US20200396465A1 - Interaction between ibc and affine - Google Patents

Interaction between ibc and affine Download PDF

Info

Publication number
US20200396465A1
US20200396465A1 US17/005,521 US202017005521A US2020396465A1 US 20200396465 A1 US20200396465 A1 US 20200396465A1 US 202017005521 A US202017005521 A US 202017005521A US 2020396465 A1 US2020396465 A1 US 2020396465A1
Authority
US
United States
Prior art keywords
technique
block
picture
affine
ibc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/005,521
Other languages
English (en)
Inventor
Kai Zhang
Li Zhang
Hongbin Liu
Yue Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing ByteDance Network Technology Co Ltd
ByteDance Inc
Original Assignee
Beijing ByteDance Network Technology Co Ltd
ByteDance Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing ByteDance Network Technology Co Ltd, ByteDance Inc filed Critical Beijing ByteDance Network Technology Co Ltd
Assigned to BYTEDANCE INC. reassignment BYTEDANCE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZHANG, KAI, ZHANG, LI
Assigned to BEIJING BYTEDANCE NETWORK TECHNOLOGY CO., LTD. reassignment BEIJING BYTEDANCE NETWORK TECHNOLOGY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIU, HONGBIN, WANG, YUE
Publication of US20200396465A1 publication Critical patent/US20200396465A1/en
Priority to US17/412,771 priority Critical patent/US11973962B2/en
Priority to US18/528,070 priority patent/US20240121410A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/107Selection of coding mode or of prediction mode between spatial and temporal predictive coding, e.g. picture refresh
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • H04N19/139Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/167Position within a video image, e.g. region of interest [ROI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • H04N19/463Embedding additional information in the video signal during the compression process by compressing encoding parameters before transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/523Motion estimation or motion compensation with sub-pixel accuracy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/583Motion compensation with overlapping blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Definitions

  • This patent document is directed generally to video coding technologies.
  • Motion compensation is a technique in video processing to predict a frame in a video, given the previous and/or future frames by accounting for motion of the camera and/or objects in the video. Motion compensation can be used in the encoding and decoding of video data for video compression.
  • the disclosed technology may be used to provide a method for video encoding using intra-block copy.
  • This method includes determining whether a current block of the current picture is to be encoded using a motion compensation algorithm, and encoding, based on the determining, the current block by selectively applying an intra-block copy to the current block.
  • the disclosed technology may be used to provide another method for video encoding using intra-block copy.
  • This method includes determining whether a current block of the current picture is to be encoded using an intra-block copy, and encoding, based on the determining, the current block by selectively applying a motion compensation algorithm to the current block.
  • the disclosed technology may be used to provide a method for video decoding using intra-block copy.
  • This method includes determining whether a current block of the current picture is to be decoded using a motion compensation algorithm, and decoding, based on the determining, the current block by selectively applying an intra-block copy to the current block.
  • the disclosed technology may be used to provide another method for video decoding using intra-block copy.
  • This method includes determining whether a current block of the current picture is to be decoded using an intra-block copy, and decoding, based on the determining, the current block by selectively applying a motion compensation algorithm to the current block.
  • a method of video processing includes determining that a block being decoded representing a portion of the visual information is coded using a first coding technique; and decoding the coded representation by using a first decoding technique corresponding to the first coding technique and by excluding use of a second decoding technique corresponding to a second coding technique; wherein one of the first and second coding techniques corresponds to an intra-block copy (IBC) technique that uses a second block of a same video picture for coding the block being decoded and the other corresponds to an affine coding technique that uses an affine motion model for coding the block being decoded.
  • IBC intra-block copy
  • a method of visual information processing includes determining that a block being decoded representing a portion of an encoded picture of visual information is coded using an intra-block copy (IBC) technique that uses a second block of the picture for coding the block being decoded and an affine coding technique that uses an affine motion model for coding the block being decoded; and decoding the coded representation by using an IBC decoding technique corresponding to the IBC decoding technique and an affine decoding technique corresponding to the affine coding technique.
  • IBC intra-block copy
  • the above-described method is embodied in the form of processor-executable code and stored in a computer-readable program medium.
  • a device that is configured or operable to perform the above-described method.
  • the device may include a processor that is programmed to implement this method.
  • a video decoder apparatus may implement a method as described herein.
  • FIG. 1 shows an example of an intra-block copy technique.
  • FIG. 2 shows an example of a simplified affine motion model.
  • FIG. 3 shows an example of an affine motion vector field (MVF) per sub-block.
  • FIG. 4 shows an example of motion vector prediction (MVP) for the AF_INTER affine motion mode.
  • FIGS. 5A and 5B show example candidates for the AF_MERGE affine motion mode.
  • FIG. 6 shows a flowchart of an example method for video encoding using intra-block copy in accordance with the disclosed technology.
  • FIG. 7 shows a flowchart of another example method for video encoding using intra-block copy in accordance with the disclosed technology.
  • FIG. 8 shows a flowchart of an example method for video decoding using intra-block copy in accordance with the disclosed technology.
  • FIG. 9 shows a flowchart of another example method for video decoding using intra-block copy in accordance with the disclosed technology.
  • FIG. 10 is a block diagram illustrating an example of the architecture for a computer system or other control device that can be utilized to implement various portions of the presently disclosed technology.
  • FIG. 11 shows a block diagram of an example embodiment of a mobile device that can be utilized to implement various portions of the presently disclosed technology.
  • FIG. 12 shows a flowchart for an example method of visual information processing.
  • FIG. 13 shows a flowchart for an example method of visual information processing.
  • a picture of the visual information can be a frame in a video, a portion of an image, an object in a three-dimensional scene, a portion of the three-dimensional scene, etc.
  • a block can be portion of the picture of the visual information such as a coding unit (CU), a largest coding unit (LCU), a sample, a prediction unit (PU) etc. as described in this application.
  • a sub-block of the visual information can be a PU such as a sub-CU, a sample, etc.
  • the PU can be a pixel, a voxel, or a smallest quantum of resolution of the visual information.
  • Video codecs typically include an electronic circuit or software that compresses or decompresses digital video, and are continually being improved to provide higher coding efficiency.
  • a video codec converts uncompressed video to a compressed format or vice versa. There are complex relationships between the video quality, the amount of data used to represent the video (determined by the bit rate), the complexity of the encoding and decoding algorithms, sensitivity to data losses and errors, ease of editing, random access, and end-to-end delay (latency).
  • the compressed format usually conforms to a standard video compression specification, e.g., the High Efficiency Video Coding (HEVC) standard (also known as H.265 or MPEG-H Part 2), the Versatile Video Coding standard to be finalized, or other current and/or future video coding standards.
  • HEVC High Efficiency Video Coding
  • MPEG-H Part 2 the Versatile Video Coding standard to be finalized, or other current and/or future video coding standards.
  • Embodiments of the disclosed technology may be applied to existing video coding standards (e.g., HEVC, H.265) and future standards to improve runtime performance.
  • Section headings are used in the present document to improve readability of the description and do not in any way limit the discussion or the embodiments (and/or implementations) to the respective sections only.
  • reference picture set RPS
  • buffer description RPS
  • An RPS is a set of picture indicators that is signaled in each slice header and consists of one set of short-term pictures and one set of long-term pictures.
  • the pictures in the DPB are marked as specified by the RPS.
  • the pictures in the DPB that are indicated in the short-term picture part of the RPS are kept as short-term pictures.
  • the short-term or long-term pictures in the DPB that are indicated in the long-term picture part in the RPS are converted to or kept as long-term pictures.
  • pictures in the DPB for which there is no indicator in the RPS are marked as unused for reference.
  • An RPS consists of a set of picture order count (POC) values that are used for identifying the pictures in the DPB. Besides signaling POC information, the RPS also signals one flag for each picture. Each flag indicates whether the corresponding picture is available or unavailable for reference for the current picture. Note that even though a reference picture is signaled as unavailable for the current picture, it is still kept in the DPB and may be made available for reference later on and used for decoding future pictures.
  • POC picture order count
  • the list RefPicSetStCurrBefore consists of short-term pictures that are available for reference for the current picture and have POC values that are lower than the POC value of the current picture.
  • RefPicSetStCurrAfter consist of available short-term pictures with a POC value that is higher than the POC value of the current picture.
  • RefPicSetStFoll is a list that contains all short-term pictures that are made unavailable for the current picture but may be used as reference pictures for decoding subsequent pictures in decoding order.
  • the lists RefPicSetLtCurr and RefPicSetLtFoll contain long-term pictures that are available and unavailable for reference for the current picture, respectively.
  • num_short_term_ref_pic_sets specifies the number of st_ref_pic_set( ) syntax structures included in the SPS.
  • the value of num_short_term_ref_pic_sets shall be in the range of 0 to 64, inclusive.
  • a decoder may allocate memory for a total number of num_short_term_ref_pic_sets+1 st_ref_pic_set( ) syntax structures since there may be a st_ref_pic_set( ) syntax structure directly signaled in the slice headers of a current picture.
  • a st_ref_pic_set( ) syntax structure directly signaled in the slice headers of a current picture has an index equal to num_short_term_ref_pic_sets.
  • long_term_ref_pies_present_flag 0 specifies that no long-term reference picture is used for inter prediction of any coded picture in the CVS.
  • long_term_ref_pics_present_flag 1 specifies that long-term reference pictures may be used for inter prediction of one or more coded pictures in the CVS.
  • num_long_term_ref_pics_sps specifies the number of candidate long-term reference pictures that are specified in the SPS.
  • the value of num_long_term_ref_pics_sps shall be in the range of 0 to 32, inclusive.
  • lt_ref_pic_poc_lsb_sps[i] specifies the picture order count modulo MaxPicOrderCntLsb of the i-th candidate long-term reference picture specified in the SPS.
  • the number of bits used to represent lt_ref_pic_poc_lsb_sps[i] is equal to log_2_max_pic_order_cnt_lsb_minus4+4.
  • used_by_curr_pic_lt_sps_flag[i] 0 specifies that the i-th candidate long-term reference picture specified in the SPS is not used for reference by a picture that includes in its long-term reference picture set (RPS) the i-th candidate long-term reference picture specified in the SPS.
  • RPS long-term reference picture set
  • short_term_ref_pic_set_sps_flag 1 specifies that the short-term RPS of the current picture is derived based on one of the st_ref_pic_set( ) syntax structures in the active SPS that is identified by the syntax element short_term_ref_pic_set_idx in the slice header.
  • short_term_ref_pic_set_sps_flag 0 specifies that the short-term RPS of the current picture is derived based on the st_ref_pic_set( ) syntax structure that is directly included in the slice headers of the current picture.
  • num_short_term_ref_pic_sets is equal to 0
  • the value of short_term_ref_pic_set_sps_flag shall be equal to 0.
  • short_term_ref_pic_set_idx specifies the index, into the list of the st_ref_pic_set( ) syntax structures included in the active SPS, of the st_ref_pic_set( ) syntax structure that is used for derivation of the short-term RPS of the current picture.
  • the syntax element short_term_ref_pic_set_idx is represented by Ceil(Log 2(num_short_term_ref_pic_sets)) bits. When not present, the value of short_term_ref_pic_set_idx is inferred to be equal to 0.
  • the value of short_term_ref_pic_set_idx shall be in the range of 0 to num_short_term_ref_pic_sets ⁇ 1, inclusive.
  • variable CurrRpsldx is derived as follows:
  • num_long_term_sps specifies the number of entries in the long-term RPS of the current picture that are derived based on the candidate long-term reference pictures specified in the active SPS.
  • the value of num_long_term_sps shall be in the range of 0 to num_long_term_ref_pics_sps, inclusive. When not present, the value of num_long_term_sps is inferred to be equal to 0.
  • num_long_term_pics specifies the number of entries in the long-term RPS of the current picture that are directly signaled in the slice header. When not present, the value of num_long_term_pics is inferred to be equal to 0.
  • nuh_layer_id when nuh_layer_id is equal to 0, the value of num_long_term_pics shall be less than or equal to sps_max_dec_pic_buffering_minus1[Temporand]-NumNegativePics[CurrRpsIdx]-NumPositivePics[CurrRpsIdx]-num_long_term_sps-TwoVersionsOfCurrDecPicFlag.
  • lt_idx_sps[i] specifies an index, into the list of candidate long-term reference pictures specified in the active SPS, of the i-th entry in the long-term RPS of the current picture.
  • the number of bits used to represent lt_idx_sps[i] is equal to Ceil(Log 2(num_long_term_ref_pics_sps)).
  • the value of lt_idx_sps[i] is inferred to be equal to 0.
  • the value of lt_idx_sps[i] shall be in the range of 0 to num_long_term_ref_pics_sps ⁇ 1, inclusive.
  • poc_lsb_lt[i] specifies the value of the picture order count modulo MaxPicOrderCntLsb of the i-th entry in the long-term RPS of the current picture.
  • the length of the poc_lsb_lt[i] syntax element is log_2_max_pic_order_cnt_lsb_minus4+4 bits.
  • used_by_curr_pic_lt_flag[i] 0 specifies that the i-th entry in the long-term RPS of the current picture is not used for reference by the current picture.
  • the variables PocLsbLt[i] and UsedByCurrPicLt[i] are derived as follows:
  • delta_poc_msb_present_flag[i] 1 specifies that delta_poc_msb_cycle_lt[i] is present.
  • delta_poc_msb_present_flag[i] 0 specifies that delta_poc_msb_cycle_lt[i] is not present.
  • prevTid0Pic be the previous picture in decoding order that has TemporalId equal to 0 and is not a RASL, RADL or SLNR picture.
  • setOfPrevPocVals be a set consisting of the following:
  • delta_poc_msb_present_flag[i] shall be equal to 1.
  • delta_poc_msb_cycle_lt[i] is used to determine the value of the most significant bits of the picture order count value of the i-th entry in the long-term RPS of the current picture.
  • delta_poc_msb_cycle_lt[i] is not present, it is inferred to be equal to 0.
  • variable DeltaPocMsbCycleLt[i] is derived as follows:
  • the motion vector prediction is only allowed if the target reference picture type and the predicted reference picture type is the same. In other words, when the types are different, motion vector prediction is disallowed.
  • AMVP Advanced Motion Vector Prediction
  • the motion vector mvLXA and the availability flag availableFlagLXA are derived in the following ordered steps:
  • the sample location (xNbA0, yNbA0) is set equal to (xPb ⁇ 1, yPb+nPbH) and the sample location (xNbA1, yNbA1) is set equal to (xNbA0, yNbA0 ⁇ 1).
  • the motion vector mvLXB and the availability flag availableFlagLXB are derived in the following ordered steps:
  • the sample locations (xNbB0, yNbB0), (xNbB1, yNbB1) and (xNbB2, yNbB2) are set equal to (xPb+nPbW, yPb ⁇ 1), (xPb+nPbW ⁇ 1, yPb ⁇ 1) and (xPb ⁇ 1, yPb ⁇ 1), respectively.
  • availableFlagLXB is set equal to 0 and the following applies for (xNbBk, yNbBk) from (xNbB0, yNbB0) to (xNbB2, yNbB2) or until availableFlagLXB is equal to 1:
  • Temporal Motion Vector Prediction is another example of motion vector prediction that includes an existing implementation.
  • the relevant portion of the existing TMVP implementation is detailed below.
  • variable availableFlagLXCol is set equal to 1
  • refPicListCol[refIdxCol] is set to be the picture with reference index refIdxCol in the reference picture list listCol of the slice containing prediction block colPb in the collocated picture specified by ColPic.
  • Intra-block copy has been extends the concept of motion compensation from inter-frame coding to intra-frame coding.
  • the current block is predicted by a reference block in the same picture when IBC is applied.
  • the samples in the reference block must have been already reconstructed before the current block is coded or decoded.
  • IBC is not so efficient for most camera-captured sequences, it shows significant coding gains for screen content. The reason is that there are lots of reduplicated patterns, such as icons and text characters in a screen content picture. IBC can remove the redundancy between these reduplicated patterns effectively.
  • an inter-coded coding unit can apply IBC if it chooses the current picture as its reference picture.
  • the MV is renamed as block vector (BV) in this case, and a BV always has an integer-pixel precision.
  • BV block vector
  • the current picture is marked as a “long-term” reference picture in the Decoded Picture Buffer (DPB).
  • DPB Decoded Picture Buffer
  • pps_curr_pic_ref_enabled_flag 1 specifies that a picture referring to the PPS may be included in a reference picture list of a slice of the picture itself.
  • pps_curr_pic_ref_enabled_flag 0 specifies that a picture referring to the PPS is never included in a reference picture list of a slice of the picture itself.
  • the value of pps_curr_pic_ref_enabled_flag is inferred to be equal to 0.
  • variable TwoVersionsOfCurrDecPicFlag is derived as follows:
  • Decoding process The current decoded picture after the invocation of the in-loop filter process is stored in the DPB in an empty picture storage buffer, the DPB fullness is incremented by one and this picture is marked as “used for short-term reference”.
  • JEM Joint Exploration Model
  • JEM Joint Exploration Model
  • affine prediction alternative temporal motion vector prediction
  • STMVP spatial-temporal motion vector prediction
  • BIO bi-directional optical flow
  • FRUC Frame-Rate Up Conversion
  • LAMVR Locally Adaptive Motion Vector Resolution
  • OBMC Overlapped Block Motion Compensation
  • LIC Local Illumination Compensation
  • DMVR Decoder-side Motion Vector Refinement
  • FIG. 2 shows an example of an affine motion field of a block 200 described by two control point motion vectors V 0 and Vi.
  • the motion vector field (MVF) of the block 200 can be described by the following equation:
  • (v 0x , v 0y ) is motion vector of the top-left corner control point
  • (v 1x , v 1y ) is motion vector of the top-right corner control point.
  • sub-block based affine transform prediction can be applied.
  • the sub-block size M ⁇ N is derived as follows:
  • MvPre is the motion vector fraction accuracy (e.g., 1/16 in JEM).
  • (v 2x , v 2y ) is motion vector of the bottom-left control point, calculated according to Eq. (1).
  • M and N can be adjusted downward if necessary to make it a divisor of w and h, respectively.
  • FIG. 3 shows an example of affine MVF per sub-block for a block 300 .
  • the motion vector of the center sample of each sub-block can be calculated according to Eq. (1), and rounded to the motion vector fraction accuracy (e.g., 1/16 in JEM).
  • the motion compensation interpolation filters can be applied to generate the prediction of each sub-block with derived motion vector.
  • the high accuracy motion vector of each sub-block is rounded and saved as the same accuracy as the normal motion vector.
  • AF_INTER mode In the JEM, there are two affine motion modes: AF_INTER mode and AF_MERGE mode. For CUs with both width and height larger than 8, AF_INTER mode can be applied. An affine flag in CU level is signaled in the bitstream to indicate whether AF_INTER mode is used.
  • AF_INTER mode a candidate list with motion vector pair ⁇ (v 0 , v 1 )
  • FIG. 4 shows an example of motion vector prediction (MVP) for a block 400 in the AF_INTER mode.
  • v 0 is selected from the motion vectors of the sub-block A, B, or C.
  • the motion vectors from the neighboring blocks can be scaled according to the reference list.
  • the motion vectors can also be scaled according to the relationship among the Picture Order Count (POC) of the reference for the neighboring block, the POC of the reference for the current CU, and the POC of the current CU.
  • POC Picture Order Count
  • the approach to select v 1 from the neighboring sub-block D and E is similar. If the number of candidate list is smaller than 2, the list is padded by the motion vector pair composed by duplicating each of the AMVP candidates.
  • the candidates can be firstly sorted according to the neighboring motion vectors (e.g., based on the similarity of the two motion vectors in a pair candidate). In some implementations, the first two candidates are kept.
  • a Rate Distortion (RD) cost check is used to determine which motion vector pair candidate is selected as the control point motion vector prediction (CPMVP) of the current CU.
  • An index indicating the position of the CPMVP in the candidate list can be signaled in the bitstream. After the CPMVP of the current affine CU is determined, affine motion estimation is applied and the control point motion vector (CPMV) is found. Then the difference of the CPMV and the CPMVP is signaled in the bitstream.
  • CPMV control point motion vector
  • FIG. 5A shows an example of the selection order of candidate blocks for a current CU 500 .
  • the selection order can be from left ( 501 ), above ( 502 ), above right ( 503 ), left bottom ( 504 ) to above left ( 505 ) of the current CU 500 .
  • FIG. 5B shows another example of candidate blocks for a current CU 500 in the AF_MERGE mode. If the neighboring left bottom block 501 is coded in affine mode, as shown in FIG.
  • the motion vectors v 2 , v 3 and v 4 of the top left corner, above right corner, and left bottom corner of the CU containing the sub-block 501 are derived.
  • the motion vector v 0 of the top left corner on the current CU 500 is calculated based on v2, v3 and v4.
  • the motion vector v1 of the above right of the current CU can be calculated accordingly.
  • the MVF of the current CU can be generated.
  • an affine flag can be signaled in the bitstream when there is at least one neighboring block is coded in affine mode.
  • FIG. 6 shows a flowchart of an exemplary method for video encoding using intra-block copy.
  • the method 600 includes, at step 610 , determining whether a current block of the current picture is to be encoded using a motion compensation algorithm.
  • the method 600 includes, in step 620 , encoding, based on the determining, the current block by selectively applying an intra-block copy to the current block. More generally, whether or not to apply the intra-block copy to the current block is based on whether the current block is to be encoded using a specific motion compensation algorithm.
  • FIG. 7 shows a flowchart of another exemplary method video encoding using intra-block copy.
  • the method 700 includes, at step 710 , determining whether a current block of the current picture is to be encoded using an intra-block copy.
  • the method 700 includes, in step 720 , encoding, based on the determining, the current block by selectively applying a motion compensation algorithm to the current block. More generally, whether or not to encode the current block using the motion compensation algorithm is based on whether the current block is to be encoded using the intra-block copy.
  • FIG. 8 shows a flowchart of an exemplary method for video decoding using intra-block copy.
  • the method 800 includes, at step 810 , determining whether a current block of the current picture is to be decoded using a motion compensation algorithm.
  • the method 800 includes, in step 820 , decoding, based on the determining, the current block by selectively applying an intra-block copy to the current block. More generally, whether or not to apply the intra-block copy to the current block is based on whether the current block is to be decoded using a specific motion compensation algorithm.
  • FIG. 9 shows a flowchart of another exemplary method video decoding using intra-block copy.
  • the method 900 includes, at step 910 , determining whether a current block of the current picture is to be decoded using an intra-block copy.
  • the method 900 includes, in step 920 , decoding, based on the determining, the current block by selectively applying a motion compensation algorithm to the current block. More generally, whether or not to decode the current block using the motion compensation algorithm is based on whether the current block is to be decoded using the intra-block copy.
  • the methods 600 , 700 , 800 and 900 may further include are further the step of determining whether the motion compensation algorithm is compatible with the intra-block copy.
  • the compatibility of the intra-block copy and the motion compensation algorithms are elucidated in the following examples described for different specific motion compensation algorithms.
  • Example 1 After determining that the current picture must be stored in the buffer for a duration corresponding to the duration of a long-term reference picture, the current picture is not marked as a “long-term” reference picture in a buffer (e.g., a decoded picture buffer). Instead, it is marked as a new type of reference picture different from “short-term” or “long-term”. For example, it may be marked as a “current” reference picture, a “self” reference picture, an “instant” reference picture, an “intra block copy” reference picture, and so on.
  • a buffer e.g., a decoded picture buffer
  • prediction e.g., motion information prediction
  • prediction between pictures with the new picture type and short-term pictures
  • prediction e.g., motion information prediction
  • Example 2 It is proposed that affine prediction cannot be applied for IBC coded blocks. In this case, when a block is coded with IBC mode, the signaling of indications of affine prediction is skipped.
  • affine_flag may be signaled.
  • affine_flag only controls whether the affine prediction is used for the non-IBC inter-prediction, i.e., inter-prediction which is not from the current picture.
  • whether and how to apply affine prediction for IBC coded blocks can be transmitted from the encoder to the decoder at sequence level, picture level, slice level, Coding Tree Unit (CTU) a. k. a. Largest Coding Unit (LCU) level, region level, CU level, or PU level.
  • the information can be signaled in Sequence Parameter Set (SPS), Picture Parameter Set (PPS), Slice Header (SH), CTU (a. k. a. LCU), region, CU or PU.
  • Example 3 It is proposed that IBC cannot be applied for a block with affine prediction. In this case, when a block is coded with affine mode, the signaling of indications of IBC is skipped.
  • any reference picture of the current block cannot be the current picture.
  • at least one reference picture of the current block is not identical to the current picture.
  • whether and how to apply IBC for a block with affine prediction can be transmitted from the encoder to the decoder at sequence level, picture level, slice level, Coding Tree Unit (CTU) (e.g., Largest Coding Unit (LCU) level, region level, CU level, or PU level).
  • CTU Coding Tree Unit
  • the information can be signaled in Sequence Parameter Set (SPS), Picture Parameter Set (PPS), Slice Header (SH), CTU (a. k. a. LCU), region, CU or PU.
  • affine prediction can be applied for IBC coded blocks.
  • the indications of affine and IBC may be both signaled.
  • affine prediction is applied for a IBC coded block, the following may further apply:
  • the MV Prediction (MVP) for control points can only be derived from previously decoded MVs with the current picture as the reference picture.
  • MV scaling is disabled for MVP derivation.
  • MVP for control points of a block with an affine prediction but not IBC-coded can only be derived from previously decoded MVs with reference pictures not identical to the current picture.
  • a MV inside the block derived from MVs at the control points are truncated or rounded to the integer-pixel precision.
  • OBMC is not applied.
  • the y component of the MV at control points (e.g., ⁇ right arrow over (v 1 ) ⁇ ) is not signaled and is always considered as zero.
  • a block can be a contiguous or a noncontiguous collection of pixels, voxels, sub-pixels, and/or sub-voxels.
  • a block can be rectilinear, such as a 4 ⁇ 4 square, 6 ⁇ 4 rectangle, or curvilinear, such as an ellipse.
  • a portion of the visual information can be a subset of visual information.
  • a coded representation as used in this application, can be a bitstream representing the visual information that has been encoded using one of the techniques described in this application.
  • An indicator as used in this application, can be a flag or a field in the coded representation or can be multiple separate flags or fields.
  • a decoding technique as used in this application can be applied by a decoder and can be implemented in hardware or software.
  • the decoding technique can undo in reverse sequence everything a coder does.
  • an appropriate decoding technique is applied to an encoded representation, a visual information can be obtained as a result.
  • An initial block in the plurality of blocks is a block occurring before the first block in the coded representation.
  • a predetermined component can be an x-axis, a y-axis or a z-axis component of a motion vector.
  • a visual information decoding method comprising: determining ( 1302 ) that a block being decoded representing a portion of the visual information is coded using a first coding technique; and decoding ( 1304 ) the coded representation by using a first decoding technique corresponding to the first coding technique and by excluding use of a second decoding technique corresponding to a second coding technique; wherein one of the first and second coding techniques corresponds to an intra-block copy (IBC) technique that uses a second block of a same video picture for coding the block being decoded and the other corresponds to an affine coding technique that uses an affine motion model for coding the block being decoded.
  • IBC intra-block copy
  • a visual information processing method comprising: determining ( 1202 ) that a block being decoded representing a portion of an encoded picture of visual information is coded using an intra-block copy (IBC) technique that uses a second block of the picture for coding the block being decoded and an affine coding technique that uses an affine motion model for coding the block being decoded; and decoding ( 1204 ) the coded representation by using an IBC decoding technique corresponding to the IBC decoding technique and an affine decoding technique corresponding to the affine coding technique.
  • IBC intra-block copy
  • the IBC decoding technique comprising: obtaining a plurality of blocks representing the encoded picture and an indicator of use of the IBC technique; decoding a plurality of initial blocks in the encoded picture; and after decoding the plurality of initial blocks, decoding a first block in the remaining of the plurality of blocks based on the decoded initial blocks.
  • a method of video processing comprising: determining that an indicator associated with an encoded picture comprises an alternate type of reference picture indicator signaling an encoding technique applied to the encoded picture is an IBC technique, wherein the alternate type of reference picture indicator is different from a long-term reference picture indicator and a short-term reference picture indicator, wherein a picture comprising the long-term reference picture indicator is stored in a memory for a first duration, and wherein a picture comprising the short-term reference picture indicator is stored in the memory for a second duration that is shorter than the first duration.
  • the method of example 5 comprising: obtaining a first indicator comprising the long-term reference picture indicator or the long-term reference picture indicator associated with a first picture; obtaining a second indicator comprising the alternate type of reference picture indicator associated with a second picture; avoiding decoding the second picture based on the first picture; avoiding decoding the first picture based on the second picture.
  • the method of example 6, comprising: obtaining a first indicator comprising the long-term reference picture indicator or the long-term reference picture indicator associated with a first picture; obtaining a second indicator comprising the alternate type of reference picture indicator associated with a second picture; skipping a scaling process of motion vectors associated with the first picture when decoding the second picture; and skipping the scaling process of motion vectors associated with the second picture when decoding the first picture.
  • the method of example 8 comprising: obtaining a plurality of reference pictures used to decode a block of the encoded picture comprising a plurality of blocks; when at least one reference picture in the plurality of reference pictures comprises the encoded picture, decoding the block without applying the affine decoding technique.
  • the method of example 8 comprising: obtaining a plurality of reference pictures used to decode a block of the encoded picture comprising a plurality of blocks; in case that a block is associated with multiple sets of motion information, wherein the multiple sets of motion information comprise more than two sets of motion information, and each reference picture in the plurality of reference pictures is the encoded picture, decoding the block without applying the affine decoding technique.
  • the method of example 8 comprising: obtaining a plurality of reference pictures used to decode a block of the encoded picture comprising a plurality of blocks, the plurality of reference pictures comprising the encoded picture and another picture in the visual information; obtaining a first indicator signaling that the affine coding technique is applied to the block; decoding the block using the affine decoding technique and the another picture in the visual information.
  • the method of example 13, comprising: obtaining one or more reference pictures used to decode a block of the encoded picture comprising a plurality of blocks and the indicator associated with the encoded picture; in case that the indicator associated with the encoded picture signals that the affine coding technique is applied to the encoded picture, assuming that the one or more reference pictures do not contain the encoded picture.
  • the method of example 13, comprising: obtaining one or more reference pictures used to decode a block of the encoded picture comprising a plurality of blocks and the indicator associated with the encoded picture; in case that the indicator associated with the encoded picture signals that the affine coding technique is applied to the encoded picture, assuming that at least one reference picture in the one or more reference pictures is different from the encoded picture.
  • the method of example 16 comprising: obtaining an initial block in a plurality of blocks representing the encoded picture; decoding an initial motion vector of an initial control point associated with the initial block; obtaining a first block in the plurality of blocks representing the encoded picture, and a first indicator signaling that the IBC technique is applied to the first block; disabling motion vector scaling; and upon disabling motion vector scaling, creating a motion vector prediction (MVP) of a first control point associated with the first block based on the initial motion vector of the initial control point associated with initial block.
  • MVP motion vector prediction
  • examples 16-17 comprising: obtaining a plurality of blocks representing the encoded picture; obtaining a motion vector of a control point associated with a block in the plurality of blocks, wherein the motion vector is signaled in an integer precision; making a motion vector prediction based on the motion vector; and rounding the motion vector prediction to an integer-pixel precision.
  • examples 16-17 comprising: obtaining a block in a plurality of blocks representing the encoded picture; deriving a motion vector at a control point associated with the block from a neighboring motion vector at a neighboring control point; and rounding the motion vector to an integer-pixel precision.
  • a method for encoding a visual information comprising: encoding the visual information into a plurality of encoded pictures and a plurality of indicators signaling one or more encoding techniques applied, the plurality of indicators comprising an intra-block copy (IBC) technique indicator and an affine coding technique indicator, wherein a first block of a first picture associated with the visual information is encoded using the IBC technique and a second block of a second picture associated with the visual information is encoded using the affine coding technique, wherein the IBC technique uses a different block of the first picture to encode the first block of the first picture and the affine coding technique uses a third picture associated with the visual information to encode the second block.
  • IBC intra-block copy
  • the IBC technique comprising: dividing the first picture into a plurality of blocks; encoding an initial block in the plurality of blocks; and upon encoding the initial block, encoding a first block in the plurality of blocks based on the initial block.
  • the method comprising: encoding an indicator in a plurality of indicators associated with an encoded picture in a plurality of encoded pictures, the indicator comprising an alternate type of reference picture indicator signaling an encoding technique applied to the encoded picture is an IBC technique, wherein the alternate type of reference picture indicator is different from a long-term reference picture indicator and a short-term reference picture indicator, wherein a picture comprising the long-term reference picture indicator is stored in a memory for a first duration, and wherein a picture comprising the short-term reference picture indicator is stored in the memory for a second duration that is shorter than the first duration.
  • the method of example 25, comprising: obtaining a first indicator comprising the long-term reference picture indicator or the long-term reference picture indicator associated with a first picture; obtaining a second indicator comprising the alternate type of reference picture indicator associated with a second picture; avoiding encoding the second picture based on the first picture; and avoiding encoding the first picture based on the second picture.
  • the method of example 28 comprising: encoding a plurality of reference pictures used to encode the block of the first picture; in case that at least one reference picture in the plurality of reference pictures comprises the first picture, skipping encoding an indicator of use of the affine coding technique.
  • the method of example 28 comprising: encoding a plurality of reference pictures used to encode a block of the first picture; when a block is associated with multiple sets of motion information, wherein the multiple sets of motion information comprise more than two sets of motion information, and each reference picture in the plurality of reference pictures is the first picture, skipping encoding an indicator signaling the affine coding technique.
  • the method of example 28 comprising: encoding a plurality of reference pictures used to encode a block of the first picture, the plurality of reference pictures comprising the first picture and another picture in the visual information; encoding a first indicator signaling that the affine coding technique is applied to the block; and applying the affine coding technique to the block of the first picture and the another picture in the visual information.
  • example 33 comprising: encoding one or more reference pictures used to encode a block of the second picture, wherein the one or more reference pictures excludes the second picture; and encoding an indicator in the plurality of indicators to signal that the affine coding technique is used to encode the second picture.
  • example 33 comprising: encoding one or more reference pictures used to encode a block of the second picture, wherein at least one reference picture in the one or more reference pictures is different from the second picture; and encoding an indicator in the plurality of indicators to signal that the affine coding technique is used to encode the second picture.
  • example 36 comprising: dividing the first picture into a plurality of blocks; encoding a motion vector of a control point associated with an initial block in the plurality of blocks; and encoding a motion vector of a control point associated with a first block in the plurality of blocks based on the motion vector of the control point associated with the initial block; and disabling motion vector scaling.
  • examples 36-39 comprising: dividing the first picture into a plurality of blocks; encoding a block in the plurality of blocks using the affine coding technique; encoding a motion vector of a control point associated with the block in the plurality of blocks using an integer precision; encoding a motion vector of a point inside the block based on the motion vector of the control point associated with the block by rounding the motion vector of the point inside the block to the integer-pixel precision.
  • Examples 1-42 comprising: transmitting an indicator between an encoder and a decoder, the indicator signaling whether and how to apply the affine coding technique for IBC technique coded blocks at a sequence level, a picture level, a slice level, a Coding Tree Unit (CTU), a region level, a CU level, or a PU level.
  • CTU Coding Tree Unit
  • SPS Sequence Parameter Set
  • PPS Picture Parameter Set
  • SH Slice Header
  • tile group header a CTU, a region, a CU or a PU.
  • a video processing apparatus comprising a processor configured to implement a method recited in any one or more of examples 1 to 44.
  • the video processing apparatus may be a video encoder.
  • the video processing apparatus may be a video decoder.
  • the video processing apparatus may be a video transcoder.
  • a computer readable medium having processor-executable code stored thereon, the code, upon execution, causing a processor to implement a method recited in any one or more of examples 1 to 44.
  • FIG. 10 is a block diagram illustrating an example of the architecture for a computer system or other control device 1000 that can be utilized to implement various portions of the presently disclosed technology, including (but not limited to) methods 600 , 700 , 800 , 900 , 1200 and 1300 .
  • the computer system 1000 includes one or more processors 1005 and memory 1010 connected via an interconnect 1025 .
  • the interconnect 1025 may represent any one or more separate physical buses, point to point connections, or both, connected by appropriate bridges, adapters, or controllers.
  • the interconnect 1025 may include, for example, a system bus, a Peripheral Component Interconnect (PCI) bus, a HyperTransport or industry standard architecture (ISA) bus, a small computer system interface (SCSI) bus, a universal serial bus (USB), IIC (I2C) bus, or an Institute of Electrical and Electronics Engineers (IEEE) standard 674 bus, sometimes referred to as “Firewire.”
  • PCI Peripheral Component Interconnect
  • ISA HyperTransport or industry standard architecture
  • SCSI small computer system interface
  • USB universal serial bus
  • I2C IIC
  • IEEE Institute of Electrical and Electronics Engineers
  • the processor(s) 1005 may include central processing units (CPUs) to control the overall operation of, for example, the host computer. In certain embodiments, the processor(s) 1005 accomplish this by executing software or firmware stored in memory 1010 .
  • the processor(s) 1005 may be, or may include, one or more programmable general-purpose or special-purpose microprocessors, digital signal processors (DSPs), programmable controllers, application specific integrated circuits (ASICs), programmable logic devices (PLDs), or the like, or a combination of such devices.
  • the memory 1010 can be or include the main memory of the computer system.
  • the memory 1010 represents any suitable form of random access memory (RAM), read-only memory (ROM), flash memory, or the like, or a combination of such devices.
  • the memory 1010 may contain, among other things, a set of machine instructions which, when executed by processor 1005 , causes the processor 1005 to perform operations to implement embodiments of the presently disclosed technology.
  • the network adapter 1015 provides the computer system 1000 with the ability to communicate with remote devices, such as the storage clients, and/or other storage servers, and may be, for example, an Ethernet adapter or Fiber Channel adapter.
  • FIG. 11 shows a block diagram of an example embodiment of a mobile device 1100 that can be utilized to implement various portions of the presently disclosed technology, including (but not limited to) methods 600 , 700 , 800 and 900 .
  • the mobile device 1100 can be a laptop, a smartphone, a tablet, a camcorder, or other types of devices that are capable of processing videos.
  • the mobile device 1100 includes a processor or controller 1101 to process data, and memory 1102 in communication with the processor 1101 to store and/or buffer data.
  • the processor 1101 can include a central processing unit (CPU) or a microcontroller unit (MCU).
  • the processor 1101 can include a field-programmable gate-array (FPGA).
  • FPGA field-programmable gate-array
  • the mobile device 1100 includes or is in communication with a graphics processing unit (GPU), video processing unit (VPU) and/or wireless communications unit for various visual and/or communications data processing functions of the smartphone device.
  • the memory 1102 can include and store processor-executable code, which when executed by the processor 1101 , configures the mobile device 1100 to perform various operations, e.g., such as receiving information, commands, and/or data, processing information and data, and transmitting or providing processed information/data to another device, such as an actuator or external display.
  • the memory 1102 can store information and data, such as instructions, software, values, images, and other data processed or referenced by the processor 1101 .
  • various types of Random Access Memory (RAM) devices, Read Only Memory (ROM) devices, Flash Memory devices, and other suitable storage media can be used to implement storage functions of the memory 1102 .
  • the mobile device 1100 includes an input/output (I/O) unit 1103 to interface the processor 1101 and/or memory 1102 to other modules, units or devices.
  • I/O input/output
  • the I/O unit 1103 can interface the processor 1101 and memory 1102 with to utilize various types of wireless interfaces compatible with typical data communication standards, e.g., such as between the one or more computers in the cloud and the user device.
  • the mobile device 1100 can interface with other devices using a wired connection via the I/O unit 1103 .
  • the mobile device 1100 can also interface with other external interfaces, such as data storage, and/or visual or audio display devices 1104 , to retrieve and transfer data and information that can be processed by the processor, stored in the memory, or exhibited on an output unit of a display device 1104 or an external device.
  • the display device 1104 can display a video frame that includes a block (a CU, PU or TU) that applies the intra-block copy based on whether the block is encoded using a motion compensation algorithm, and in accordance with the disclosed technology.
  • a video decoder apparatus may implement a method of video decoding in which the intra-block copy as described herein is used for video decoding.
  • the method may be similar to the above-described methods 600 , 700 , 800 , 900 , 1200 and 1300 .
  • a decoder-side method of video decoding may use the intra-block copy for improving video quality by determining whether a current block of the current picture is to be decoded using a motion compensation algorithm, and decoding, based on the determining, the current block by selectively applying an intra-block copy to the current block.
  • a decoder-side method of video decoding may use the intra-block copy for improving video quality by determining whether a current block of the current picture is to be decoded using an intra-block copy, and decoding, based on the determining, the current block by selectively applying a motion compensation algorithm to the current block.
  • the video decoding methods may be implemented using a decoding apparatus that is implemented on a hardware platform as described with respect to FIG. 10 and FIG. 11 .
  • VTM-1.0 is a reference software for the video coding standard named Versatile Video Coding (VVC).
  • VVC Versatile Video Coding
  • Y”, “U”, “V” represent colors in the YUV color encoding system which encodes a color image or video taking human perception into account.
  • the EncT and DecT represent a ratio of the encoding and decoding time using the IBC compared to the encoding and decoding time without the IBC, respectively.
  • the various classes represent a grouping of standard video sequences used in testing performance of various video coding techniques.
  • the negative percentages under the “Y”, “U”, “V” columns represent bit-rate savings when IBC is added to VTM-1.0.
  • the percentages under the EncT and DecT columns that are over 100% show how much the encoding/decoding with IBC is slower than encoding/decoding without IBC. For example, a percentage of 150% means that the encoding/decoding with IBC is 50% slower than the encoding/decoding without the IBC.
  • the percentage below 100% shows how much the encoding/decoding with IBC is faster than encoding/decoding without the IBC.
  • Two classes, class F and class SCC, highlighted in green in the table above, show that bit-rate savings exceed 3%.
  • Implementations of the subject matter and the functional operations described in this patent document can be implemented in various systems, digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this specification and their structural equivalents, or in combinations of one or more of them. Implementations of the subject matter described in this specification can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a tangible and non-transitory computer readable medium for execution by, or to control the operation of, data processing apparatus.
  • the computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more of them.
  • data processing unit or “data processing apparatus” encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers.
  • the apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them.
  • a computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
  • a computer program does not necessarily correspond to a file in a file system.
  • a program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code).
  • a computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
  • the processes and logic flows described in this specification can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output.
  • the processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit).
  • processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer.
  • a processor will receive instructions and data from a read only memory or a random access memory or both.
  • the essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data.
  • a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
  • mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
  • a computer need not have such devices.
  • Computer readable media suitable for storing computer program instructions and data include all forms of nonvolatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices.
  • semiconductor memory devices e.g., EPROM, EEPROM, and flash memory devices.
  • the processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
US17/005,521 2018-06-05 2020-08-28 Interaction between ibc and affine Abandoned US20200396465A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/412,771 US11973962B2 (en) 2018-06-05 2021-08-26 Interaction between IBC and affine
US18/528,070 US20240121410A1 (en) 2018-06-05 2023-12-04 Interaction Between IBC And Affine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CNPCT/CN2018/089920 2018-06-05
CN2018089920 2018-06-05
PCT/IB2019/054612 WO2019234607A1 (en) 2018-06-05 2019-06-04 Interaction between ibc and affine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/054612 Continuation WO2019234607A1 (en) 2018-06-05 2019-06-04 Interaction between ibc and affine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/412,771 Continuation US11973962B2 (en) 2018-06-05 2021-08-26 Interaction between IBC and affine

Publications (1)

Publication Number Publication Date
US20200396465A1 true US20200396465A1 (en) 2020-12-17

Family

ID=67185524

Family Applications (10)

Application Number Title Priority Date Filing Date
US17/005,521 Abandoned US20200396465A1 (en) 2018-06-05 2020-08-28 Interaction between ibc and affine
US17/011,157 Active US11202081B2 (en) 2018-06-05 2020-09-03 Interaction between IBC and BIO
US17/011,131 Active US11523123B2 (en) 2018-06-05 2020-09-03 Interaction between IBC and ATMVP
US17/019,629 Abandoned US20200413048A1 (en) 2018-06-05 2020-09-14 Interaction between ibc and dmvr
US17/031,451 Abandoned US20210006780A1 (en) 2018-06-05 2020-09-24 Interaction between pairwise average merging candidates and ibc
US17/201,896 Active US11509915B2 (en) 2018-06-05 2021-03-15 Interaction between IBC and ATMVP
US17/412,771 Active US11973962B2 (en) 2018-06-05 2021-08-26 Interaction between IBC and affine
US17/529,607 Active US11831884B2 (en) 2018-06-05 2021-11-18 Interaction between IBC and BIO
US17/700,086 Pending US20220217363A1 (en) 2018-06-05 2022-03-21 Interaction between pairwise average merging candidates and ibc
US18/528,070 Pending US20240121410A1 (en) 2018-06-05 2023-12-04 Interaction Between IBC And Affine

Family Applications After (9)

Application Number Title Priority Date Filing Date
US17/011,157 Active US11202081B2 (en) 2018-06-05 2020-09-03 Interaction between IBC and BIO
US17/011,131 Active US11523123B2 (en) 2018-06-05 2020-09-03 Interaction between IBC and ATMVP
US17/019,629 Abandoned US20200413048A1 (en) 2018-06-05 2020-09-14 Interaction between ibc and dmvr
US17/031,451 Abandoned US20210006780A1 (en) 2018-06-05 2020-09-24 Interaction between pairwise average merging candidates and ibc
US17/201,896 Active US11509915B2 (en) 2018-06-05 2021-03-15 Interaction between IBC and ATMVP
US17/412,771 Active US11973962B2 (en) 2018-06-05 2021-08-26 Interaction between IBC and affine
US17/529,607 Active US11831884B2 (en) 2018-06-05 2021-11-18 Interaction between IBC and BIO
US17/700,086 Pending US20220217363A1 (en) 2018-06-05 2022-03-21 Interaction between pairwise average merging candidates and ibc
US18/528,070 Pending US20240121410A1 (en) 2018-06-05 2023-12-04 Interaction Between IBC And Affine

Country Status (8)

Country Link
US (10) US20200396465A1 (zh)
EP (1) EP3788787A1 (zh)
JP (3) JP7104186B2 (zh)
KR (1) KR20210016581A (zh)
CN (11) CN110572669B (zh)
GB (4) GB2588004B (zh)
TW (8) TWI736902B (zh)
WO (8) WO2019234600A1 (zh)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200128266A1 (en) * 2018-10-23 2020-04-23 Tencent America LLC Method and apparatus for video coding
US11095917B2 (en) 2018-11-29 2021-08-17 Beijing Bytedance Network Technology Co., Ltd. Affine inheritance method in intra block copy mode
US20210266584A1 (en) 2018-11-16 2021-08-26 Beijing Bytedance Network Technology Co., Ltd. Usage for history-based affine parameters
US11128882B2 (en) 2018-11-13 2021-09-21 Beijing Bytedance Network Technology Co., Ltd. History based motion candidate list construction for intra block copy
US11140412B2 (en) 2019-02-17 2021-10-05 Beijing Bytedance Network Technology Co., Ltd. Motion candidate list construction for intra block copy (IBC) mode and non-IBC inter mode
US11172196B2 (en) 2018-09-24 2021-11-09 Beijing Bytedance Network Technology Co., Ltd. Bi-prediction with weights in video coding and decoding
US11197003B2 (en) 2018-06-21 2021-12-07 Beijing Bytedance Network Technology Co., Ltd. Unified constrains for the merge affine mode and the non-merge affine mode
US11197007B2 (en) 2018-06-21 2021-12-07 Beijing Bytedance Network Technology Co., Ltd. Sub-block MV inheritance between color components
US11202081B2 (en) 2018-06-05 2021-12-14 Beijing Bytedance Network Technology Co., Ltd. Interaction between IBC and BIO
US11228775B2 (en) 2019-02-02 2022-01-18 Beijing Bytedance Network Technology Co., Ltd. Data storage in buffers for intra block copy in video coding
US11265573B2 (en) 2018-09-19 2022-03-01 Beijing Bytedance Network Technology Co., Ltd. Syntax reuse for affine mode with adaptive motion vector resolution
US11277629B2 (en) * 2018-07-17 2022-03-15 Huawei Technologies Co., Ltd. Motion model signaling
US11310508B2 (en) 2018-12-21 2022-04-19 Beijing Bytedance Network Technology Co., Ltd. Motion vector precision in merge with motion vector difference mode
US11317099B2 (en) * 2018-10-05 2022-04-26 Tencent America LLC Method and apparatus for signaling an offset in video coding for intra block copy and/or inter prediction
US11330289B2 (en) 2019-01-31 2022-05-10 Beijing Bytedance Network Technology Co., Ltd. Context for coding affine mode adaptive motion vector resolution
US11356697B2 (en) 2019-04-19 2022-06-07 Beijing Bytedance Network Technology Co., Ltd. Gradient calculation in different motion vector refinements
US11368711B2 (en) 2019-04-19 2022-06-21 Beijing Bytedance Network Technology Co., Ltd. Applicability of prediction refinement with optical flow process
US11375217B2 (en) 2019-02-02 2022-06-28 Beijing Bytedance Network Technology Co., Ltd. Buffer management for intra block copy in video coding
US11431965B2 (en) 2018-09-08 2022-08-30 Beijing Bytedance Network Technology Co., Ltd. Affine mode in video coding and decoding
US11477458B2 (en) 2018-06-19 2022-10-18 Beijing Bytedance Network Technology Co., Ltd. Mode dependent motion vector difference precision set
US11516497B2 (en) 2019-04-02 2022-11-29 Beijing Bytedance Network Technology Co., Ltd. Bidirectional optical flow based video coding and decoding
US11523107B2 (en) 2019-07-11 2022-12-06 Beijing Bytedance Network Technology Co., Ltd. Bitstream conformance constraints for intra block copy in video coding
US11528476B2 (en) 2019-07-10 2022-12-13 Beijing Bytedance Network Technology Co., Ltd. Sample identification for intra block copy in video coding
US11533507B2 (en) 2019-07-25 2022-12-20 Beijing Bytedance Network Technology Co., Ltd. Mapping restriction for intra-block copy virtual buffer
US11546581B2 (en) 2019-03-04 2023-01-03 Beijing Bytedance Network Technology Co., Ltd. Implementation aspects in intra block copy in video coding
US11546601B2 (en) 2018-09-23 2023-01-03 Beijing Bytedance Network Technology Co., Ltd. Utilization of non-sub block spatial-temporal motion vector prediction in inter mode
US11570462B2 (en) 2019-04-19 2023-01-31 Beijing Bytedance Network Technology Co., Ltd. Delta motion vector in prediction refinement with optical flow process
US11575889B2 (en) 2019-09-05 2023-02-07 Beijing Bytedance Network Technology Co., Ltd. Range constrains for block vector in intra-block copy mode
US11575888B2 (en) 2019-07-06 2023-02-07 Beijing Bytedance Network Technology Co., Ltd. Virtual prediction buffer for intra block copy in video coding
WO2023046127A1 (en) * 2021-09-25 2023-03-30 Beijing Bytedance Network Technology Co., Ltd. Method, apparatus, and medium for video processing
US11638004B2 (en) 2019-09-23 2023-04-25 Beijing Bytedance Network Technology Co., Ltd. Setting intra-block copy virtual buffer based on virtual pipeline data unit
US11677973B2 (en) 2018-11-15 2023-06-13 Beijing Bytedance Network Technology Co., Ltd Merge with MVD for affine
US11683476B2 (en) 2019-07-25 2023-06-20 Beijing Bytedance Network Technology Co., Ltd Size restriction for intra-block copy virtual buffer
US11706443B2 (en) 2018-11-17 2023-07-18 Beijing Bytedance Network Technology Co., Ltd Construction of affine candidates in video processing
US11778176B2 (en) 2020-03-18 2023-10-03 Beijing Bytedance Network Technology Co., Ltd. Intra block copy buffer and palette predictor update
US11778226B2 (en) 2018-10-22 2023-10-03 Beijing Bytedance Network Technology Co., Ltd Storage of motion information for affine mode
US11792421B2 (en) 2018-11-10 2023-10-17 Beijing Bytedance Network Technology Co., Ltd Rounding in pairwise average candidate calculations
US11805259B2 (en) 2018-09-23 2023-10-31 Beijing Bytedance Network Technology Co., Ltd Non-affine blocks predicted from affine motion
US11825030B2 (en) 2018-12-02 2023-11-21 Beijing Bytedance Network Technology Co., Ltd Intra block copy mode with dual tree partition
US11863784B2 (en) 2019-02-22 2024-01-02 Beijing Bytedance Network Technology Co., Ltd Sub-table for history-based affine mode
US11870974B2 (en) 2018-09-23 2024-01-09 Beijing Bytedance Network Technology Co., Ltd Multiple-hypothesis affine mode
US11882287B2 (en) 2019-03-01 2024-01-23 Beijing Bytedance Network Technology Co., Ltd Direction-based prediction for intra block copy in video coding
US11930216B2 (en) 2019-09-09 2024-03-12 Beijing Bytedance Network Technology Co., Ltd Recursive splitting of video coding blocks
WO2024081629A1 (en) * 2022-10-10 2024-04-18 Tencent America LLC Method and apparatus for extended decoder side motion vector refinement
US11997303B2 (en) 2022-06-13 2024-05-28 Beijing Bytedance Network Technology Co., Ltd Bidirectional optical flow based video coding and decoding

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054591A1 (ja) * 2018-09-14 2020-03-19 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 符号化装置、復号装置、符号化方法、および復号方法
WO2020112620A2 (en) * 2018-11-29 2020-06-04 Interdigital Vc Holdings, Inc. Motion vector predictor candidates ordering in merge list
WO2020114404A1 (en) 2018-12-03 2020-06-11 Beijing Bytedance Network Technology Co., Ltd. Pruning method in different prediction mode
KR20240027894A (ko) * 2020-04-08 2024-03-04 베이징 다지아 인터넷 인포메이션 테크놀로지 컴퍼니 리미티드 비디오 코딩에서의 신택스 요소들의 시그널링을 위한 방법 및 장치
CN113709458B (zh) * 2020-05-22 2023-08-29 腾讯科技(深圳)有限公司 视频编解码中的位移矢量预测方法、装置及设备
KR20220112984A (ko) 2021-02-05 2022-08-12 주식회사 엘지에너지솔루션 이차전지용 테이프의 부착 방법
CN113038131B (zh) * 2021-03-15 2023-04-07 北京奇艺世纪科技有限公司 视频编码方法、装置、计算机设备和存储介质
EP4320860A1 (en) * 2021-04-09 2024-02-14 InterDigital CE Patent Holdings, SAS Intra block copy with template matching for video encoding and decoding
WO2023132615A1 (ko) * 2022-01-04 2023-07-13 현대자동차주식회사 쌍 머지 후보들을 생성하여 머지 후보 리스트를 구성하는 비디오 부호화/복호화 방법 및 장치

Family Cites Families (232)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186825A (ja) 1994-12-28 1996-07-16 Nippon Hoso Kyokai <Nhk> 動きベクトル検出方法
DE60024389T2 (de) 1999-04-26 2006-08-03 Koninklijke Philips Electronics N.V. Subpixelgenaue bewegungsvektorschätzung und bewegungskompensierte interpolation
WO2004013810A1 (en) 2002-07-31 2004-02-12 Koninklijke Philips Electronics N.V. System and method for segmenting
BRPI0307197B1 (pt) 2002-11-25 2018-06-19 Godo Kaisha Ip Bridge 1 Método de compensação de movimento, método de codificação de imagem e método de decodificação de imagem
US8064520B2 (en) 2003-09-07 2011-11-22 Microsoft Corporation Advanced bi-directional predictive coding of interlaced video
CN100344163C (zh) 2004-06-16 2007-10-17 华为技术有限公司 视频编解码处理方法
CN1777283A (zh) 2004-12-31 2006-05-24 上海广电(集团)有限公司 一种基于微块的视频信号编/解码方法
US8954943B2 (en) 2006-01-26 2015-02-10 International Business Machines Corporation Analyze and reduce number of data reordering operations in SIMD code
JP4826315B2 (ja) 2006-03-31 2011-11-30 ソニー株式会社 画像処理装置および方法、並びにプログラム
US8184715B1 (en) 2007-08-09 2012-05-22 Elemental Technologies, Inc. Method for efficiently executing video encoding operations on stream processor architectures
WO2009080133A1 (en) * 2007-12-21 2009-07-02 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive intra mode selection
CN101605255B (zh) * 2008-06-12 2011-05-04 华为技术有限公司 一种视频编解码的方法及装置
US20110002386A1 (en) 2009-07-06 2011-01-06 Mediatek Singapore Pte. Ltd. Video encoder and method for performing intra-prediction and video data compression
JP5234368B2 (ja) 2009-09-30 2013-07-10 ソニー株式会社 画像処理装置および方法
JP2011147049A (ja) 2010-01-18 2011-07-28 Sony Corp 画像処理装置および方法、並びにプログラム
WO2011095260A1 (en) 2010-02-05 2011-08-11 Telefonaktiebolaget L M Ericsson (Publ) Managing predicted motion vector candidates
KR101630688B1 (ko) 2010-02-17 2016-06-16 삼성전자주식회사 움직임 예측 장치 및 방법과 영상 처리 장치
CN101895751B (zh) * 2010-07-06 2012-02-08 北京大学 帧内预测的方法及装置、基于帧内预测的编/解码方法及系统
WO2012045225A1 (en) 2010-10-06 2012-04-12 Intel Corporation System and method for low complexity motion vector derivation
CN102685479A (zh) 2011-03-11 2012-09-19 华为技术有限公司 视频编解码处理方法和装置
ES2770437T3 (es) 2011-03-21 2020-07-01 Lg Electronics Inc Método para seleccionar un predictor de vector de movimiento y un dispositivo que lo utiliza
US20120287999A1 (en) 2011-05-11 2012-11-15 Microsoft Corporation Syntax element prediction in error correction
KR101539312B1 (ko) 2011-05-27 2015-07-24 미디어텍 인크. 비디오 프로세싱에 대한 라인 버퍼 감소를 위한 방법 및 장치
US9866859B2 (en) 2011-06-14 2018-01-09 Texas Instruments Incorporated Inter-prediction candidate index coding independent of inter-prediction candidate list construction in video coding
GB201113527D0 (en) 2011-08-04 2011-09-21 Imagination Tech Ltd External vectors in a motion estimation system
MX351933B (es) 2011-08-29 2017-11-01 Ibex Pt Holdings Co Ltd Método para generar un bloque de predicción en modo de predicción de vector de movimiento avanzada (amvp).
CN103891291A (zh) 2011-08-30 2014-06-25 诺基亚公司 用于视频编码和解码的设备、方法和计算机程序
MX337446B (es) * 2011-09-29 2016-03-07 Sharp Kk Dispositivo de decodificacion de imagenes, metodo de decodificacion de imagenes y dispositivo de codificacion de imagenes.
JP5768662B2 (ja) 2011-10-31 2015-08-26 富士通株式会社 動画像復号装置、動画像符号化装置、動画像復号方法、動画像符号化方法、動画像復号プログラム及び動画像符号化プログラム
JP2013098933A (ja) 2011-11-04 2013-05-20 Sony Corp 画像処理装置および方法
CN107959852A (zh) 2011-11-08 2018-04-24 株式会社Kt 对视频信号进行解码的方法
KR102332492B1 (ko) * 2011-11-11 2021-12-01 엘지전자 주식회사 영상 정보 전송 방법 및 장치와 이를 이용한 복호화 방법 및 장치
JP5895469B2 (ja) 2011-11-18 2016-03-30 富士通株式会社 動画像符号化装置、および動画像復号装置
KR20130058524A (ko) 2011-11-25 2013-06-04 오수미 색차 인트라 예측 블록 생성 방법
US9451252B2 (en) 2012-01-14 2016-09-20 Qualcomm Incorporated Coding parameter sets and NAL unit headers for video coding
JP6101709B2 (ja) 2012-01-18 2017-03-22 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュートElectronics And Telecommunications Research Institute 映像復号化装置
US9503720B2 (en) * 2012-03-16 2016-11-22 Qualcomm Incorporated Motion vector coding and bi-prediction in HEVC and its extensions
US9325991B2 (en) 2012-04-11 2016-04-26 Qualcomm Incorporated Motion vector rounding
CN104221376B (zh) 2012-04-12 2017-08-29 寰发股份有限公司 在视频编码系统中处理视频数据的方法和装置
EP2847996B1 (en) * 2012-05-09 2020-10-07 Sun Patent Trust Method of performing motion vector prediction, encoding and decoding methods, and apparatuses thereof
US20130329007A1 (en) 2012-06-06 2013-12-12 Qualcomm Incorporated Redundancy removal for advanced motion vector prediction (amvp) in three-dimensional (3d) video coding
MX346561B (es) 2012-07-02 2017-03-24 Samsung Electronics Co Ltd Metodo y aparato para predecir un vector de movimiento para la codificacion de video o decodificacion de video.
AU2013308719B2 (en) 2012-08-29 2015-12-24 Vid Scale, Inc. Method and apparatus of motion vector prediction for scalable video coding
US9491461B2 (en) 2012-09-27 2016-11-08 Qualcomm Incorporated Scalable extensions to HEVC and temporal motion vector prediction
AU2012232992A1 (en) 2012-09-28 2014-04-17 Canon Kabushiki Kaisha Method, apparatus and system for encoding and decoding the transform units of a coding unit
WO2014047893A1 (en) 2012-09-28 2014-04-03 Intel Corporation Inter-layer pixel sample prediction
KR20220131366A (ko) * 2012-10-01 2022-09-27 지이 비디오 컴프레션, 엘엘씨 베이스 레이어로부터 예측을 위한 서브블록 세부분할의 유도를 이용한 스케일러블 비디오 코딩
US9615089B2 (en) * 2012-12-26 2017-04-04 Samsung Electronics Co., Ltd. Method of encoding and decoding multiview video sequence based on adaptive compensation of local illumination mismatch in inter-frame prediction
US9294777B2 (en) 2012-12-30 2016-03-22 Qualcomm Incorporated Progressive refinement with temporal scalability support in video coding
US9674542B2 (en) 2013-01-02 2017-06-06 Qualcomm Incorporated Motion vector prediction for video coding
US20140254678A1 (en) 2013-03-11 2014-09-11 Aleksandar Beric Motion estimation using hierarchical phase plane correlation and block matching
US9521425B2 (en) 2013-03-19 2016-12-13 Qualcomm Incorporated Disparity vector derivation in 3D video coding for skip and direct modes
US9491460B2 (en) 2013-03-29 2016-11-08 Qualcomm Incorporated Bandwidth reduction for video coding prediction
WO2014166116A1 (en) 2013-04-12 2014-10-16 Mediatek Inc. Direct simplified depth coding
US10045014B2 (en) 2013-07-15 2018-08-07 Mediatek Singapore Pte. Ltd. Method of disparity derived depth coding in 3D video coding
US9628795B2 (en) 2013-07-17 2017-04-18 Qualcomm Incorporated Block identification using disparity vector in video coding
WO2015006967A1 (en) 2013-07-19 2015-01-22 Mediatek Singapore Pte. Ltd. Simplified view synthesis prediction for 3d video coding
WO2015010319A1 (zh) 2013-07-26 2015-01-29 北京大学深圳研究生院 一种基于p帧的多假设运动补偿编码方法
CN104488271B (zh) 2013-07-26 2019-05-07 北京大学深圳研究生院 一种基于p帧的多假设运动补偿方法
AU2013228045A1 (en) * 2013-09-13 2015-04-02 Canon Kabushiki Kaisha Method, apparatus and system for encoding and decoding video data
US9667996B2 (en) 2013-09-26 2017-05-30 Qualcomm Incorporated Sub-prediction unit (PU) based temporal motion vector prediction in HEVC and sub-PU design in 3D-HEVC
US9762927B2 (en) 2013-09-26 2017-09-12 Qualcomm Incorporated Sub-prediction unit (PU) based temporal motion vector prediction in HEVC and sub-PU design in 3D-HEVC
CN103561263B (zh) * 2013-11-06 2016-08-24 北京牡丹电子集团有限责任公司数字电视技术中心 基于运动矢量约束和加权运动矢量的运动补偿预测方法
JP6441236B2 (ja) 2013-12-19 2018-12-19 シャープ株式会社 画像復号装置及び画像符号化装置
TWI536811B (zh) * 2013-12-27 2016-06-01 財團法人工業技術研究院 影像處理方法與系統、解碼方法、編碼器與解碼器
CN105917650B (zh) * 2014-01-03 2019-12-24 微软技术许可有限责任公司 视频和图像编/解码的方法、计算设备及计算机可读介质
WO2015109598A1 (en) 2014-01-27 2015-07-30 Mediatek Singapore Pte. Ltd. Methods for motion parameter hole filling
US10257531B2 (en) 2014-03-19 2019-04-09 Kt Corporation Method and apparatus for processing multiview video signals based on illumination compensation and inter-view motion candidate
KR101863487B1 (ko) 2014-05-06 2018-05-31 에이치에프아이 이노베이션 인크. 인트라 블록 카피 모드 부호화를 위한 블록 벡터 예측 방법
US10327001B2 (en) * 2014-06-19 2019-06-18 Qualcomm Incorporated Systems and methods for intra-block copy
US20150373362A1 (en) * 2014-06-19 2015-12-24 Qualcomm Incorporated Deblocking filter design for intra block copy
EP3158734A4 (en) 2014-06-19 2017-04-26 Microsoft Technology Licensing, LLC Unified intra block copy and inter prediction modes
US20150373350A1 (en) 2014-06-20 2015-12-24 Qualcomm Incorporated Temporal motion vector prediction (tmvp) indication in multi-layer codecs
WO2016008157A1 (en) 2014-07-18 2016-01-21 Mediatek Singapore Pte. Ltd. Methods for motion compensation using high order motion model
CN105282558B (zh) * 2014-07-18 2018-06-15 清华大学 帧内像素预测方法、编码方法、解码方法及其装置
US10412387B2 (en) * 2014-08-22 2019-09-10 Qualcomm Incorporated Unified intra-block copy and inter-prediction
US10027981B2 (en) 2014-09-01 2018-07-17 Hfi Innovation Inc. Method of intra picture block copy for screen content and video coding
EP3175618A1 (en) 2014-09-11 2017-06-07 Euclid Discoveries, LLC Perceptual optimization for model-based video encoding
WO2016048834A1 (en) * 2014-09-26 2016-03-31 Vid Scale, Inc. Intra block copy coding with temporal block vector prediction
US9918105B2 (en) 2014-10-07 2018-03-13 Qualcomm Incorporated Intra BC and inter unification
JP6837965B2 (ja) * 2014-10-31 2021-03-03 サムスン エレクトロニクス カンパニー リミテッド 符号化装置及び復号装置
SG11201703454XA (en) 2014-11-18 2017-06-29 Mediatek Inc Method of bi-prediction video coding based on motion vectors from uni-prediction and merge candidate
WO2016090568A1 (en) 2014-12-10 2016-06-16 Mediatek Singapore Pte. Ltd. Binary tree block partitioning structure
US11477477B2 (en) * 2015-01-26 2022-10-18 Qualcomm Incorporated Sub-prediction unit based advanced temporal motion vector prediction
CN107431817B (zh) 2015-01-29 2020-03-24 Vid拓展公司 用于调色板译码的方法及装置
JP2018050091A (ja) 2015-02-02 2018-03-29 シャープ株式会社 画像復号装置、画像符号化装置および予測ベクトル導出装置
US10171828B2 (en) * 2015-02-27 2019-01-01 Arris Enterprises Llc Modification of unification of intra block copy and inter signaling related syntax and semantics
US10200711B2 (en) * 2015-03-27 2019-02-05 Qualcomm Incorporated Motion vector derivation in video coding
WO2016165069A1 (en) * 2015-04-14 2016-10-20 Mediatek Singapore Pte. Ltd. Advanced temporal motion vector prediction in video coding
WO2016173519A1 (en) 2015-04-29 2016-11-03 Hfi Innovation Inc. Method and apparatus for intra block copy reference list construction
US20160337662A1 (en) * 2015-05-11 2016-11-17 Qualcomm Incorporated Storage and signaling resolutions of motion vectors
CN109005407B (zh) 2015-05-15 2023-09-01 华为技术有限公司 视频图像编码和解码的方法、编码设备和解码设备
EP3295660A4 (en) * 2015-06-03 2019-05-29 MediaTek Inc. METHOD FOR PALLET CODING OF IMAGE AND VIDEO DATA
EP3304907B1 (en) * 2015-06-08 2022-03-23 VID SCALE, Inc. Intra block copy mode for screen content coding
GB2539213A (en) * 2015-06-08 2016-12-14 Canon Kk Schemes for handling an AMVP flag when implementing intra block copy coding mode
US10148977B2 (en) * 2015-06-16 2018-12-04 Futurewei Technologies, Inc. Advanced coding techniques for high efficiency video coding (HEVC) screen content coding (SCC) extensions
CN107852490B (zh) * 2015-07-27 2021-01-26 联发科技股份有限公司 一种视频编解码方法及系统
US10728571B2 (en) * 2015-08-04 2020-07-28 Lg Electronics Inc. Inter prediction method and device in video coding system
JP6320440B2 (ja) 2015-08-04 2018-05-09 ドルビー ラボラトリーズ ライセンシング コーポレイション ハイダイナミックレンジ信号のための信号再構成
CN114866770A (zh) 2015-08-07 2022-08-05 Lg 电子株式会社 视频编译系统中的帧间预测方法和装置
US10467735B2 (en) 2015-08-25 2019-11-05 Interdigital Vc Holdings, Inc. Inverse tone mapping based on luminance zones
US20180249172A1 (en) 2015-09-02 2018-08-30 Mediatek Inc. Method and apparatus of motion compensation for video coding based on bi prediction optical flow techniques
WO2017041271A1 (en) 2015-09-10 2017-03-16 Mediatek Singapore Pte. Ltd. Efficient context modeling for coding a block of data
US10375413B2 (en) * 2015-09-28 2019-08-06 Qualcomm Incorporated Bi-directional optical flow for video coding
CN108965871B (zh) 2015-09-29 2023-11-10 华为技术有限公司 图像预测的方法及装置
WO2017076221A1 (en) 2015-11-05 2017-05-11 Mediatek Inc. Method and apparatus of inter prediction using average motion vector for video coding
CN105306944B (zh) 2015-11-30 2018-07-06 哈尔滨工业大学 混合视频编码标准中色度分量预测方法
US20190028731A1 (en) 2016-01-07 2019-01-24 Mediatek Inc. Method and apparatus for affine inter prediction for video coding system
CN105678808A (zh) 2016-01-08 2016-06-15 浙江宇视科技有限公司 运动目标跟踪方法及装置
US9955186B2 (en) 2016-01-11 2018-04-24 Qualcomm Incorporated Block size decision for video coding
US10798403B2 (en) 2016-01-29 2020-10-06 Sharp Kabushiki Kaisha Prediction image generation device, video decoding device, and video coding device
EP4138392A1 (en) * 2016-02-05 2023-02-22 HFI Innovation Inc. Method and apparatus of motion compensation based on bi-directional optical flow techniques for video coding
US10368083B2 (en) 2016-02-15 2019-07-30 Qualcomm Incorporated Picture order count based motion vector pruning
EP3417618A4 (en) 2016-02-17 2019-07-24 Telefonaktiebolaget LM Ericsson (publ) METHOD AND DEVICES FOR CODING AND DECODING VIDEO IMAGES
EP3417617A4 (en) 2016-02-17 2019-02-27 Telefonaktiebolaget LM Ericsson (publ) METHOD AND DEVICES FOR CODING AND DECODING VIDEO IMAGES
WO2017143467A1 (en) 2016-02-22 2017-08-31 Mediatek Singapore Pte. Ltd. Localized luma mode prediction inheritance for chroma coding
WO2017156669A1 (en) 2016-03-14 2017-09-21 Mediatek Singapore Pte. Ltd. Methods for motion vector storage in video coding
WO2017157281A1 (en) 2016-03-16 2017-09-21 Mediatek Inc. Method and apparatus of pattern-based motion vector derivation for video coding
US10455228B2 (en) 2016-03-21 2019-10-22 Qualcomm Incorporated Determining prediction parameters for non-square blocks in video coding
US11223852B2 (en) 2016-03-21 2022-01-11 Qualcomm Incorporated Coding video data using a two-level multi-type-tree framework
CN109417620B (zh) 2016-03-25 2021-04-27 松下知识产权经营株式会社 用于使用信号依赖型自适应量化将运动图像编码及解码的方法及装置
US11095898B2 (en) 2016-03-28 2021-08-17 Lg Electronics Inc. Inter-prediction mode based image processing method, and apparatus therefor
CN116546205A (zh) 2016-04-08 2023-08-04 韩国电子通信研究院 用于导出运动预测信息的方法和装置
US10462459B2 (en) 2016-04-14 2019-10-29 Mediatek Inc. Non-local adaptive loop filter
KR20180132756A (ko) 2016-04-28 2018-12-12 엘지전자 주식회사 인터 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
KR20190015216A (ko) 2016-05-05 2019-02-13 브이아이디 스케일, 인크. 인트라 코딩을 위한 제어 포인트 기반의 인트라 방향 표현
US20170332000A1 (en) 2016-05-10 2017-11-16 Lytro, Inc. High dynamic range light-field imaging
WO2017194756A1 (en) 2016-05-12 2017-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements for coding and decoding motion vectors
CN109792535B (zh) 2016-05-13 2023-03-28 夏普株式会社 预测图像生成装置、运动图像解码装置以及运动图像编码装置
US10560718B2 (en) * 2016-05-13 2020-02-11 Qualcomm Incorporated Merge candidates for motion vector prediction for video coding
EP4060992A1 (en) 2016-05-13 2022-09-21 Vid Scale, Inc. Systems and methods for generalized multi-hypothesis prediction for video coding
US10560712B2 (en) 2016-05-16 2020-02-11 Qualcomm Incorporated Affine motion prediction for video coding
WO2017201141A1 (en) * 2016-05-17 2017-11-23 Arris Enterprises Llc Template matching for jvet intra prediction
US20170339405A1 (en) * 2016-05-20 2017-11-23 Arris Enterprises Llc System and method for intra coding
US20200322599A1 (en) * 2016-05-28 2020-10-08 Mediatek Inc. Method and apparatus of current picture referencing for video coding using affine motion compensation
EP4336850A3 (en) 2016-07-08 2024-04-17 InterDigital Madison Patent Holdings, SAS Systems and methods for region-of-interest tone remapping
US10368107B2 (en) 2016-08-15 2019-07-30 Qualcomm Incorporated Intra video coding using a decoupled tree structure
KR102191846B1 (ko) 2016-08-15 2020-12-17 노키아 테크놀로지스 오와이 비디오 인코딩 및 디코딩
US10326986B2 (en) 2016-08-15 2019-06-18 Qualcomm Incorporated Intra video coding using a decoupled tree structure
EP3522537A1 (en) * 2016-09-12 2019-08-07 Sony Corporation Image processing device and image processing method
WO2018049594A1 (en) 2016-09-14 2018-03-22 Mediatek Inc. Methods of encoder decision for quad-tree plus binary tree structure
CA3037685C (en) 2016-09-20 2023-03-28 Bae Keun Lee Method and apparatus for processing video signal
US10778999B2 (en) 2016-09-30 2020-09-15 Qualcomm Incorporated Frame rate up-conversion coding mode with affine motion model
WO2018066241A1 (en) 2016-10-03 2018-04-12 Sharp Kabushiki Kaisha Systems and methods for applying deblocking filters to reconstructed video data
EP3301919A1 (en) 2016-10-03 2018-04-04 Thomson Licensing Method and apparatus for encoding and decoding motion information
US10448010B2 (en) 2016-10-05 2019-10-15 Qualcomm Incorporated Motion vector prediction for affine motion models in video coding
JP2019535202A (ja) 2016-10-06 2019-12-05 エルジー エレクトロニクス インコーポレイティド インター予測モードベースの画像処理方法及びそのための装置
CN109804630A (zh) 2016-10-10 2019-05-24 夏普株式会社 对视频数据编码执行运动补偿的系统以及方法
WO2018070713A1 (ko) 2016-10-11 2018-04-19 엘지전자(주) 크로마 성분에 대한 인트라 예측 모드를 유도하는 방법 및 장치
WO2018070632A1 (ko) 2016-10-11 2018-04-19 엘지전자 주식회사 영상 코딩 시스템에서 영상 디코딩 방법 및 장치
US20180109810A1 (en) * 2016-10-17 2018-04-19 Mediatek Inc. Method and Apparatus for Reference Picture Generation and Management in 3D Video Compression
CN116866594A (zh) * 2016-11-28 2023-10-10 韩国电子通信研究院 对图像编码/解码的方法和设备及存储比特流的记录介质
JP7044778B2 (ja) 2016-11-28 2022-03-30 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート 画像復号方法、画像符号化方法、及び非一時的なコンピュータ可読記録媒体
WO2018110203A1 (ja) 2016-12-16 2018-06-21 シャープ株式会社 動画像復号装置、および動画像符号化装置
US10750203B2 (en) 2016-12-22 2020-08-18 Mediatek Inc. Method and apparatus of adaptive bi-prediction for video coding
CN110140355B (zh) 2016-12-27 2022-03-08 联发科技股份有限公司 用于视频编解码的双向模板运动向量微调的方法及装置
US10681370B2 (en) 2016-12-29 2020-06-09 Qualcomm Incorporated Motion vector generation for affine motion model for video coding
US10873744B2 (en) 2017-01-03 2020-12-22 Lg Electronics Inc. Method and device for processing video signal by means of affine prediction
WO2018128380A1 (ko) 2017-01-03 2018-07-12 엘지전자(주) 어파인 예측을 이용하여 비디오 신호를 처리하는 방법 및 장치
US10931969B2 (en) * 2017-01-04 2021-02-23 Qualcomm Incorporated Motion vector reconstructions for bi-directional optical flow (BIO)
US20180199057A1 (en) 2017-01-12 2018-07-12 Mediatek Inc. Method and Apparatus of Candidate Skipping for Predictor Refinement in Video Coding
US10701366B2 (en) 2017-02-21 2020-06-30 Qualcomm Incorporated Deriving motion vector information at a video decoder
US10523964B2 (en) 2017-03-13 2019-12-31 Qualcomm Incorporated Inter prediction refinement based on bi-directional optical flow (BIO)
US10701390B2 (en) 2017-03-14 2020-06-30 Qualcomm Incorporated Affine motion information derivation
US20200084441A1 (en) 2017-03-22 2020-03-12 Electronics And Telecommunications Research Institute Prediction method and device using reference block
US10701391B2 (en) 2017-03-23 2020-06-30 Qualcomm Incorporated Motion vector difference (MVD) prediction
US10440396B2 (en) 2017-03-28 2019-10-08 Qualcomm Incorporated Filter information sharing among color components
US10542264B2 (en) 2017-04-04 2020-01-21 Arris Enterprises Llc Memory reduction implementation for weighted angular prediction
US10873760B2 (en) 2017-04-07 2020-12-22 Futurewei Technologies, Inc. Motion vector (MV) constraints and transformation constraints in video coding
US20180310017A1 (en) 2017-04-21 2018-10-25 Mediatek Inc. Sub-prediction unit temporal motion vector prediction (sub-pu tmvp) for video coding
US10805630B2 (en) 2017-04-28 2020-10-13 Qualcomm Incorporated Gradient based matching for motion search and derivation
US20180332298A1 (en) 2017-05-10 2018-11-15 Futurewei Technologies, Inc. Bidirectional Prediction In Video Compression
WO2018212578A1 (ko) 2017-05-17 2018-11-22 주식회사 케이티 비디오 신호 처리 방법 및 장치
EP3637772A4 (en) 2017-06-09 2020-12-09 Electronics and Telecommunications Research Institute VIDEO ENCODING / DECODING METHOD AND DEVICE AND RECORDING MEDIUM FOR STORING BITSTREAM
US10904565B2 (en) 2017-06-23 2021-01-26 Qualcomm Incorporated Memory-bandwidth-efficient design for bi-directional optical flow (BIO)
US11245921B2 (en) 2017-06-26 2022-02-08 Interdigital Vc Holdings, Inc. Multiple predictor candidates for motion compensation
WO2019004283A1 (ja) 2017-06-28 2019-01-03 シャープ株式会社 動画像符号化装置及び動画像復号装置
US10477237B2 (en) 2017-06-28 2019-11-12 Futurewei Technologies, Inc. Decoder side motion vector refinement in video coding
US11172203B2 (en) 2017-08-08 2021-11-09 Mediatek Inc. Intra merge prediction
US10880573B2 (en) 2017-08-15 2020-12-29 Google Llc Dynamic motion vector referencing for video coding
US20200221077A1 (en) 2017-09-05 2020-07-09 Lg Electronics Inc. Inter prediction mode-based image processing method and apparatus therefor
JP2021005741A (ja) 2017-09-14 2021-01-14 シャープ株式会社 画像符号化装置及び画像復号装置
KR101984687B1 (ko) 2017-09-21 2019-05-31 한국해양과학기술원 선박 충돌 회피용 부유식 해양구조물의 계류삭 장치 및 이의 운용방법과 설치방법
US10785494B2 (en) 2017-10-11 2020-09-22 Qualcomm Incorporated Low-complexity design for FRUC
CN109963155B (zh) 2017-12-23 2023-06-06 华为技术有限公司 图像块的运动信息的预测方法、装置及编解码器
US11368676B2 (en) 2018-01-16 2022-06-21 Vid Scale, Inc. Motion compensated bi-prediction based on local illumination compensation
US10757417B2 (en) 2018-01-20 2020-08-25 Qualcomm Incorporated Affine motion compensation in video coding
US10687071B2 (en) 2018-02-05 2020-06-16 Tencent America LLC Method and apparatus for video coding
US11012715B2 (en) * 2018-02-08 2021-05-18 Qualcomm Incorporated Intra block copy for video coding
CN112042199A (zh) * 2018-02-14 2020-12-04 华为技术有限公司 自适应插值滤波器
US20190306502A1 (en) 2018-04-02 2019-10-03 Qualcomm Incorporated System and method for improved adaptive loop filtering
US10708592B2 (en) 2018-04-02 2020-07-07 Qualcomm Incorporated Deblocking filter for video coding and processing
US20190320181A1 (en) 2018-04-17 2019-10-17 Qualcomm Incorporated Generation of motion vector predictors from multiple neighboring blocks in video coding
US10779002B2 (en) 2018-04-17 2020-09-15 Qualcomm Incorporated Limitation of the MVP derivation based on decoder-side motion vector derivation
US20190364295A1 (en) 2018-05-25 2019-11-28 Tencent America LLC Method and apparatus for video coding
US10986340B2 (en) * 2018-06-01 2021-04-20 Qualcomm Incorporated Coding adaptive multiple transform information for video coding
US11109025B2 (en) 2018-06-04 2021-08-31 Tencent America LLC Method and apparatus for sub-block based temporal motion vector prediction
KR20210016581A (ko) 2018-06-05 2021-02-16 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 Ibc 및 atmvp 간의 상호 작용
WO2019234676A1 (en) 2018-06-07 2019-12-12 Beijing Bytedance Network Technology Co., Ltd. Mv precision refine
US11303923B2 (en) 2018-06-15 2022-04-12 Intel Corporation Affine motion compensation for current picture referencing
TWI723430B (zh) 2018-06-19 2021-04-01 大陸商北京字節跳動網絡技術有限公司 不同精度的多個候選
EP3788782A1 (en) 2018-06-21 2021-03-10 Beijing Bytedance Network Technology Co. Ltd. Sub-block mv inheritance between color components
TWI739120B (zh) 2018-06-21 2021-09-11 大陸商北京字節跳動網絡技術有限公司 合併仿射模式與非合併仿射模式的統一拘束
CN110662032B (zh) 2018-06-29 2022-09-20 北京字节跳动网络技术有限公司 视频处理方法、装置以及非暂时性计算机可读记录介质
TWI719519B (zh) 2018-07-02 2021-02-21 大陸商北京字節跳動網絡技術有限公司 對於dmvr的塊尺寸限制
US11606575B2 (en) 2018-07-10 2023-03-14 Qualcomm Incorporated Multiple history based non-adjacent MVPs for wavefront processing of video coding
US10491902B1 (en) 2018-07-16 2019-11-26 Tencent America LLC Method and apparatus for history-based motion vector prediction
US10440378B1 (en) 2018-07-17 2019-10-08 Tencent America LLC Method and apparatus for history-based motion vector prediction with parallel processing
US10362330B1 (en) 2018-07-30 2019-07-23 Tencent America LLC Combining history-based motion vector prediction and non-adjacent merge prediction
CN110809155B (zh) 2018-08-04 2023-01-31 北京字节跳动网络技术有限公司 视频处理方法、装置和计算机可读介质
US11336914B2 (en) 2018-08-16 2022-05-17 Qualcomm Incorporated History-based candidate list with classification
EP3827586A1 (en) 2018-09-19 2021-06-02 Beijing Bytedance Network Technology Co. Ltd. Syntax reuse for affine mode with adaptive motion vector resolution
US11212550B2 (en) 2018-09-21 2021-12-28 Qualcomm Incorporated History-based motion vector prediction for affine mode
KR102616766B1 (ko) 2018-09-22 2023-12-27 엘지전자 주식회사 인터 예측을 기반으로 비디오 신호를 처리하기 위한 방법 및 장치
KR20230161543A (ko) 2018-09-23 2023-11-27 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 적응적 움직임 벡터 해상도를 갖는 움직임 벡터 수정
TWI818086B (zh) 2018-09-24 2023-10-11 大陸商北京字節跳動網絡技術有限公司 擴展Merge預測
US11146800B2 (en) 2018-09-24 2021-10-12 Tencent America LLC Low latency local illumination compensation
US11051034B2 (en) 2018-10-08 2021-06-29 Qualcomm Incorporated History-based motion vector predictor
US11284066B2 (en) 2018-10-10 2022-03-22 Tencent America LLC Method and apparatus for intra block copy in intra-inter blending mode and triangle prediction unit mode
WO2020084460A1 (en) 2018-10-22 2020-04-30 Beijing Bytedance Network Technology Co., Ltd. Decoder side motion vector derivation in the presence of multi-hypothesis prediction
US11032541B2 (en) 2018-10-22 2021-06-08 Tencent America LLC Method and apparatus for video coding
CN112956197A (zh) 2018-10-22 2021-06-11 北京字节跳动网络技术有限公司 基于编解码信息的解码器侧运动矢量推导的限制
CN111357291A (zh) 2018-10-23 2020-06-30 北京字节跳动网络技术有限公司 从相邻块推导运动信息
JP7277579B2 (ja) 2018-11-02 2023-05-19 北京字節跳動網絡技術有限公司 Hmvp候補記憶装置のための表の保守
JP7231727B2 (ja) 2018-11-05 2023-03-01 北京字節跳動網絡技術有限公司 精緻化を伴うインター予測のための補間
CN116886926A (zh) 2018-11-10 2023-10-13 北京字节跳动网络技术有限公司 成对平均候选计算中的取整
WO2020103934A1 (en) 2018-11-22 2020-05-28 Beijing Bytedance Network Technology Co., Ltd. Construction method for inter prediction with geometry partition
US11394989B2 (en) 2018-12-10 2022-07-19 Tencent America LLC Method and apparatus for video coding
US11032574B2 (en) 2018-12-31 2021-06-08 Tencent America LLC Method and apparatus for video coding
US11115653B2 (en) 2019-02-22 2021-09-07 Mediatek Inc. Intra block copy merge list simplification
WO2020185429A1 (en) 2019-03-11 2020-09-17 Alibaba Group Holding Limited Method, device, and system for determining prediction weight for merge mode
JP7244646B2 (ja) 2019-03-12 2023-03-22 テンセント・アメリカ・エルエルシー ビデオ符号化又は復号の方法及び装置並びにコンピュータプログラム

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11973962B2 (en) 2018-06-05 2024-04-30 Beijing Bytedance Network Technology Co., Ltd Interaction between IBC and affine
US11831884B2 (en) 2018-06-05 2023-11-28 Beijing Bytedance Network Technology Co., Ltd Interaction between IBC and BIO
US11509915B2 (en) 2018-06-05 2022-11-22 Beijing Bytedance Network Technology Co., Ltd. Interaction between IBC and ATMVP
US11523123B2 (en) 2018-06-05 2022-12-06 Beijing Bytedance Network Technology Co., Ltd. Interaction between IBC and ATMVP
US11202081B2 (en) 2018-06-05 2021-12-14 Beijing Bytedance Network Technology Co., Ltd. Interaction between IBC and BIO
US11477458B2 (en) 2018-06-19 2022-10-18 Beijing Bytedance Network Technology Co., Ltd. Mode dependent motion vector difference precision set
US11197007B2 (en) 2018-06-21 2021-12-07 Beijing Bytedance Network Technology Co., Ltd. Sub-block MV inheritance between color components
US11197003B2 (en) 2018-06-21 2021-12-07 Beijing Bytedance Network Technology Co., Ltd. Unified constrains for the merge affine mode and the non-merge affine mode
US11968377B2 (en) 2018-06-21 2024-04-23 Beijing Bytedance Network Technology Co., Ltd Unified constrains for the merge affine mode and the non-merge affine mode
US11895306B2 (en) 2018-06-21 2024-02-06 Beijing Bytedance Network Technology Co., Ltd Component-dependent sub-block dividing
US11659192B2 (en) 2018-06-21 2023-05-23 Beijing Bytedance Network Technology Co., Ltd Sub-block MV inheritance between color components
US11477463B2 (en) 2018-06-21 2022-10-18 Beijing Bytedance Network Technology Co., Ltd. Component-dependent sub-block dividing
US20220264135A1 (en) * 2018-07-17 2022-08-18 Huawei Technologies Co., Ltd. Motion Model Signaling
US11895313B2 (en) * 2018-07-17 2024-02-06 Huawei Technologies Co., Ltd. Motion model signaling
US11277629B2 (en) * 2018-07-17 2022-03-15 Huawei Technologies Co., Ltd. Motion model signaling
US11729377B2 (en) 2018-09-08 2023-08-15 Beijing Bytedance Network Technology Co., Ltd Affine mode in video coding and decoding
US11431965B2 (en) 2018-09-08 2022-08-30 Beijing Bytedance Network Technology Co., Ltd. Affine mode in video coding and decoding
US11653020B2 (en) 2018-09-19 2023-05-16 Beijing Bytedance Network Technology Co., Ltd Fast algorithms for adaptive motion vector resolution in affine mode
US11265573B2 (en) 2018-09-19 2022-03-01 Beijing Bytedance Network Technology Co., Ltd. Syntax reuse for affine mode with adaptive motion vector resolution
US11805259B2 (en) 2018-09-23 2023-10-31 Beijing Bytedance Network Technology Co., Ltd Non-affine blocks predicted from affine motion
US11778194B2 (en) 2018-09-23 2023-10-03 Beijing Bytedance Network Technology Co., Ltd MV planar mode with block level
US11870974B2 (en) 2018-09-23 2024-01-09 Beijing Bytedance Network Technology Co., Ltd Multiple-hypothesis affine mode
US11909953B2 (en) 2018-09-23 2024-02-20 Beijing Bytedance Network Technology Co., Ltd Representation of affine model
US11575903B2 (en) 2018-09-23 2023-02-07 Beijing Bytedance Network Technology Co., Ltd. 8-parameter affine mode
US11546601B2 (en) 2018-09-23 2023-01-03 Beijing Bytedance Network Technology Co., Ltd. Utilization of non-sub block spatial-temporal motion vector prediction in inter mode
US11202065B2 (en) 2018-09-24 2021-12-14 Beijing Bytedance Network Technology Co., Ltd. Extended merge prediction
US11616945B2 (en) 2018-09-24 2023-03-28 Beijing Bytedance Network Technology Co., Ltd. Simplified history based motion vector prediction
US11172196B2 (en) 2018-09-24 2021-11-09 Beijing Bytedance Network Technology Co., Ltd. Bi-prediction with weights in video coding and decoding
US11758154B2 (en) 2018-10-05 2023-09-12 Tencent America LLC Method and apparatus for signaling an offset in video coding for intra block copy and/or inter prediction
US11317099B2 (en) * 2018-10-05 2022-04-26 Tencent America LLC Method and apparatus for signaling an offset in video coding for intra block copy and/or inter prediction
US11778226B2 (en) 2018-10-22 2023-10-03 Beijing Bytedance Network Technology Co., Ltd Storage of motion information for affine mode
US20200128266A1 (en) * 2018-10-23 2020-04-23 Tencent America LLC Method and apparatus for video coding
US11758164B2 (en) * 2018-10-23 2023-09-12 Tencent America LLC Method and apparatus for video coding
US11792421B2 (en) 2018-11-10 2023-10-17 Beijing Bytedance Network Technology Co., Ltd Rounding in pairwise average candidate calculations
US11128882B2 (en) 2018-11-13 2021-09-21 Beijing Bytedance Network Technology Co., Ltd. History based motion candidate list construction for intra block copy
US11563972B2 (en) 2018-11-13 2023-01-24 Beijing Bytedance Network Technology Co., Ltd. Construction method for a spatial motion candidate list
US11677973B2 (en) 2018-11-15 2023-06-13 Beijing Bytedance Network Technology Co., Ltd Merge with MVD for affine
US11985340B2 (en) 2018-11-16 2024-05-14 Beijing Bytedance Network Technology Co., Ltd History-based affine parameters inheritance
US11856211B2 (en) 2018-11-16 2023-12-26 Beijing Bytedance Network Technology Co., Ltd Usage for history-based affine parameters
US11902550B2 (en) 2018-11-16 2024-02-13 Beijing Bytedance Network Technology Co., Ltd Pruning method for history-based affine parameters
US20210266584A1 (en) 2018-11-16 2021-08-26 Beijing Bytedance Network Technology Co., Ltd. Usage for history-based affine parameters
US11706443B2 (en) 2018-11-17 2023-07-18 Beijing Bytedance Network Technology Co., Ltd Construction of affine candidates in video processing
US11115676B2 (en) 2018-11-29 2021-09-07 Beijing Bytedance Network Technology Co., Ltd. Interaction between intra block copy mode and inter prediction tools
US11095917B2 (en) 2018-11-29 2021-08-17 Beijing Bytedance Network Technology Co., Ltd. Affine inheritance method in intra block copy mode
US11825113B2 (en) 2018-11-29 2023-11-21 Beijing Bytedance Network Technology Co., Ltd Interaction between intra block copy mode and inter prediction tools
US11825030B2 (en) 2018-12-02 2023-11-21 Beijing Bytedance Network Technology Co., Ltd Intra block copy mode with dual tree partition
US11310508B2 (en) 2018-12-21 2022-04-19 Beijing Bytedance Network Technology Co., Ltd. Motion vector precision in merge with motion vector difference mode
US11330289B2 (en) 2019-01-31 2022-05-10 Beijing Bytedance Network Technology Co., Ltd. Context for coding affine mode adaptive motion vector resolution
US11438613B2 (en) 2019-02-02 2022-09-06 Beijing Bytedance Network Technology Co., Ltd. Buffer initialization for intra block copy in video coding
US11228775B2 (en) 2019-02-02 2022-01-18 Beijing Bytedance Network Technology Co., Ltd. Data storage in buffers for intra block copy in video coding
US11375217B2 (en) 2019-02-02 2022-06-28 Beijing Bytedance Network Technology Co., Ltd. Buffer management for intra block copy in video coding
US11140412B2 (en) 2019-02-17 2021-10-05 Beijing Bytedance Network Technology Co., Ltd. Motion candidate list construction for intra block copy (IBC) mode and non-IBC inter mode
US11863784B2 (en) 2019-02-22 2024-01-02 Beijing Bytedance Network Technology Co., Ltd Sub-table for history-based affine mode
US11956438B2 (en) 2019-03-01 2024-04-09 Beijing Bytedance Network Technology Co., Ltd. Direction-based prediction for intra block copy in video coding
US11882287B2 (en) 2019-03-01 2024-01-23 Beijing Bytedance Network Technology Co., Ltd Direction-based prediction for intra block copy in video coding
US11546581B2 (en) 2019-03-04 2023-01-03 Beijing Bytedance Network Technology Co., Ltd. Implementation aspects in intra block copy in video coding
US11985308B2 (en) 2019-03-04 2024-05-14 Beijing Bytedance Network Technology Co., Ltd Implementation aspects in intra block copy in video coding
US11516497B2 (en) 2019-04-02 2022-11-29 Beijing Bytedance Network Technology Co., Ltd. Bidirectional optical flow based video coding and decoding
US11356697B2 (en) 2019-04-19 2022-06-07 Beijing Bytedance Network Technology Co., Ltd. Gradient calculation in different motion vector refinements
US11368711B2 (en) 2019-04-19 2022-06-21 Beijing Bytedance Network Technology Co., Ltd. Applicability of prediction refinement with optical flow process
US11570462B2 (en) 2019-04-19 2023-01-31 Beijing Bytedance Network Technology Co., Ltd. Delta motion vector in prediction refinement with optical flow process
US11924463B2 (en) 2019-04-19 2024-03-05 Beijing Bytedance Network Technology Co., Ltd Gradient calculation in different motion vector refinements
US11575888B2 (en) 2019-07-06 2023-02-07 Beijing Bytedance Network Technology Co., Ltd. Virtual prediction buffer for intra block copy in video coding
US11936852B2 (en) 2019-07-10 2024-03-19 Beijing Bytedance Network Technology Co., Ltd. Sample identification for intra block copy in video coding
US11528476B2 (en) 2019-07-10 2022-12-13 Beijing Bytedance Network Technology Co., Ltd. Sample identification for intra block copy in video coding
US11523107B2 (en) 2019-07-11 2022-12-06 Beijing Bytedance Network Technology Co., Ltd. Bitstream conformance constraints for intra block copy in video coding
US11533507B2 (en) 2019-07-25 2022-12-20 Beijing Bytedance Network Technology Co., Ltd. Mapping restriction for intra-block copy virtual buffer
US11683476B2 (en) 2019-07-25 2023-06-20 Beijing Bytedance Network Technology Co., Ltd Size restriction for intra-block copy virtual buffer
US11575889B2 (en) 2019-09-05 2023-02-07 Beijing Bytedance Network Technology Co., Ltd. Range constrains for block vector in intra-block copy mode
US11930216B2 (en) 2019-09-09 2024-03-12 Beijing Bytedance Network Technology Co., Ltd Recursive splitting of video coding blocks
US11638004B2 (en) 2019-09-23 2023-04-25 Beijing Bytedance Network Technology Co., Ltd. Setting intra-block copy virtual buffer based on virtual pipeline data unit
US11778176B2 (en) 2020-03-18 2023-10-03 Beijing Bytedance Network Technology Co., Ltd. Intra block copy buffer and palette predictor update
WO2023046127A1 (en) * 2021-09-25 2023-03-30 Beijing Bytedance Network Technology Co., Ltd. Method, apparatus, and medium for video processing
US11997303B2 (en) 2022-06-13 2024-05-28 Beijing Bytedance Network Technology Co., Ltd Bidirectional optical flow based video coding and decoding
WO2024081629A1 (en) * 2022-10-10 2024-04-18 Tencent America LLC Method and apparatus for extended decoder side motion vector refinement

Also Published As

Publication number Publication date
US11202081B2 (en) 2021-12-14
US20200404260A1 (en) 2020-12-24
TW202005390A (zh) 2020-01-16
WO2019234636A1 (en) 2019-12-12
GB2588003A (en) 2021-04-14
CN110572646A (zh) 2019-12-13
CN110572670A (zh) 2019-12-13
TWI715993B (zh) 2021-01-11
CN110572647A (zh) 2019-12-13
GB202018254D0 (en) 2021-01-06
US11973962B2 (en) 2024-04-30
CN110572671A (zh) 2019-12-13
GB2588023A (en) 2021-04-14
JP2021525497A (ja) 2021-09-24
TWI725445B (zh) 2021-04-21
CN110572668A (zh) 2019-12-13
CN110572658B (zh) 2022-08-12
GB2588317B (en) 2023-05-17
CN114666605A (zh) 2022-06-24
US20200404255A1 (en) 2020-12-24
GB202018447D0 (en) 2021-01-06
EP3788787A1 (en) 2021-03-10
GB2588317A (en) 2021-04-21
TWI750477B (zh) 2021-12-21
TWI708504B (zh) 2020-10-21
US20220078452A1 (en) 2022-03-10
US11831884B2 (en) 2023-11-28
GB202018465D0 (en) 2021-01-06
WO2019234639A1 (en) 2019-12-12
CN110572646B (zh) 2022-12-13
JP7104186B2 (ja) 2022-07-20
JP7361845B2 (ja) 2023-10-16
US20200413048A1 (en) 2020-12-31
US20220217363A1 (en) 2022-07-07
CN110572648A (zh) 2019-12-13
TW202013977A (zh) 2020-04-01
US20210203958A1 (en) 2021-07-01
GB2588004B (en) 2023-03-01
TW202013978A (zh) 2020-04-01
CN110572658A (zh) 2019-12-13
WO2019234606A1 (en) 2019-12-12
US20210392341A1 (en) 2021-12-16
TWI704802B (zh) 2020-09-11
TW202005394A (zh) 2020-01-16
TWI736902B (zh) 2021-08-21
WO2019234598A1 (en) 2019-12-12
US11523123B2 (en) 2022-12-06
CN110572670B (zh) 2022-05-20
GB2588023B (en) 2023-04-12
TW202002643A (zh) 2020-01-01
TWI708503B (zh) 2020-10-21
JP2022132346A (ja) 2022-09-08
WO2019234600A1 (en) 2019-12-12
TWI740155B (zh) 2021-09-21
CN115442612A (zh) 2022-12-06
US11509915B2 (en) 2022-11-22
TW202002644A (zh) 2020-01-01
CN115529458A (zh) 2022-12-27
WO2019234609A1 (en) 2019-12-12
CN110572669B (zh) 2022-06-21
CN110572648B (zh) 2023-05-02
JP2023175898A (ja) 2023-12-12
CN110572669A (zh) 2019-12-13
KR20210016581A (ko) 2021-02-16
WO2019234638A1 (en) 2019-12-12
GB2588003B (en) 2023-04-19
GB202018255D0 (en) 2021-01-06
TW202005391A (zh) 2020-01-16
US20240121410A1 (en) 2024-04-11
GB2588004A (en) 2021-04-14
TW202005396A (zh) 2020-01-16
CN110572671B (zh) 2022-11-25
US20210006780A1 (en) 2021-01-07
CN110572647B (zh) 2022-07-29
WO2019234607A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
US11973962B2 (en) Interaction between IBC and affine

Legal Events

Date Code Title Description
AS Assignment

Owner name: BYTEDANCE INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, KAI;ZHANG, LI;REEL/FRAME:053633/0969

Effective date: 20190513

Owner name: BEIJING BYTEDANCE NETWORK TECHNOLOGY CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIU, HONGBIN;WANG, YUE;REEL/FRAME:053634/0012

Effective date: 20190515

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION