US20210079032A1 - 1,2-phenylene bridged 1-indenyl-2-indenyl metallocene complexes for olefin polymerisation - Google Patents

1,2-phenylene bridged 1-indenyl-2-indenyl metallocene complexes for olefin polymerisation Download PDF

Info

Publication number
US20210079032A1
US20210079032A1 US16/963,709 US201916963709A US2021079032A1 US 20210079032 A1 US20210079032 A1 US 20210079032A1 US 201916963709 A US201916963709 A US 201916963709A US 2021079032 A1 US2021079032 A1 US 2021079032A1
Authority
US
United States
Prior art keywords
mmol
metallocene complex
equiv
methyl
complex according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/963,709
Other languages
English (en)
Inventor
Coen Hendriksen
Nicolaas Hendrika Friederichs
Alexander Z. Voskoboynikov
Antonio Vittoria
Vincenzo Busico
Roberta Cipullo
Dmitry Y. Mladentsev
Bogdan A. Guzeev
Dmitry V. Uborsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SABIC Global Technologies BV
Original Assignee
SABIC Global Technologies BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SABIC Global Technologies BV filed Critical SABIC Global Technologies BV
Assigned to SABIC GLOBAL TECHNOLOGIES B.V. reassignment SABIC GLOBAL TECHNOLOGIES B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UBORSKY, DMITRY V., BUSICO, VINCENZO, GUZEEV, Bogdan A., MLADENTSEV, Dmitry Y., VOSKOBOYNIKOV, ALEXANDER Z., FRIEDERICHS, NICOLAAS HENDRIKA, HENDRIKSEN, Coen, CIPULLO, ROBERTA, VITTORIA, Antonio
Publication of US20210079032A1 publication Critical patent/US20210079032A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/24Layered products comprising a layer of synthetic resin characterised by the use of special additives using solvents or swelling agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/327Layered products comprising a layer of synthetic resin comprising polyolefins comprising polyolefins obtained by a metallocene or single-site catalyst
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/72Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44
    • C08F4/74Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals
    • C08F4/76Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals selected from titanium, zirconium, hafnium, vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/516Oriented mono-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2410/00Agriculture-related articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging

Definitions

  • the invention relates to substituted 1,2-phenylene bridged 1-indenyl 2-indenyl metallocene complexes, a catalyst comprising the substituted metallocene complex, a process for the preparation of olefin polymers in the presence of substituted metallocene complexes, the use of the olefin polymers for making articles and articles comprising an olefin polymer.
  • Metallocene complexes together with a cocatalyst form catalysts that are widely used for olefin polymerisation are known to have only one active polymerisation center and are often referred to as single site catalysts or discrete catalysts to distinguish them from non-single site catalysts like for instance Ziegler-type catalysts.
  • the presence of one active center is believed to result in polymers having a narrow molecular weight distribution (MWD) and narrow compositional distribution for copolymers of different olefins.
  • MWD molecular weight distribution
  • An advantage of metallocene catalysts is their high activity and well defined structures compared to traditional Ziegler-Natta catalysts.
  • a further advantage of metallocene catalysts over conventional Ziegler-type catalysts is that the former can display a higher reactivity towards alpha-olefins, which is especially beneficial in copolymerisations of ethylene with such alpha-olefins.
  • Catalysts with a high reactivity towards alpha-olefins require less alpha-olefin during the polymerisation in order to reach a desired alpha-olefin content in the final polymer, which is an advantage in the commercial preparation of copolymers of ethylene with alpha-olefins.
  • WO2014/099307 describes metallocene catalysts for the polymerisation of ethylene to branched polyethylene using a catalyst containing the metallocene system dimethylsilylene(2,3,4,5-tetramethyl-1-cyclopentadienyl)(3-phenyl-1-indenyl)zirconium dichloride.
  • EP0372414 discloses a metallocene catalyst with an ethylene bridged 1-indenyl 2-indenyl zirconium complex.
  • WO94/11406 discloses 2-indenyl complexes for olefin polymerisation.
  • WO2015/065681 describes a 1-indenyl bridged catalyst system.
  • a new family of metallocene complexes has now been discovered which advantageously can be used for olefin polymerisation, preferably for ethylene copolymerisation, and which gives at least one advantage of a higher catalyst activity, a higher 1-hexene incorporation and/or a high molecular weight polymer.
  • the invention relates to a metallocene complex according to formula I,
  • R 1 and R 2 are independently selected from H, an alkyl or an aryl group, wherein R 3 is a C1-C10 alkyl group, wherein R′ is selected from H, an alkyl group, an aryl group and wherein different R′ substituents can be connected to form a ring structure and wherein B is a 1,2 phenylene bridging moiety, which can be optionally substituted, wherein Mt is selected from Ti, Zr and Hf, X is an anionic ligand, z is the number of X groups and equals the valence of Mt minus 2.
  • X may be a halogenide, an alkoxide, an alkyl group, an aryl group or an aralkyl group.
  • the metallocene complex according to the invention surprisingly can copolymerise ethylene with alpha olefins in a high yield with a very high 1-hexene reactivity and a very high molecular weight.
  • This copolymerisation can take place in the presence of a cocatalyst and under suitable polymerisation conditions.
  • the metallocene complex according to the present invention has the general structure according to formula I:
  • R 1 and R 2 are independently selected from H, an alkyl or an aryl group, wherein R 3 is a C1-C10 alkyl group, wherein R′ is selected from H, an alkyl group, an aryl group and wherein different R′ substituents can be connected to form a ring structure and wherein B is a 1,2 phenylene bridging moiety, which can be optionally substituted wherein Mt is selected from Ti, Zr and Hf, X is an anionic ligand, z is the number of X groups and equals the valence of Mt minus 2.
  • R 1 and R 2 are preferably independently selected from H, a C1-C10 alkyl group or a C6-C10 aryl group.
  • suitable alkyl groups are methyl, ethyl, n-propyl, iso-propyl, butyl, pentyl, hexyl, octyl, decyl and the like.
  • suitable aryl groups are substituted or unsubstituted phenyl and naphthyl groups, preferably phenyl groups, or 3,5-dimethyl-1-phenyl, 3,5-diethyl-1-phenyl, 3,5-diisopropyl-1-phenyl or 3,5-ditertiairbutyl-1-phenybenzyl.
  • R 1 and R 2 are chosen from H, a methyl, ethyl, n-propyl or iso-propyl group, a butyl group, a hexyl or cyclohexyl group, or a phenyl group. Most preferably, R 1 and R 2 are chosen from H, methyl or phenyl groups
  • R 3 is preferably a C1-C4 alkyl group, more preferably a methyl, ethyl, n-propyl or iso-propyl group, most preferably selected from a methyl or isopropyl group.
  • Mt is zirconium or hafnium, most preferably Mt is zirconium.
  • X is a monovalent anionic group, selected from the group consisting of halogen (F, Cl, Br or I), a C1-C20 hydrocarbyl group or a C1-C20 alkoxy group.
  • halogen F, Cl, Br or I
  • X is a methyl group, Cl, Br or I, most preferably methyl or Cl.
  • the metallocene complex according to formula (I) comprises a 2-substituted 1-indenyl group which is bridged through a 1,2-phenylene bridge to a 2-indenyl group, which 2-indenyl group can be substituted with one or more substituents on the 1 and 3 position. Both 1-indenyl and 2-indenyl ligands can be further substituted on the 6 membered indenyl ring with alkyl or aryl substituents.
  • the 1,2 phenylene bridge can be substituted on the 3, 4, 5 or 6 position with alkyl or aryl groups.
  • the bridge can also be a naphtylene group, a phenantrylene or any other aromatic group, as long as the bridge is being formed by two adjacent carbon atoms in the aromatic bridge.
  • the bridge is a 1,2 phenylene bridge as shown in structure (II).
  • the 1,2 phenylene bridge may be a bridging moiety comprising a phenylene group that is bound to a 1-indenyl ligand or a first of either the 1 or 2 position of the phenylene group, and to a 2-indenyl ligand at the other of the 1 or 2 position of the phenylene group, wherein further the phenylene group may be substituted on the 3,4,5 or 6 position with alkyl or aryl groups.
  • the metallocene complex can be immobilized on a support.
  • the support is preferably an inert support, more preferably a porous inert support.
  • porous inert supports materials are talc, clay and inorganic oxides.
  • the support material is in a finely divided form.
  • Suitable inorganic oxide materials include group 2A, 3A, 4A and 4B metal oxides such as silica, alumina and mixtures thereof.
  • Other inorganic oxides that may be employed either alone or in combination with the silica or alumina are magnesia, titania, zirconia and the like.
  • Other support materials can be employed, for example finely divided functionalized polyolefins such as finely divided polyethylene or polystyrene.
  • the support is a silica having a surface area between 200 and 900 m 2 /g and a pore volume between 0.5 and 4 ml/g.
  • the invention is also directed to a catalyst prepared from the metallocene complex according to the invention and a cocatalyst.
  • the cocatalyst should be capable to generate a cationic specie from the metallocene compound and form a so-called non- or weakly coordinating anion.
  • Suitable cocatalysts include aluminium- or boron-containing cocatalysts.
  • Suitable aluminium-containing cocatalysts comprise aluminoxanes, alkyl aluminium compounds and aluminium-alkyl-chlorides.
  • aluminoxanes usable according to the present invention are well known and preferably comprise oligomeric linear and/or cyclic or cage-like alkyl aluminoxanes represented by the formula: R 3 —(AlRS 3 —O) n —AlR 3 2 for oligomeric, linear aluminoxanes and (—AlR 3 —O—) m for oligomeric, cyclic aluminoxanes; wherein n is 1-40, preferably n is 10-30; m is 3-40, preferably m is 3-30 and R 3 is a Ci to 08 alkyl group and preferably a methyl group.
  • organoaluminium compounds can be used such as trimethylaluminium, triethylaluminium, triisopropylaluminium, tri-n-propylaluminium, triisobutylaluminium, tri-n-butylaluminium, tri-tert-butylaluminium, triamylaluminium; dimethylaluminium ethoxide, diethylaluminium ethoxide, diisopropylaluminium ethoxide, di-n-propylaluminium ethoxide, diisobutylaluminium ethoxide and di-n-butylaluminium ethoxide; dimethylaluminium hydride, diethylaluminium hydride, diisopropylaluminium hydride, di-n-propylaluminium hydride, diisobutylaluminium hydride and di-n-butylaluminium hydride.
  • Suitable boron-containing cocatalysts include trialkylboranes, for example trimethylborane or triethylborane and/or perfluoroarylborane and/or perfluoroarylborate-compounds.
  • olefin polymers by polymerising one or more olefins in the presence of a metallocene complex preferably an organoaluminium cocatalyst is present.
  • methylaluminoxane, trialkylboranes, perfluoroarylboranes or perfluoroarylborates are used as the cocatalyst.
  • the invention relates to a process for the preparation of olefin polymers by polymerising one or more olefins in the presence of a cocatalyst and the metallocene complex of the invention, wherein the metallocene complex optionally is immobilized on a support.
  • the process to produce the olefin polymers may start with the reaction of the metallocene complex according to the invention with the cocatalyst.
  • This reaction can be performed in the same vessel as the reaction vessel wherein the olefin polymers are produced or in a separate vessel, whereafter the mixture of the metallocene complex and the cocatalyst is fed to the reaction vessel.
  • an inert solvent can be used.
  • the polymerisation can be adequately carried out in a slurry process, a solution process or a gas-phase process.
  • the cocatalyst is used in an amount of 10 to 100,000 mol, preferably from 10 to 10,000 mol per mol of the transition metal compound.
  • the cocatalyst is used in an amount of 0,1 to 100 mol, preferably from 0,5 to 100 mol per mol of the transition metal compound.
  • the solvent used in a slurry process to produce olefin polymers may be any organic solvent usually used for the polymerisation.
  • solvents are benzene, toluene, xylene, propane, butane, pentane, hexane, heptane, cyclohexane and methylene chloride.
  • the olefin to be polymerised can be used as the solvent.
  • an additional compound can be used as a scavenger compound to scrub undesirable impurities from the polymerisation medium that can adversely affect the catalyst productivity.
  • Suitable scavenging agents are metal alkyl compounds, such as aluminium alkyl, magnesium alkyl, or zinc alkyl compounds.
  • the aluminium alkyl compound for the purpose of scavenging the impurities can also be an aluminoxane compound.
  • partially pacified aluminium alkyl compounds can be used. For instance, the reaction product of an aluminium alkyl with a sterically hindered phenol can be used.
  • the polymerisation conditions like for example temperature, time, pressure, monomer concentration can be chosen within wide limits.
  • the polymerisation temperature is in the range from ⁇ 100 to 300° C., preferably 0 to 240° C., more preferably 50 to 200° C.
  • the polymerisation time is in the range of from 10 seconds to 20 hours, preferably from 1 minute to 10 hours, more preferably from 5 minutes to 5 hours.
  • the ethylene pressure during polymerisation is in the range from 1 to 3500 bar, preferably from 1 to 2500 bar, more preferably from 1 to 1000 bar, even more preferably from 1 to 500 bar, most preferably from 1 to 100 bar.
  • the molecular weight of the polymer can be controlled by use of hydrogen in the polymerisation.
  • the polymerisation may be conducted by a batch process, a semi-continuous process or a continuous process and may also be conducted in two or more steps of different polymerisation conditions.
  • the polyolefin produced is separated from the polymerisation solvent and dried by methods known to a person skilled in the art.
  • the olefin which is polymerised can be one type of olefin or can be mixtures of different olefins.
  • the polymerisation thus includes homopolymerisation and copolymerisation.
  • olefins examples include ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-hexene, 1-octene, 1-nonene, 1-decene; conjugated and non-conjugated dienes such as butadiene, 1,4-hexadiene, 5-ethylidene-2-norbornene, dicyclopentadiene, 4-methyl-1,4-hexadiene and 7-methyl-1,6-octadiene; cyclic olefins such as cyclobutene and other olefinic compounds such as isobutene, vinyl-cyclohexane and styrene but is not limited thereto.
  • ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 4-methyl-1
  • At least one of the olefins that is polymerised is ethylene. More preferably, a mixture of ethylene and at least one other ⁇ -olefin of 3 or more carbon atoms is polymerised.
  • the other olefin of 3 or more carbon atoms is chosen from 1-butene, 1-hexene, 1-octene, vinyl-cyclohexane or 4-methyl-1-pentene.
  • the olefin comonomer is present in an amount of about 5 to about 50 percent by weight in the ethylene-olefin copolymer, more preferably an amount of from about 7 to about 40 percent by weight in the ethylene ⁇ -olefin copolymer.
  • a linear low density polyethylene (LLDPE) having a melt mass flow rate (also known as melt flow index) as determined using ASTM D1238-10 (190° C./2.16 kg) which ranges from 0.5 to 125 g/10 min and a density in the range from 900 kg/m 3 to less than 940 kg/m 3 as determined using ASTM D1505-10 may be obtained.
  • the density of the LLDPE ranges from about 915 kg/m 3 to less than 940 kg/m 3 , for example between 915 and 925 kg/m 3 .
  • the melt flow index of the LLDPE ranges from 0.3 to 3 g/10min, for example from 0.5 to 1.5 g/10 min.
  • the polymerisation may be performed via a gas-phase process, via a slurry process or via a solution process.
  • the production processes of polyethylene are summarised in “Handbook of Polyethylene” by Andrew Peacock (2000; Dekker; ISBN 0824795466) at pages 43-66.
  • the various processes may be divided into solution polymerisation processes employing homogeneous (soluble) catalysts and processes employing supported (heterogeneous) catalysts.
  • the latter processes include both slurry and gas phase processes.
  • a so-called continuity agent or anti-static agent or anti-fouling agent may be added to reactor.
  • the invention is also directed to a polyolefin, for example polyethylene, preferably high density polyethylene (HDPE) obtainable or obtained by the process of the invention, for example by copolymerising ethylene and at least one other olefin in the presence of a metallocene complex according to the invention or a composition, wherein the metallocene complex according to the invention is immobilized on a support.
  • a polyolefin for example polyethylene, preferably high density polyethylene (HDPE) obtainable or obtained by the process of the invention, for example by copolymerising ethylene and at least one other olefin in the presence of a metallocene complex according to the invention or a composition, wherein the metallocene complex according to the invention is immobilized on a support.
  • a polyolefin for example polyethylene, preferably high density polyethylene (HDPE) obtainable or obtained by the process of the invention, for example by copolymerising ethylene and at least one other olefin in the
  • linear means that the polymer is substantially linear, but may contain some long chain branching.
  • LLB Long chain branching
  • metallocene complex of the invention or with the composition of the invention wherein the metallocene complex of the invention is present on a support, it is possible to produce polyethylene from ethylene and at least one other olefin, for example an olefin having up to 8 carbon atoms, with a high incorporation of the at least one other olefin.
  • the amount of incorporation of the at least one other olefin, for example an a-olefin in the polyethylene is expressed by the amount of branches per 1000 carbon atoms.
  • the invention also relates to a polyolefin, preferably polyethylene, for example linear low density polyethylene (LLDPE).
  • the low density polyethylene for example LLDPE, preferably has an amount of branches per 1000 carbon atoms as determined using 13 C NMR of at least 18, for example of at least 19, for example at least 20 and/or for example at most 50, for example at most 40, for example at most 30, for example at most 25.
  • the number average molecular weight (Mn) of the polyolefin, for example polyethylene, for example LLDPE of the invention may vary between wide ranges and may for example be in the range from 1000 to 200000 Da.
  • the Mn of the polyolefin of the invention may be at least 1500, for example at least 2000, for example at least 20,000, for example at least 50,000 and/or for example at most 150,000, for example at most 110,000, for example at most 100,000, for example at most 70,000 Da.
  • the weight average molecular weight (Mw) of the polyolefin, for example polyethylene, for example LLDPE of the invention may also vary between wide ranges and may for example be in the range from 1500 to 500000.
  • the Mw of the polyolefin of the invention may be at least 2500, for example at least 10,000, for example at least 50,000, for example at least 100,000 and/or for example at most 400,000, for example at least 350,000, for example at most 300,000, for example at most 250,000.
  • the Mw and Mn are determined using SEC (Size Exclusion Chromatography) using 1,2,4-trichlorobenzene or o-dichlorobenzene as an eluent, and calibrated using linear polyethylene or polystyrene standards.
  • the molecular weight distribution (that is Mw/Mn) of the polyolefin of the invention may for example vary from 2 to 5, from 2.1 to 4 or from 2.5 to 3.5.
  • the polyolefin obtained or obtainable by the process of the invention may be mixed with suitable additives.
  • suitable additives for polyethylene include but are not limited to the additives usually used for polyethylene, for example antioxidants, nucleating agents, acid scavengers, processing aids, lubricants, surfactants, blowing agents, ultraviolet light absorbers, quenchers, antistatic agents, slip agents, anti-blocking agents, antifogging agents, pigments, dyes and fillers, and cure agents such as peroxides.
  • the additives may be present in the typically effective amounts well known in the art, such as 0.001 weight % to 10 weight % based on the total composition.
  • the polyolefins of the invention and compositions comprising said polyolefins may suitably be used for the manufacture of articles.
  • the polyolefins and compositions of the invention may be manufactured into film, for example by compounding, extrusion, film blowing or casting or other methods of film formation to achieve, for example uniaxial or biaxial orientation.
  • films include blown or cast films formed by coextrusion (to form multilayer films) or by lamination and may be useful as films for packaging, for example as shrink film, cling film, stretch film, sealing films, oriented films, snack packaging, heavy duty bags, grocery sacks, baked and frozen food packaging, medical packaging, industrial liners, membranes, etc. in food-contact and non-food contact applications, agricultural films and sheets.
  • the invention also relates to articles comprising the polyolefins obtainable by the process of the invention.
  • the invention also relates to use of the polyolefins obtainable by the process of the invention for the preparation of articles, for example for the preparation of films.
  • the invention relates to a process for the preparation of articles using the polyolefin according to the invention.
  • ZrCl 4 (Me 2 S) 2 , 1 TiCl 4 (THF) 2 2 and TiCl 4 (Me 2 S) 2 3 were prepared as reported in, respectively, Sassmannshausen, J. Organometallics 2000, 19, 482-489; Seenivasan, K.; Sommazzi, A.; Bonino, F.; Bordiga, S.; Groppo, E. Chemistry - a European Journal 2011, 17, 8648-8656 and Suren Lewkebandara, T.; McKarns, P. J.; Haggerty, B. S.; Yap, G. P. A.; Rheingold, A. L.; Winter, C. H. Polyhedron 1998, 17, 1-9. ZrCl 4 (THF) 2 (Strem) was purchased and used as received.
  • DME was evaporated on a rotary evaporator, and 200 ml of water and 400 ml of dichloromethane were then added to the residue. The organic layer was separated, and the aqueous layer was additionally extracted with 50 ml of dichloromethane. The combined extract was dried over K 2 CO 3 and then evaporated to dryness to give a dark-red solid.
  • 3-(2-Bromophenyl)-2-methyl-1-phenylprop-2-ene-1-one (57.4 g, 190 mmol) was added in one portion to the polyphosphoric acid (prepared from 500 ml of 85% phosphoric acid and 150 g of P 4 O 10 ). The mixture was stirred at 140° C. for 1 h, then cooled to ambient temperature, and poured into 3000 ml of water. The crude product was extracted with diethyl ether (3 ⁇ 300 ml). The combined organic extract was dried over Na 2 SO 4 and then evaporated to dryness. The remaining propiophenone and all other volatiles were removed in high vacuum using Kugelrohr apparatus. This procedure afforded 34.0 g (59%) of the title compound as red oil. The product was a mixture of two diastereomers, A and B, in molar ratio ⁇ 4:1 according to 1 H NMR spectrum.
  • n-Butyllithium (48.2 ml, 118 mmol, 1.0 equiv) was added dropwise to a solution of N,N-diisopropylamine (16.6 ml, 118 mmol, 1.0 equiv) in dry THF (400 ml) at ⁇ 80° C. The resulting mixture was stirred for 15 min. A solution of 3-methyl-1-phenylbutan-1-one (19.2 g, 118 mmol, 1.0 equiv) in dry THF (50 ml) was added dropwise to the mixture at the same temperature.
  • Triethylamine (27.8 g, 275 mmol, 5.0 equiv) was added to a solution of 2-((2-bromophenyl) (hydroxy)methyl)-3-methyl-1-phenylbutan-1-one (19.1 g, 55.0 mmol, 1.0 equiv), in 100 ml of dry THF at 0° C.
  • the crude product was dissolved in 50 ml of toluene, and 20 ml of hexane were added. The mixture was then filtered, and the filtrate was evaporated in vacuum to dryness. The residue was redissolved in 20 ml of toluene, and 30 ml of hexane was added. The precipitate formed was filtered and redissolved in 40 ml of hot toluene. The obtained solution was left overnight at r.t., then filtered, and the filtrate was evaporated in vacuum until formation of precipitate started ( ⁇ 30 ml). The mixture was left overnight at r.t., the precipitate formed was filtered, washed with toluene and dried in vacuum.
  • the first crop of the product was obtained.
  • the filtrate was concentrated in vacuum to ⁇ 10 ml and left overnight.
  • the precipitate formed was filtered, washed with toluene and dried in vacuum to give the second crop of the product.
  • the two crops were combined and dried in vacuum for 1 h at 50° C.
  • the product contained 0.5 equiv. of toluene according to 1 H NMR spectrum.
  • the polymerisations were carried out in a PPR48 Parallel Pressure Reactor (PPR) for olefin polymerisation.
  • PPR Parallel Pressure Reactor
  • This equipment containing 48 reactors mounted in a triple glove-box, was sold commercially by the company Symyx, thereafter by the company Freeslate.
  • the applied polymerisation protocols were as follows:
  • the 48 PPR cells Prior to the execution of a library, the 48 PPR cells (reactors) undergo bake-and-purge' cycles overnight (8 h at 90-140° C. with intermittent dry N2 flow), to remove any contaminants and left-overs from previous experiments. After cooling to glove-box temperature, the stir tops are taken off, and the cells are fitted with disposable 10 mL glass inserts and PEEK stirring paddles (previously hot-dried under vacuum); the stir tops are then set back in place, the cells are loaded with the proper amounts of toluene (in the range 2.0-4.0 mL), 1-hexene (in the range 0.05-2.0 mL) and MAO solution (100 ⁇ L of 0.1 mol L-1 in toluene), thermostated at 80° C., and brought to the operating pressure of 550 kPa (65 psig) with ethylene.
  • toluene in the range 2.0-4.0 mL
  • 1-hexene in the range 0.05-2.0 mL
  • the catalyst injection sequence is started; proper volumes of a toluene ‘chaser’, a solution of the precatalyst in toluene (typically in the range 0.005-0.05 mmol L-1), and a toluene ‘buffer’ are uptaken into the slurry needle, and then injected into the cell of destination.
  • the reaction is left to proceed under stirring (800 rpm) at constant temperature and pressure with continuous feed of ethylene for 5-60 min, and quenched by over-pressurizing the cell with dry air (preferred to other possible catalyst poisons because in case of cell or quench line leaks oxygen is promptly detected by the dedicated glove-box sensor).
  • reaction yields are double-checked against on-line monomer conversion measurements by robotically weighing the dry polymers in a Bohdan Balance Automator while still in the reaction vials (subtracting the pre-recorded tare). Polymer aliquots are then sampled out for the characterizations.
  • GPC curves are recorded with a Freeslate Rapid GPC setup, equipped with a set of 2 mixed-bed Agilent PLgel 10 ⁇ m columns and a Polymer Char IR4 detector.
  • the upper deck of the setup features a sample dissolution station for up to 48 samples in 10 mL magnetically stirred glass vials, 4 thermostated bays each accommodating 48 polymer solutions in 10 mL glass vials, and a dual arm robot with two heated injection needles.
  • pre-weighed polymer amounts typically 1-4 mg are dissolved in proper volumes of orthodichlorobenzene (ODCB) containing 0.40 mg mL-1 of 4-methyl-2,6-di-tert-butylphenol (BHT) as a stabilizer, so as to obtain solutions at a concentration of 0.5 to 1.0 mg mL-1.
  • ODCB orthodichlorobenzene
  • BHT 4-methyl-2,6-di-tert-butylphenol
  • the samples are transferred to a thermostated bay at 145° C., and sequentially injected into the system at 145° C. and a flow rate of 1.0 mL min-1.
  • the analysis time is 12.5 min per sample.
  • Calibration is carried out with the universal method, using 10 monodisperse polystyrene samples (Mn between 1.3 and 3700 KDa). Before and after each campaign, samples from a known i-PP batch produced with an ansa-zirconocene catalyst are analyzed for a consistency check.
  • the catalyst activity is indicated by Rp, the calculated polymerisation rate, expressed as kilograms of copolymer, produced per mmol of catalyst per mol of ethylene in the reactor-diluent per hour [kg/(mmol cat [C 2 H 4 ] ⁇ h)].
  • the hexene (C6) reactivity (in mol % vol %) is expressed as mol percent hexene-incorporation in the copolymer (C6 inc., in mol %) per volume percent 1-hexene in the reaction diluent (C6, in vol %). This reactivity is the averaged value of the polymerisation runs. Obviously, a higher hexene-incorporation per volume percent in the reaction-medium indicates a higher hexene reactivity.
  • the weight average molecular weight is expressed in kiloDaltons (kDa)
  • Catalyst ID 4 1 135 Molecular structure
  • Catalyst ID 140 158 157 Molecular structure
  • Cat ID 179 182 Molecular structure
  • Experiment A is comparative and reflects example III.5 of U.S. Pat. No. 6,342,622; Experiment B also is comparative and reflects example VIII..4 of U.S. Pat. No. 6,342,622; Experiment C also is comparative.
  • Experiments D through H are experiments according to the present invention.
  • Table 2 illustrates that when using a 1,2-phenylene bridge between two 2-indenyl moieties (Catalyst complex 4) as described in U.S. Pat. No. 6,342,622, the molecular weight and the hexene-reactivity are very low.
  • Catalyst complex 1 When replacing the 1,2-phenylene bridge by a 2,2′-biphenylene bridge between two 2-indenyl moieties (Catalyst complex 1), the molecular weight is increased, but the hexene-reactivity remains low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
US16/963,709 2018-01-24 2019-01-23 1,2-phenylene bridged 1-indenyl-2-indenyl metallocene complexes for olefin polymerisation Abandoned US20210079032A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18153200 2018-01-24
EP18153200.3 2018-01-24
PCT/EP2019/051654 WO2019145371A1 (en) 2018-01-24 2019-01-23 1,2-phenylene bridged 1-indenyl-2-indenyl metallocene complexes for olefin polymerisation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/051654 A-371-Of-International WO2019145371A1 (en) 2018-01-24 2019-01-23 1,2-phenylene bridged 1-indenyl-2-indenyl metallocene complexes for olefin polymerisation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/985,254 Division US11691998B2 (en) 2018-01-24 2022-11-11 1,2-phenylene bridged 1-indenyl-2-indenyl metallocene complexes for olefin polymerisation

Publications (1)

Publication Number Publication Date
US20210079032A1 true US20210079032A1 (en) 2021-03-18

Family

ID=61131963

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/963,709 Abandoned US20210079032A1 (en) 2018-01-24 2019-01-23 1,2-phenylene bridged 1-indenyl-2-indenyl metallocene complexes for olefin polymerisation
US17/985,254 Active US11691998B2 (en) 2018-01-24 2022-11-11 1,2-phenylene bridged 1-indenyl-2-indenyl metallocene complexes for olefin polymerisation

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/985,254 Active US11691998B2 (en) 2018-01-24 2022-11-11 1,2-phenylene bridged 1-indenyl-2-indenyl metallocene complexes for olefin polymerisation

Country Status (4)

Country Link
US (2) US20210079032A1 (zh)
EP (1) EP3743431A1 (zh)
CN (1) CN111757887B (zh)
WO (1) WO2019145371A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017081A1 (en) 2021-08-11 2023-02-16 Sabic Global Technologies B.V. Process for preparing polyalpha-olefins

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230106768A1 (en) * 2020-04-24 2023-04-06 Sabic Global Technologies B.V. Post-metallocene compounds
CN113087609B (zh) * 2021-04-07 2022-09-23 山东京博生物科技有限公司 一种5-氯-1-茚酮的合成方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3840772A1 (de) 1988-12-03 1990-06-07 Hoechst Ag Verfahren zur herstellung einer heterogenen metallocenkatalysatorkomponente
NL9201970A (nl) 1992-11-11 1994-06-01 Dsm Nv Indenylverbindingen en katalysatorcomponenten voor de polymerisatie van olefinen.
JP3348514B2 (ja) * 1994-04-27 2002-11-20 住友化学工業株式会社 鋼材被覆用樹脂組成物
WO2000029415A1 (en) 1998-11-18 2000-05-25 Basell Technology Company B.V. Methylene bridged metallocenes as olefin-polymerization-catalyst components
US6342622B1 (en) * 1999-06-11 2002-01-29 Dsm B.V. Indenyl compounds for the polymerization of olefins
JP2001064322A (ja) * 1999-06-24 2001-03-13 Idemitsu Petrochem Co Ltd プロピレン系重合体及びその成形体並びにプロピレン系重合体の製造方法
DE10127926A1 (de) 2001-06-08 2002-12-12 Bayer Ag 1,3-disubstituierte Indenkomplexe
EP2698251B1 (en) * 2012-08-13 2017-03-01 Borealis AG Films
EP2906628B1 (en) * 2012-10-15 2017-07-26 Saudi Basic Industries Corporation Polyethylene compositions comprising polypropylene
WO2014099307A1 (en) 2012-12-21 2014-06-26 Exxonmobil Chemical Patents Inc. Branched polyethylene with improved processing and high tear films made therefrom
EP3063184B1 (en) 2013-10-29 2017-11-29 ExxonMobil Chemical Patents Inc. Asymmetric catalysts for olefin polymerisation
WO2018185170A1 (en) 2017-04-04 2018-10-11 Sabic Global Technologies B.V. Dihydrocarbyl-silyl-bridged-1.3 disubstituted-2-indenyl metallocene complexes for olefin polymerization
CN110650978B (zh) 2017-04-04 2022-09-23 Sabic环球技术有限责任公司 用于烯烃聚合的二甲基-甲硅烷基-桥连的-1-取代-2-茚基茂金属复合物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017081A1 (en) 2021-08-11 2023-02-16 Sabic Global Technologies B.V. Process for preparing polyalpha-olefins

Also Published As

Publication number Publication date
US11691998B2 (en) 2023-07-04
US20230086874A1 (en) 2023-03-23
WO2019145371A1 (en) 2019-08-01
CN111757887B (zh) 2023-08-01
EP3743431A1 (en) 2020-12-02
CN111757887A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
CN110337455B (zh) 在高温溶液聚合法中生产聚乙烯共聚物的新催化剂体系
EP3400230B1 (en) Catalyst comprising a metallocene complex and a co-catalyst
US11691998B2 (en) 1,2-phenylene bridged 1-indenyl-2-indenyl metallocene complexes for olefin polymerisation
KR101060838B1 (ko) 에틸렌 단독중합체 또는 α-올레핀과의 공중합체 제조용비스-아릴아릴옥시 촉매계
TWI440644B (zh) 乙烯共聚物及其製備方法
EP3606967B1 (en) Dimethyl-silyl-bridged-1-substituted-2-indenyl metallocene complexes for olefin polymerization
EP2076551B1 (en) Arylphenoxy catalyst system for producing ethylene homopolymer or copolymers of ethylene and alpha-olefins
US10400048B2 (en) Catalyst comprising a metallocene complex and a co-catalyst
EP2087011B1 (en) Transition metal catalytic systems and methods for preparing ethylene homopolymers or copolymers of ethylene and olefins using the same
EP3606930B1 (en) Dihydrocarbyl-silyl-bridged-1.3 disubstituted-2-indenyl metallocene complexes for olefin polymerization
US11472895B2 (en) Substituted bis-2-indenyl metallocene compounds
US20220332861A1 (en) Compounds for use in catalyst compositions for the production of polyolefins
EP3027631B1 (en) Process for the preparation of bridged metallocene complexes suitable for use in olefin polymerization
KR20190139466A (ko) 에틸렌 중합체 혼합물과 이의 제조방법 및 이를 이용한 성형품
KR102667176B1 (ko) 메탈로센 착체 및 조촉매를 포함하는 촉매
US20220356275A1 (en) Compounds for use in catalyst compositions for the production of polyolefins
EP4043470A1 (en) Transition metal compound and catalyst composition including same

Legal Events

Date Code Title Description
AS Assignment

Owner name: SABIC GLOBAL TECHNOLOGIES B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HENDRIKSEN, COEN;FRIEDERICHS, NICOLAAS HENDRIKA;VOSKOBOYNIKOV, ALEXANDER Z.;AND OTHERS;SIGNING DATES FROM 20190409 TO 20200720;REEL/FRAME:053268/0165

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION