 30 and/or visceral pleura 556 tissue are oriented in a first direction. Furthermore, and in various pulmonary ligament 30 and/or visceral pleura 556 samples, said tissues include elastin fibers that extend in a direction transverse to that of the predominating collagen fibers contained therein.
  • FIGS. 1A and 1B pictorially show a swine pulmonary ligament (an exemplary ligament 30) by way of gripping a portion of the pig (such as by the aorta and/or esophagus (collectively shown as 32 in FIG. 1A) or tissue in that general vicinity) and pulling the same away from the lung 34, as shown in FIG. 1B. Gripping and/or separation of tissue can be performed by hand, as shown in FIG. 1A, and/or by using forceps 40, as shown in FIG. 1B. The pulmonary ligament 30 is clearly shown and identified in FIGS. 1A and 1B.
  • FIG. 2A shows a closer view of a portion of the pulmonary ligament 30, and FIG. 2B shows a portion of the pulmonary ligament 30 held in place using a series of clamps 42 positioned around a mount 44, for example, and being fixed with a fixative, such as glutaraldehyde. Post fixation pulmonary ligament (which could also be referred to as a processed ligament 50 of the present disclosure, potentially configured as an exemplary product 100 of the present disclosure as referenced below), as shown in FIGS. 3A and 3B, has high elasticity, and both sides of the ligament tissue are smooth and covered with an epithelial layer that secretes a lubricant.
  • FIGS. 4A-4D show various depictions of a portion of a porcine pulmonary ligament 30, after glutaraldehyde fixation (to form processed ligament 50 and potentially an exemplary product 100), and formed into an exemplary constructed valve 400 of the present disclosure. For example, and as shown in FIGS. 2B and 4A-4C, pulmonary ligament 30 can be placed upon a mount 44, using one or more forceps 40 and/or clamps 42 (as shown in FIG. 2B), and/or one or more sutures 800 (as shown in FIG. 4B in connection with use of a mount 44, and as described in further detail herein in connection with one or more frames 600 of the present disclosure). Placement may also include folding portions of pulmonary ligament 30 around portions of mount 44, as shown by way of folded portion 48 in FIG. 4C. If one or more sutures 800 are used, said sutures 800 could comprise nylon or another suitable material, and could be placed using a needle (not shown), as described in further detail herein.
  • As shown in the various figures, the valve 400 (comprising pulmonary ligament in the embodiment shown), which is an exemplary processed product 100 of the present disclosure, easily flexes and maintains its shape. Products 100 can include processed ligament 50 or processed visceral pleura 60, as referenced in further detail herein, and may also be referred to herein as medical articles of manufacture. As referenced herein, pulmonary ligament 30 refers to pulmonary ligament tissue that has not yet been processed, and processed ligament 50, optionally configured as one or more processed products 100 of the present disclosure, refers to tissue that has been processed, such as by fixation, and optionally configured as products 100. Similarly, and as also referenced herein, visceral pleura 556 refers to visceral pleura tissue that has not yet been processed, and processed visceral pleura 60, optionally configured as one or more processed products 100 of the present disclosure, refers to tissue that has been processed, such as by fixation, and optionally configured as products 100. Various valves 400 of the present disclosure may comprises any number of valves, including, but not limited to, aortic valves, mitral valves, pulmonary valves, tricuspid valves, and/or other percutaneous valves.
  • FIGS. 5A-5D show various processed products 100 in various configurations, according to exemplary embodiments of the present disclosure. For example, FIG. 5A shows an exemplary product 100 of the present disclosure configured as a patch, membrane, tissue replacement, cover, or reinforcement. Said embodiments (patch, membrane, tissue replacement, cover, or reinforcement) shall be referred to generally as patches 500, as labeled in FIG. 5A. FIG. 5B shows another exemplary product 100 of the present disclosure configured as a curved patch, membrane, tissue replacement, cover, or reinforcement (collectively curved patches 500). FIG. 5C shows an exemplary product 100 configured as a tube 502, and FIG. 5D shows an exemplary product 100 configured as a valve 400. Valve 400, as shown in FIG. 5D, is configured as a tri-leaflet valve 400 (including, for example, leaflets 802, 804, and 1000, as referenced in further detail herein), but other valve 400 embodiments of the present disclosure may be single leaflet valves 400, bileaflet valves 400, or valves 400 with more than three leaflets. In each embodiment shown therein, products 100 comprise one or more processed ligaments 50 and/or one or more processed visceral pleura 60.
  • Other product 100 configurations are contemplated by the present disclosure, as various biological uses of products 100 can be had, and the present disclosure is not limited to the configurations shown in the figures. For example, a venous stent cover (an exemplary cover 502) with a membrane and valve 400 included is an exemplary product 100 of the present disclosure, with features shown in one or more figures referenced herein, such as FIGS. 5B, 5C, and 5D. For example, a product 100 of the present disclosure could have an external shape shown in FIG. 5C and a valve 400 as shown in FIG. 5D.
  • As for preparation of all or a portion of a pulmonary ligament 30 or a visceral pleura 556, it is known that biological tissues are pre-stretched or otherwise pre-stressed in vivo for optimal function. For an exemplary embodiment of this particular tissue, the degree of pre-stretch was determined, in at least one method, by measuring the dimensions of the tissue before and after harvest. This was accomplished in this particular example by placing various dots/markings (such as dots/markings 575 shown in FIG. 5F) on the ligament 30 and/or visceral pleura 556 itself in its in vivo state to determine the degree of stretch in the two principle directions (referred to herein as the x and y directions). Using such a method, one can characterize that the tissue shrinks by X and Y amount in the x and y directions.
  • In the glutaraldehyde (or other chemical/mechanism) fixation and mounting process of the tissue on mounts 44 or frames (for stents and other uses as referenced herein), the tissue can be pre-stretched by X and Y to the in vivo values to ensure optimal function of the tissue. In addition, fiber lengths and/or desmosine contents could be measured/obtained in connection with various steps of fixation, including but not limited to determining an amount of tissue shrinkage due to fixation. For example, a stress-strain relation could be determined in fresh lung ligament 30 tissue and processed lung ligament 50 tissue, and a fixed strain could be selected that corresponds to the stress in fresh tissue, for example. Similar stress-strain relations could also be determined in fresh visceral pleura 556 tissue and processed visceral pleura 60 tissue. Furthermore, optical means of selection, such as with the use of traditional light, polarized light, and/or other light, with and without magnification, could be used to optically scan the various harvested tissues.
  • An example pulmonary ligament 30 and/or visceral pleura 556 harvesting procedure is described as follows. In at least one method, the heart/lung block can be extracted from a mammal (such as in connection with a meat processing facility), and the extracted tissue could then be placed in a relatively cold saline solution to help preserve the same. The heart/lung block may be generally referred to herein a pulmonary region tissue, which may include, but is not limited to, lung tissue and one or more of the bronchi, pulmonary artery, pulmonary vein, and/or the heart, so long as the desired tissue to be harvested (pulmonary ligament 30 and/or visceral pleura 556) is contained therein. At or before the time of processing, the tissue can be inspected for blood infiltration, fatty material, perforations, and/or other irregularities, and portions of the tissue containing the same can be treated to either removed the undesired components or discarded/disregarded in view of other portions of the tissue that are relatively homogenous and free of undesired properties, such as perforations or fat.
  • After selection of desired portions of pulmonary ligament 30 and/or visceral pleura 556 from the overall resected tissue, the selected membranes can be mounted in mounts 44 (such as available circular or rectangular frame mounts) to prevent shrinkage and/or folding during fixation, and can be submerged in a fixation solution (such as glutaraldehyde, for example) for fixation. Prior to mounting and/or fixation, or after mounting and/or fixation if desired, the pulmonary ligament 30 and/or visceral pleura 556 can be pre-seeded to make it more likely to endothelialize. As pulmonary ligament tissue has mesothelium on both sides and visceral pleura has mesothelium on only one side, pre-seeding (also referred to as endothelial seeding) could be performed on the non-mesothalial side of the tissue. After fixation, a relatively flat piece of fixed tissue will result. Using another method, and after selection of the membranes or desired portions thereof, the membranes can be placed on multidimensional molds, for example, allowing the user to stretch and/or otherwise fit the membrane so to mimic the mold shape, and then fix the membrane on the mold. With such a method, the resultant fixed material will maintain or closely resemble to multidimensional shape of the mold, and can be used for various purposes.
  • Various sizes and/or thicknesses of processed lung ligament 50 and/or processed visceral pleura 60 tissues could be used and be tailored to specific applications. For example, and in embodiments of processed lung ligament 50 and/or processed visceral pleura 60 tissue ultimately used as valves 400 (exemplary products 100 of the present disclosure), lung ligament 50 tissue of between about 80 microns and about 100 microns to about 300 microns could be used, while visceral pleura 60 between about 40 microns and about 80 microns could be used.
  • With respect to initial tissue harvesting of visceral pleura 556 tissue, an exemplary method of the present disclosure includes the step of isolating tissue 556 from the middle-anterior portion of the lungs, 34 which tends to be relatively thicker and more uniform than other portions of the lung 34. A lateral incision can be made, and using forceps 40 for example, the lung 34 tissue can be carefully pressed away from the visceral pleura 556. FIG. 5F shows a diagram of a portion of a mammalian body 550 showing the lungs 34 and an identified harvest section 552, generally comprising the middle-anterior portion of the lungs 34. Two portions of tissue are shown, namely the parietal pleura 554 that lines the chest cavity and the visceral pleura 556 which lines the lungs 34 and is internal to the parietal pleura 554. As shown in FIG. 5F, and referenced in further detail herein the mesothelial side 860 of visceral pleura 556 is on a relative outside of the lung 34, while the non-mesothelial side 862 of visceral pleura 556 is on the relative inside of the lung 34. Pulmonary region tissue 558 is also shown therein, which may include, but is not limited to, lung tissue and one or more of the bronchi, pulmonary artery, pulmonary vein, and/or the heart, as previously referenced herein. The acquired pulmonary ligament 30 and/or visceral pleura 556 from said pulmonary region tissue may be referred to herein as “samples” of tissue from the pulmonary region tissue 558. After an initial portion of visceral pleura 556 tissue (such as ˜0.5 cm or so) has been separated, the tissue can be gently worked away (manually using one's hand/fingers, for example), taking care/precautions not to overly stress or pull on the visceral pleura 556 tissue. Prior to removal of the visceral pleura 556, the general orientation can be noted and potentially marked on the tissue, noting that visceral pleura 556 has different degrees of potential stretch depending on orientation.
  • FIG. 5F also demonstrates an exemplary harvesting method whereby pulmonary ligament 30 and/or visceral pleura 556 tissue is harvested and ultimately used in a desired orientation based upon an orientation of harvest. As shown in FIG. 5F, the x-axis (identified as “X” in the figure) may also be referred to herein as a “circumferential” or “transverse” axis or direction/orientation of tissue, and the y-axis (identified as “Y” in the figure) may also be referred to herein as a “vertical” or “axial” axis or direction/orientation of tissue. Natural lung expansion and contraction, consistent with breathing, occurs in a fashion whereby whereby pulmonary ligament 30 and/or visceral pleura 556 would stretch more in the circumferential direction as compared to the axial direction, so whereby pulmonary ligament 30 and/or visceral pleura 556 tissue harvested from a mammal would also have more stretchability in the circumferential direction as compared to the axial direction. Phrased differently, the axial direction is notably stiffer than the circumferential direction, which is also referred to herein as being relatively softer than movement/stretch in the axial direction. To leverage the inherent non-isotropy of said tissue(s), and using a specific orientation of the same in connection with one or more products 100 of the present disclosure, including but not limited to valves 400 as referenced herein, the tissue orientation would be identified at the time of harvest and use accordingly in connection with one or more products 100 of the present disclosure. For example, processed pulmonary ligament 50 and/or processed visceral pleura 60 can be oriented on frame 600, as referenced in further detail herein, so that the axial direction of the product 100 in a mammalian luminal organ (such as a blood vessel) is softer than the circumferential/radial direction, in reference to the product 100, as the circumferential direction is, for example, constrained by the diameter of the blood vessel and cannot distend further, while the axial direction is the direction of opening and closing a valve 400 (in a product 100 embodiment configured as a valve), where more deformation would be needed or desired. Leveraging this non-isotropy (directionality) could be used in connection with various products 100 of the present disclosure depending on the application of interest.
  • With respect to initial tissue harvesting of pulmonary ligament 30 tissue, an exemplary method of the present disclosure includes the step of isolating tissue 30 from the relative middle section between the lungs 34, as indicated by harvest sections 552 shown in FIG. 5G. The specific harvest section 552 used may depend on mammalian species, the age of the mammal, and/or the thickness of tissue required for a particular application. As with visceral pleura 556 (referenced above and shown in FIG. 5F), pulmonary ligament 30 thickness varies with location within the body. As generally referenced herein, efforts to avoid vascular areas (and/or those areas with blood infiltration), fatty material, perforations, and/or other irregularities should be made to that desirable pulmonary ligament 30 or visceral pleura 556 can be obtained. In addition, and regarding certain pulmonary ligament 30 or visceral pleura 556 tissue, avoiding said tissues near the lungs 34 and/or the aorta/esophagus 32 may also lead to preferable pulmonary ligament 30 or visceral pleura 556 harvest. Similar to visceral pleura 556 harvest, and prior to removal of the pulmonary ligament 30, the general orientation can be noted and potentially marked on the tissue, noting that pulmonary ligament 30 has different degrees of potential stretch depending on orientation, noting that as shown in FIG. 5G, ligament 30 is most elastic in the x-direction as shown in the figure.
  • Pulmonary ligament 30, as referenced herein, may be generally described as a sheet of tissue, and not generally as a combined/bundled tissue. For example, and upon pulmonary ligament 30 harvest, the sections of pulmonary ligament 30 suitable for harvest are generally continuous with the aorta, and are generally not part of the bundled ligament that descends from the mammalian lung root.
  • General tissue harvesting can apply to several mammalian species, including, but not limited to, cattle, pigs, and horses, such as from blocks of tissue collected after animal slaughter. Harvesting is preferred using clean/sterile conditions, and can proceed after an initial inspection of the blocks of tissue for portions of suitable tissue not having any malformations, abnormalities, perforations, tears, calcifications, spots, etc., as generally referenced herein. The desired tissue (pulmonary ligament 30 or visceral pleura 556) can be cleaned using a suitable solution (water and/or saline, for example), and fat and/or muscle covering the tissue can be removed, such as with the use of forceps 40. The removed tissue (pulmonary ligament 30 or visceral pleura 556) can be positioned about a mount 44, as described and shown herein, and attached to the same using clamps 42 and/or sutures, such as those comprising Nylon 0, used as overcast stiches, with a needle such as a 333/5 needle. The attachment step can be performed outside of a solution or within a solution, such as a fixative solution. One such fixative solution may comprise 0.65% glutaraldehyde solution BLUE. The dissected tissue can then be stored, upon the mount 44, within an appropriate fixative solution for an appropriate amount of time. For example, and to accomplish initial fixation, the tissue can be fixed in the fixative solution for at or approximately 24 hours, and the solution can be changed (to either the same fresh fixative solution or to another solution) and stored until the tissues are ready to be cut, formed, manipulated, or otherwise used. Keeping the tissue hydrated is important, as should the tissue completely or partially dry out, it would likely irretrievably lose desired mechanical properties. Long term (or relatively long term) storage can be in, for example, 0.65% glutaraldehyde solution BLUE or another solution for an initial period of time, and then changed to a lower concentration solution (such as 0.50% glutaraldehyde solution CELESTE), for example, and stored until needed.
  • Regarding fixation, an exemplary fixative solution of the present disclosure can be prepared, resulting in a buffered glutaraldehyde solution, can be prepared as follows. In at least one example of a fixative solution, and in less than 1 L of DDH2O), the following can be added: 1) 2.05 h of NaOH, 2) 9.08 g of PO4H2K, and 3) 13 mL of 50% glutaraldehyde solution (or 26 mL of 25% glutaraldehyde solution). The desired pH would be at or near 7.4 for this exemplary fixative solution, and if the combined solution is not at 7.4, it can be adjusted using additional NaOH solution. After pH adjustment to the desired pH, the overall volume of the flask can be increased to 1.0 L, resulting in the exemplary fixative solution. Other fixative solutions may be optimal for use in connection with various fixation procedures of the present disclosure.
  • To ultimately fix acquired pulmonary ligament 30 or visceral pleura 556 tissue, at least one fixation method comprises fixing the pulmonary ligament 30 or visceral pleura 556 in a fixation solution for at least 24 hours, and optionally at a reduced temperature (such as at or near 23° C.). Other fixation times and temperatures may be used as well. For long-term storage of fixed tissue, storage in 0.5% glutaraldehyde (for example) can protect the fixed tissue. In at least one embodiment, fixation with minimal to no preload is recommended, as preloading may change the mechanical properties of the tissue during and/or after fixation. To maintain preferred tissue fiber orientation, flat or relatively-flat fixation would be recommended. Flat or relatively-flat fixation can be performed, for example, using a tray lied with a silicone elastomer (such as Sylgard), allowing for the tissue to remain flat or relatively flat when pinned down during the fixation process.
  • Regarding fixation, glutaraldehyde is widely used, and can be used in connection with various buffers, such as HEPES and phosphate buffers. In at least one method, glutaraldehyde is used around a neutral and slightly alkaline pH at or about 7.4, noting that other pH values or ranges can be used with various fixation methods. For example, and in at least one additional fixation method, formaldehyde (formalin) may be used, and/or glycerol may be used. In an exemplary fixation method using glycerol, at or about 98% glycerol may be used to fix the tissue. In at least one embodiment of a method of fixing pulmonary ligament 30 or visceral pleura 556 tissue, bovine serum albumin (BSA) can be used to remove cytotoxicity in connection with fixation, such as fixation using glutaraldehyde and/or formaldehyde. Eliminating glutaraldehyde and/or formaldehyde from the storage solution may be beneficial as such compositions are quite cytotoxic, and storage of fixed tissue in non-toxic solutions or using dry tissue technologies can be useful to stored said fixed tissue for various amounts of time.
  • Other fixation methods may include, but are not limited to, various cryo-preservation or dry tissue fixation methods known are developed in the art for tissue fixation. Furthermore, fixation could be performed at various loads or strains, such as in vivo stretch ratios, as determined by the markers (dots placed upon the tissue prior to harvest). For example, and as referenced above and at the time of or prior to harvest, markings could be placed on the lung ligament 30 or visceral pleura 556 tissue (using a marker, for example), and measurements between markings could provide the harvester with information relating to said tissue at a natural (non-stretched state). When placing said harvested tissue upon a frame for fixation, for example, said tissue could be stretched at various degrees of stretch, with either raw distance stretch being known and/or a percentage stretch being known based upon the distance between markings at the natural (non-stretched) and stretched states.
  • With respect to overall pulmonary ligament 30 and/or visceral pleura 556 preparation, preservation of the tissue's elastin component is important so that the intended uses of the prepared pulmonary ligament 50 and/or processed visceral pleura 60 may still be considered. As the overall flexibility of the processed pulmonary ligament 50 and/or processed visceral pleura 60 preparation is important for various uses, efforts to preserve the elastin component may be reflected in the overall preparation methods. Different methods may be used to generate different products 100 of the present disclosure, such as different frames, tissue stretching, fixation duration, and/or a combination of the same. Furthermore, decellularization of the epithelial layer or layers of pulmonary ligament 30, for example, can be performed while also preserving/keeping the elastin scaffolds. As is known, the biologically occurring pulmonary ligament includes a layer of mesothelial cells (a specialized type of epithelial cells) on each side of the ligament. In addition, storage can be had using saline and/or an additional preservative, so that the product 100 is safe to use when needed.
  • Pulmonary ligaments 30 and/or visceral pleura 556, for potential use in connection with the present disclosure, can be harvested from any number of mammalian species and used in the same or other species. For example, pulmonary ligaments 30 and/or visceral pleura 556 can be harvested from pigs, horses, cows, goats, sheep, etc., and used to treat the same species or different species, including humans. Further, pulmonary ligaments 30 and/or visceral pleura 556 could be harvested from one human and used to treat another human. For long or short term storage, for example, pulmonary ligaments 30 and/or visceral pleura 556 (and/or processed ligament 50, processed visceral pleura 60, and/or products 100 of the present disclosure) may be preserved by freezing in liquid nitrogen (−198° C. in at least one example). So to ensure that fixed tissue thickness, stiffness, strength, and/or micro-structure do not change (or substantially change) over time, various short- and/or long-term storage mechanisms may be used.
  • In at least one embodiment of a method of preparing fixed/processed lung ligament 30 and/or visceral pleura 556 tissue of the present disclosure, the method includes the steps of obtaining a heart/lung block (such as from a slaughterhouse), placing the heart/lung block in cold saline (or another suitable solution at various temperatures) for transport as needed, isolating the lung ligament 30 and/or visceral pleura 556 tissue, and fixing the same as referenced herein. Such a method may be performed while taking precautions/steps to avoid tissue, perforations, fenestrations, and/or blood vessels or infiltrations therein.
  • In at least one embodiment of a product of the present disclosure, the product is not treated with a fixative. Instead, the product, in at least one embodiment, is harvested from a mammal and used in connection with one or more procedures or as one or more products reference herein without the use of a fixative. In certain aspects, such non-fixed pulmonary ligament products can be acellular, e.g., after treatment with one or more decellularization agents, and/or sterile.
  • In additional embodiments, provided are medical articles (exemplary products 100), such as kits 525, shown in block diagram form in FIG. 5E, that may include processed pulmonary ligament 50, processed visceral pleura 60 tissue, and/or a product 100, sterilely enclosed within packaging 530. A sterile condition of pulmonary ligament 50, processed visceral pleura 60 tissue, and/or a product 100 within the packaging 525 may be achieved, for example, by terminal sterilization using irradiation, ethylene oxide gas, or any other suitable sterilization technique, and the materials and other properties of the medical packaging can be selected accordingly.
  • Uses of a processed pulmonary ligament 50 and/or processed visceral pleura 60, as referenced above, include, but are not limited to, the following applications:
  • a. As a cover for various stents, such for as coronary stents, peripheral stents (porto cava shunts), aortic stents, neurological stents, esophageal stents, biliary tract stents, and the like.
  • b. As various types of biological tissue valves, including, but not limited to, venous and/or arterial valves, which may have various leaflet configurations, such as monocusp, bileaflet, trileaflet, and others.
  • c. As a cover for saphenous vein bypasses, thus avoiding vein over-distension.
  • d. As a patch, in various cardiac and other surgical procedures, such as ventricular reconstruction, an arterial patch, a venous patch (such as a carotid endarterectomy), or to repair other holes.
  • e. As a placement around the ascending aorta after surgery to avoid aortic aneurysm formation in hypertensive patients.
  • f. As a membrane in cardiac, thoracic, or general surgery to avoid adhesion in reoperations (valvular, transplants, left ventricular assist device (LVAD), coronary artery bypass graft (CABG), pediatric surgery, or general surgery).
  • g. As a cover for LVAD diaphragms or a total artificial heart diaphragm.
  • h. As a cover for the synthetic net in hernia repair and abdominal dehiscense.
  • i. As a biologic skin substitute in burn patients avoiding infection and loss of proteins, water.
  • j. As a cover for organs such as the heart (to limit dilation of the left ventricle, for example), stomach, urinary bladder, and to avoid overdistension and/or to prevent adhesion especially in laparoscopic procedures of diabetic patients.
  • k. As a reinforcement of a suture line, such as with ventricular aneurysm repair, bariatric surgery, and fistulae repair for intestines, bronchus, and esophagus.
  • l. As a structure for biological composite tubes, such as stented or stentless valves for inclusion within a biological tube, which can be used, for example, in ascending aortic aneurysm (AAA) replacement or pulmonary artery replacement.
  • m. In orthopedic surgery, such as with tendon replacement (having advantages in resistance and elasticity), total or partial replacement of the articular capsulae during surgery of the hip, elbow, knee, and/or the like, and/or as a cover for various orthopedic prosthetic devices.
  • n. As a cover for neurosurgical applications, such as a cover of part of the brain surface during tumor resection or resection of the skull.
  • o. In urologic surgery, such as in connection with reconstruction of a partial or total urinary bladder and/or urethral resection.
  • p. In gynecological surgery, such as in connection with vaginal reconstruction after tumor resection or other trauma, with reconstruction of perineal muscles to fix the urinary bladder, or with uterus prolapse.
  • q. In head & neck surgery, such as in connection with reconstructive surgery, replacement of muscles (requiring elasticity and resistance), and as a cover for a maxillary prosthesis.
  • r. In connection with other trauma, such as treating vehicular accident victims by covering complex wounds until surgical repair, which may be complex, can take place.
  • In view of the various uses of processed pulmonary ligament 50 and/or processed visceral pleura 60 to create various products 100 of the present disclosure, said ligament 50 and/or visceral pleura 60 may be used to produce products 100 configured as stents and/or stent valves 400 as follows. FIGS. 6A and 6B show closed and opened stent valve frames, respectively, for use with various products 100 of the present disclosure. As shown in FIGS. 6A and 6B, an exemplary product 100 of the present disclosure comprises a frame 600, with said frames 600, in various embodiments, comprising at least one superior arm 602 and at least one inferior arm 604. Arms 602, 604, as shown in FIGS. 6A and 6B, may be positioned at or near a relative end of frame 600, and may be parallel or substantially parallel to one another. Frames 600, as shown in FIGS. 6A and 6B, further comprise a connection portion 606, and optionally one or more vertical bars 608 extending along an elongate axis (A-A′ as shown therein) to provide additional overall stability. As shown in FIG. 6B, an exemplary frame 600 comprises three vertical bars 608 extending along axis A-A′ along a portion of a length of frame 600 from a first end 610 to a second end 612.
  • At or near the relative second end 612 of frame 600, one or more lower arms 614 may be present, which may, as shown in FIG. 6B, connect to one or more vertical bars 608 and/or one or more elements of connection portion 606. A combination of vertical bars 608, as referenced in further detail below, may comprise a connection portion 606. Frames 600, or portions thereof, may comprise a number of biologically-compatible materials including, but not limited to, nitinol, chromium, cadmium, molybdenum, nickel, a nickel composite (such as, for example, nickel-cadmium and/or nickel-chromium), nitinol palladium, palladium, cobalt, platinum, and/or stainless steel.
  • Connection portion 606 is shown in FIG. 6B as being an element of an exemplary frame 600 coupling to one or more of superior arm(s) 602, inferior arm(s) 604, vertical bar(s) 608, and lower arm(s) 614. In at least one embodiment, and as shown in FIG. 6B, connection portion 606 comprises a plurality of connection bars 616, which are used to connect one or more processed ligaments 50 and/or visceral pleura 60, or one or more other bodily tissues having the necessary stretchability and durability properties necessary to be useful in connection with one or more products 100 of the present disclosure, to frame 600 as referenced in further detail herein. As referenced herein, a “tissue” may be referred to as a ligament 50 and/or visceral pleura 60, and ligament 50 and/or visceral pleura 60, in at least one embodiment, may comprise another non-ligament tissue having the necessary properties noted above.
  • As noted above, a plurality of vertical bars 608 may also comprise a connection portion 606 of the present disclosure. Therefore, and depending on how portions of frame 600 are viewed, the exemplary frame shown in FIGS. 6A and 6B may comprise one connection portion 606 and a plurality of vertical bars 606, or they may comprise two connection portions 606, with one connection portion 606 comprising connection bars 616 and the other connection portion 606 comprising vertical bars 608. In addition, and as shown in FIG. 6B, various frames 600 of the present disclosure may comprise one or more barbs 618 positioned along various portions of frames 600 (such as vertical bars 608, connection bars 616, and/or other components) to facilitate securing a product 100 within a mammalian luminal organ (to prevent migration), and/or to facilitate securing the tissue (such as ligament 50 and/or visceral pleura 60) to frame 600.
  • FIG. 7A shows an exemplary processed ligament 50 and/or visceral pleura 60 of the present disclosure molded for use with or as a bileaflet valve 400. As shown in FIGS. 6A and 6B, frame 600 is configured as two leaves with one connection portion 606. As referenced further herein, other frame 600 embodiments, such as being configured as a trileaflet valve 400 and as potentially a valve 400 with even more leaflets, may be produced consistent with the present disclosure. The processed ligament 50 and/or visceral pleura 60, as shown in FIG. 7A, is shaped substantially similar to an outer perimeter of frame 600 shown in FIGS. 6A and 6B. The shape shown in FIG. 7A represents processed ligament 50 and/or visceral pleura 60 configured so to create symmetrical valve leaflets upon placement of processed ligament 50 and/or visceral pleura 60 upon frame 600.
  • FIG. 7B shows a cross-section of a portion of an exemplary product 100 of the present disclosure, whereby individual connection bars 616 of an exemplary frame 600 are shown with a portion of a processed ligament 50 and/or visceral pleura 60 positioned therebetween. This view may be considered as an upper or lower cross-sectional view, and demonstrates an exemplary method of positioning a portion of processed ligament 50 and/or visceral pleura 60 within said connection bars 616 to secure the processed ligament 50 and/or visceral pleura 60 at that particular location within device 100.
  • FIG. 8A shows another cross-section of a portion of an exemplary product 100 of the present disclosure, whereby a superior arm 602 and an inferior arm 604 of an exemplary frame 600 are shown with a portion of a processed ligament 50 and/or visceral pleura 60 positioned therebetween. This view shows an exemplary method of positioning a portion of processed ligament 50 and/or visceral pleura 60 within said arms 602, 604 to secure the processed ligament 50 and/or visceral pleura 60 at that particular location within device 100. One or more sutures 800, as shown in FIG. 8A, may be used to connect two portions of processed ligament 50 and/or visceral pleura 60 to one another to prevent movement of the same. For example, and as shown therein, an end portion of processed ligament 50 and/or visceral pleura 60 may be positioned upon or adjacent to inferior arm 604, and wrapped counter-clockwise (as shown in FIG. 8A) around inferior arm 604. When the wrapped portion of processed ligament 50 and/or visceral pleura 60 is positioned near the end portion, it may continue being wrapped around frame 600 by way of wrapping clockwise (as shown in FIG. 8A) around superior arm 602, and the processed ligament 50 and/or visceral pleura 60 may be sutured to itself as shown in the figure.
  • An exemplary embodiment of a product 100 of the present disclosure comprising a frame 600 and processed ligament 50 and/or visceral pleura 60 attached thereto is shown in FIG. 8B. Product 100 is shown in a closed configuration in FIG. 8B, whereby processed ligament 50 and/or visceral pleura 60 is sutured to itself and/or to portions of frame 600 at multiple locations to hold the processed ligament 50 and/or visceral pleura 60 in place. As shown in FIG. 8B, product 100 is configured as a bileaflet valve 400, which may be used, for example, as a venous valve or another type of valve. Leaflets 802 and 804 are identified in FIG. 8B. In various embodiments referenced herein, processed ligament 50 and/or visceral pleura 60 is sutured to frame 600, but sutures 800 are outside of the bloodstream (are not in contact with blood flow) when frame 600 with processed ligament 50 and/or visceral pleura 60 thereon (an exemplary product 100) is positioned within a mammalian luminal organ having blood flowing therethrough.
  • A completed product 100 (such as shown in FIG. 8B and in FIG. 10B described below) may be configured as a stent or stent valve 400. Configurations as a stent valve 400 would utilize leaflets 802 and 804 to control the flow of fluid through a lumen 806 defined within product 100. The direction of fluid flow of such an embodiment would be such that fluid would enter inlet portion 808 of product 100 and exit from outlet portion 810 of product 100, as shown in FIG. 8B. In such a configuration, product 100 could be positioned within a mammalian luminal organ, and fluid flow through said organ could continue through lumen 806 of product 100.
  • FIGS. 9A and 9B show additional exemplary closed and opened stent valve frames, respectively, for use with various products 100 of the present disclosure. As shown in FIGS. 9A and 9B, an exemplary product 100 of the present disclosure comprises a frame 600 configured for ultimate use as a trileaflet valve 400, with said frames 600, in various embodiments, comprising at least one superior arm 602 and at least one inferior arm 604. Arms 602, 604, as shown in FIGS. 9A and 9B, may be positioned at or near a relative end of frame 600. Frames 600, as shown in FIGS. 9A and 6B, further comprise two or more connection portions 606 (as referenced in further detail below), and optionally one or more vertical bars 608 extending along an elongate axis to provide additional overall stability. As shown in FIG. 9B, such an exemplary frame comprises three vertical bars 608 extending along a portion of a length of frame 600 from a first end 610 to a second end 612. At or near the relative second end 612 of frame 600, one or more lower arms 614 may be present, which may, as shown in FIG. 6B, connect to one or more vertical bars 608 and/or one or more elements of connection portion 606. A combination of vertical bars 608, as referenced herein, may comprise a connection portion 606.
  • Depending on how portions of frame 600 are viewed, the exemplary frame 600 shown in FIGS. 9A and 9B may comprise two connection portions 606 and a plurality of vertical bars 608, or they may comprise three connection portions 606, with two connection portions 606 comprising connection bars 616 and the other connection portion 606 comprising vertical bars 608. FIG. 9A shows frame 600 as having three connection portions 606, while the same frame 600, shown in FIG. 9B, shows two connection portions 606 and a plurality of vertical bars 608. The frames shown in FIGS. 9A and 9B are identical, however, with one being shown in a closed configuration (FIG. 9A) and the other being shown in a closed configuration (FIG. 9B).
  • Connection portions 606 are shown in FIG. 9B, for example, as being elements of an exemplary frame 600 coupling to one or more of superior arm(s) 602, inferior arm(s) 604, vertical bar(s) 608, and lower arm(s) 614. In at least one embodiment, and as shown in FIG. 9B, connection portions 606 comprise a plurality of connection bars 616, which are used to connect one or more processed ligaments 50 and/or visceral pleura 60 to frame 600 as referenced herein with respect to other frame 600 and/or product 100 embodiments.
  • FIG. 10A shows an exemplary processed ligament 50 and/or visceral pleura 60 of the present disclosure molded for use with as a trileaflet valve 400. As shown in FIGS. 9A and 9B, frame 600 is configured as three leaves with two or three connection portions 606, depending on how the frame 600 is viewed. The processed ligament 50 and/or visceral pleura 60, as shown in FIG. 10A, is shaped substantially similar to an outer perimeter of frame 600 shown in FIG. 9A and 9B. The shape shown in FIG. 7A represents processed ligament 50 and/or visceral pleura 60 configured so to create symmetrical valve leaflets upon placement of processed ligament 50 and/or visceral pleura 60 upon frame 600.
  • An exemplary embodiment of a product 100 of the present disclosure comprising a frame 600 as shown in FIGS. 9A and 9B and a processed ligament 50 and/or visceral pleura 60 attached thereto is shown in FIG. 10B. Product 100 is shown in a closed configuration in FIG. 10B, whereby processed ligament 50 and/or visceral pleura 60 is sutured to itself and/or to portions of frame 600 at multiple locations to hold the processed ligament 50 and/or visceral pleura 60 in place. As shown in FIG. 10B, product 100 is configured as a trileaflet valve 400, which may be used, for example, as a venous valve or another type of valve. Leaflets 802, 804, and 1000 are identified in FIG. 10B.
  • Various products 100 of the present disclosure configured as valves 400, including products 100 shown in FIGS. 8B and 10B for example, and/or other valve 400 products of the present disclosure used with or without various frames, can have the processed ligament 50 and/or visceral pleura 60 positioned in specific configuration(s) to improve overall operation, effectiveness, and/or size of said products 100. Visceral pleura 556, and therefore processed visceral pleura 60, has one side with mesothelium (also referred to herein as a relatively smooth “mesothelial side”), and has an opposite side without mesothelium (also referred to herein as a relatively rough “non-mesothelial side”). As shown in FIG. 5F, the mesothelial side 860 of visceral pleura 556 is on a relative outside of the lung 34, while the non-mesothelial side 862 of visceral pleura 556 is on the relative inside of the lung 34.
  • For example, and in connection with various products 100 of the present disclosure using processed visceral pleura 60 as one or more valve 400 leaflets 802, 804, or 1000, processed visceral pleura 60 can be positioned in a way/configuration so that the side of processed visceral pleura 60 having mesothelium would be on the relative back of the valve 400 leaflet(s) 802, 804, and/or 1000, and so that the side of processed visceral pleura 60 without mesothelium would be on the relative front of the valve 400 leaflet(s) 802, 804, and/or 1000. In such a configuration, the mesothelial side 860 of processed visceral pleura 60 is on the back of leaflet(s) 802, 804, and/or 1000, where blood flow reversal exists as the valve 400 closes. The relatively smooth mesothelial side 860 would be in contact with blood flows more slowly, where shear stresses may be lower and reversing. As such, the rougher non-mesothelial 862 side of processed visceral pleura 60 would then be on the front of leaflet(s) 802, 804, and/or 1000, in contact with fast moving blood, because there is less of a risk of thrombosis as compared with the slower moving blood or shear stress.
  • Such a valve 400 (exemplary product 100) embodiment is shown in FIG. 10C positioned within a luminal organ 850, where valve leaflets 802, 804 (or more, less, or different leaflets, depending on valve 400 configuration) are shown therein. As shown therein, valve 400 is in contact with the wall(s) 852 of luminal organ 850, positioned within a lumen 854 defined therethrough. A mesothelial side 860 of processed visceral pleura 60 is on a relative back of leaflets 802, 804, and a non-mesothelial side 862 of processed visceral pleura 60 is on a relative front of leaflets 802, 804, as described above. Such a device embodiment 100 is one such embodiment referenced herein where processed ligament 50 and/or visceral pleura 60 is oriented in a specific direction. In at least another embodiment, for example, mesothelial side 860 of processed visceral pleura 60 would be on a relative front of leaflets 802, 804, and a non-mesothelial side 862 of processed visceral pleura 60 would be on a relative back of leaflets 802, 804.
  • Exemplary products 100 of the present disclosure may be prepared as follows. In at least one method for preparing a product of the present disclosure, the method 1100, as shown by the method steps in FIG. 11, comprises the steps of preparing a bodily tissue (such as a processed ligament 50 and/or visceral pleura 60 or another bodily tissue having the necessary stretchability and durability properties necessary to be useful in connection with one or more products 100 of the present disclosure) (an exemplary tissue preparation step 1102, which may be optional, as the tissue may have been previously prepared and subsequently used in connection with method 1100), and shaping the bodily tissue (an exemplary tissue shaping step 1104) so that the tissue will fit around portions of an exemplary frame 600. In at least one embodiment, tissue preparation step comprises preparing a portion of tissue (such as pulmonary ligament 50 and/or visceral pleura 60) by way of excising the tissue from a mammalian body, removing any undesirable portions of tissue (such as those with holes or vessels therein), placing the tissue on a frame (to maintain a desired shape and/or amount of stretch), and fixing the tissue using glutaraldehyde and buffer, for example. Tissue shaping step 1104, in at least one embodiment, comprises stretching the tissue (such as lung ligament 50, visceral pleura 60, lung viscera, and/or another tissue) and cutting the tissue using a flat mold, for example.
  • In various embodiments, method 1100 further comprises the step of positioning the tissue around a mount (such as a cylindrical or conical mount, which may be made of acrylic or another suitable material) (an exemplary mounting step 1106), and positioning at least part of an exemplary frame 600 around the tissue positioned upon the mount (an exemplary frame positioning step 1108). Tissue may then be passed around various bars of frame 600 (such as connection bars 616 of connection portion 606 or other components of frame 600), such as shown in FIG. 7B (an exemplary tissue connection step 1110), and various sutures 800 may be used to suture portions of tissue together to form the overall relatively cylindrical shape (an exemplary suturing step 1112). Tissue connection step 1110 may be repeated, such as by allowing the inflow portion of the tissue cylinder to pass through the superior and inferior parallel arms (arms 602, 604) to cover arms 602, 604, as shown in FIG. 8A, for example. Additional sutures may then be used, by way of repeating suturing step 1112, so that the border of the tissue is sutured with, for example, a continuing suture line facilitated by using a polypropylene 7-0 or 8-0 needle, for example, or another type/size of needle, to result in a product 100 as shown in FIG. 8B, 10B, or in other product 100 embodiments.
  • After product 100 is prepared, it can be delivered into a mammalian luminal organ in a number of ways. One method of delivery involves gently crimping or compressing product 100 so that its overall cross-section decreases, to facilitate delivery into the luminal organ. This delivery may be facilitated using a catheter or a wire, for example. If delivered by catheter, and it at least one embodiment (such as with a nickel-cadmium product 100 of the present disclosure), a balloon catheter may be used, with product 100 positioned at the balloon. Inflation of the balloon, using a gas or a liquid, for example, can cause the balloon to expand and thus cause product 100 to expand and be positioned within the luminal organ. Deflation of the balloon can then facilitate removal of the catheter. Furthermore, products 100 of the present disclosure may be autoexpandable, such as those comprising nitinol, whereby delivery using a balloon catheter may not be necessary. Delivery of products 100 of the present disclosure is not limited to the aforementioned delivery methods, as other methods of delivering implantable devices into a mammalian luminal organ may be used to deliver products 100.
  • The present disclosure also includes disclosure of uses of various processed ligaments 50, processed visceral pleura 60, and/or products 100 in connection with various Transcatheter Aortic-Valve Implantation (TAVI) and other percutaneous approaches. TAVI involves the placement of an aortic valve within a patient using a catheter to avoid a traditional open surgical procedure and to minimize general stresses to the patient during the procedure. This procedure is used when a patient's aortic valve fails to operate as desired, and can effectively prolong the patient's life without requiring additional surgical and non-surgical procedures, including but not limited to heart transplant. Certain patients may not be suitable for surgery, such as those with such a severe aortic stenosis that would preclude an open surgical procedure, allowing TAVI to be considered. Processed ligaments 50 and/or processed visceral pleura 60 of the present disclosure can be used with current or potentially developed aortic valve frames/housings, or products 100 of the present disclosure comprising one or more frames 600, can be used as aortic or other valves as referenced herein. Furthermore, various processed ligaments 50, processed visceral pleura 60, and/or products 100 can be delivered percutaneously or surgically, using various catheters or wires or other surgical tools for example, avoiding more invasive surgical procedures.
  • As processed lung ligaments 50 and processed visceral pleura 60 of the present disclosure are thinner than pericardium, which is currently used in TAVI or used with any number of valve procedures to replace and/or insert various aortic, mitral, pulmonary, tricuspid, and/or other percutaneous valves, the overall dimensions of the final delivery system, whether it be a product 100 of the present disclosure or processed ligament 50 and/or processed visceral pleura 60 of the present disclosure coupled with another type of frame or housing, can be significantly reduced by using processed ligaments 50 and/or processed visceral pleura 60 instead of pericardium. The bulk of a traditional TAVI product is not the stent frame itself, but the pericardial tissue, and using processed ligament 50 and/or processed visceral pleura 60 of the present disclosure instead of pericardial tissue would notably and beneficially decrease the overall bulk of said product 100. Having a product 100 configured smaller than a traditional TAVI product, for example, would not only allow for more potential manipulation of said product 100 in connection with delivery, expansion, and/or placement as compared to traditional products, but also would allow for smaller delivery devices (catheters, for example) to be used, therefore decreasing the potential aperture/opening made into a femoral or iliac artery, for example, during product 100 delivery. For example, reducing a catheter from 18 French to 12 French, or from 12 French to 8 French, would permit a smaller delivery aperture/opening to be used. This would also reduce or eliminate the need for a potential closure device, reduce patient bleeding, reduce overall patient trauma, and/or simplify delivery, placement, and/or expansion of relatively smaller products 100.
  • There are various advantages to using products 100 of the present disclosure as valves and/or as other medical implantable devices. For example, and with various embodiments described herein, products 100 are configured to avoid suture of commissure and thus spread out the stress, and there is may be no sutures 800 that come in contact with blood. Frames 600 may have a less metallic stent design, and may also comprise a completed inflow metal stent tissue cover. With respect to the different product 100 borders, various products 100 of the present disclosure have no suture line at the inflow border, and no tissue (such as processed lung ligament 50 and/or visceral pleura 60) fixation at the stent border. The double parallel (or relatively/substantially parallel) arms (superior arm(s) 602 and inferior arm(s) 604)) are configured so that a tissue (such as ligament 50 and/or visceral pleura 60) can be passed around them. Furthermore, and in at least one product 100 embodiment, the suture line is not submitted to the inflow stress and blood flow, and the suture knot is not in contact with the inflow blood.
  • Other advantages of products 100 of the present disclosure also exist. For example, and when preparing said products 100, the commissure are obtained by passing the tissue around the various vertical arms with the advantage of no suture and diffuse tissue stress along the vertical length of the bars. The various frame 600 designs and their tissue covers have the advantage of very little contact of any metallic frame material with the blood flow. The valves themselves have excellent leaflet coaptation, good valve sinus formation, and no blood stagnation areas when developed/configured as described herein and used within a mammalian blood vessel. Furthermore, the inflow stent area covered with tissue is in broad contact with the venous wall with the advantage of tissue-tissue contact when positioned within a mammalian vein.
  • While various embodiments of biological tissue products and methods of using and generating the same have been described in considerable detail herein, the embodiments are merely offered as non-limiting examples of the disclosure described herein. It will therefore be understood that various changes and modifications may be made, and equivalents may be substituted for elements thereof, without departing from the scope of the present disclosure. The present disclosure is not intended to be exhaustive or limiting with respect to the content thereof.
  • Further, in describing representative embodiments, the present disclosure may have presented a method and/or a process as a particular sequence of steps. However, to the extent that the method or process does not rely on the particular order of steps set forth therein, the method or process should not be limited to the particular sequence of steps described, as other sequences of steps may be possible. Therefore, the particular order of the steps disclosed herein should not be construed as limitations of the present disclosure. In addition, disclosure directed to a method and/or process should not be limited to the performance of their steps in the order written. Such sequences may be varied and still remain within the scope of the present disclosure.

Claims (20)

1. A product, comprising:
a frame configured to retain a mammalian tissue thereon; and
the mammalian tissue coupled to the frame;
wherein when the product is positioned within a mammalian luminal organ, fluid native to the mammalian luminal organ may pass through a lumen defined within the product;
wherein the product is configured as a stent valve;
wherein the mammalian tissue comprises visceral pleura; and
wherein the mammalian tissue is fixed.
2. The product of claim 1, wherein the mammalian tissue is chemically fixed.
3. The product of claim 1, wherein a segment of the mammalian tissue is decellularized.
4. The product of claim 1, wherein the visceral pleura is harvested from a middle-anterior portion of a lung.
5. The product of claim 1, wherein the mammalian tissue is fixed using a fixative selected from the group consisting of glutaraldehyde, formaldehyde, and glycerol.
6. The product of claim 1, wherein the mammalian tissue is fixed using a fixative within a HEPES or phosphate buffer.
7. The product of claim 1, wherein the mammalian tissue is fixed using a fixation procedure selected from the group consisting of aqueous fixation, cryo-preservation, and dry tissue fixation.
8. The product of claim 1, wherein the mammalian tissue is fixed using a fixative that is buffered.
9. The product of claim 1, wherein the mammalian tissue is sterilized.
10. The product of claim 1, wherein the stent valve is configured for use as a venous valve.
11. The product of claim 1, wherein the frame comprises a material selected from the group consisting of nitinol, chromium, cadmium, molybdenum, nickel, a nickel composite, nickel-cadmium nickel-chromium, nitinol palladium, palladium, cobalt, platinum, and stainless steel.
12. A product, comprising:
a frame configured to retain a mammalian tissue thereon, the frame comprising a first end, a second end, a longitudinal axis, one or more lower arms, and at least one connection portion extending along the longitudinal axis, the one or more lower arms disposed at the second end and connected to the at least one connection portion, the at least one connection portion comprising connection bars; and
the mammalian tissue coupled to the frame;
wherein when the product is positioned within a mammalian luminal organ, fluid native to the mammalian luminal organ may pass through a lumen defined within the product;
wherein the product is configured as a stent valve;
wherein the mammalian tissue comprises visceral pleura;
wherein the at least one connection portion is used to connect the visceral pleura to the frame; and
wherein the mammalian tissue is fixed.
13. The product of claim 12, wherein the mammalian tissue is chemically fixed.
14. The product of claim 12, wherein a segment of the mammalian tissue is decellularized.
15. The product of claim 12, wherein the visceral pleura is harvested from a middle-anterior portion of a lung.
16. The product of claim 12, wherein the mammalian tissue is fixed using a fixative selected from the group consisting of glutaraldehyde, formaldehyde, and glycerol.
17. The product of claim 12, wherein the mammalian tissue is sterilized.
18. The product of claim 12, wherein the stent valve is configured for use as a venous valve.
19. The product of claim 12, wherein the frame comprises a material selected from the group consisting of nitinol, chromium, cadmium, molybdenum, nickel, a nickel composite, nickel-cadmium nickel-chromium, nitinol palladium, palladium, cobalt, platinum, and stainless steel.
20. A product, comprising:
a frame configured to retain a mammalian tissue thereon, the frame comprising a first end, a second end, a longitudinal axis, one or more lower arms, and at least one connection portion extending along the longitudinal axis, the one or more lower arms disposed at the second end and connected to the at least one connection portion, the at least one connection portion comprising connection bars; and
the mammalian tissue coupled to the frame;
wherein when the product is positioned within a mammalian luminal organ, fluid native to the mammalian luminal organ may pass through a lumen defined within the product;
wherein the product is configured as a bileaflet stent valve;
wherein the mammalian tissue comprises visceral pleura;
wherein the at least one connection portion is used to connect the visceral pleura to the frame; and
wherein the mammalian tissue is fixed.
US17/174,839 2012-02-10 2021-02-12 Methods and uses of biological tissues for various stent and other medical applications Pending US20210161970A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/174,839 US20210161970A1 (en) 2012-02-10 2021-02-12 Methods and uses of biological tissues for various stent and other medical applications

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261597406P 2012-02-10 2012-02-10
US201261640381P 2012-04-30 2012-04-30
PCT/US2013/025591 WO2013120082A1 (en) 2012-02-10 2013-02-11 Methods and uses of biological tissues for various stent and other medical applications
US201414377619A 2014-08-08 2014-08-08
US17/174,839 US20210161970A1 (en) 2012-02-10 2021-02-12 Methods and uses of biological tissues for various stent and other medical applications

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2013/025591 Continuation WO2013120082A1 (en) 2012-02-10 2013-02-11 Methods and uses of biological tissues for various stent and other medical applications
US14/377,619 Continuation US10940167B2 (en) 2012-02-10 2013-02-11 Methods and uses of biological tissues for various stent and other medical applications

Publications (1)

Publication Number Publication Date
US20210161970A1 true US20210161970A1 (en) 2021-06-03

Family

ID=48948099

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/377,619 Active 2033-09-14 US10940167B2 (en) 2012-02-10 2013-02-11 Methods and uses of biological tissues for various stent and other medical applications
US17/174,839 Pending US20210161970A1 (en) 2012-02-10 2021-02-12 Methods and uses of biological tissues for various stent and other medical applications

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/377,619 Active 2033-09-14 US10940167B2 (en) 2012-02-10 2013-02-11 Methods and uses of biological tissues for various stent and other medical applications

Country Status (3)

Country Link
US (2) US10940167B2 (en)
EP (2) EP2811939B8 (en)
WO (1) WO2013120082A1 (en)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090105813A1 (en) * 2007-10-17 2009-04-23 Sean Chambers Implantable valve device
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
CA2840084C (en) 2011-06-21 2019-11-05 Foundry Newco Xii, Inc. Prosthetic heart valve devices and associated systems and methods
US9039757B2 (en) 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
CN107028685B (en) 2011-10-19 2019-11-15 托尔福公司 Artificial heart valve film device, artificial mitral valve and related systems and methods
US11202704B2 (en) 2011-10-19 2021-12-21 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
WO2013059743A1 (en) 2011-10-19 2013-04-25 Foundry Newco Xii, Inc. Devices, systems and methods for heart valve replacement
EP2811939B8 (en) 2012-02-10 2017-11-15 CVDevices, LLC Products made of biological tissues for stents and methods of manufacturing
US9579198B2 (en) 2012-03-01 2017-02-28 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US9301835B2 (en) * 2012-06-04 2016-04-05 Edwards Lifesciences Corporation Pre-assembled bioprosthetic valve and sealed conduit
AU2014214700B2 (en) 2013-02-11 2018-01-18 Cook Medical Technologies Llc Expandable support frame and medical device
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
US20190150937A1 (en) * 2013-09-26 2019-05-23 Cvdevices, Llc Devices, systems, and methods to precondition, arterialize, and/or occlude a mammalian luminal organ
WO2015048435A1 (en) * 2013-09-26 2015-04-02 Cvdevices, Llc Devices, systems, and methods to precondition, arterialize and/or occlude a mammalian luminal organ
US11000285B2 (en) 2013-12-17 2021-05-11 3Dt Holdings, Llc Luminal grafts and methods of making and using the same
US10314686B2 (en) 2013-12-17 2019-06-11 Dtherapeutics, Llc Devices, systems and methods for tissue engineering of luminal grafts
US9801910B2 (en) * 2014-03-17 2017-10-31 Ethicon, Inc. Decellularized pleural matrix
US10507101B2 (en) * 2014-10-13 2019-12-17 W. L. Gore & Associates, Inc. Valved conduit
US11491115B2 (en) * 2015-07-09 2022-11-08 The Board Of Regents Of The University Of Texas System Nanoparticles containing extracellular matrix for drug delivery
US20170080129A1 (en) * 2015-09-17 2017-03-23 Ghassan S. Kassab Biological material-coated devices and methods of producing the same
JP7002451B2 (en) 2015-12-15 2022-01-20 ニオバスク ティアラ インコーポレイテッド Transseptal delivery system
WO2017127939A1 (en) 2016-01-29 2017-08-03 Neovasc Tiara Inc. Prosthetic valve for avoiding obstruction of outflow
CN113893064A (en) 2016-11-21 2022-01-07 内奥瓦斯克迪亚拉公司 Methods and systems for rapid retrieval of transcatheter heart valve delivery systems
US10575950B2 (en) 2017-04-18 2020-03-03 Twelve, Inc. Hydraulic systems for delivering prosthetic heart valve devices and associated methods
US10646338B2 (en) 2017-06-02 2020-05-12 Twelve, Inc. Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods
US10856984B2 (en) 2017-08-25 2020-12-08 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US11179256B2 (en) 2018-01-13 2021-11-23 Ghassan S. Kassab Expandable endograft devices, systems, and methods of using the same to partially or fully occlude a luminal organ
WO2019195860A2 (en) 2018-04-04 2019-10-10 Vdyne, Llc Devices and methods for anchoring transcatheter heart valve
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US10321995B1 (en) 2018-09-20 2019-06-18 Vdyne, Llc Orthogonally delivered transcatheter heart valve replacement
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
US11071627B2 (en) 2018-10-18 2021-07-27 Vdyne, Inc. Orthogonally delivered transcatheter heart valve frame for valve in valve prosthesis
US10595994B1 (en) 2018-09-20 2020-03-24 Vdyne, Llc Side-delivered transcatheter heart valve replacement
US11109969B2 (en) 2018-10-22 2021-09-07 Vdyne, Inc. Guidewire delivery of transcatheter heart valve
CN113271890B (en) 2018-11-08 2024-08-30 内奥瓦斯克迪亚拉公司 Ventricular deployment of transcatheter mitral valve prosthesis
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
US11185409B2 (en) 2019-01-26 2021-11-30 Vdyne, Inc. Collapsible inner flow control component for side-delivered transcatheter heart valve prosthesis
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
AU2020231221A1 (en) 2019-03-05 2021-09-23 Vdyne, Inc. Tricuspid regurgitation control devices for orthogonal transcatheter heart valve prosthesis
AU2020233892A1 (en) 2019-03-08 2021-11-04 Neovasc Tiara Inc. Retrievable prosthesis delivery system
US11173027B2 (en) 2019-03-14 2021-11-16 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11076956B2 (en) 2019-03-14 2021-08-03 Vdyne, Inc. Proximal, distal, and anterior anchoring tabs for side-delivered transcatheter mitral valve prosthesis
WO2020206012A1 (en) 2019-04-01 2020-10-08 Neovasc Tiara Inc. Controllably deployable prosthetic valve
WO2020210652A1 (en) 2019-04-10 2020-10-15 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
JP7529689B2 (en) 2019-05-04 2024-08-06 ブイダイン,インコーポレイテッド Clamping device and method for deploying a laterally delivered prosthetic heart valve at a native valve annulus - Patents.com
CN114025813B (en) 2019-05-20 2024-05-14 内奥瓦斯克迪亚拉公司 Introducer with hemostatic mechanism
WO2020257643A1 (en) 2019-06-20 2020-12-24 Neovasc Tiara Inc. Low profile prosthetic mitral valve
CA3152042A1 (en) 2019-08-20 2021-02-25 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
CA3152632A1 (en) 2019-08-26 2021-03-04 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery
WO2021222816A1 (en) * 2020-05-01 2021-11-04 Cedars-Sinai Medical Center Isolation and functional analysis of epithelial progenitor cells from the human lung
DE102020122386A1 (en) * 2020-08-27 2022-03-03 MEDIRA GmbH Prosthetic valve device for treating mitral valve regurgitation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5723010A (en) * 1995-03-31 1998-03-03 Toyo Boseki Kabushiki Kaisha Medical device and method for producing the same
WO2002049687A1 (en) * 2000-12-20 2002-06-27 Vettivetpillai Ketharanathan Method of creating biological and biosynthetic material for implantation
WO2006099372A2 (en) * 2005-03-11 2006-09-21 Wake Forest University Health Sciences Tissue engineered blood vessels
US20080102439A1 (en) * 2006-10-27 2008-05-01 Bin Tian Biological tissue for surgical implantation
US20120165928A1 (en) * 2010-12-22 2012-06-28 Yaacov Nitzan Devices for reducing left atrial pressure, and methods of making and using same
US20120310041A1 (en) * 2002-01-04 2012-12-06 Colibri Heart Valve Llc Percutaneously Implantable Replacement Heart Valve Device and Method of Making Same
US10940167B2 (en) * 2012-02-10 2021-03-09 Cvdevices, Llc Methods and uses of biological tissues for various stent and other medical applications
US11406495B2 (en) * 2013-02-11 2022-08-09 Cook Medical Technologies Llc Expandable support frame and medical device

Family Cites Families (1094)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3169945A (en) 1956-04-13 1965-02-16 Union Carbide Corp Lactone polyesters
US3014104A (en) 1958-12-12 1961-12-19 Gen Electric Electrical contacts
US3063967A (en) 1959-10-07 1962-11-13 Gen Aniline & Film Corp Polymers of 2-p-dioxanone and method for making same
US3012882A (en) 1960-01-26 1961-12-12 Muldawer Leonard Temperature responsive cadmium-silver-gold alloys
US3174851A (en) 1961-12-01 1965-03-23 William J Buehler Nickel-base alloys
US3391126A (en) 1964-05-08 1968-07-02 Dow Chemical Co Polymerization of para-dioxanone and derivatives
US3464065A (en) 1965-07-08 1969-09-02 Surgitool Inc Prosthetic heart valve
JPS4624984Y1 (en) 1966-12-07 1971-08-28
US3772137A (en) 1968-09-30 1973-11-13 Du Pont Polyester pillow batt
US3583391A (en) 1968-11-21 1971-06-08 American Hospital Supply Corp Medical instrument with outrolling catheter
US3589392A (en) 1969-05-05 1971-06-29 Louis C Meyer Split leaflet check valve for cardiac surgery and the like
US3645941A (en) 1970-04-01 1972-02-29 Eastman Kodak Co Method of preparing 2-p-dioxanone polymers
SE392582B (en) 1970-05-21 1977-04-04 Gore & Ass PROCEDURE FOR THE PREPARATION OF A POROST MATERIAL, BY EXPANDING AND STRETCHING A TETRAFLUORETENE POLYMER PREPARED IN AN PASTE-FORMING EXTENSION PROCEDURE
JPS4940388B1 (en) 1970-05-28 1974-11-01
US3710744A (en) 1971-02-24 1973-01-16 Cutter Lab Method and device for manufacture of heart valve
US3737919A (en) 1971-03-16 1973-06-12 Univ Minnesota Pivoted disc-type heart valve
US3736598A (en) 1971-06-10 1973-06-05 B Bellhouse Prosthetic cardiac valve
GB1402255A (en) 1971-09-24 1975-08-06 Smiths Industries Ltd Medical or surgical devices of the kind having an inflatable balloon
DE2354428C2 (en) 1972-11-03 1985-06-13 Ethicon, Inc., Somerville, N.J. Multi-thread surgical sutures
US3912692A (en) 1973-05-03 1975-10-14 American Cyanamid Co Process for polymerizing a substantially pure glycolide composition
FR2287174A1 (en) 1974-10-08 1976-05-07 Philagro Sa FUNGICIDE COMPOSITIONS BASED ON CYCLIC PHOSPHITES
US3983581A (en) 1975-01-20 1976-10-05 William W. Angell Heart valve stent
CA1069652A (en) 1976-01-09 1980-01-15 Alain F. Carpentier Supported bioprosthetic heart valve with compliant orifice ring
US4052988A (en) 1976-01-12 1977-10-11 Ethicon, Inc. Synthetic absorbable surgical devices of poly-dioxanone
AU521676B2 (en) 1977-02-23 1982-04-22 Clark, Richard Edwin Heart valve prosthesis
US4093061A (en) 1977-02-23 1978-06-06 Burroughs Corporation Disc ink ribbon
US4297749A (en) 1977-04-25 1981-11-03 Albany International Corp. Heart valve prosthesis
US4300565A (en) 1977-05-23 1981-11-17 American Cyanamid Company Synthetic polyester surgical articles
US4243775A (en) 1978-11-13 1981-01-06 American Cyanamid Company Synthetic polyester surgical articles
DK229077A (en) * 1977-05-25 1978-11-26 Biocoating Aps HEARTBALL PROSTHET AND PROCEDURE FOR MANUFACTURING IT
US4222126A (en) 1978-12-14 1980-09-16 The United States Of America As Represented By The Secretary Of The Department Of Health, Education & Welfare Unitized three leaflet heart valve
GB2056023B (en) 1979-08-06 1983-08-10 Ross D N Bodnar E Stent for a cardiac valve
US4328592A (en) 1979-08-07 1982-05-11 Hemex, Inc. Heart valve prosthesis
US4272854A (en) 1979-08-07 1981-06-16 Carbomedics, Inc. Bi-leaflet heart valve
US4274292A (en) 1979-10-11 1981-06-23 Arnett Jr Robert D Compact starter assembly
US4275469A (en) 1979-12-13 1981-06-30 Shelhigh Inc. Prosthetic heart valve
US4564014A (en) 1980-01-30 1986-01-14 Thomas J. Fogarty Variable length dilatation catheter apparatus and method
US4657024A (en) 1980-02-04 1987-04-14 Teleflex Incorporated Medical-surgical catheter
US4861830A (en) 1980-02-29 1989-08-29 Th. Goldschmidt Ag Polymer systems suitable for blood-contacting surfaces of a biomedical device, and methods for forming
US4675361A (en) 1980-02-29 1987-06-23 Thoratec Laboratories Corp. Polymer systems suitable for blood-contacting surfaces of a biomedical device, and methods for forming
US4340977A (en) 1980-09-19 1982-07-27 Brownlee Richard T Catenary mitral valve replacement
US4388735A (en) 1980-11-03 1983-06-21 Shiley Inc. Low profile prosthetic xenograft heart valve
JPS57164290A (en) 1981-03-31 1982-10-08 Kawasaki Heavy Ind Ltd Thermal stress alleviating structure for high temperature equipment supporting device
US4470157A (en) 1981-04-27 1984-09-11 Love Jack W Tricuspid prosthetic tissue heart valve
US4816029A (en) 1981-05-07 1989-03-28 Medtronic, Inc. Stent for aortic heart valve
US4345340A (en) 1981-05-07 1982-08-24 Vascor, Inc. Stent for mitral/tricuspid heart valve
US4364126A (en) 1981-07-28 1982-12-21 Vascor, Inc. Heart valve with removable cusp protector band
US4591630A (en) 1981-07-30 1986-05-27 Ethicon, Inc. Annealed polydioxanone surgical device and method for producing the same
US4350492A (en) 1981-08-24 1982-09-21 Vascor, Inc. Method for preparing tissue heart valve
US7018407B1 (en) 1981-10-29 2006-03-28 Medtronic Valve holder for tricuspid heart valve
US4451936A (en) 1981-12-21 1984-06-05 American Hospital Supply Corporation Supra-annular aortic valve
US4429080A (en) 1982-07-01 1984-01-31 American Cyanamid Company Synthetic copolymer surgical articles and method of manufacturing the same
IT1212547B (en) 1982-08-09 1989-11-30 Iorio Domenico INSTRUMENT FOR SURGICAL USE INTENDED TO MAKE INTERVENTIONS FOR THE IMPLANTATION OF BIOPROTESIS IN HUMAN ORGANS EASIER AND SAFER
US4700704A (en) 1982-10-01 1987-10-20 Ethicon, Inc. Surgical articles of copolymers of glycolide and ε-caprolactone and methods of producing the same
US4605730A (en) 1982-10-01 1986-08-12 Ethicon, Inc. Surgical articles of copolymers of glycolide and ε-caprolactone and methods of producing the same
US4440789A (en) 1982-11-16 1984-04-03 Ethicon, Inc. Synthetic absorbable hemostatic composition
US4494531A (en) 1982-12-06 1985-01-22 Cook, Incorporated Expandable blood clot filter
US4506394A (en) 1983-01-13 1985-03-26 Molrose Management, Ltd. Cardiac valve prosthesis holder
US4535483A (en) 1983-01-17 1985-08-20 Hemex, Inc. Suture rings for heart valves
US4643734A (en) 1983-05-05 1987-02-17 Hexcel Corporation Lactide/caprolactone polymer, method of making the same, composites thereof, and prostheses produced therefrom
US4665906A (en) 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
US4681588A (en) * 1983-10-20 1987-07-21 Vettivetpillai Ketharanathan Biomaterial
US4549921A (en) 1983-10-28 1985-10-29 E. I. Du Pont De Nemours And Company Lamination of fluorocarbon films
US5669936A (en) 1983-12-09 1997-09-23 Endovascular Technologies, Inc. Endovascular grafting system and method for use therewith
IT1208326B (en) 1984-03-16 1989-06-12 Sorin Biomedica Spa CARDIAC VALVE PROSTHESIS PROVIDED WITH VALVES OF ORGANIC FABRIC
SU1258406A1 (en) 1984-06-27 1986-09-23 Горьковский государственный медицинский институт им.С.М.Кирова Artificial heart valve
DE3426300A1 (en) 1984-07-17 1986-01-30 Doguhan Dr.med. 6000 Frankfurt Baykut TWO-WAY VALVE AND ITS USE AS A HEART VALVE PROSTHESIS
US4661300A (en) 1984-09-12 1987-04-28 Becton, Dickinson And Company Method and apparatus for flashless tipping of an I.V. catheter
US4559945A (en) 1984-09-21 1985-12-24 Ethicon, Inc. Absorbable crystalline alkylene malonate copolyesters and surgical devices therefrom
US4580568A (en) 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
DE3442088A1 (en) 1984-11-17 1986-05-28 Beiersdorf Ag, 2000 Hamburg HEART VALVE PROSTHESIS
DE3442736C2 (en) 1984-11-23 1987-03-05 Tassilo Dr.med. 7800 Freiburg Bonzel Dilatation catheter
SU1271508A1 (en) 1984-11-29 1986-11-23 Горьковский государственный медицинский институт им.С.М.Кирова Artificial heart valve
US4759758A (en) 1984-12-07 1988-07-26 Shlomo Gabbay Prosthetic heart valve
ES283533Y (en) 1984-12-19 1985-12-16 Gallo Mezo Jose I BICUSPIDE CARDIAC VALVE PROSTHESIS
NL8500538A (en) 1985-02-26 1986-09-16 Stichting Tech Wetenschapp HEART VALVE PROSTHESIS, METHOD FOR MANUFACTURING A HEART VALVE PROSTHESIS AND MOLD USED THEREIN
US4755593A (en) 1985-07-24 1988-07-05 Lauren Mark D Novel biomaterial of cross-linked peritoneal tissue
JPS6227352A (en) 1985-07-25 1987-02-05 Agency Of Ind Science & Technol Production of porous glass film
JPS6238172A (en) 1985-08-12 1987-02-19 株式会社 高研 Production of anti-thrombotic medical material
US4624256A (en) 1985-09-11 1986-11-25 Pfizer Hospital Products Group, Inc. Caprolactone polymers for suture coating
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4653497A (en) 1985-11-29 1987-03-31 Ethicon, Inc. Crystalline p-dioxanone/glycolide copolymers and surgical devices made therefrom
US4665918A (en) 1986-01-06 1987-05-19 Garza Gilbert A Prosthesis system and method
US5133755A (en) 1986-01-28 1992-07-28 Thm Biomedical, Inc. Method and apparatus for diodegradable, osteogenic, bone graft substitute device
CH672247A5 (en) 1986-03-06 1989-11-15 Mo Vysshee Tekhnicheskoe Uchil
SU1371701A1 (en) 1986-03-11 1988-02-07 Военно-Медицинская Краснознаменная Академия Им.С.М.Кирова Artificial valve of heart
IT8629545V0 (en) 1986-06-12 1986-06-12 Fina Ernesto SET BALLOON URETERAL CATHETER BALLOON FOR EXTRACTION OF URETERAL STONES
ES2040719T3 (en) 1986-09-23 1993-11-01 American Cyanamid Company BIO-ABSORBABLE COATING FOR A SURGICAL ARTICLE.
US4788979A (en) 1986-09-23 1988-12-06 American Cyanamid Company Bioabsorbable coating for a surgical article
US4798611A (en) 1986-10-14 1989-01-17 Hancock Jaffe Laboratories Enhancement of xenogeneic tissue
US4893623A (en) 1986-12-09 1990-01-16 Advanced Surgical Intervention, Inc. Method and apparatus for treating hypertrophy of the prostate gland
US4800603A (en) 1987-01-30 1989-01-31 Jaffe Norman R Tissue fixation with vapor
US5041126A (en) 1987-03-13 1991-08-20 Cook Incorporated Endovascular stent and delivery system
US4800882A (en) 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US5174295A (en) 1987-04-10 1992-12-29 Cardiometrics, Inc. Apparatus, system and method for measuring spatial average velocity and/or volumetric flow of blood in a vessel and screw joint for use therewith
US5017664A (en) 1987-06-03 1991-05-21 Wisconsin Alumni Research Foundation Biocompatible polyurethane devices wherein polyurethane is modified with lower alkyl sulfonate and lower alkyl carboxylate
US4816028A (en) 1987-07-01 1989-03-28 Indu Kapadia Woven vascular graft
US4836204A (en) 1987-07-06 1989-06-06 Landymore Roderick W Method for effecting closure of a perforation in the septum of the heart
US4969458A (en) 1987-07-06 1990-11-13 Medtronic, Inc. Intracoronary stent and method of simultaneous angioplasty and stent implant
US4851000A (en) 1987-07-31 1989-07-25 Pacific Biomedical Holdings, Ltd. Bioprosthetic valve stent
JP2529112B2 (en) 1987-08-31 1996-08-28 株式会社 高研 Biological valve
US5133732A (en) 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US5274074A (en) 1987-12-17 1993-12-28 United States Surgical Corporation Medical devices fabricated from homopolymers and copolymers having recurring carbonate units
US4838267A (en) 1988-02-12 1989-06-13 Ethicon, Inc. Glycolide/p-dioxanone block copolymers
US4952215A (en) 1988-02-29 1990-08-28 Boisurge, Inc. Valvulotome with leaflet disruption heads and fluid supply
US4856510A (en) 1988-04-06 1989-08-15 Kowalewski Ryszard J Tracheal tube inflator
US5104402A (en) 1988-05-25 1992-04-14 Trustees Of The University Of Pennsylvania Prosthetic vessels for stress at vascular graft anastomoses
US5024841A (en) 1988-06-30 1991-06-18 Collagen Corporation Collagen wound healing matrices and process for their production
US5032128A (en) 1988-07-07 1991-07-16 Medtronic, Inc. Heart valve prosthesis
US4832055A (en) 1988-07-08 1989-05-23 Palestrant Aubrey M Mechanically locking blood clot filter
US4902508A (en) 1988-07-11 1990-02-20 Purdue Research Foundation Tissue graft composition
US4956178A (en) 1988-07-11 1990-09-11 Purdue Research Foundation Tissue graft composition
DE3828781A1 (en) 1988-08-25 1990-03-08 Braun Melsungen Ag HEART VALVE PROSTHESIS
US4917089A (en) 1988-08-29 1990-04-17 Sideris Eleftherios B Buttoned device for the transvenous occlusion of intracardiac defects
US5019090A (en) 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
US5024671A (en) 1988-09-19 1991-06-18 Baxter International Inc. Microporous vascular graft
JP2710355B2 (en) 1988-09-20 1998-02-10 日本ゼオン株式会社 Medical valve device
US5085629A (en) 1988-10-06 1992-02-04 Medical Engineering Corporation Biodegradable stent
DE3834545A1 (en) 1988-10-11 1990-04-12 Rau Guenter FLEXIBLE LOCKING ORGAN, PARTICULARLY HEART VALVE, AND METHOD FOR PRODUCING THE SAME
US5019085A (en) 1988-10-25 1991-05-28 Cordis Corporation Apparatus and method for placement of a stent within a subject vessel
US4856516A (en) 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
FR2641692A1 (en) 1989-01-17 1990-07-20 Nippon Zeon Co Plug for closing an opening for a medical application, and device for the closure plug making use thereof
US4872875A (en) 1989-01-28 1989-10-10 Carbon Implants, Inc. Prosthetic heart valve
AU629609B2 (en) 1989-02-22 1992-10-08 Longyear Tm Inc Wire line core drilling apparatus
US5201314A (en) 1989-03-09 1993-04-13 Vance Products Incorporated Echogenic devices, material and method
US5289831A (en) 1989-03-09 1994-03-01 Vance Products Incorporated Surface-treated stent, catheter, cannula, and the like
US5081997A (en) 1989-03-09 1992-01-21 Vance Products Incorporated Echogenic devices, material and method
US4994077A (en) 1989-04-21 1991-02-19 Dobben Richard L Artificial heart valve for implantation in a blood vessel
US4994071A (en) 1989-05-22 1991-02-19 Cordis Corporation Bifurcating stent apparatus and method
JPH02307480A (en) 1989-05-23 1990-12-20 Nobuyuki Tanaka Intravenous atrial septal defect hole closing apparatus
EP0474748B1 (en) 1989-05-31 1995-01-25 Baxter International Inc. Biological valvular prosthesis
US5609626A (en) 1989-05-31 1997-03-11 Baxter International Inc. Stent devices and support/restrictor assemblies for use in conjunction with prosthetic vascular grafts
US5352240A (en) 1989-05-31 1994-10-04 Promedica International, Inc. Human heart valve replacement with porcine pulmonary valve
US4992027A (en) 1989-06-08 1991-02-12 Able Corporation Hydraulic control valve for fuel pumping system
US5314473A (en) 1989-07-20 1994-05-24 Godin Norman J Prosthesis for preventing gastric reflux into the esophagus
US5076807A (en) 1989-07-31 1991-12-31 Ethicon, Inc. Random copolymers of p-dioxanone, lactide and/or glycolide as coating polymers for surgical filaments
US5133725A (en) 1989-08-07 1992-07-28 Berkshire Research And Development, Inc. Adjustable intra-liminal valvulotome
US6344053B1 (en) 1993-12-22 2002-02-05 Medtronic Ave, Inc. Endovascular support device and method
US5674278A (en) 1989-08-24 1997-10-07 Arterial Vascular Engineering, Inc. Endovascular support device
IE73670B1 (en) 1989-10-02 1997-07-02 Medtronic Inc Articulated stent
US5035706A (en) 1989-10-17 1991-07-30 Cook Incorporated Percutaneous stent and method for retrieval thereof
US5192313A (en) 1989-10-25 1993-03-09 Carbomedics, Inc. Heart valve prosthesis with improved bi-leaflet pivot design
US5067491A (en) 1989-12-08 1991-11-26 Becton, Dickinson And Company Barrier coating on blood contacting devices
US5047048A (en) 1990-01-30 1991-09-10 Ethicon, Inc. Crystalline copolymers of p-dioxanone and ε-caprolactone
US5007923A (en) 1990-01-31 1991-04-16 Ethicon, Inc. Crystalline copolyesters of amorphous (lactide/glycolide) and p-dioxanone
US4994074A (en) 1990-02-01 1991-02-19 Ethicon, Inc. Copolymers of ε-caprolactone, glycolide and glycolic acid for suture coatings
US5171259A (en) 1990-04-02 1992-12-15 Kanji Inoue Device for nonoperatively occluding a defect
US5037434A (en) 1990-04-11 1991-08-06 Carbomedics, Inc. Bioprosthetic heart valve with elastic commissures
US5344426A (en) 1990-04-25 1994-09-06 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
JPH078530Y2 (en) 1990-05-08 1995-03-01 村田機械株式会社 Bobbin transport tray
DK124690D0 (en) 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
US5411552A (en) 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
US5108425A (en) 1990-05-30 1992-04-28 Hwang Ned H C Low turbulence heart valve
US5080665A (en) 1990-07-06 1992-01-14 American Cyanamid Company Deformable, absorbable surgical device
US5252701A (en) 1990-07-06 1993-10-12 American Cyanamid Company Segmented absorbable copolymer
US5103817A (en) 1990-07-20 1992-04-14 Xomed-Treace Inc. Automatic dye dispersant for endotracheal tubes and catheters
IT9084979A1 (en) 1990-07-30 1992-01-31 Imad Sheiban PERCUTANEOUS TRANSLUMINAL CORONARY ANGIOPLASTIC CATHETER WITH TWO BALLOONS AT ITS DISTAL END ONE OF SMALL DIAMETER (1, 5MM. FOLLOWED BY ANOTHER BALLOON OF GREATER DIAMETER VARIABLE FROM 2, 5 TO 4 MM THE BALLOON THE SMALL BALLOON
SE500406C2 (en) 1990-08-09 1994-06-20 Christian Olin Heart valve prosthesis
RU1767723C (en) 1990-08-14 1995-01-27 Кирово-Чепецкий химический комбинат Artificial heart valve
US5139515A (en) 1990-08-15 1992-08-18 Francis Robicsek Ascending aortic prosthesis
US5197979A (en) 1990-09-07 1993-03-30 Baxter International Inc. Stentless heart valve and holder
ES2085435T3 (en) 1990-10-09 1996-06-01 Cook Inc PERCUTANEOUS DILATOR DEVICE.
US5100433A (en) 1990-11-08 1992-03-31 Ethicon, Inc. Suture coated with a copolymer coating composition
US5053008A (en) 1990-11-21 1991-10-01 Sandeep Bajaj Intracardiac catheter
DE9016236U1 (en) 1990-11-29 1991-04-25 Anschütz & Co GmbH, 2300 Kiel Support ring for supporting a heart valve prosthesis
CS277367B6 (en) 1990-12-29 1993-01-13 Krajicek Milan Three-layered vascular prosthesis
US5178618A (en) 1991-01-16 1993-01-12 Brigham And Womens Hospital Method and device for recanalization of a body passageway
US5755782A (en) * 1991-01-24 1998-05-26 Autogenics Stents for autologous tissue heart valve
US5163955A (en) * 1991-01-24 1992-11-17 Autogenics Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment
US5108420A (en) 1991-02-01 1992-04-28 Temple University Aperture occlusion device
US5116365A (en) 1991-02-22 1992-05-26 Cordis Corporation Stent apparatus and method for making
US5295958A (en) 1991-04-04 1994-03-22 Shturman Cardiology Systems, Inc. Method and apparatus for in vivo heart valve decalcification
US5167628A (en) 1991-05-02 1992-12-01 Boyles Paul W Aortic balloon catheter assembly for indirect infusion of the coronary arteries
IT1245750B (en) 1991-05-24 1994-10-14 Sorin Biomedica Emodialisi S R CARDIAC VALVE PROSTHESIS, PARTICULARLY FOR REPLACING THE AORTIC VALVE
US5239982A (en) 1991-06-07 1993-08-31 Baxter International Inc. Catheter depth gauge and method of use
IT1247037B (en) 1991-06-25 1994-12-12 Sante Camilli ARTIFICIAL VENOUS VALVE
US5314472A (en) 1991-10-01 1994-05-24 Cook Incorporated Vascular stent
US5527354A (en) 1991-06-28 1996-06-18 Cook Incorporated Stent formed of half-round wire
US5370685A (en) 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
CA2074304C (en) 1991-08-02 1996-11-26 Cyril J. Schweich, Jr. Drug delivery catheter
US5293879A (en) 1991-09-23 1994-03-15 Vitatron Medical, B.V. System an method for detecting tremors such as those which result from parkinson's disease
US5281422A (en) 1991-09-24 1994-01-25 Purdue Research Foundation Graft for promoting autogenous tissue growth
US5304194A (en) 1991-10-02 1994-04-19 Target Therapeutics Vasoocclusion coil with attached fibrous element(s)
US5234457A (en) 1991-10-09 1993-08-10 Boston Scientific Corporation Impregnated stent
US5876445A (en) 1991-10-09 1999-03-02 Boston Scientific Corporation Medical stents for body lumens exhibiting peristaltic motion
US5662713A (en) 1991-10-09 1997-09-02 Boston Scientific Corporation Medical stents for body lumens exhibiting peristaltic motion
US5354309A (en) 1991-10-11 1994-10-11 Angiomed Ag Apparatus for widening a stenosis in a body cavity
US5289963A (en) 1991-10-18 1994-03-01 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
US5387235A (en) 1991-10-25 1995-02-07 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
AU669338B2 (en) 1991-10-25 1996-06-06 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm and method for implanting
US5456713A (en) 1991-10-25 1995-10-10 Cook Incorporated Expandable transluminal graft prosthesis for repairs of aneurysm and method for implanting
CA2380683C (en) 1991-10-28 2006-08-08 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
CA2082090C (en) 1991-11-05 2004-04-27 Jack Fagan Improved occluder for repair of cardiac and vascular defects
DE69229539T2 (en) 1991-11-05 2000-02-17 Children's Medical Center Corp., Boston Occlusion device for repairing heart and vascular defects
FR2683449A1 (en) 1991-11-08 1993-05-14 Cardon Alain ENDOPROTHESIS FOR TRANSLUMINAL IMPLANTATION.
DK168419B1 (en) 1991-11-25 1994-03-28 Cook Inc A Cook Group Company Abdominal wall support device and apparatus for insertion thereof
US5258000A (en) 1991-11-25 1993-11-02 Cook Incorporated Tissue aperture repair device
US5176692A (en) 1991-12-09 1993-01-05 Wilk Peter J Method and surgical instrument for repairing hernia
US5507767A (en) 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
EP0623003B1 (en) 1992-01-21 1999-03-31 Regents Of The University Of Minnesota Septal defect closure device
US5649950A (en) 1992-01-22 1997-07-22 C. R. Bard System for the percutaneous transluminal front-end loading delivery and retrieval of a prosthetic occluder
US5489297A (en) 1992-01-27 1996-02-06 Duran; Carlos M. G. Bioprosthetic heart valve with absorbable stent
US5830209A (en) 1992-02-05 1998-11-03 Angeion Corporation Multi-fiber laser catheter
US5163953A (en) 1992-02-10 1992-11-17 Vince Dennis J Toroidal artificial heart valve stent
US5405377A (en) 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
EP0630432B1 (en) 1992-03-13 1999-07-14 Atrium Medical Corporation Controlled porosity expanded fluoropolymer (e.g. polytetrafluoroethylene) products and fabrication
US5282823A (en) 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
US5201757A (en) 1992-04-03 1993-04-13 Schneider (Usa) Inc. Medial region deployment of radially self-expanding stents
US5178633A (en) 1992-04-21 1993-01-12 Carbon Implants Inc. Suture ring for heart valve prosthesis
US5589563A (en) 1992-04-24 1996-12-31 The Polymer Technology Group Surface-modifying endgroups for biomedical polymers
US5540712A (en) 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
EP0888758B1 (en) 1992-05-08 2003-08-20 Schneider (Usa) Inc. Esophageal stent
US5178632A (en) 1992-06-09 1993-01-12 Hanson Richard D Bi-leaflet heart valve prosthesis
US5507771A (en) 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
US5342387A (en) 1992-06-18 1994-08-30 American Biomed, Inc. Artificial support for a blood vessel
US5327891A (en) 1992-07-30 1994-07-12 Rammler David H Catheter track and catheter for diagnosis and treatment
US5306294A (en) 1992-08-05 1994-04-26 Ultrasonic Sensing And Monitoring Systems, Inc. Stent construction of rolled configuration
US6336938B1 (en) 1992-08-06 2002-01-08 William Cook Europe A/S Implantable self expanding prosthetic device
US5366473A (en) 1992-08-18 1994-11-22 Ultrasonic Sensing And Monitoring Systems, Inc. Method and apparatus for applying vascular grafts
JP3739411B2 (en) 1992-09-08 2006-01-25 敬二 伊垣 Vascular stent, manufacturing method thereof, and vascular stent device
US5397311A (en) 1992-09-09 1995-03-14 Menlo Care, Inc. Bloodless splittable introducer
US5562725A (en) 1992-09-14 1996-10-08 Meadox Medicals Inc. Radially self-expanding implantable intraluminal device
US5275826A (en) 1992-11-13 1994-01-04 Purdue Research Foundation Fluidized intestinal submucosa and its use as an injectable tissue graft
US5643317A (en) 1992-11-25 1997-07-01 William Cook Europe S.A. Closure prosthesis for transcatheter placement
US5284488A (en) 1992-12-23 1994-02-08 Sideris Eleftherios B Adjustable devices for the occlusion of cardiac defects
US5468253A (en) 1993-01-21 1995-11-21 Ethicon, Inc. Elastomeric medical device
US6338730B1 (en) 1993-02-04 2002-01-15 Peter M. Bonutti Method of using expandable cannula
US5797960A (en) 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
US6010531A (en) 1993-02-22 2000-01-04 Heartport, Inc. Less-invasive devices and methods for cardiac valve surgery
US6346074B1 (en) 1993-02-22 2002-02-12 Heartport, Inc. Devices for less invasive intracardiac interventions
US5322062A (en) 1993-04-08 1994-06-21 Servas Francis M Non-inflatable sealing cuff for tracheal tube and other cannula
US5334210A (en) 1993-04-09 1994-08-02 Cook Incorporated Vascular occlusion assembly
WO1994023786A1 (en) 1993-04-13 1994-10-27 Boston Scientific Corporation Prosthesis delivery system
US5843167A (en) 1993-04-22 1998-12-01 C. R. Bard, Inc. Method and apparatus for recapture of hooked endoprosthesis
AU689094B2 (en) 1993-04-22 1998-03-26 C.R. Bard Inc. Non-migrating vascular prosthesis and minimally invasive placement system therefor
US5441515A (en) 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5769796A (en) 1993-05-11 1998-06-23 Target Therapeutics, Inc. Super-elastic composite guidewire
US5522841A (en) 1993-05-27 1996-06-04 United States Surgical Corporation Absorbable block copolymers and surgical articles fabricated therefrom
IT1276342B1 (en) 1993-06-04 1997-10-30 Ist Naz Stud Cura Dei Tumori METAL STENT COVERED WITH BIOCOMPATIBLE POLYMERIC MATERIAL
GB9312666D0 (en) 1993-06-18 1993-08-04 Vesely Ivan Bioprostetic heart valve
JPH08507243A (en) 1993-07-23 1996-08-06 クック インコーポレイティッド Flexible stent with pattern formed from sheet material
US5486195A (en) 1993-07-26 1996-01-23 Myers; Gene Method and apparatus for arteriotomy closure
US5735892A (en) 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
US5393594A (en) 1993-10-06 1995-02-28 United States Surgical Corporation Absorbable non-woven fabric
US5389106A (en) 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US5480424A (en) 1993-11-01 1996-01-02 Cox; James L. Heart valve replacement using flexible tubes
US5713950A (en) 1993-11-01 1998-02-03 Cox; James L. Method of replacing heart valves using flexible tubes
US5624449A (en) 1993-11-03 1997-04-29 Target Therapeutics Electrolytically severable joint for endovascular embolic devices
DE69419877T2 (en) 1993-11-04 1999-12-16 C.R. Bard, Inc. Fixed vascular prosthesis
US5380320A (en) 1993-11-08 1995-01-10 Advanced Surgical Materials, Inc. Electrosurgical instrument having a parylene coating
EP0667133B1 (en) 1993-12-14 2001-03-07 Sante Camilli A percutaneous implantable valve for the use in blood vessels
FR2714815B1 (en) 1994-01-10 1996-03-08 Microfil Ind Sa Elastic prosthesis to widen a duct, in particular a blood vessel.
US6334872B1 (en) 1994-02-18 2002-01-01 Organogenesis Inc. Method for treating diseased or damaged organs
US5643312A (en) 1994-02-25 1997-07-01 Fischell Robert Stent having a multiplicity of closed circular structures
US5417708A (en) 1994-03-09 1995-05-23 Cook Incorporated Intravascular treatment system and percutaneous release mechanism therefor
US5549663A (en) 1994-03-09 1996-08-27 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
AU1931495A (en) * 1994-03-14 1995-10-03 Cryolife, Inc. Treated tissue for implantation and preparation methods
US5733303A (en) 1994-03-17 1998-03-31 Medinol Ltd. Flexible expandable stent
US5449373A (en) 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US6117157A (en) 1994-03-18 2000-09-12 Cook Incorporated Helical embolization coil
CA2185781C (en) 1994-03-18 2006-07-11 Kurt J. Tekulve Helical embolization coil
WO1995027448A1 (en) 1994-04-06 1995-10-19 William Cook Europe A/S A medical article for implantation into the vascular system of a patient
US5415636A (en) 1994-04-13 1995-05-16 Schneider (Usa) Inc Dilation-drug delivery catheter
US5595571A (en) 1994-04-18 1997-01-21 Hancock Jaffe Laboratories Biological material pre-fixation treatment
US6113623A (en) 1994-04-20 2000-09-05 Cabinet Beau De Lomenie Prosthetic device and method for eventration repair
DE69510986T2 (en) 1994-04-25 1999-12-02 Advanced Cardiovascular Systems, Inc. Radiation-opaque stent markings
US5554181A (en) 1994-05-04 1996-09-10 Regents Of The University Of Minnesota Stent
US5824044A (en) 1994-05-12 1998-10-20 Endovascular Technologies, Inc. Bifurcated multicapsule intraluminal grafting system
US6582461B1 (en) 1994-05-19 2003-06-24 Scimed Life Systems, Inc. Tissue supporting devices
US5824041A (en) 1994-06-08 1998-10-20 Medtronic, Inc. Apparatus and methods for placement and repositioning of intraluminal prostheses
DE69518435T3 (en) 1994-06-08 2004-07-22 CardioVascular Concepts, Inc., Portola Valley A branching graft manufacturing system
US5846261A (en) 1994-07-08 1998-12-08 Aga Medical Corp. Percutaneous catheter directed occlusion devices
US5554185A (en) 1994-07-18 1996-09-10 Block; Peter C. Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same
US5397355A (en) 1994-07-19 1995-03-14 Stentco, Inc. Intraluminal stent
FR2722678B1 (en) 1994-07-25 1996-12-27 Braun Celsa Sa B PLUG-IN MEDICAL PROSTHESIS FOR USE IN THE TREATMENT OF ANEVRISMS, DEVICE COMPRISING SUCH A PROSTHESIS
US5636641A (en) 1994-07-25 1997-06-10 Advanced Cardiovascular Systems, Inc. High strength member for intracorporeal use
US5433727A (en) 1994-08-16 1995-07-18 Sideris; Eleftherios B. Centering buttoned device for the occlusion of large defects for occluding
US5549666A (en) 1994-09-02 1996-08-27 Baxter International Inc. Natural tissue valve prostheses having variably complaint leaflets
US5545215A (en) 1994-09-14 1996-08-13 Duran; Carlos G. External sigmoid valve complex frame and valved conduit supported by the same
AU708360B2 (en) 1994-09-15 1999-08-05 C.R. Bard Inc. Hooked endoprosthesis
US5641501A (en) 1994-10-11 1997-06-24 Ethicon, Inc. Absorbable polymer blends
US5836964A (en) 1996-10-30 1998-11-17 Medinol Ltd. Stent fabrication method
US5562729A (en) 1994-11-01 1996-10-08 Biocontrol Technology, Inc. Heart valve
US5549662A (en) 1994-11-07 1996-08-27 Scimed Life Systems, Inc. Expandable stent using sliding members
US6110212A (en) 1994-11-15 2000-08-29 Kenton W. Gregory Elastin and elastin-based materials
CA2163824C (en) 1994-11-28 2000-06-20 Richard J. Saunders Method and apparatus for direct laser cutting of metal stents
US5630829A (en) 1994-12-09 1997-05-20 Intervascular, Inc. High hoop strength intraluminal stent
US6171329B1 (en) 1994-12-19 2001-01-09 Gore Enterprise Holdings, Inc. Self-expanding defect closure device and method of making and using
US5879366A (en) 1996-12-20 1999-03-09 W.L. Gore & Associates, Inc. Self-expanding defect closure device and method of making and using
IL116561A0 (en) 1994-12-30 1996-03-31 Target Therapeutics Inc Severable joint for detachable devices placed within the body
US5609598A (en) 1994-12-30 1997-03-11 Vnus Medical Technologies, Inc. Method and apparatus for minimally invasive treatment of chronic venous insufficiency
DK175166B1 (en) 1995-01-03 2004-06-21 Cook William Europ Method of manufacturing an assembly for placing an embolization coil in the vascular system and such assembly as well as an apparatus for advancing the assembly
US5702421A (en) 1995-01-11 1997-12-30 Schneidt; Bernhard Closure device for closing a vascular opening, such as patent ductus arteriosus
US5634936A (en) 1995-02-06 1997-06-03 Scimed Life Systems, Inc. Device for closing a septal defect
US5702372A (en) 1995-02-08 1997-12-30 Medtronic, Inc. Lined infusion catheter
US5683449A (en) 1995-02-24 1997-11-04 Marcade; Jean Paul Modular bifurcated intraluminal grafts and methods for delivering and assembling same
US5662675A (en) 1995-02-24 1997-09-02 Intervascular, Inc. Delivery catheter assembly
CA2186029C (en) 1995-03-01 2003-04-08 Brian J. Brown Improved longitudinally flexible expandable stent
US5591197A (en) 1995-03-14 1997-01-07 Advanced Cardiovascular Systems, Inc. Expandable stent forming projecting barbs and method for deploying
CA2171896C (en) 1995-03-17 2007-05-15 Scott C. Anderson Multi-anchor stent
AU5437396A (en) 1995-03-29 1996-10-16 Cv Dynamics, Inc. Dba Medical Incorporated Bileaflet heart valve
US6183511B1 (en) 1997-10-03 2001-02-06 Cv Dynamics, Inc. Bileaflet heart valve having open channel and swivel pivots
US5571168A (en) 1995-04-05 1996-11-05 Scimed Lifesystems Inc Pull back stent delivery system
US5530683A (en) 1995-04-06 1996-06-25 The United States Of America As Represented By The Secretary Of The Navy Steerable acoustic transducer
US5733337A (en) 1995-04-07 1998-03-31 Organogenesis, Inc. Tissue repair fabric
US5711969A (en) 1995-04-07 1998-01-27 Purdue Research Foundation Large area submucosal tissue graft constructs
US5554389A (en) 1995-04-07 1996-09-10 Purdue Research Foundation Urinary bladder submucosa derived tissue graft
US5613981A (en) 1995-04-21 1997-03-25 Medtronic, Inc. Bidirectional dual sinusoidal helix stent
US5591198A (en) 1995-04-27 1997-01-07 Medtronic, Inc. Multiple sinusoidal wave configuration stent
US5667523A (en) 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
US7069634B1 (en) 1995-04-28 2006-07-04 Medtronic, Inc. Method for manufacturing a catheter
US6059779A (en) 1995-04-28 2000-05-09 Target Therapeutics, Inc. Delivery catheter for electrolytically detachable implant
US5641324A (en) 1995-05-16 1997-06-24 Medical Carbon Research Institute, Llc Prosthetic heart valve
US5772694A (en) 1995-05-16 1998-06-30 Medical Carbon Research Institute L.L.C. Prosthetic heart valve with improved blood flow
EP0773754B1 (en) 1995-05-25 2004-09-01 Medtronic, Inc. Stent assembly
US5779670A (en) 1995-05-31 1998-07-14 Bidwell; Robert E. Catheter having lubricated sheathing
JP3390449B2 (en) 1995-06-01 2003-03-24 ミードックス メディカルズ インコーポレイテッド Implantable endoluminal prosthesis
US5596990A (en) 1995-06-06 1997-01-28 Yock; Paul Rotational correlation of intravascular ultrasound image with guide catheter position
ZA964885B (en) 1995-06-07 1997-02-06 St Jude Medical Direct suture orifice for mechanical heart valve.
US5638813A (en) 1995-06-07 1997-06-17 Augustine Medical, Inc. Tracheal tube with self-supporting tracheal tube cuff
US5609629A (en) 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
CA2223219A1 (en) 1995-06-07 1999-05-19 Frank Louw Side branch occlusion catheter device having integrated endoscope for performing endoscopically visualized occlusion of the side branches of an anatomical passageway
US7611533B2 (en) 1995-06-07 2009-11-03 Cook Incorporated Coated implantable medical device
CA2178541C (en) 1995-06-07 2009-11-24 Neal E. Fearnot Implantable medical device
US5707389A (en) 1995-06-07 1998-01-13 Baxter International Inc. Side branch occlusion catheter device having integrated endoscope for performing endoscopically visualized occlusion of the side branches of an anatomical passageway
US5716417A (en) 1995-06-07 1998-02-10 St. Jude Medical, Inc. Integral supporting structure for bioprosthetic heart valve
US5728152A (en) 1995-06-07 1998-03-17 St. Jude Medical, Inc. Bioresorbable heart valve support
RU2157146C2 (en) 1995-06-13 2000-10-10 ВИЛЬЯМ КУК Европа, A/S Device for performing implantation in blood vessels and hollow organs
US5865801A (en) 1995-07-18 1999-02-02 Houser; Russell A. Multiple compartmented balloon catheter with external pressure sensing
US6261318B1 (en) 1995-07-25 2001-07-17 Medstent Inc. Expandable stent
ATE400653T1 (en) 1995-07-26 2008-07-15 Astrazeneca Ab CHIMERIC RECEPTORS AND METHOD FOR IDENTIFYING COMPOUNDS HAVING ACTIVITY AS METABOTROPIC GLUTAMA RECEPTORS AND USE OF SUCH COMPOUNDS IN THE TREATMENT OF NEUROLOGICAL DISEASES AND NEUROLOGICAL DISORDERS
US5716399A (en) * 1995-10-06 1998-02-10 Cardiomend Llc Methods of heart valve repair
US6328763B1 (en) 1995-10-06 2001-12-11 Cardiomend, Llc Optimized geometry of a tissue pattern for semilunar heart valve reconstruction
IL124037A (en) 1995-10-13 2003-01-12 Transvascular Inc Device and system for interstitial transvascular intervention
US5776161A (en) 1995-10-16 1998-07-07 Instent, Inc. Medical stents, apparatus and method for making same
US6287336B1 (en) 1995-10-16 2001-09-11 Medtronic, Inc. Variable flexibility stent
AU7458596A (en) 1995-10-20 1997-05-07 Bandula Wijay Vascular stent
WO1997016119A1 (en) 1995-10-30 1997-05-09 Children's Medical Center Corporation Self-centering umbrella-type septal closure device
US5607442A (en) 1995-11-13 1997-03-04 Isostent, Inc. Stent with improved radiopacity and appearance characteristics
US5865723A (en) 1995-12-29 1999-02-02 Ramus Medical Technologies Method and apparatus for forming vascular prostheses
US5855602A (en) 1996-09-09 1999-01-05 Shelhigh, Inc. Heart valve prosthesis
WO1997025002A1 (en) 1996-01-05 1997-07-17 Medtronic, Inc. Expansible endoluminal prostheses
US6878161B2 (en) 1996-01-05 2005-04-12 Medtronic Vascular, Inc. Stent graft loading and deployment device and method
WO1997025937A1 (en) 1996-01-18 1997-07-24 Jang G David Programmable variably flexible modular stents
US5690642A (en) 1996-01-18 1997-11-25 Cook Incorporated Rapid exchange stent delivery balloon catheter
US5938682A (en) 1996-01-26 1999-08-17 Cordis Corporation Axially flexible stent
US6017363A (en) 1997-09-22 2000-01-25 Cordis Corporation Bifurcated axially flexible stent
WO1997027959A1 (en) 1996-01-30 1997-08-07 Medtronic, Inc. Articles for and methods of making stents
US5926016A (en) 1996-01-31 1999-07-20 Alliedsignal Truck Brake Systems Company Custom integrated wheel-speed sensor circuit with sensitivity adjustment
US6579311B1 (en) 1996-02-02 2003-06-17 Transvascular, Inc. Method for interstitial transvascular intervention
JP2000504594A (en) 1996-02-02 2000-04-18 トランスバスキュラー インコーポレイテッド Method and apparatus for blocking flow in a blood vessel
DE19604817C2 (en) 1996-02-09 2003-06-12 Pfm Prod Fuer Die Med Ag Device for closing defect openings in the human or animal body
US5843117A (en) 1996-02-14 1998-12-01 Inflow Dynamics Inc. Implantable vascular and endoluminal stents and process of fabricating the same
US6036687A (en) 1996-03-05 2000-03-14 Vnus Medical Technologies, Inc. Method and apparatus for treating venous insufficiency
US6033398A (en) 1996-03-05 2000-03-07 Vnus Medical Technologies, Inc. Method and apparatus for treating venous insufficiency using directionally applied energy
CA2192520A1 (en) 1996-03-05 1997-09-05 Ian M. Penn Expandable stent and method for delivery of same
US6334871B1 (en) 1996-03-13 2002-01-01 Medtronic, Inc. Radiopaque stent markers
US5853422A (en) 1996-03-22 1998-12-29 Scimed Life Systems, Inc. Apparatus and method for closing a septal defect
US5824042A (en) 1996-04-05 1998-10-20 Medtronic, Inc. Endoluminal prostheses having position indicating markers
US5755791A (en) 1996-04-05 1998-05-26 Purdue Research Foundation Perforated submucosal tissue graft constructs
NZ331269A (en) 1996-04-10 2000-01-28 Advanced Cardiovascular System Expandable stent, its structural strength varying along its length
US5668288A (en) 1996-04-16 1997-09-16 Depuy Orthopaedics, Inc. Polyester ionomers for implant fabrication
US6149660A (en) 1996-04-22 2000-11-21 Vnus Medical Technologies, Inc. Method and apparatus for delivery of an appliance in a vessel
BE1010183A3 (en) 1996-04-25 1998-02-03 Dereume Jean Pierre Georges Em Luminal endoprosthesis FOR BRANCHING CHANNELS OF A HUMAN OR ANIMAL BODY AND MANUFACTURING METHOD THEREOF.
US20040106985A1 (en) 1996-04-26 2004-06-03 Jang G. David Intravascular stent
US6235053B1 (en) 1998-02-02 2001-05-22 G. David Jang Tubular stent consists of chevron-shape expansion struts and contralaterally attached diagonal connectors
US6949116B2 (en) 1996-05-08 2005-09-27 Carag Ag Device for plugging an opening such as in a wall of a hollow or tubular organ including biodegradable elements
US5628791A (en) 1996-05-09 1997-05-13 Medical Carbon Research Institute, Llc Prosthetic trileaflet heart valve
DE69719237T2 (en) 1996-05-23 2003-11-27 Samsung Electronics Co., Ltd. Flexible, self-expandable stent and method for its manufacture
US5891195A (en) 1996-05-24 1999-04-06 Sulzer Carbomedics Inc. Combined prosthetic aortic heart valve and vascular graft with sealed sewing ring
MX9800715A (en) 1996-05-31 1998-04-30 Bard Walway Ltd Bifurcated endovascular stents and method and apparatus for their placement.
AU716764B2 (en) 1996-06-04 2000-03-09 Cook Incorporated Implantable medical device
US7238197B2 (en) 2000-05-30 2007-07-03 Devax, Inc. Endoprosthesis deployment system for treating vascular bifurcations
US5697971A (en) 1996-06-11 1997-12-16 Fischell; Robert E. Multi-cell stent with cells having differing characteristics
US5833671A (en) 1996-06-17 1998-11-10 Cardeon Corporation Triple lumen catheter with controllable antegrade and retrograde fluid flow
US5827237A (en) 1996-06-17 1998-10-27 Cardeon Corporation Dual lumen catheter with controlled antegrade and retrograde fluid flow
US6059757A (en) 1996-06-18 2000-05-09 Cardeon Single lumen catheter with controlled antegrade and retrograde flow
US5855601A (en) 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US5797952A (en) 1996-06-21 1998-08-25 Localmed, Inc. System and method for delivering helical stents
US6077295A (en) 1996-07-15 2000-06-20 Advanced Cardiovascular Systems, Inc. Self-expanding stent delivery system
US5669933A (en) 1996-07-17 1997-09-23 Nitinol Medical Technologies, Inc. Removable embolus blood clot filter
US6090136A (en) 1996-07-29 2000-07-18 Radiance Medical Systems, Inc. Self expandable tubular support
US5755781A (en) 1996-08-06 1998-05-26 Iowa-India Investments Company Limited Embodiments of multiple interconnected stents
US6706026B1 (en) 1996-08-09 2004-03-16 Cook Urological Incorporated Instillation uterine catheter
US6325819B1 (en) 1996-08-19 2001-12-04 Cook Incorporated Endovascular prosthetic device, an endovascular graft prothesis with such a device, and a method for repairing an abdominal aortic aneurysm
US6666892B2 (en) 1996-08-23 2003-12-23 Cook Biotech Incorporated Multi-formed collagenous biomaterial medical device
CZ54899A3 (en) 1996-08-23 1999-08-11 Cook Biotech, Incorporated Graft prosthesis, materials connected therewith and processes for producing thereof
US5968068A (en) 1996-09-12 1999-10-19 Baxter International Inc. Endovascular delivery system
US5807404A (en) 1996-09-19 1998-09-15 Medinol Ltd. Stent with variable features to optimize support and method of making such stent
ES2177999T3 (en) 1996-09-25 2002-12-16 Weston Medical Ltd PROCEDURE AND APPLIANCE FOR MANUFACTURING AN ARTICLE OF A CONFORMABLE MATERIAL.
US5772669A (en) 1996-09-27 1998-06-30 Scimed Life Systems, Inc. Stent deployment catheter with retractable sheath
US5725519A (en) 1996-09-30 1998-03-10 Medtronic Instent Israel Ltd. Stent loading device for a balloon catheter
US5895419A (en) 1996-09-30 1999-04-20 St. Jude Medical, Inc. Coated prosthetic cardiac device
US5755776A (en) 1996-10-04 1998-05-26 Al-Saadon; Khalid Permanent expandable intraluminal tubular stent
US5755778A (en) 1996-10-16 1998-05-26 Nitinol Medical Technologies, Inc. Anastomosis device
US6099561A (en) 1996-10-21 2000-08-08 Inflow Dynamics, Inc. Vascular and endoluminal stents with improved coatings
US5824045A (en) 1996-10-21 1998-10-20 Inflow Dynamics Inc. Vascular and endoluminal stents
US5861003A (en) 1996-10-23 1999-01-19 The Cleveland Clinic Foundation Apparatus and method for occluding a defect or aperture within body surface
US6530951B1 (en) 1996-10-24 2003-03-11 Cook Incorporated Silver implantable medical device
US7220275B2 (en) 1996-11-04 2007-05-22 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels
US6692483B2 (en) 1996-11-04 2004-02-17 Advanced Stent Technologies, Inc. Catheter with attached flexible side sheath
US20050163818A1 (en) 1996-11-05 2005-07-28 Hsing-Wen Sung Drug-eluting device chemically treated with genipin
US5843090A (en) 1996-11-05 1998-12-01 Schneider (Usa) Inc. Stent delivery device
AU5168398A (en) 1996-11-07 1998-05-29 Vascular Science Inc. Steerable instrument for use in medical procedures
US5846247A (en) 1996-11-15 1998-12-08 Unsworth; John D. Shape memory tubular deployment system
JP4152444B2 (en) 1996-12-10 2008-09-17 パーデュー・リサーチ・ファウンデーション Gastric submucosa as a new diagnostic tool
EP0961595B1 (en) 1996-12-10 2003-09-10 Purdue Research Foundation Tubular submucosal graft constructs
DK1014895T3 (en) 1996-12-10 2006-07-10 Purdue Research Foundation Artificial vents
JP4638562B2 (en) 1996-12-10 2011-02-23 パーデュー・リサーチ・ファウンデーション Biological material derived from vertebrate liver tissue
US6375989B1 (en) 1996-12-10 2002-04-23 Purdue Research Foundation Submucosa extracts
DE69720252T2 (en) 1996-12-10 2003-12-04 Purdue Research Foundation, West Lafayette TISSUE TRANSPLANT FROM THE MAGIC SUBMUCOSA
US5792114A (en) 1996-12-16 1998-08-11 Fiore; John M. Introducer for sterile insertion of catheter
NL1004827C2 (en) 1996-12-18 1998-06-19 Surgical Innovations Vof Device for regulating blood circulation.
US6096052A (en) 1998-07-08 2000-08-01 Ovion, Inc. Occluding device and method of use
US6015431A (en) 1996-12-23 2000-01-18 Prograft Medical, Inc. Endolumenal stent-graft with leak-resistant seal
US5868782A (en) 1996-12-24 1999-02-09 Global Therapeutics, Inc. Radially expandable axially non-contracting surgical stent
US6074419A (en) 1996-12-31 2000-06-13 St. Jude Medical, Inc. Indicia for prosthetic device
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US6007521A (en) 1997-01-07 1999-12-28 Bidwell; Robert E. Drainage catheter system
ES2251763T3 (en) 1997-01-24 2006-05-01 Paragon Intellectual Properties, Llc BISTABLE SPRING STRUCTURE FOR AN ENDOPROTESIS.
US5928248A (en) 1997-02-14 1999-07-27 Biosense, Inc. Guided deployment of stents
US7192450B2 (en) 2003-05-21 2007-03-20 Dexcom, Inc. Porous membranes for use with implantable devices
US6152944A (en) 1997-03-05 2000-11-28 Scimed Life Systems, Inc. Catheter with removable balloon protector and stent delivery system with removable stent protector
US6334052B1 (en) 1997-03-07 2001-12-25 Telefonaktiebolaget Lm Ericsson (Publ) Subscription-based mobile station idle mode cell selection
US5911732A (en) 1997-03-10 1999-06-15 Johnson & Johnson Interventional Systems, Co. Articulated expandable intraluminal stent
US5851232A (en) 1997-03-15 1998-12-22 Lois; William A. Venous stent
US5792144A (en) 1997-03-31 1998-08-11 Cathco, Inc. Stent delivery catheter system
JP2001520542A (en) 1997-04-11 2001-10-30 クライオライフ・インコーポレーテッド Tissue decellularization
JP2001527440A (en) 1997-04-11 2001-12-25 トランスバスキュラー インコーポレイテッド Method and device for myocardial penetrating direct coronary remodeling
US6143016A (en) 1997-04-21 2000-11-07 Advanced Cardiovascular Systems, Inc. Sheath and method of use for a stent delivery system
US5957949A (en) 1997-05-01 1999-09-28 World Medical Manufacturing Corp. Percutaneous placement valve stent
US5741327A (en) 1997-05-06 1998-04-21 Global Therapeutics, Inc. Surgical stent featuring radiopaque markers
US6162245A (en) 1997-05-07 2000-12-19 Iowa-India Investments Company Limited Stent valve and stent graft
US6245102B1 (en) 1997-05-07 2001-06-12 Iowa-India Investments Company Ltd. Stent, stent graft and stent valve
US5855597A (en) 1997-05-07 1999-01-05 Iowa-India Investments Co. Limited Stent valve and stent graft for percutaneous surgery
US5993844A (en) 1997-05-08 1999-11-30 Organogenesis, Inc. Chemical treatment, without detergents or enzymes, of tissue to form an acellular, collagenous matrix
US5843183A (en) 1997-05-13 1998-12-01 Bokros; Jack C. Trileaflet heart valve
US6231507B1 (en) 1997-06-02 2001-05-15 Vnus Medical Technologies, Inc. Pressure tourniquet with ultrasound window and method of use
US5947995A (en) 1997-06-06 1999-09-07 Samuels; Shaun Lawrence Wilkie Method and apparatus for removing blood clots and other objects
EP0884029B1 (en) 1997-06-13 2004-12-22 Gary J. Becker Expandable intraluminal endoprosthesis
FR2764794B1 (en) 1997-06-20 1999-11-12 Nycomed Lab Sa EXPANDED TUBULAR DEVICE WITH VARIABLE THICKNESS
CA2241558A1 (en) 1997-06-24 1998-12-24 Advanced Cardiovascular Systems, Inc. Stent with reinforced struts and bimodal deployment
US6024690A (en) 1997-07-01 2000-02-15 Endosonics Corporation Radiation source with delivery wire
US5944733A (en) 1997-07-14 1999-08-31 Target Therapeutics, Inc. Controlled detachable vasoocclusive member using mechanical junction and friction-enhancing member
GB9715059D0 (en) 1997-07-18 1997-09-24 Innovative Tech Ltd Prosthetic valve sinus
US5919226A (en) 1997-07-22 1999-07-06 Medtronic, Inc. Mechanical heart valve prosthesis
US5855600A (en) 1997-08-01 1999-01-05 Inflow Dynamics Inc. Flexible implantable stent with composite design
US6117979A (en) 1997-08-18 2000-09-12 Medtronic, Inc. Process for making a bioprosthetic device and implants produced therefrom
US6156061A (en) 1997-08-29 2000-12-05 Target Therapeutics, Inc. Fast-detaching electrically insulated implant
US5954766A (en) 1997-09-16 1999-09-21 Zadno-Azizi; Gholam-Reza Body fluid flow control device
JP4292710B2 (en) 1997-09-24 2009-07-08 エム イー ディ インスチィチュート インク Radially expandable stent
US5928258A (en) 1997-09-26 1999-07-27 Corvita Corporation Method and apparatus for loading a stent or stent-graft into a delivery sheath
US5925063A (en) 1997-09-26 1999-07-20 Khosravi; Farhad Coiled sheet valve, filter or occlusive device and methods of use
US6042606A (en) 1997-09-29 2000-03-28 Cook Incorporated Radially expandable non-axially contracting surgical stent
US6579582B1 (en) 1997-10-10 2003-06-17 Vision Sciences Inc. Apparatus and method for forming complex-shaped components in a heated polymeric film
US5980565A (en) 1997-10-20 1999-11-09 Iowa-India Investments Company Limited Sandwich stent
US6254642B1 (en) 1997-12-09 2001-07-03 Thomas V. Taylor Perorally insertable gastroesophageal anti-reflux valve prosthesis and tool for implantation thereof
US6022374A (en) 1997-12-16 2000-02-08 Cardiovasc, Inc. Expandable stent having radiopaque marker and method
US6080141A (en) 1997-12-22 2000-06-27 Becton, Dickinson And Company Splittable tubular medical device and method for manufacture
US6001126A (en) 1997-12-24 1999-12-14 Baxter International Inc. Stentless bioprosthetic heart valve with coronary protuberances and related methods for surgical repair of defective heart valves
EP2258312B9 (en) 1997-12-29 2012-09-19 The Cleveland Clinic Foundation Deployable surgical platform and system for the removal and delivery of a medical device comprising such deployable surgical platform
US6342067B1 (en) 1998-01-09 2002-01-29 Nitinol Development Corporation Intravascular stent having curved bridges for connecting adjacent hoops
US6129755A (en) 1998-01-09 2000-10-10 Nitinol Development Corporation Intravascular stent having an improved strut configuration
US6190406B1 (en) 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
US7520890B2 (en) 1998-01-26 2009-04-21 Phillips Peter W Reinforced graft and method of deployment
DE69833882T2 (en) 1998-01-30 2006-08-17 St. Jude Medical ATG, Inc., Maple Grove MEDICAL TRANSPLANTER CONNECTOR OR STOPPING AND PROCESS FOR THEIR MANUFACTURE
US6533807B2 (en) 1998-02-05 2003-03-18 Medtronic, Inc. Radially-expandable stent and delivery system
US5944738A (en) 1998-02-06 1999-08-31 Aga Medical Corporation Percutaneous catheter directed constricting occlusion device
US6395018B1 (en) 1998-02-09 2002-05-28 Wilfrido R. Castaneda Endovascular graft and process for bridging a defect in a main vessel near one of more branch vessels
AU2684499A (en) 1998-02-17 1999-08-30 G. David Jang Tubular stent consists of chevron-shape expansion struts and ipsilaterally attached m-frame connectors
ATE327287T1 (en) 1998-02-23 2006-06-15 Mnemoscience Gmbh SHAPE MEMORY POLYMER
US6202272B1 (en) 1998-02-26 2001-03-20 Advanced Cardiovascular Systems, Inc. Hand-held stent crimping device
US6280467B1 (en) 1998-02-26 2001-08-28 World Medical Manufacturing Corporation Delivery system for deployment and endovascular assembly of a multi-stage stented graft
CA2321117C (en) 1998-02-27 2014-07-15 Purdue Research Foundation Submucosa gel compositions
US6077296A (en) 1998-03-04 2000-06-20 Endologix, Inc. Endoluminal vascular prosthesis
WO1999044535A1 (en) 1998-03-05 1999-09-10 Boston Scientific Limited Intraluminal stent
JP3414249B2 (en) 1998-03-19 2003-06-09 株式会社日立製作所 Absorption refrigerator
US6132460A (en) 1998-03-27 2000-10-17 Intratherapeutics, Inc. Stent
US6132461A (en) 1998-03-27 2000-10-17 Intratherapeutics, Inc. Stent with dual support structure
US6558415B2 (en) 1998-03-27 2003-05-06 Intratherapeutics, Inc. Stent
US6241762B1 (en) 1998-03-30 2001-06-05 Conor Medsystems, Inc. Expandable medical device with ductile hinges
DK0986334T3 (en) 1998-04-07 2005-01-24 Cook Inc Device for carocclusion with an asymmetric plurality of fibers
US6524336B1 (en) 1998-04-09 2003-02-25 Cook Incorporated Endovascular graft
US6003517A (en) * 1998-04-30 1999-12-21 Ethicon Endo-Surgery, Inc. Method for using an electrosurgical device on lung tissue
US6059827A (en) 1998-05-04 2000-05-09 Axya Medical, Inc. Sutureless cardiac valve prosthesis, and devices and methods for implanting them
US6352554B2 (en) 1998-05-08 2002-03-05 Sulzer Vascutek Limited Prosthetic tubular aortic conduit and method for manufacturing the same
US6179858B1 (en) 1998-05-12 2001-01-30 Massachusetts Institute Of Technology Stent expansion and apposition sensing
US6132458A (en) 1998-05-15 2000-10-17 American Medical Systems, Inc. Method and device for loading a stent
US7452371B2 (en) 1999-06-02 2008-11-18 Cook Incorporated Implantable vascular device
WO1999062431A1 (en) 1998-06-02 1999-12-09 Cook Incorporated Multiple-sided intraluminal medical device
US6149680A (en) 1998-06-04 2000-11-21 Scimed Life Systems, Inc. Stent loading tool
MXPA00012063A (en) 1998-06-05 2003-04-22 Organogenesis Inc Bioengineered vascular graft support prostheses.
CA2334368C (en) 1998-06-05 2011-05-24 Organogenesis, Inc. Bioengineered tubular graft prostheses
US5935148A (en) 1998-06-24 1999-08-10 Target Therapeutics, Inc. Detachable, varying flexibility, aneurysm neck bridge
CA2305730A1 (en) 1998-06-24 1999-12-29 Sulzer Carbomedics Inc. Altering heart valve leaflet attachment geometry to influence the location and magnitude of maximum loaded stress on the leaflet
EP0966979B1 (en) 1998-06-25 2006-03-08 Biotronik AG Implantable bioresorbable support for the vascular walls, in particular coronary stent
US6254636B1 (en) 1998-06-26 2001-07-03 St. Jude Medical, Inc. Single suture biological tissue aortic stentless valve
US6325824B2 (en) 1998-07-22 2001-12-04 Advanced Cardiovascular Systems, Inc. Crush resistant stent
KR100297026B1 (en) 1998-08-17 2001-10-26 윤종용 Refrigeration cycle device for refrigerator
JP4898991B2 (en) 1998-08-20 2012-03-21 クック メディカル テクノロジーズ エルエルシー Sheathed medical device
US6143022A (en) 1998-08-24 2000-11-07 Medtronic Ave, Inc. Stent-graft assembly with dual configuration graft component and method of manufacture
US6264700B1 (en) 1998-08-27 2001-07-24 Endonetics, Inc. Prosthetic gastroesophageal valve
US7118600B2 (en) 1998-08-31 2006-10-10 Wilson-Cook Medical, Inc. Prosthesis having a sleeve valve
US20070016306A1 (en) 1998-08-31 2007-01-18 Wilson-Cook Medical Inc. Prosthesis having a sleeve valve
US6746489B2 (en) 1998-08-31 2004-06-08 Wilson-Cook Medical Incorporated Prosthesis having a sleeve valve
US6682554B2 (en) 1998-09-05 2004-01-27 Jomed Gmbh Methods and apparatus for a stent having an expandable web structure
US6368345B1 (en) 1998-09-30 2002-04-09 Edwards Lifesciences Corporation Methods and apparatus for intraluminal placement of a bifurcated intraluminal garafat
US6096027A (en) 1998-09-30 2000-08-01 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Bag enclosed stent loading apparatus
US6296657B1 (en) 1998-10-07 2001-10-02 Gregory G. Brucker Vascular sealing device and method
US6193731B1 (en) 1998-10-27 2001-02-27 Fziomed, Inc. Laparoscopic insertion and deployment device
FR2785174A1 (en) 1998-11-03 2000-05-05 Jacques Seguin BODY CONDUIT EXTENSIONER, ESPECIALLY VASCULAR
US7128073B1 (en) 1998-11-06 2006-10-31 Ev3 Endovascular, Inc. Method and device for left atrial appendage occlusion
US6113612A (en) 1998-11-06 2000-09-05 St. Jude Medical Cardiovascular Group, Inc. Medical anastomosis apparatus
US7044134B2 (en) 1999-11-08 2006-05-16 Ev3 Sunnyvale, Inc Method of implanting a device in the left atrial appendage
DE19851846A1 (en) 1998-11-10 2000-05-18 Jomed Implantate Gmbh Crimper has compression chamber for compressing stent, power entry part, attachments, and chamber base and sides
US6190403B1 (en) 1998-11-13 2001-02-20 Cordis Corporation Low profile radiopaque stent with increased longitudinal flexibility and radial rigidity
US6238416B1 (en) 1998-11-13 2001-05-29 Eleftherios B. Sideris Transcatheter surgical patch
CA2319443C (en) 1998-12-01 2009-09-29 Cook Biotech, Inc. Collagenous biomaterials formed with submucosal tissue
US6340366B2 (en) 1998-12-08 2002-01-22 Bandula Wijay Stent with nested or overlapping rings
US6187036B1 (en) 1998-12-11 2001-02-13 Endologix, Inc. Endoluminal vascular prosthesis
US6197049B1 (en) 1999-02-17 2001-03-06 Endologix, Inc. Articulating bifurcation graft
SG76636A1 (en) 1998-12-22 2000-11-21 Medinol Ltd Apparatus and method for securing a stent on a balloon
US6126007A (en) 1998-12-30 2000-10-03 St. Jude Medical, Inc. Tissue valve holder
US6514063B2 (en) 1999-01-07 2003-02-04 International Business Machines Corporation Tooling for forming a stent
FR2788217A1 (en) 1999-01-12 2000-07-13 Brice Letac PROSTHETIC VALVE IMPLANTABLE BY CATHETERISM, OR SURGICAL
US6022359A (en) 1999-01-13 2000-02-08 Frantzen; John J. Stent delivery system featuring a flexible balloon
US6558418B2 (en) 1999-01-26 2003-05-06 Edwards Lifesciences Corporation Flexible heart valve
US6338740B1 (en) 1999-01-26 2002-01-15 Edwards Lifesciences Corporation Flexible heart valve leaflets
US6896690B1 (en) 2000-01-27 2005-05-24 Viacor, Inc. Cardiac valve procedure methods and devices
DE60042316D1 (en) 1999-01-28 2009-07-16 Salviac Ltd CATHETER WITH EXPANDABLE END CUT
US6425916B1 (en) 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
WO2000047134A1 (en) 1999-02-12 2000-08-17 Novo Rps Ulc Endovascular prosthesis
US6666886B1 (en) 1999-02-16 2003-12-23 Regents Of The University Of Minnesota Tissue equivalent approach to a tissue-engineered cardiovascular valve
US6110201A (en) 1999-02-18 2000-08-29 Venpro Bifurcated biological pulmonary valved conduit
US6368338B1 (en) 1999-03-05 2002-04-09 Board Of Regents, The University Of Texas Occlusion method and apparatus
JP3281390B2 (en) 1999-03-10 2002-05-13 グローバルマシーナリー株式会社 "Optical disk bonding device and bonding method"
US6090035A (en) 1999-03-19 2000-07-18 Isostent, Inc. Stent loading assembly for a self-expanding stent
US6319281B1 (en) 1999-03-22 2001-11-20 Kumar R. Patel Artificial venous valve and sizing catheter
US6379365B1 (en) 1999-03-29 2002-04-30 Alexis Diaz Stent delivery catheter system having grooved shaft
US6139575A (en) 1999-04-02 2000-10-31 Medtronic, Inc. Hybrid mechanical heart valve prosthesis
US6258117B1 (en) 1999-04-15 2001-07-10 Mayo Foundation For Medical Education And Research Multi-section stent
US6666885B2 (en) 1999-04-16 2003-12-23 Carbomedics Inc. Heart valve leaflet
US6183512B1 (en) 1999-04-16 2001-02-06 Edwards Lifesciences Corporation Flexible annuloplasty system
AU4242800A (en) 1999-04-23 2000-11-10 St. Jude Medical Cardiovascular Group, Inc. Artificial heart valve attachment apparatus
US6245101B1 (en) 1999-05-03 2001-06-12 William J. Drasler Intravascular hinge stent
WO2000067679A1 (en) 1999-05-06 2000-11-16 Venpro Corporation Implant for restoring venous valvular function
US6206907B1 (en) 1999-05-07 2001-03-27 Cardia, Inc. Occlusion device with stranded wire support arms
AU4713200A (en) 1999-05-12 2000-11-21 Mark Ortiz Heart valve and apparatus for replacement thereof, blood vessel leak detector and temporary pacemaker lead
US6656206B2 (en) 1999-05-13 2003-12-02 Cardia, Inc. Occlusion device with non-thrombogenic properties
US6375676B1 (en) 1999-05-17 2002-04-23 Advanced Cardiovascular Systems, Inc. Self-expanding stent with enhanced delivery precision and stent delivery system
US6458137B1 (en) 1999-05-26 2002-10-01 Cook Incorporated Assembly for positioning an embolization coil in the vascular system and a method of introducing a detachable embolization coil
US6478819B2 (en) 1999-05-27 2002-11-12 Sulzer Carbomedics Inc. Prosthetic heart valves with flexible post geometry
EP1057460A1 (en) 1999-06-01 2000-12-06 Numed, Inc. Replacement valve assembly and method of implanting same
US7628803B2 (en) 2001-02-05 2009-12-08 Cook Incorporated Implantable vascular device
US8382822B2 (en) 1999-06-02 2013-02-26 Cook Medical Technologies Llc Implantable vascular device
US6613002B1 (en) 1999-06-05 2003-09-02 Wilson-Cook Medical Incorporated System of indicia for a medical device
US6241763B1 (en) 1999-06-08 2001-06-05 William J. Drasler In situ venous valve device and method of formation
US6168617B1 (en) 1999-06-14 2001-01-02 Scimed Life Systems, Inc. Stent delivery system
EP1113764B1 (en) 1999-07-16 2003-11-05 Med Institute, Inc. Stent adapted for tangle-free deployment
US6174331B1 (en) 1999-07-19 2001-01-16 Sulzer Carbomedics Inc. Heart valve leaflet with reinforced free margin
US6312465B1 (en) 1999-07-23 2001-11-06 Sulzer Carbomedics Inc. Heart valve prosthesis with a resiliently deformable retaining member
US6136025A (en) 1999-07-27 2000-10-24 Barbut; Denise R. Endoscopic arterial pumps for treatment of cardiac insufficiency and venous pumps for right-sided cardiac support
US20040073155A1 (en) 2000-01-14 2004-04-15 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in tissue
WO2001012105A1 (en) 1999-08-16 2001-02-22 Citron Limited Autologous tissue suture ring used in heart valve implantation
US6299637B1 (en) 1999-08-20 2001-10-09 Samuel M. Shaolian Transluminally implantable venous valve
US20030055492A1 (en) 1999-08-20 2003-03-20 Shaolian Samuel M. Transluminally implantable venous valve
AU5812299A (en) 1999-09-07 2001-04-10 Microvena Corporation Retrievable septal defect closure device
US6315793B1 (en) 1999-09-08 2001-11-13 Medical Carbon Research Institute, Llc Prosthetic venous valves
ATE488195T1 (en) 1999-09-10 2010-12-15 Cook Inc ENDOVASCULAR TREATMENT OF CHRONIC VENOUS INSUFFICIENCY
US7942888B2 (en) 1999-09-13 2011-05-17 Rex Medical, L.P. Vascular hole closure device
AU7373700A (en) 1999-09-13 2001-04-17 Rex Medical, Lp Vascular closure
US6312474B1 (en) 1999-09-15 2001-11-06 Bio-Vascular, Inc. Resorbable implant materials
US6231561B1 (en) 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
US6360577B2 (en) 1999-09-22 2002-03-26 Scimed Life Systems, Inc. Apparatus for contracting, or crimping stents
US6254631B1 (en) 1999-09-23 2001-07-03 Intratherapeutics, Inc. Stent with enhanced friction
US20020123790A1 (en) 1999-09-28 2002-09-05 White Geoffrey Hamilton Enhanced engagement member for anchoring prosthetic devices in body lumen
US6371983B1 (en) 1999-10-04 2002-04-16 Ernest Lane Bioprosthetic heart valve
US6440164B1 (en) 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
JP2001120582A (en) 1999-10-22 2001-05-08 Gunze Ltd Artificial cardiac valve and method of manufacturing the same
DE19951475A1 (en) 1999-10-26 2001-05-10 Biotronik Mess & Therapieg Stent
US6551303B1 (en) 1999-10-27 2003-04-22 Atritech, Inc. Barrier device for ostium of left atrial appendage
PL190345B1 (en) 1999-10-29 2005-11-30 Fundacja Rozwoju Kardiochirurg Cardiac valvula stent in particular that for a mitral valvula
AU1361901A (en) 1999-11-03 2001-05-14 Endocare, Inc. Method of loading a stent on a delivery catheter
US6994092B2 (en) 1999-11-08 2006-02-07 Ev3 Sunnyvale, Inc. Device for containing embolic material in the LAA having a plurality of tissue retention structures
US6666846B1 (en) 1999-11-12 2003-12-23 Edwards Lifesciences Corporation Medical device introducer and obturator and methods of use
US6598307B2 (en) 1999-11-17 2003-07-29 Jack W. Love Device and method for assessing the geometry of a heart valve
US6678962B1 (en) 1999-11-17 2004-01-20 Cardiomend Llc Device and method for assessing the geometry of a heart valve
FR2800984B1 (en) 1999-11-17 2001-12-14 Jacques Seguin DEVICE FOR REPLACING A HEART VALVE PERCUTANEOUSLY
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US6458153B1 (en) 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US7195641B2 (en) 1999-11-19 2007-03-27 Advanced Bio Prosthetic Surfaces, Ltd. Valvular prostheses having metal or pseudometallic construction and methods of manufacture
US6579538B1 (en) 1999-12-22 2003-06-17 Acell, Inc. Tissue regenerative compositions for cardiac applications, method of making, and method of use thereof
US6790218B2 (en) 1999-12-23 2004-09-14 Swaminathan Jayaraman Occlusive coil manufacture and delivery
US6409759B1 (en) 1999-12-30 2002-06-25 St. Jude Medical, Inc. Harvested tissue heart valve with sewing rim
KR20020082217A (en) 2000-01-27 2002-10-30 쓰리에프 쎄러퓨틱스, 인코포레이티드 Prosthetic Heart Valve
EP2329796B1 (en) 2000-01-31 2021-09-01 Cook Biotech Incorporated Stent valve
US6821297B2 (en) 2000-02-02 2004-11-23 Robert V. Snyders Artificial heart valve, implantation instrument and method therefor
AU3803801A (en) 2000-02-03 2001-08-14 Cook Inc Implantable vascular device
US6508824B1 (en) 2000-02-18 2003-01-21 Transvascular, Inc. Catheter-based methods for enlarging blood vessels to facilitate the formation of penetration tracts, fistulas and/or blood flow channels
KR100760731B1 (en) 2000-03-03 2007-10-04 엘렌 토르페 패트리샤 Bulbous valve and Stent for Treating Vascular Reflux
US6679264B1 (en) 2000-03-04 2004-01-20 Emphasys Medical, Inc. Methods and devices for use in performing pulmonary procedures
ATE331487T1 (en) 2000-03-09 2006-07-15 Design & Performance Cyprus Lt STENT WITH SHEATH ATTACHMENTS
EP1263348B1 (en) 2000-03-09 2006-02-08 Design & Performance - Cyprus Limited Intraluminal prosthesis
US6485500B1 (en) 2000-03-21 2002-11-26 Advanced Cardiovascular Systems, Inc. Emboli protection system
US6953476B1 (en) 2000-03-27 2005-10-11 Neovasc Medical Ltd. Device and method for treating ischemic heart disease
WO2001074273A1 (en) 2000-03-30 2001-10-11 Advanced Cardiovascular Systems, Inc. Bifurcated stent system
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US6214029B1 (en) 2000-04-26 2001-04-10 Microvena Corporation Septal defect occluder
US6551344B2 (en) 2000-04-26 2003-04-22 Ev3 Inc. Septal defect occluder
CA2407439C (en) 2000-04-27 2008-07-08 Axel Haverich Individual venous valve prosthesis
US7226474B2 (en) 2000-05-01 2007-06-05 Endovascular Technologies, Inc. Modular graft component junctions
KR20020093109A (en) 2000-05-02 2002-12-12 윌슨-쿡 메디컬 인크. Introducer device for catheters o.t.l. with eversible sleeve
US6283990B1 (en) 2000-05-11 2001-09-04 Nozomu Kanesaka Combination of balloon and stent with specific sizes
US20040260340A1 (en) 2000-05-19 2004-12-23 Jacobs Daniel Irwin Remotely anchored tissue fixation device and method
US6419695B1 (en) 2000-05-22 2002-07-16 Shlomo Gabbay Cardiac prosthesis for helping improve operation of a heart valve
US6682519B1 (en) 2000-06-01 2004-01-27 Medical Components, Inc. Method for inserting a multiple catheter assembly
US6358277B1 (en) 2000-06-21 2002-03-19 The International Heart Institute Of Montana Foundation Atrio-ventricular valvular device
US6676698B2 (en) 2000-06-26 2004-01-13 Rex Medicol, L.P. Vascular device with valve for approximating vessel wall
US6527800B1 (en) 2000-06-26 2003-03-04 Rex Medical, L.P. Vascular device and method for valve leaflet apposition
DE10033079A1 (en) 2000-07-07 2002-01-17 Bayer Ag Process for the preparation of 2-tert-butyl-3-phenyloxaziridine
EP1307246B1 (en) 2000-07-11 2005-09-21 Alessandro Verona Biomaterial including animal corneal tissue
GB2365127A (en) 2000-07-20 2002-02-13 Jomed Imaging Ltd Catheter
US6440152B1 (en) 2000-07-28 2002-08-27 Microvena Corporation Defect occluder release assembly and method
US20020016597A1 (en) 2000-08-02 2002-02-07 Dwyer Clifford J. Delivery apparatus for a self-expanding stent
JP3746942B2 (en) 2000-08-09 2006-02-22 ペンタックス株式会社 telescope lens
US6485501B1 (en) 2000-08-11 2002-11-26 Cordis Corporation Vascular filter system with guidewire and capture mechanism
US7789876B2 (en) 2000-08-14 2010-09-07 Tyco Healthcare Group, Lp Method and apparatus for positioning a catheter relative to an anatomical junction
WO2002015951A2 (en) 2000-08-23 2002-02-28 Thoratec Corporation Coated vascular grafts and methods of use
US7510572B2 (en) 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
WO2002022054A1 (en) 2000-09-12 2002-03-21 Gabbay S Valvular prosthesis and method of using same
US6945989B1 (en) 2000-09-18 2005-09-20 Endotex Interventional Systems, Inc. Apparatus for delivering endoluminal prostheses and methods of making and using them
WO2004030570A2 (en) 2002-10-01 2004-04-15 Ample Medical, Inc. Devices for retaining native heart valve leaflet
US8784482B2 (en) 2000-09-20 2014-07-22 Mvrx, Inc. Method of reshaping a heart valve annulus using an intravascular device
WO2004030569A2 (en) 2002-10-01 2004-04-15 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus
WO2002024119A1 (en) 2000-09-21 2002-03-28 St. Jude Medical, Inc. Valved prostheses with reinforced polymer leaflets
US6461382B1 (en) 2000-09-22 2002-10-08 Edwards Lifesciences Corporation Flexible heart valve having moveable commissures
GB0023807D0 (en) 2000-09-28 2000-11-08 Angiomed Ag Prosthesis carrying releasable substance
WO2002026168A2 (en) 2000-09-29 2002-04-04 Tricardia, Llc Venous valvuloplasty device
DE10050099A1 (en) 2000-10-09 2002-04-18 Adiam Life Science Ag Tubular cardiac valve prosthesis has individual parts all made of polyurethane, forming an integrated component
US7070618B2 (en) 2000-10-25 2006-07-04 Viacor, Inc. Mitral shield
US6602286B1 (en) 2000-10-26 2003-08-05 Ernst Peter Strecker Implantable valve system
AU2001294738A1 (en) 2000-10-31 2002-05-15 Scimed Life Systems, Inc. Endoluminal device having superelastic and plastically deformable sections
US6616680B1 (en) 2000-11-01 2003-09-09 Joseph M. Thielen Distal protection and delivery system and method
US6482228B1 (en) 2000-11-14 2002-11-19 Troy R. Norred Percutaneous aortic valve replacement
AU2002230661A1 (en) 2000-11-15 2002-05-27 Endologix, Inc. Implantable vascular graft
US6843802B1 (en) 2000-11-16 2005-01-18 Cordis Corporation Delivery apparatus for a self expanding retractable stent
US6953332B1 (en) 2000-11-28 2005-10-11 St. Jude Medical, Inc. Mandrel for use in forming valved prostheses having polymer leaflets by dip coating
US6494909B2 (en) 2000-12-01 2002-12-17 Prodesco, Inc. Endovascular valve
US6517576B2 (en) 2000-12-11 2003-02-11 Shlomo Gabbay Implantable patch prosthesis having one or more cusps for improved competency
US6783499B2 (en) 2000-12-18 2004-08-31 Biosense, Inc. Anchoring mechanism for implantable telemetric medical sensor
US6692458B2 (en) 2000-12-19 2004-02-17 Edwards Lifesciences Corporation Intra-pericardial drug delivery device with multiple balloons and method for angiogenesis
US6605049B1 (en) 2000-12-21 2003-08-12 Advanced Cardiovascular Systems, Inc. Marking system and method for medical devices
US20020120328A1 (en) 2000-12-21 2002-08-29 Pathak Chandrashekhar Prabhakar Mechanical heart valve packaged in a liquid
US7128757B2 (en) 2000-12-27 2006-10-31 Advanced Cardiovascular, Inc. Radiopaque and MRI compatible nitinol alloys for medical devices
US7335383B2 (en) 2001-01-16 2008-02-26 The Regents Of The University Of Michigan Generation of nitric oxide in vivo from nitrite, nitrate or nitrosothiols endogenous in blood
US7128904B2 (en) 2001-01-16 2006-10-31 The Regents Of The University Of Michigan Material containing metal ion ligand complex producing nitric oxide in contact with blood
US6602241B2 (en) 2001-01-17 2003-08-05 Transvascular, Inc. Methods and apparatus for acute or chronic delivery of substances or apparatus to extravascular treatment sites
US20030018968A1 (en) 2001-02-01 2003-01-23 Mark Avnet Method and apparatus for inserting data into video stream to enhance television applications
CA2436642A1 (en) 2001-02-01 2002-08-08 Kaneka Corporation Stent
US8038708B2 (en) 2001-02-05 2011-10-18 Cook Medical Technologies Llc Implantable device with remodelable material and covering material
US20050182483A1 (en) 2004-02-11 2005-08-18 Cook Incorporated Percutaneously placed prosthesis with thromboresistant valve portion
GB2371988B (en) 2001-02-08 2002-12-24 Tayside Flow Technologies Ltd Valve
US6776800B2 (en) 2001-02-28 2004-08-17 Synthes (U.S.A.) Implants formed with demineralized bone
US6585761B2 (en) 2001-03-01 2003-07-01 Syde A. Taheri Prosthetic vein valve and method
AU784552B2 (en) 2001-03-02 2006-05-04 Cardinal Health 529, Llc Flexible stent
US20020123786A1 (en) 2001-03-02 2002-09-05 Ventrica, Inc. Methods and devices for bypassing an obstructed target vessel by placing the vessel in communication with a heart chamber containing blood
JP4667716B2 (en) 2001-03-13 2011-04-13 リヒター,ヨラム Stent-type expansion method and apparatus
US6955689B2 (en) 2001-03-15 2005-10-18 Medtronic, Inc. Annuloplasty band and method
MXPA03008465A (en) 2001-03-20 2005-03-07 Gmp Cardiac Care Inc Rail stent.
US6503272B2 (en) 2001-03-21 2003-01-07 Cordis Corporation Stent-based venous valves
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
JP2002315097A (en) 2001-04-16 2002-10-25 Mitsubishi Electric Corp Method for manufacturing pressure sensor, and semiconductor substrate used for the same
US6958076B2 (en) 2001-04-16 2005-10-25 Biomedical Research Associates Inc. Implantable venous valve
US20060069429A1 (en) 2001-04-24 2006-03-30 Spence Paul A Tissue fastening systems and methods utilizing magnetic guidance
US6640412B2 (en) 2001-04-26 2003-11-04 Endovascular Technologies, Inc. Method for loading a stent using a collapsing machine
DE10121210B4 (en) 2001-04-30 2005-11-17 Universitätsklinikum Freiburg Anchoring element for the intraluminal anchoring of a heart valve replacement and method for its production
US20030129751A1 (en) * 2001-05-16 2003-07-10 Grikscheit Tracy C. Tissue-engineered organs
WO2002094363A2 (en) 2001-05-21 2002-11-28 Medtronic,Inc. Trans-septal catheter with retention mechanism
US6673100B2 (en) 2001-05-25 2004-01-06 Cordis Neurovascular, Inc. Method and device for retrieving embolic coils
US6579221B1 (en) 2001-05-31 2003-06-17 Advanced Cardiovascular Systems, Inc. Proximal catheter shaft design and catheters incorporating the proximal shaft design
US7338514B2 (en) 2001-06-01 2008-03-04 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods and tools, and related methods of use
KR100393548B1 (en) 2001-06-05 2003-08-02 주식회사 엠아이텍 Stent
US20020187288A1 (en) 2001-06-11 2002-12-12 Advanced Cardiovascular Systems, Inc. Medical device formed of silicone-polyurethane
US6623506B2 (en) 2001-06-18 2003-09-23 Rex Medical, L.P Vein filter
DE10129490A1 (en) 2001-06-21 2003-01-02 Helmut Mueckter Implantable screw for stabilization of joint or bone fracture, has flexible shaft which interconnects proximal head portion and distal insertion portion of elongated screw body
EP1404388B1 (en) 2001-06-28 2013-10-23 Cook Biotech, Inc. Graft prosthesis devices containing renal capsule collagen
US6656216B1 (en) 2001-06-29 2003-12-02 Advanced Cardiovascular Systems, Inc. Composite stent with regioselective material
US6958079B1 (en) 2001-07-03 2005-10-25 Reflux Corporation Perorally insertable/removable anti-reflux valve
US7011671B2 (en) 2001-07-18 2006-03-14 Atritech, Inc. Cardiac implant device tether system and method
US6579307B2 (en) 2001-07-19 2003-06-17 The Cleveland Clinic Foundation Endovascular prosthesis having a layer of biological tissue
US7377938B2 (en) 2001-07-19 2008-05-27 The Cleveland Clinic Foundation Prosthetic cardiac value and method for making same
AU750069B1 (en) 2001-07-23 2002-07-11 Waterson Chen Impact resistant lock apparatus with anti-theft lock core
US20030023302A1 (en) 2001-07-26 2003-01-30 Riyad Moe Sewing cuff assembly for heart valves
FR2828091B1 (en) 2001-07-31 2003-11-21 Seguin Jacques ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT
US7288105B2 (en) 2001-08-01 2007-10-30 Ev3 Endovascular, Inc. Tissue opening occluder
CA2457860C (en) 2001-08-23 2010-03-16 Darrel C. Gumm Rotating stent delivery system for side branch access and protection and method of using same
US6845776B2 (en) 2001-08-27 2005-01-25 Richard S. Stack Satiation devices and methods
US20040117031A1 (en) 2001-08-27 2004-06-17 Stack Richard S. Satiation devices and methods
US20060052821A1 (en) 2001-09-06 2006-03-09 Ovalis, Inc. Systems and methods for treating septal defects
US20030055480A1 (en) 2001-09-14 2003-03-20 Fischell David R. Recannalization device with integrated distal emboli protection
US6562069B2 (en) 2001-09-19 2003-05-13 St. Jude Medical, Inc. Polymer leaflet designs for medical devices
US20040260328A1 (en) 2001-09-27 2004-12-23 Roni Zvuloni Cryoplasty apparatus and method
US6921378B2 (en) 2001-10-09 2005-07-26 Boston Scientific Scimed, Inc. Anti-reflux drainage devices and methods
US6790237B2 (en) 2001-10-09 2004-09-14 Scimed Life Systems, Inc. Medical stent with a valve and related methods of manufacturing
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US6726715B2 (en) 2001-10-23 2004-04-27 Childrens Medical Center Corporation Fiber-reinforced heart valve prosthesis
US20030083730A1 (en) 2001-10-25 2003-05-01 Scimed Life Systems, Inc. Loading cartridge for self-expanding stent
US7371258B2 (en) 2001-10-26 2008-05-13 St. Jude Medical, Inc. Valved prosthesis with porous substrate
US6575971B2 (en) 2001-11-15 2003-06-10 Quantum Cor, Inc. Cardiac valve leaflet stapler device and methods thereof
JP2003190175A (en) 2001-11-15 2003-07-08 Cordis Neurovascular Inc Aneurysm neck cover for sealing aneurysm
US20050228479A1 (en) 2001-11-29 2005-10-13 Cook Incorporated Medical device delivery system
US7871430B2 (en) 2001-11-29 2011-01-18 Cook Incorporated Medical device delivery system
US7557353B2 (en) 2001-11-30 2009-07-07 Sicel Technologies, Inc. Single-use external dosimeters for use in radiation therapies
US20030176914A1 (en) 2003-01-21 2003-09-18 Rabkin Dmitry J. Multi-segment modular stent and methods for manufacturing stents
US7137993B2 (en) 2001-12-03 2006-11-21 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US7182779B2 (en) 2001-12-03 2007-02-27 Xtent, Inc. Apparatus and methods for positioning prostheses for deployment from a catheter
US20030135266A1 (en) 2001-12-03 2003-07-17 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US6976995B2 (en) 2002-01-30 2005-12-20 Cardiac Dimensions, Inc. Fixed length anchor and pull mitral valve device and method
US20030114919A1 (en) 2001-12-10 2003-06-19 Mcquiston Jesse Polymeric stent with metallic rings
US6755857B2 (en) 2001-12-12 2004-06-29 Sulzer Carbomedics Inc. Polymer heart valve with perforated stent and sewing cuff
US6752826B2 (en) 2001-12-14 2004-06-22 Thoratec Corporation Layered stent-graft and methods of making the same
US6991646B2 (en) 2001-12-18 2006-01-31 Linvatec Biomaterials, Inc. Method and apparatus for delivering a stent into a body lumen
EP1467661A4 (en) 2001-12-19 2008-11-05 Nmt Medical Inc Septal occluder and associated methods
US6682537B2 (en) 2001-12-20 2004-01-27 The Cleveland Clinic Foundation Apparatus and method for capturing a wire in a blood vessel
US7147661B2 (en) 2001-12-20 2006-12-12 Boston Scientific Santa Rosa Corp. Radially expandable stent
US20030125790A1 (en) 2001-12-27 2003-07-03 Vitaly Fastovsky Deployment device, system and method for medical implantation
US7575759B2 (en) * 2002-01-02 2009-08-18 The Regents Of The University Of Michigan Tissue engineering scaffolds
AU2003210510A1 (en) 2002-01-14 2003-07-30 Nmt Medical, Inc. Patent foramen ovale (pfo) closure method and device
US20030139819A1 (en) 2002-01-18 2003-07-24 Beer Nicholas De Method and apparatus for closing septal defects
US20030139795A1 (en) 2002-01-23 2003-07-24 Scimed Life Systems, Inc. Stent delivery system loading tool
US7018404B2 (en) 2002-01-24 2006-03-28 St. Jude Medical, Inc. Conduit for aorta or pulmonary artery replacement
US7029493B2 (en) 2002-01-25 2006-04-18 Cordis Corporation Stent with enhanced crossability
US20050043708A1 (en) 2002-01-31 2005-02-24 Gleeson James B Anastomosis device and method
JP4512369B2 (en) 2002-01-31 2010-07-28 ラディ・メディカル・システムズ・アクチェボラーグ Stent
US20030149471A1 (en) 2002-02-05 2003-08-07 Briana Stephen G. Coated vascular prosthesis and methods of manufacture and use
US20030153972A1 (en) 2002-02-14 2003-08-14 Michael Helmus Biodegradable implantable or insertable medical devices with controlled change of physical properties leading to biomechanical compatibility
US7331992B2 (en) 2002-02-20 2008-02-19 Bard Peripheral Vascular, Inc. Anchoring device for an endoluminal prosthesis
EP1476095A4 (en) 2002-02-20 2007-04-25 Francisco J Osse Venous bi-valve
US20030163190A1 (en) 2002-02-25 2003-08-28 Scimed Life Systems, Inc. High temperature stent delivery system
US7708771B2 (en) 2002-02-26 2010-05-04 Endovascular Technologies, Inc. Endovascular graft device and methods for attaching components thereof
DE10208202A1 (en) 2002-02-26 2003-09-11 Karlsruhe Forschzent vein graft
JP3966016B2 (en) 2002-02-26 2007-08-29 株式会社デンソー Clamp circuit
US20040254640A1 (en) 2002-03-01 2004-12-16 Children's Medical Center Corporation Needle punched textile for use in growing anatomical elements
US6716241B2 (en) 2002-03-05 2004-04-06 John G. Wilder Venous valve and graft combination
US20030181973A1 (en) 2002-03-20 2003-09-25 Harvinder Sahota Reduced restenosis drug containing stents
US7166124B2 (en) 2002-03-21 2007-01-23 Providence Health System - Oregon Method for manufacturing sutureless bioprosthetic stent
US7163556B2 (en) 2002-03-21 2007-01-16 Providence Health System - Oregon Bioprosthesis and method for suturelessly making same
US6752828B2 (en) 2002-04-03 2004-06-22 Scimed Life Systems, Inc. Artificial valve
US7146984B2 (en) 2002-04-08 2006-12-12 Synecor, Llc Method and apparatus for modifying the exit orifice of a satiation pouch
US7160320B2 (en) 2002-04-16 2007-01-09 The International Heart Institute Of Montana Foundation Reed valve for implantation into mammalian blood vessels and heart with optional temporary or permanent support
US20030195385A1 (en) 2002-04-16 2003-10-16 Spiration, Inc. Removable anchored lung volume reduction devices and methods
US7125418B2 (en) 2002-04-16 2006-10-24 The International Heart Institute Of Montana Foundation Sigmoid valve and method for its percutaneous implantation
US20040230288A1 (en) 2002-04-17 2004-11-18 Rosenthal Arthur L. Medical devices adapted for controlled in vivo structural change after implantation
US20030199767A1 (en) 2002-04-19 2003-10-23 Cespedes Eduardo Ignacio Methods and apparatus for the identification and stabilization of vulnerable plaque
US20030236443A1 (en) 2002-04-19 2003-12-25 Cespedes Eduardo Ignacio Methods and apparatus for the identification and stabilization of vulnerable plaque
US20030199768A1 (en) 2002-04-19 2003-10-23 Cespedes Eduardo Ignacio Methods and apparatus for the identification and stabilization of vulnerable plaque
US20030199747A1 (en) 2002-04-19 2003-10-23 Michlitsch Kenneth J. Methods and apparatus for the identification and stabilization of vulnerable plaque
US6761735B2 (en) 2002-04-25 2004-07-13 Medtronic, Inc. Heart valve fixation process and apparatus
US6948223B2 (en) 2002-05-03 2005-09-27 Medtronic Vascular, Inc. Apparatus for mounting a stent onto a stent delivery system
US7331993B2 (en) * 2002-05-03 2008-02-19 The General Hospital Corporation Involuted endovascular valve and method of construction
US8070769B2 (en) 2002-05-06 2011-12-06 Boston Scientific Scimed, Inc. Inverted embolic protection filter
WO2003094798A1 (en) 2002-05-08 2003-11-20 Abbott Laboratories Endoprosthesis having foot extensions
WO2003094795A1 (en) 2002-05-10 2003-11-20 Cordis Corporation Method of making a medical device having a thin wall tubular membrane over a structural frame
US7270675B2 (en) 2002-05-10 2007-09-18 Cordis Corporation Method of forming a tubular membrane on a structural frame
US7351256B2 (en) 2002-05-10 2008-04-01 Cordis Corporation Frame based unidirectional flow prosthetic implant
US8303617B2 (en) 2002-05-13 2012-11-06 Salviac Limited Embolic protection system
US20030225445A1 (en) 2002-05-14 2003-12-04 Derus Patricia M. Surgical stent delivery devices and methods
US20040117004A1 (en) 2002-05-16 2004-06-17 Osborne Thomas A. Stent and method of forming a stent with integral barbs
US6790214B2 (en) 2002-05-17 2004-09-14 Esophyx, Inc. Transoral endoscopic gastroesophageal flap valve restoration device, assembly, system and method
US20030220683A1 (en) 2002-05-22 2003-11-27 Zarouhi Minasian Endoluminal device having barb assembly and method of using same
DE10223399B4 (en) 2002-05-25 2006-06-14 Haindl, Hans, Dr.med. Vascular support (STENT) and method of making such a vascular support
US20030225446A1 (en) 2002-05-29 2003-12-04 William A. Cook Australia Pty Ltd. Multi-piece prosthesis deployment apparatus
US7803179B2 (en) 2002-05-30 2010-09-28 Abbott Vascular Solutions Inc. Intravascular stents
WO2003103476A2 (en) 2002-06-05 2003-12-18 Nmt Medical, Inc. Patent foramen ovale (pfo) closure device with radial and circumferential support
US6676694B1 (en) 2002-06-06 2004-01-13 Mitchell Weiss Method for installing a stent graft
US7101395B2 (en) 2002-06-12 2006-09-05 Mitral Interventions, Inc. Method and apparatus for tissue connection
US6932829B2 (en) 2002-06-24 2005-08-23 Cordis Corporation Centering catheter
JP4654032B2 (en) 2002-06-28 2011-03-16 クック インコーポレイティド Chest indwelling device
US20040006380A1 (en) 2002-07-05 2004-01-08 Buck Jerrick C. Stent delivery system
US20040166169A1 (en) 2002-07-15 2004-08-26 Prasanna Malaviya Porous extracellular matrix scaffold and method
US7172625B2 (en) 2002-07-16 2007-02-06 Medtronic, Inc. Suturing rings for implantable heart valve prostheses
DE60327208D1 (en) 2002-07-31 2009-05-28 Abbott Lab Vascular Entpr Ltd DEVICE FOR CLOSING SURGICAL PUNCTIONS
US7025777B2 (en) 2002-07-31 2006-04-11 Unison Therapeutics, Inc. Flexible and conformable stent and method of forming same
US7745532B2 (en) 2002-08-02 2010-06-29 Cambridge Polymer Group, Inc. Systems and methods for controlling and forming polymer gels
US20040024452A1 (en) 2002-08-02 2004-02-05 Kruse Steven D. Valved prostheses with preformed tissue leaflets
US7101381B2 (en) 2002-08-02 2006-09-05 C.R. Bard, Inc. Implantable prosthesis
DE10237571A1 (en) 2002-08-13 2004-02-26 Biotronik Meß- und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin Endovascular implant with active coating
EP2319427A2 (en) 2002-08-13 2011-05-11 The General Hospital Corporation Cardiac devices and methods for percutaneous repair of atrioventricular valves
DE10237572A1 (en) 2002-08-13 2004-02-26 Biotronik Meß- und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin Stent with a polymer coating
EP2601910B1 (en) 2002-08-15 2018-09-19 Cook Medical Technologies LLC Implantable vascular device
WO2004016201A2 (en) 2002-08-15 2004-02-26 Cook Incorporated Stent and method of forming a stent with integral barbs
US7273492B2 (en) 2002-08-27 2007-09-25 Advanced Cardiovascular Systems Inc. Stent for treating vulnerable plaque
US6878162B2 (en) 2002-08-30 2005-04-12 Edwards Lifesciences Ag Helical stent having improved flexibility and expandability
US6875231B2 (en) 2002-09-11 2005-04-05 3F Therapeutics, Inc. Percutaneously deliverable heart valve
US8012100B2 (en) 2002-10-01 2011-09-06 Boston Scientific Scimed, Inc. Fluid pressure-actuated medical device
AU2003277115A1 (en) 2002-10-01 2004-04-23 Ample Medical, Inc. Device and method for repairing a native heart valve leaflet
US20050143801A1 (en) 2002-10-05 2005-06-30 Aboul-Hosn Walid N. Systems and methods for overcoming or preventing vascular flow restrictions
US6786922B2 (en) 2002-10-08 2004-09-07 Cook Incorporated Stent with ring architecture and axially displaced connector segments
EP1562653A1 (en) 2002-11-06 2005-08-17 NMT Medical, Inc. Medical devices utilizing modified shape memory alloy
US7404824B1 (en) 2002-11-15 2008-07-29 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US6945978B1 (en) 2002-11-15 2005-09-20 Advanced Cardiovascular Systems, Inc. Heart valve catheter
US20040102855A1 (en) 2002-11-21 2004-05-27 Scimed Life Systems, Inc. Anti-reflux stent
JP4336784B2 (en) 2002-11-21 2009-09-30 独立行政法人物質・材料研究機構 Medical device for living soft tissue and manufacturing method thereof
ITRM20020596A1 (en) 2002-11-27 2004-05-28 Mauro Ferrari IMPLANT VASCULAR PROSTHESIS WITH COMBINED, LAPAROSCOPIC AND ENDOVASCULAR TECHNIQUES, FOR THE TREATMENT OF ABDOMINAL AORTIC ANEURYSMS, AND OPERATIONAL EQUIPMENT FOR THE RELEASE OF A PROSTHESIS EQUIPPED WITH ANCHORING STENTS.
US20040102806A1 (en) 2002-11-27 2004-05-27 Scimed Life Systems, Inc. Intravascular filter monitoring
CA2503666A1 (en) 2002-12-09 2004-06-24 Nmt Medical, Inc. Septal closure devices
US20040121120A1 (en) 2002-12-20 2004-06-24 The Procter & Gamble Company Apparatus for making a polymeric web exhibiting a soft and silky tactile impression
US6960224B2 (en) 2003-01-22 2005-11-01 Cardia, Inc. Laminated sheets for use in a fully retrievable occlusion device
US7087072B2 (en) 2003-01-22 2006-08-08 Cardia, Inc. Articulated center post
US6960220B2 (en) 2003-01-22 2005-11-01 Cardia, Inc. Hoop design for occlusion device
US7115135B2 (en) 2003-01-22 2006-10-03 Cardia, Inc. Occlusion device having five or more arms
US20040143294A1 (en) 2003-01-22 2004-07-22 Cardia, Inc. Septal stabilization device
US6918929B2 (en) 2003-01-24 2005-07-19 Medtronic Vascular, Inc. Drug-polymer coated stent with pegylated styrenic block copolymers
US20040148000A1 (en) 2003-01-24 2004-07-29 Bilge Fertac H. Self expanding stent delivery system with balloon
GB2398245B (en) 2003-02-06 2007-03-28 Great Ormond Street Hospital F Valve prosthesis
US6859986B2 (en) 2003-02-20 2005-03-01 Cordis Corporation Method system for loading a self-expanding stent
US20040167566A1 (en) 2003-02-24 2004-08-26 Scimed Life Systems, Inc. Apparatus for anchoring an intravascular device along a guidewire
WO2004075789A2 (en) 2003-02-26 2004-09-10 Cook Incorporated PROTHESIS ADAPTED FOR PLACEDd UNDER EXTERNAL IMAGING
EP1603492B1 (en) 2003-03-12 2009-12-23 Cook Incorporated Prosthetic valve that permits retrograde flow
WO2004082528A2 (en) 2003-03-17 2004-09-30 Cook Incorporated Vascular valve with removable support component
WO2004082532A1 (en) 2003-03-17 2004-09-30 Ev3 Sunnyvale, Inc. Thin film composite lamination
US7399315B2 (en) 2003-03-18 2008-07-15 Edwards Lifescience Corporation Minimally-invasive heart valve with cusp positioners
WO2004082530A2 (en) 2003-03-19 2004-09-30 Cook Incorporated Delivery systems for deploying expandable intraluminal medical devices
ATE401843T1 (en) 2003-03-20 2008-08-15 Aortech Internat Plc VALVE
CH696185A5 (en) 2003-03-21 2007-02-15 Afksendiyos Kalangos Intraparietal reinforcement for aortic valve and reinforced valve has rod inserted in biological tissue or organic prosthesis with strut fixed to one end
US7165552B2 (en) 2003-03-27 2007-01-23 Cierra, Inc. Methods and apparatus for treatment of patent foramen ovale
US20040267191A1 (en) 2003-03-27 2004-12-30 Cierra, Inc. Methods and apparatus for treatment of patent foramen ovale
WO2004089253A1 (en) 2003-04-01 2004-10-21 Cook Incorporated Percutaneously deployed vascular valves
EP1608293B1 (en) 2003-04-03 2015-06-03 Cook Medical Technologies LLC Deployment system for a branched stent graft
WO2004091449A1 (en) 2003-04-08 2004-10-28 Cook Incorporated Intraluminal support device with graft
US8372112B2 (en) 2003-04-11 2013-02-12 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods, and related methods of use
US20040267306A1 (en) 2003-04-11 2004-12-30 Velocimed, L.L.C. Closure devices, related delivery methods, and related methods of use
US7641643B2 (en) 2003-04-15 2010-01-05 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
US7530995B2 (en) 2003-04-17 2009-05-12 3F Therapeutics, Inc. Device for reduction of pressure effects of cardiac tricuspid valve regurgitation
US20040225344A1 (en) 2003-04-23 2004-11-11 Hoffa Andrew K. Devices, kits and methods for placing multiple intraluminal medical devices in a body vessel
US7658759B2 (en) 2003-04-24 2010-02-09 Cook Incorporated Intralumenally implantable frames
EP2926772A1 (en) 2003-04-24 2015-10-07 Cook Medical Technologies LLC Artificial valve prosthesis with improved flow dynamics
US7625399B2 (en) 2003-04-24 2009-12-01 Cook Incorporated Intralumenally-implantable frames
US7717952B2 (en) 2003-04-24 2010-05-18 Cook Incorporated Artificial prostheses with preferred geometries
EP1472996B1 (en) 2003-04-30 2009-09-30 Medtronic Vascular, Inc. Percutaneously delivered temporary valve
US20040225356A1 (en) 2003-05-09 2004-11-11 Frater Robert W. Flexible heart valve
AR044315A1 (en) * 2003-05-16 2005-09-07 Kyowa Hakko Kogyo Kk AGENT TO PREVENT AND / OR TREAT ACCOMPANYING DISEASES OF TISSUE CHANGES THAT INCLUDE A POLYPEPTIDE
EP1626681B1 (en) 2003-05-19 2009-07-01 Cook Incorporated Implantable medical device with constrained expansion
US7112216B2 (en) 2003-05-28 2006-09-26 Boston Scientific Scimed, Inc. Stent with tapered flexibility
DE602004029159D1 (en) 2003-05-28 2010-10-28 Cook Inc
AU2003255643A1 (en) * 2003-06-05 2005-01-21 Vincent Thomas Armbruster Measuring system for measuring at least one characteristic of a biological tissue and method for fixing a biological tissue to a measuring system of this type
US7186789B2 (en) 2003-06-11 2007-03-06 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyester polymers for use in drug eluting stent coatings
EP1488735B1 (en) 2003-06-17 2007-06-13 Raymond Moser Instrumented retrievable implantable device
US8353857B2 (en) 2003-06-23 2013-01-15 Codman & Shurtleff, Inc. Implantable medical device having pressure sensors for diagnosing the performance of an implanted medical device
US7201772B2 (en) 2003-07-08 2007-04-10 Ventor Technologies, Ltd. Fluid flow prosthetic device
US7942897B2 (en) 2003-07-10 2011-05-17 Boston Scientific Scimed, Inc. System for closing an opening in a body cavity
EP1651116B1 (en) 2003-07-14 2013-06-26 W.L. Gore & Associates, Inc. Tubular patent foramen ovale (pfo) closure device with catch system
US7153324B2 (en) 2003-07-31 2006-12-26 Cook Incorporated Prosthetic valve devices and methods of making such devices
WO2005011535A2 (en) 2003-07-31 2005-02-10 Cook Incorporated Prosthetic valve for implantation in a body vessel
WO2005011790A1 (en) 2003-07-31 2005-02-10 Wilson-Cook Medical Inc. System for introducing multiple medical devices
US20050049634A1 (en) 2003-08-07 2005-03-03 Scimed Life Systems, Inc. Medical closure device
US20050038501A1 (en) 2003-08-12 2005-02-17 Moore James E. Dynamic stent
WO2005020612A1 (en) 2003-08-20 2005-03-03 Musky Communications (Proprietary) Limited Telephonic communication
FI120333B (en) 2003-08-20 2009-09-30 Bioretec Oy A porous medical device and a method of making it
CN1838924A (en) 2003-09-02 2006-09-27 百欧梅迪克斯股份有限公司 Gastrointestinal anti-reflux prosthesis device and method
US20050059923A1 (en) 2003-09-17 2005-03-17 Ricardo Gamboa Fenestration with intrinsic means of selective closure incorporated to a tubular body and used in interventional cardiovascular procedures
US7144410B2 (en) 2003-09-18 2006-12-05 Cardia Inc. ASD closure device with self centering arm network
US7658748B2 (en) 2003-09-23 2010-02-09 Cardia, Inc. Right retrieval mechanism
US7055237B2 (en) 2003-09-29 2006-06-06 Medtronic Vascular, Inc. Method of forming a drug eluting stent
US20050075725A1 (en) 2003-10-02 2005-04-07 Rowe Stanton J. Implantable prosthetic valve with non-laminar flow
US7044966B2 (en) 2003-10-06 2006-05-16 3F Therapeutics, Inc. Minimally invasive valve replacement system
US10219899B2 (en) 2004-04-23 2019-03-05 Medtronic 3F Therapeutics, Inc. Cardiac valve replacement systems
JP2007527272A (en) 2003-10-10 2007-09-27 コヒーレックス メディカル インコーポレイテッド Patent foramen ovale (PFO) closure device, delivery device, and related methods and systems
US20050192627A1 (en) 2003-10-10 2005-09-01 Whisenant Brian K. Patent foramen ovale closure devices, delivery apparatus and related methods and systems
US7419498B2 (en) 2003-10-21 2008-09-02 Nmt Medical, Inc. Quick release knot attachment system
US7070616B2 (en) 2003-10-31 2006-07-04 Cordis Corporation Implantable valvular prosthesis
US7334582B2 (en) 2003-10-31 2008-02-26 Medtronic, Inc. Electronic valve reader
US7347869B2 (en) 2003-10-31 2008-03-25 Cordis Corporation Implantable valvular prosthesis
WO2005046450A2 (en) * 2003-11-12 2005-05-26 Children's Hospital Medical Center Method for diagnosis and treatment of pulmonary disorders
US8014849B2 (en) 2003-11-21 2011-09-06 Stryker Corporation Rotational markers
US7566336B2 (en) 2003-11-25 2009-07-28 Cardia, Inc. Left atrial appendage closure device
US20050125050A1 (en) 2003-12-04 2005-06-09 Wilson Cook Medical Incorporated Biliary stent introducer system
US8133500B2 (en) 2003-12-04 2012-03-13 Kensey Nash Bvf Technology, Llc Compressed high density fibrous polymers suitable for implant
US7979150B2 (en) 2003-12-05 2011-07-12 The Regents Of The University Of Michigan Biodegradable/bioresorbable tissue augmentation/reconstruction device
US8128681B2 (en) 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
EP1703870B1 (en) 2003-12-19 2019-05-01 Patrick Leahy An anti-reflux system
US7854761B2 (en) 2003-12-19 2010-12-21 Boston Scientific Scimed, Inc. Methods for venous valve replacement with a catheter
US7529722B2 (en) 2003-12-22 2009-05-05 Dintecom, Inc. Automatic creation of neuro-fuzzy expert system from online anlytical processing (OLAP) tools
US7258697B1 (en) 2003-12-22 2007-08-21 Advanced Cardiovascular Systems, Inc. Stent with anchors to prevent vulnerable plaque rupture during deployment
US7261732B2 (en) 2003-12-22 2007-08-28 Henri Justino Stent mounted valve
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US8328868B2 (en) 2004-11-05 2012-12-11 Sadra Medical, Inc. Medical devices and delivery systems for delivering medical devices
WO2005069850A2 (en) 2004-01-15 2005-08-04 Macoviak John A Trestle heart valve replacement
US20050192626A1 (en) 2004-01-30 2005-09-01 Nmt Medical, Inc. Devices, systems, and methods for closure of cardiac openings
CA2556077C (en) 2004-02-05 2012-05-01 Children's Medical Center Corporation Transcatheter delivery of a replacement heart valve
US8337545B2 (en) 2004-02-09 2012-12-25 Cook Medical Technologies Llc Woven implantable device
US7247167B2 (en) 2004-02-19 2007-07-24 Shlomo Gabbay Low profile heart valve prosthesis
US20050187568A1 (en) 2004-02-20 2005-08-25 Klenk Alan R. Devices and methods for closing a patent foramen ovale with a coil-shaped closure device
US7955375B2 (en) 2004-02-20 2011-06-07 Cook Medical Technologies Llc Prosthetic valve with spacing member
US20050187565A1 (en) 2004-02-20 2005-08-25 Baker Steve G. Tissue fixation devices and a transoral endoscopic gastroesophageal flap valve restoration device and assembly using same
US20050228434A1 (en) 2004-03-19 2005-10-13 Aga Medical Corporation Multi-layer braided structures for occluding vascular defects
US20050228505A1 (en) 2004-03-29 2005-10-13 Cornet Douglas A Device and method for treating gastroesophageal reflux disease
US7449027B2 (en) 2004-03-29 2008-11-11 Cook Incorporated Modifying fluid flow in a body vessel lumen to promote intraluminal flow-sensitive processes
US20050234509A1 (en) 2004-03-30 2005-10-20 Mmt Medical, Inc. Center joints for PFO occluders
US7232462B2 (en) 2004-03-31 2007-06-19 Cook Incorporated Self centering delivery catheter
US8216299B2 (en) 2004-04-01 2012-07-10 Cook Medical Technologies Llc Method to retract a body vessel wall with remodelable material
US7637937B2 (en) 2004-04-08 2009-12-29 Cook Incorporated Implantable medical device with optimized shape
US20050267524A1 (en) 2004-04-09 2005-12-01 Nmt Medical, Inc. Split ends closure device
WO2005099628A2 (en) 2004-04-13 2005-10-27 Cook Incorporated Implantable frame with variable compliance
US7641686B2 (en) * 2004-04-23 2010-01-05 Direct Flow Medical, Inc. Percutaneous heart valve with stentless support
US20050240255A1 (en) 2004-04-23 2005-10-27 Schaeffer Darin G Carrier-Based Delivery System for Intraluminal Medical Devices
US20050249772A1 (en) 2004-05-04 2005-11-10 Prasanna Malaviya Hybrid biologic-synthetic bioabsorbable scaffolds
CA2828619C (en) 2004-05-05 2018-09-25 Direct Flow Medical, Inc. Prosthetic valve with an elastic stent and a sealing structure
US8308760B2 (en) 2004-05-06 2012-11-13 W.L. Gore & Associates, Inc. Delivery systems and methods for PFO closure device with two anchors
US7842069B2 (en) 2004-05-07 2010-11-30 Nmt Medical, Inc. Inflatable occluder
US7704268B2 (en) 2004-05-07 2010-04-27 Nmt Medical, Inc. Closure device with hinges
US20050256532A1 (en) 2004-05-12 2005-11-17 Asha Nayak Cardiovascular defect patch device and method
WO2005118019A1 (en) 2004-05-28 2005-12-15 Cook Incorporated Implantable bioabsorbable valve support frame
CA2573889C (en) 2004-06-16 2014-02-04 Cook Incorporated Thoracic deployment device and stent graft
US20050283187A1 (en) 2004-06-22 2005-12-22 Longson Matthew S Vascular occlusion device
EP1776066B1 (en) 2004-07-02 2012-02-08 Cook Medical Technologies LLC Stent having arcuate struts
EP1768611A4 (en) 2004-07-15 2009-11-18 Micardia Corp Implants and methods for reshaping heart valves
DE602005005567T2 (en) 2004-07-28 2009-04-30 Cordis Corp., Miami Lakes Insertion device with a low deployment force
US7955370B2 (en) 2004-08-06 2011-06-07 Boston Scientific Scimed, Inc. Stent delivery system
US7393358B2 (en) 2004-08-17 2008-07-01 Boston Scientific Scimed, Inc. Stent delivery system
WO2006026325A2 (en) 2004-08-26 2006-03-09 Pathak Chandrashekhar P Implantable tissue compositions and method
AU2005280151A1 (en) 2004-08-26 2006-03-09 Cook Incorporated Delivery system with controlled frictional properties
JP2008511401A (en) 2004-08-27 2008-04-17 クック インコーポレイテッド Apparatus for arranging a plurality of intraluminal medical devices in a body cavity
EP1827250B1 (en) 2004-08-31 2018-05-16 Cook Medical Technologies LLC Device for treating an aneurysm
US20060074480A1 (en) 2004-09-01 2006-04-06 Pst, Llc Stent and method for manufacturing the stent
EP1791495B2 (en) 2004-09-01 2022-06-01 Cook Medical Technologies LLC Delivery system which facilitates hydration of an intraluminal medical device
US7566343B2 (en) 2004-09-02 2009-07-28 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US7364587B2 (en) 2004-09-10 2008-04-29 Scimed Life Systems, Inc. High stretch, low dilation knit prosthetic device and method for making the same
JP4589395B2 (en) 2004-09-10 2010-12-01 クック インコーポレイテッド Prosthetic valve with holes
US7018403B1 (en) 2004-09-14 2006-03-28 Advanced Cardiovascular Systems, Inc. Inclined stent pattern for vulnerable plaque
EP1814490A2 (en) 2004-10-06 2007-08-08 Cook Incorporated Medical device with bioactive agent
WO2006041971A1 (en) 2004-10-06 2006-04-20 Cook Incorporated Wireguide with indicia
US7442206B2 (en) 2004-10-28 2008-10-28 Cook Incorporated Methods and systems for modifying vascular valves
US7563276B2 (en) 2004-10-29 2009-07-21 Cook Incorporated Intraluminal medical device with cannula for controlled retrograde flow
US7458987B2 (en) 2004-10-29 2008-12-02 Cook Incorporated Vascular valves having implanted and target configurations and methods of preparing the same
US7387604B2 (en) 2004-11-03 2008-06-17 Cook Incorporated Methods for treating valve-associated regions of vascular vessels
US20060106420A1 (en) 2004-11-12 2006-05-18 Medtronic Vascular, Inc. Patch for treating a septal defect
US20060167468A1 (en) 2004-11-12 2006-07-27 Shlomo Gabbay Implantation system and method for loading an implanter with a prosthesis
US7744642B2 (en) 2004-11-19 2010-06-29 Biomedical Research Associates, Inc. Prosthetic venous valves
US20060116697A1 (en) 2004-11-30 2006-06-01 Esophyx, Inc. Flexible transoral endoscopic gastroesophageal flap valve restoration device and method
WO2006073628A1 (en) 2004-12-01 2006-07-13 Cook Incorporated Sensing delivery system for intraluminal medical devices
WO2006060546A2 (en) * 2004-12-01 2006-06-08 Cook Incorporated Valve with leak path
US7582104B2 (en) 2004-12-08 2009-09-01 Cardia, Inc. Daisy design for occlusion device
EP1848368A1 (en) 2004-12-20 2007-10-31 Cook Incorporated Intraluminal support frame and medical devices including the support frame
WO2006071245A1 (en) 2004-12-29 2006-07-06 Boston Scientific Limited Medical devices including metallic films and methods for loading and deploying same
US7785343B2 (en) 2005-01-03 2010-08-31 Crux Biomedical, Inc. Coated endoluminal filter
US8366743B2 (en) 2005-01-28 2013-02-05 Lifetech Scientific (Shenzhen) Co., Ltd Heart septal defect occlusion device
CN100389732C (en) 2005-01-28 2008-05-28 先健科技(深圳)有限公司 Heart septal defect stopper with self regulating function
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7670368B2 (en) 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
ITTO20050074A1 (en) 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl CARDIAC VALVE PROSTHESIS
US20060210603A1 (en) 2005-02-23 2006-09-21 Williams Stuart K Implantable medical articles having laminin coatings and methods of use
US7479102B2 (en) 2005-02-28 2009-01-20 Robert Jarvik Minimally invasive transvalvular ventricular assist device
US8303647B2 (en) 2005-03-03 2012-11-06 Cook Medical Technologies Llc Medical valve leaflet structures with peripheral region receptive to tissue ingrowth
US9138445B2 (en) 2005-03-09 2015-09-22 Cook Biotech Incorporated Medical graft materials with adherent extracellular matrix fibrous mass
US20060212107A1 (en) 2005-03-17 2006-09-21 Case Brian C Delivery systems, kits and methods for implanting an intraluminal medical device in a body vessel
US20060217760A1 (en) 2005-03-17 2006-09-28 Widomski David R Multi-strand septal occluder
US8454678B2 (en) 2005-03-19 2013-06-04 Cook Biotech Incorporated Prosthetic implants including ECM composite material
KR100691503B1 (en) 2005-03-21 2007-03-09 (주) 태웅메디칼 A stent for the gullet
US7700659B2 (en) 2005-03-24 2010-04-20 Advanced Cardiovascular Systems, Inc. Implantable devices formed of non-fouling methacrylate or acrylate polymers
US8372113B2 (en) 2005-03-24 2013-02-12 W.L. Gore & Associates, Inc. Curved arm intracardiac occluder
DE602006011721D1 (en) 2005-03-24 2010-03-04 Cook Inc INTERCHANGEABLE DISCHARGE SYSTEM WITH DISTAL PROTECTION
US8197534B2 (en) 2005-03-31 2012-06-12 Cook Medical Technologies Llc Valve device with inflatable chamber
US20060229670A1 (en) 2005-04-01 2006-10-12 Bates Brian L Method and a medical closure system for sealing a puncture
US20060271089A1 (en) 2005-04-11 2006-11-30 Cierra, Inc. Methods and apparatus to achieve a closure of a layered tissue defect
US20060276882A1 (en) 2005-04-11 2006-12-07 Cook Incorporated Medical device including remodelable material attached to frame
US20060259128A1 (en) 2005-04-18 2006-11-16 Cook Incorporated Method for implanting prosthetic valves
US7503105B2 (en) 2005-04-19 2009-03-17 Boston Scientific Scimed, Inc. Loading stent with compressed air
WO2006124021A1 (en) * 2005-05-12 2006-11-23 Angiotech International Ag Compositions and methods for treating diverticular disease
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
AU2006247571A1 (en) 2005-05-13 2006-11-23 Cook Incorporated Medical device delivery systems that facilitate medical device placement in the presence of ultrasonic waves
EP1887980B1 (en) 2005-05-17 2012-09-05 Cook Medical Technologies LLC Frameless valve prosthesis and system for its deployment
EP1895941A1 (en) 2005-05-20 2008-03-12 The Cleveland Clinic Foundation Apparatus and methods for repairing the function of a diseased valve and method for making same
WO2006127756A2 (en) 2005-05-24 2006-11-30 Edwards Lifesciences Corporation Rapid deployment prosthetic heart valve
US8317855B2 (en) 2005-05-26 2012-11-27 Boston Scientific Scimed, Inc. Crimpable and expandable side branch cell
CA2610669A1 (en) 2005-06-07 2006-12-14 Direct Flow Medical, Inc. Stentless aortic valve replacement with high radial strength
US7739971B2 (en) 2005-06-07 2010-06-22 Edwards Lifesciences Corporation Systems and methods for assembling components of a fabric-covered prosthetic heart valve
US8012198B2 (en) 2005-06-10 2011-09-06 Boston Scientific Scimed, Inc. Venous valve, system, and method
US8273117B2 (en) 2005-06-22 2012-09-25 Integran Technologies Inc. Low texture, quasi-isotropic metallic stent
WO2007016122A2 (en) 2005-07-27 2007-02-08 Cook Incorporated Implantable remodelable materials comprising magnetic material
WO2007016251A2 (en) 2005-07-28 2007-02-08 Cook Incorporated Implantable thromboresistant valve
US7655288B2 (en) 2005-07-29 2010-02-02 Gore Enterprise Holdings, Inc. Composite self-cohered web materials
US8048503B2 (en) 2005-07-29 2011-11-01 Gore Enterprise Holdings, Inc. Highly porous self-cohered web materials
US7655584B2 (en) 2005-07-29 2010-02-02 Gore Enterprise Holdings, Inc. Highly porous self-cohered web materials
US20070026039A1 (en) 2005-07-29 2007-02-01 Drumheller Paul D Composite self-cohered web materials
US20070043431A1 (en) 2005-08-19 2007-02-22 Cook Incorporated Prosthetic valve
EP1928512B1 (en) 2005-09-01 2012-11-14 Cook Medical Technologies LLC Attachment of material to an implantable frame by cross-linking
US7530253B2 (en) 2005-09-09 2009-05-12 Edwards Lifesciences Corporation Prosthetic valve crimping device
US8864808B2 (en) 2005-09-21 2014-10-21 The Cleveland Clinic Foundation Endoluminal delivery assembly
US7569071B2 (en) 2005-09-21 2009-08-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US7503928B2 (en) 2005-10-21 2009-03-17 Cook Biotech Incorporated Artificial valve with center leaflet attachment
US7563277B2 (en) 2005-10-24 2009-07-21 Cook Incorporated Removable covering for implantable frame projections
US20070112423A1 (en) 2005-11-16 2007-05-17 Chu Jack F Devices and methods for treatment of venous valve insufficiency
EP1954221B1 (en) 2005-11-17 2011-04-20 The Cleveland Clinic Foundation Method and apparatus for compressing intraluminal prostheses
SE529325C2 (en) 2005-11-24 2007-07-03 Atlas Copco Tools Ab Portable grinding machine with support for a grinding wheel cover and an extra handle
US20070185560A1 (en) 2005-11-28 2007-08-09 Cook Incorporated Expandable stent
US20070129738A1 (en) 2005-12-01 2007-06-07 Endogastric Solutions, Inc. Apparatus and method for concurrently forming a gastroesophageal valve and tightening the lower esophageal sphincter
US20070135826A1 (en) 2005-12-01 2007-06-14 Steve Zaver Method and apparatus for delivering an implant without bias to a left atrial appendage
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US7815923B2 (en) 2005-12-29 2010-10-19 Cook Biotech Incorporated Implantable graft material
DE102006002898A1 (en) 2006-01-20 2007-07-26 Siemens Ag Apparatus for performing a cutting-balloon intervention
US8162974B2 (en) 2006-02-02 2012-04-24 Boston Scientific Scimed, Inc. Occlusion apparatus, system, and method
WO2008029296A2 (en) 2006-02-16 2008-03-13 Endocor Pte Ltd. Minimally invasive heart valve replacement
US20080275550A1 (en) * 2006-02-24 2008-11-06 Arash Kheradvar Implantable small percutaneous valve and methods of delivery
US7648527B2 (en) 2006-03-01 2010-01-19 Cook Incorporated Methods of reducing retrograde flow
US20070225798A1 (en) 2006-03-23 2007-09-27 Daniel Gregorich Side branch stent
WO2007123658A1 (en) 2006-03-28 2007-11-01 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US7469693B2 (en) 2006-03-30 2008-12-30 Ut-Battelle, Llc Advanced engine management of individual cylinders for control of exhaust species
US8758333B2 (en) 2006-04-04 2014-06-24 The Spectranetics Corporation Laser-assisted guidewire having a variable stiffness shaft
US7625403B2 (en) 2006-04-04 2009-12-01 Medtronic Vascular, Inc. Valved conduit designed for subsequent catheter delivered valve therapy
US7524331B2 (en) 2006-04-06 2009-04-28 Medtronic Vascular, Inc. Catheter delivered valve having a barrier to provide an enhanced seal
US7591848B2 (en) 2006-04-06 2009-09-22 Medtronic Vascular, Inc. Riveted stent valve for percutaneous use
US20070244545A1 (en) 2006-04-14 2007-10-18 Medtronic Vascular, Inc. Prosthetic Conduit With Radiopaque Symmetry Indicators
US8303648B2 (en) 2006-04-25 2012-11-06 Cook Medical Technologies Llc Artificial venous valve containing therapeutic agent
WO2007130614A2 (en) 2006-05-04 2007-11-15 Cook Incorporated Self-orienting delivery system
US8535368B2 (en) 2006-05-19 2013-09-17 Boston Scientific Scimed, Inc. Apparatus for loading and delivering a stent
US8753384B2 (en) 2006-05-19 2014-06-17 Boston Scientific Scimed, Inc. Apparatus and method for loading and delivering a stent
US8834550B2 (en) 2006-05-19 2014-09-16 Boston Scientific Scimed, Inc. Apparatus and method for loading and delivering a stent using a suture retaining mechanism
US20070276467A1 (en) 2006-05-25 2007-11-29 Menno Kalmann Device for regulating blood flow
US7811316B2 (en) 2006-05-25 2010-10-12 Deep Vein Medical, Inc. Device for regulating blood flow
WO2009088957A1 (en) 2006-05-25 2009-07-16 Interventional & Surgical Innovations, Llc Device for regulating blood flow
EP2020958B1 (en) 2006-05-30 2012-05-30 Cook Medical Technologies LLC Artificial valve prosthesis
US7819836B2 (en) 2006-06-23 2010-10-26 Gi Dynamics, Inc. Resistive anti-obesity devices
EP2037848A1 (en) 2006-07-07 2009-03-25 Boston Scientific Limited Endoprosthesis delivery system with stent holder
US7653455B2 (en) 2006-07-28 2010-01-26 3M Innovative Properties Company Computer-aided implanting of orthodontic anchorage devices using surgical guides
US8257429B2 (en) 2006-08-21 2012-09-04 Oregon Health & Science University Biomedical valve devices, support frames for use in such devices, and related methods
US20080051879A1 (en) 2006-08-23 2008-02-28 Cook Incorporated Methods of treating venous valve related conditions with a flow-modifying implantable medical device
FR2906454B1 (en) 2006-09-28 2009-04-10 Perouse Soc Par Actions Simpli IMPLANT INTENDED TO BE PLACED IN A BLOOD CIRCULATION CONDUIT.
US8029532B2 (en) 2006-10-11 2011-10-04 Cook Medical Technologies Llc Closure device with biomaterial patches
US7935144B2 (en) 2006-10-19 2011-05-03 Direct Flow Medical, Inc. Profile reduction of valve implant
US8133213B2 (en) 2006-10-19 2012-03-13 Direct Flow Medical, Inc. Catheter guidance through a calcified aortic valve
US8246533B2 (en) * 2006-10-20 2012-08-21 Ellipse Technologies, Inc. Implant system with resonant-driven actuator
JP2010512231A (en) 2006-12-12 2010-04-22 スペンス、ポール・エー Implant, system and method for physically diverting substances in blood to avoid head
US8105375B2 (en) * 2007-01-19 2012-01-31 The Cleveland Clinic Foundation Method for implanting a cardiovascular valve
US8303649B2 (en) 2007-01-29 2012-11-06 Cook Medical Technologies Llc Artificial venous valve with discrete shaping members
US7678144B2 (en) 2007-01-29 2010-03-16 Cook Incorporated Prosthetic valve with slanted leaflet design
WO2008094691A2 (en) 2007-02-01 2008-08-07 Cook Incorporated Closure device and method for occluding a bodily passageway
US8617205B2 (en) 2007-02-01 2013-12-31 Cook Medical Technologies Llc Closure device
WO2008094706A2 (en) 2007-02-01 2008-08-07 Cook Incorporated Closure device and method of closing a bodily opening
EP2120795B1 (en) 2007-02-15 2011-07-06 Cook Incorporated Artificial valve prostheses with a free leaflet portion
WO2008103280A2 (en) 2007-02-16 2008-08-28 Medtronic, Inc. Delivery systems and methods of implantation for replacement prosthetic heart valves
WO2008109131A2 (en) 2007-03-06 2008-09-12 William A. Cook Australia Pty. Ltd Endovascular deployment device
US7931641B2 (en) * 2007-05-11 2011-04-26 Portaero, Inc. Visceral pleura ring connector
US20080287878A1 (en) * 2007-05-15 2008-11-20 Portaero, Inc. Pulmonary visceral pleura anastomosis reinforcement
US8403979B2 (en) 2007-05-17 2013-03-26 Cook Medical Technologies Llc Monocuspid prosthetic valve having a partial sinus
EP2155114B8 (en) 2007-06-04 2020-05-20 St. Jude Medical, LLC Prosthetic heart valves
JP5185265B2 (en) 2007-06-27 2013-04-17 パイオニア株式会社 Listening device
US7815677B2 (en) 2007-07-09 2010-10-19 Leman Cardiovascular Sa Reinforcement device for a biological valve and reinforced biological valve
EP2190379B1 (en) 2007-08-23 2016-06-15 Direct Flow Medical, Inc. Translumenally implantable heart valve with formed in place support
US8734483B2 (en) 2007-08-27 2014-05-27 Cook Medical Technologies Llc Spider PFO closure device
US8292907B2 (en) 2007-08-31 2012-10-23 Cook Medical Technologies Llc Balloon assisted occlusion device
US8366741B2 (en) 2007-09-13 2013-02-05 Cardia, Inc. Occlusion device with centering arm
US8425593B2 (en) 2007-09-26 2013-04-23 St. Jude Medical, Inc. Collapsible prosthetic heart valves
EA033368B1 (en) 2007-10-11 2019-10-31 Implantica Patent Ltd Apparatus for controlling flow in a bodily organ
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
US20090105813A1 (en) 2007-10-17 2009-04-23 Sean Chambers Implantable valve device
CA2703665C (en) * 2007-10-25 2016-05-10 Symetis Sa Stents, valved-stents and methods and systems for delivery thereof
US7806921B2 (en) 2007-11-08 2010-10-05 Cook Incorporated Monocusp valve design
US7846199B2 (en) 2007-11-19 2010-12-07 Cook Incorporated Remodelable prosthetic valve
US8313526B2 (en) 2007-11-19 2012-11-20 Cook Medical Technologies Llc Valve frame
US8057532B2 (en) 2007-11-28 2011-11-15 Cook Medical Technologies Llc Implantable frame and valve design
WO2009073774A1 (en) 2007-12-04 2009-06-11 Cook Incorporated Storage and loading system for implantable medical devices
US7854759B2 (en) 2007-12-21 2010-12-21 Cook Incorporated Prosthetic flow modifying device
US8100962B2 (en) 2008-01-08 2012-01-24 Cook Medical Technologies Llc Flow-deflecting prosthesis for treating venous disease
US8211165B1 (en) 2008-01-08 2012-07-03 Cook Medical Technologies Llc Implantable device for placement in a vessel having a variable size
WO2009094373A1 (en) 2008-01-22 2009-07-30 Cook Incorporated Valve frame
US7901450B2 (en) 2008-03-13 2011-03-08 Pacesetter, Inc. Vascular anchoring system and method
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US7806919B2 (en) 2008-04-01 2010-10-05 Medtronic Vascular, Inc. Double-walled stent system
WO2009126934A2 (en) * 2008-04-11 2009-10-15 Seattle Genetics, Inc. Detection and tratment of pancreatic, ovarian and other cancers
WO2009129481A1 (en) 2008-04-18 2009-10-22 Cook Incorporated Branched vessel prosthesis
US20090270965A1 (en) 2008-04-24 2009-10-29 Medtronic Vascular, Inc. Endovascular Prosthesis for Ascending Aorta
US8702746B2 (en) 2008-04-29 2014-04-22 Cook Medical Technologies Llc Device and method for occlusion of fluid flow through a body vessel
US8273404B2 (en) 2008-05-19 2012-09-25 Cordis Corporation Extraction of solvents from drug containing polymer reservoirs
EP2331017B1 (en) 2008-06-20 2014-06-11 Vysera Biomedical Limited Esophageal valve
WO2010011878A2 (en) 2008-07-24 2010-01-28 Cook Incorporated Valve device with biased leaflets
US8129477B1 (en) 2008-08-06 2012-03-06 Medtronic, Inc. Medical devices and methods including blends of biodegradable polymers
US7864434B2 (en) 2008-08-19 2011-01-04 Seagate Technology Llc Solid immersion focusing apparatus for high-density heat assisted recording
US8501435B2 (en) * 2008-10-09 2013-08-06 Sti Medical Systems, Llc Process for preserving three dimensional orientation to allow registering histopathological diagnoses of tissue to images of that tissue
WO2010065843A2 (en) * 2008-12-05 2010-06-10 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Biologic scaffold for prevention of pulmonary fibrosis
ES2551694T3 (en) 2008-12-23 2015-11-23 Sorin Group Italia S.R.L. Expandable prosthetic valve with anchoring appendages
WO2010080884A1 (en) 2009-01-07 2010-07-15 Cook Incorporated Implantable valve prosthesis with independent frame elements
WO2010091188A1 (en) 2009-02-04 2010-08-12 Yale University Tissue engineering of lung
EP3610833B1 (en) 2009-02-24 2024-05-29 Cook Medical Technologies LLC Low profile support frame
US8808366B2 (en) 2009-02-27 2014-08-19 St. Jude Medical, Inc. Stent features for collapsible prosthetic heart valves
WO2011056234A1 (en) * 2009-11-06 2011-05-12 Fibrogen, Inc. Treatment for radiation-induced disorders
EP2512386B1 (en) 2009-12-18 2016-11-02 Coloplast A/S A gastrointestinal implant device
US9211123B2 (en) 2009-12-31 2015-12-15 Cook Medical Technologies Llc Intraluminal occlusion devices and methods of blocking the entry of fluid into bodily passages
EP3028672A1 (en) * 2010-03-01 2016-06-08 Colibri Heart Valve LLC Percutaneously deliverable heart valve and method associated therewith
EP2571427B1 (en) * 2010-05-21 2017-07-19 Boston Scientific Scimed, Inc. Tissue-acquisition and fastening devices
EP2627265B8 (en) 2010-10-15 2019-02-20 Cook Medical Technologies LLC Occlusion device for blocking fluid flow through bodily passages
US8595219B1 (en) 2012-05-16 2013-11-26 Trans Union, Llc System and method for contextual and free format matching of addresses
JP6137556B2 (en) 2014-11-04 2017-05-31 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5723010A (en) * 1995-03-31 1998-03-03 Toyo Boseki Kabushiki Kaisha Medical device and method for producing the same
WO2002049687A1 (en) * 2000-12-20 2002-06-27 Vettivetpillai Ketharanathan Method of creating biological and biosynthetic material for implantation
US20120310041A1 (en) * 2002-01-04 2012-12-06 Colibri Heart Valve Llc Percutaneously Implantable Replacement Heart Valve Device and Method of Making Same
WO2006099372A2 (en) * 2005-03-11 2006-09-21 Wake Forest University Health Sciences Tissue engineered blood vessels
US20080102439A1 (en) * 2006-10-27 2008-05-01 Bin Tian Biological tissue for surgical implantation
US20120165928A1 (en) * 2010-12-22 2012-06-28 Yaacov Nitzan Devices for reducing left atrial pressure, and methods of making and using same
US10940167B2 (en) * 2012-02-10 2021-03-09 Cvdevices, Llc Methods and uses of biological tissues for various stent and other medical applications
US11406495B2 (en) * 2013-02-11 2022-08-09 Cook Medical Technologies Llc Expandable support frame and medical device

Also Published As

Publication number Publication date
EP2811939A4 (en) 2015-10-07
EP3281608A1 (en) 2018-02-14
EP2811939B8 (en) 2017-11-15
WO2013120082A1 (en) 2013-08-15
US20150064140A1 (en) 2015-03-05
EP3281608B1 (en) 2020-09-16
US10940167B2 (en) 2021-03-09
EP2811939B1 (en) 2017-09-20
EP2811939A1 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
US20210161970A1 (en) Methods and uses of biological tissues for various stent and other medical applications
US20230285634A1 (en) Methods and uses of mediastinal pleura tissue for various stent and other medical applications
JP3739407B2 (en) Heart valve replacement technology using flexible tubing
US6358284B1 (en) Tubular grafts from purified submucosa
AU736572B2 (en) Artificial vascular valves
CA2315718C (en) Stentless bioprosthetic heart valve with coronary protuberances
US5713950A (en) Method of replacing heart valves using flexible tubes
US7815923B2 (en) Implantable graft material
KR20140139060A (en) Tissue-engineered heart valve for transcatheter repair
JP2002516702A (en) Bioengineered vascular graft prostheses
US20130211511A1 (en) Method of using amnion allograft in heart valve replacement surgery
EP1123122B1 (en) Implant material
Noishiki et al. Development and evaluation of a pliable biological valved conduit. Part I: preparation, biochemical properties, and histological findings
KR19990076885A (en) How to replace heart valve using flexible tube
AU2004216679C1 (en) Tubular submucosal graft constructs
WO2024059281A1 (en) Improved valve incorporating constructed tissue
AU755439B2 (en) Artificial vascular valves

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED