US20200296991A1 - Fresh water methods for reduced fluorine crustacean compositions - Google Patents

Fresh water methods for reduced fluorine crustacean compositions Download PDF

Info

Publication number
US20200296991A1
US20200296991A1 US16/895,576 US202016895576A US2020296991A1 US 20200296991 A1 US20200296991 A1 US 20200296991A1 US 202016895576 A US202016895576 A US 202016895576A US 2020296991 A1 US2020296991 A1 US 2020296991A1
Authority
US
United States
Prior art keywords
crustacean
catch
krill
fresh water
enzymes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/895,576
Inventor
Stig Tore Kragh Jansson
Jon Reidar Ervik
Leif Grimsmo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rimfrost Technologies AS
Original Assignee
Rimfrost Technologies AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42005314&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20200296991(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Rimfrost Technologies AS filed Critical Rimfrost Technologies AS
Priority to US16/895,576 priority Critical patent/US20200296991A1/en
Publication of US20200296991A1 publication Critical patent/US20200296991A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/04Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from fish or other sea animals
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • A23J3/32Working-up of proteins for foodstuffs by hydrolysis using chemical agents
    • A23J3/34Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J7/00Phosphatide compositions for foodstuffs, e.g. lecithin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L17/00Food-from-the-sea products; Fish products; Fish meal; Fish-egg substitutes; Preparation or treatment thereof
    • A23L17/40Shell-fish
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/20Removal of unwanted matter, e.g. deodorisation or detoxification
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/20Removal of unwanted matter, e.g. deodorisation or detoxification
    • A23L5/25Removal of unwanted matter, e.g. deodorisation or detoxification using enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/56Materials from animals other than mammals
    • A61K35/612Crustaceans, e.g. crabs, lobsters, shrimps, krill or crayfish; Barnacles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention concerns an industrial method for removing fluoride and unwanted trace elements contained in crustaceans.
  • the process is especially favourable and effective for substantial reduction of fluoride from krill by removing substantial amounts of the shell and carapace and forming several fractions from the crustaceans, inter alia a fluoride-reduced lipidaceous and proteinaceous emulsion.
  • the invention also solves processing problems related to such emulsions caused by high lipid content, and especially high polar lipid content with lipids such as phospholipids.
  • the produced end products obtained by the process according to the invention may be used per se as food or feed, as food/feed additives, as nutraceuticals, cosmaceuticals/cosmeticals or pharmaceuticals or used as starting materials for further downstream processing.
  • the process according to the invention is also suitable to be used on other crustaceans than krill.
  • a problem not sufficiently addressed by the prior art is the fluoride and unwanted trace material content included in the shell, carapace and crust of crustaceans.
  • krill is used, signifying that krill is one kind of crustaceans wherein this problem is especially accentuated, but also other types of crustaceans are relevant in the present invention.
  • Another problem related to krill, and especially the Antarctic krill is the high content of polar lipids during the second half of the fishing season.
  • lipids As a rule for most known animal species the content of polar lipids, such as phospholipids, is nearly constant and variations in total lipid content is caused by variations in the content of neutral lipids such as triglycerides. Despite these very high variations of lipid content, the ratio between triglycerides and phospholipids is nearly constant for the Antarctic krill. It is also well known that lipids, and especially phospholipids, cause strong emulsions. Such emulsions cause problems in the separation of the fractions in the processes, such as hydrolysis, which involves separation of lipid- and proteinaceous fractions. The developed process according to the present invention also solves the emulsion problems by creating an aggregate of non-soluble proteins and phospholipids before and during the last separation step in the process.
  • Krill represent a vast resource for biological material.
  • the background for the present invention resides in the circumstance that krill accumulate fluoride in their shell, increasing the fluoride amount of any produced is material either through the inclusion of such shell parts, through extraction processes not taking into account the transfer of fluoride to the final material through the extraction steps or through time-consuming processes wherein free fluoride or loosely bound fluoride may diffuse from the shell material and into the further processed material, making the end product high in fluoride ions or fluorinated compounds.
  • Fluoride is a compound that in high concentrations is detrimental for the health of land-dwelling animals as well as all kind of fish and crustaceans and especially fresh-water fish species, since fluoride atoms have the tendency of entering into the bone structure of such organisms and creating fluorosis (a weakening of the bone structure similar in its effect to osteoporosis, but different since it is the bone structure itself, and not the porosity of the bone that is affected).
  • Skeletal fluorosis is a condition characterised by skeletal abnormalities and joint pain. It is caused by pathological bone formation due to the mitogenic action of fluoride on osteoblasts. In its more severe forms, skeletal fluorosis causes kyphosis, crippling and invalidism.
  • High fluoride intake has also been shown to be toxic to the male reproductive system in rat experiments, and in humans high fluoride intake and symptoms of skeletal fluorosis have been associated with decreased serum testosterone levels.
  • Polar lipids such as phospholipids are essential for cell membranes and are also called membrane lipids. Normally the total lipid content in fish and other aquatic and terrestrial animals varies due to variations in feed accessibility through the year. The variations is normally caused by variations in the content of non polar lipids in the organisms which is stored and used as energy reserve's during periods of low or no access to feed, while the content of phospholipids is relatively constant. However, for Antarctic krill this is different because the relative content of triglycerides and phospholipids remains almost constant also when the fat content in this species varies from 2% up to 10% during the fishing/harvesting season. This means that the phospholipid content in raw Antarctic krill can be up to 5%.
  • Lipids, and especially polar lipids as phospholipids, are known to create strong emulsions in industrial processing according to prior art which involves heating-, stirring- and separation steps such as a hydrolysis process. This emulsion will normally cause problems in separating the lipid- and protein fractions.
  • FR patent 2835703 Applicant: Techniagro, Inventor: Panni, J. et al., Mar. 15, 2002
  • an isolation method for obtaining a protein hydrolysate from a marine source such as filleting discards and other marine waste materials (among others shellfish).
  • the patent includes steps of crushing, hydrolysis, filtration and centrifugation, but is not particularly suited for processing krill and certainly does not concern itself with the problem of removing fluoride from the material.
  • EP patent 1 417 211 B1 (Neptune Technologies & Bioresources, Inc.) there is disclosed a composition including a particular phospholipid and a particular flavonoid and the use thereof for producing a medicament suitable for treating or preventing a number of diseases.
  • the composition is produced from natural marine or aquatic sources, inter alia krill ( Euphausia superba, Antarctic krill and Euphausia pacifica, Atlantic krill) as well as krill from the Indian Ocean, Mauritius Islands and or religion Island off Madagaskar, the Canadian West coast, the Japanese Coast, the Gulf of St. Lawrence and the Bay of Fundy and other krill habitats.
  • krill Euphausia superba, Antarctic krill and Euphausia pacifica, Atlantic krill
  • the method for extracting the relevant phospholipid and flavonoid is described to be by a method carried out by successive acetone and alcohol treatments after an initial milling/crushing step. Again there are no precautions taken for removing the fluoride from the material, and actually the produced product, albeit containing the indicated phospholipid and falvonoid, has in no way the same composition as the product according to the present invention at least for the reason that the present process includes no acetone or alcohol extractions, and also includes a number of mechanical steps for removing solid krill material from the initial krill mass.
  • the present invention provides an industrial method for processing catches of krill to comprising a number of steps presenting a very early and substantially complete removal of crust, carapace and shell and thereby a substantial removal of fluoride from the krill material.
  • the method also prevents separation problems caused by emulsions when processing a raw material with high content of phospholipids.
  • the method according to the present invention is initiated immediately subsequent to decking a catch of krill. It is of importance that the method according to the present invention is initiated as soon as possible after the catch of krill has been decked since fluoride immediately starts to leak/diffuse from the crust and carapace into the flesh and juices from dead krill.
  • this relates to the period from decking the krill catch and to the initial disintegration of the krill (see infra).
  • This period of time should be kept to a minimum, and should preferably not exceed 60 minutes, more preferred not exceed 30 minutes, even more preferred not exceed 15 minutes, and should include a direct transfer of the krill catch from the trawl bag/net to a suitable disintegrator.
  • a disintegrator of the krill material may be a conventional pulping, milling, grinding or shredding machine.
  • the krill catch is initially loaded into an apparatus for disintegration of the raw material through e.g. pulping/milling/grinding/shredding.
  • the temperature of the disintegration process is around the ambient temperature of the water, i.e. between ⁇ 2 and +10° C., preferably around +0° C. to +6° C., and may be performed by any convenient disintegration method.
  • This disintegration process is also conventionally done by the previous known processing methods, and represents one of the obstacles according to the prior art because it produces large amounts of shell and crust debris from the krill mixing in the milled material and producing a disintegrated paste with a high fluoride content.
  • this high fluoride content is one of the reasons why the prior art processed krill material has limited applications and is less suitable for food, feed or corresponding food or feed additives compared to other marine raw materials e.g. pelagic fish.
  • the krill material is divided into a particle size suitable for a further separation step for not interfering with the subsequent processing steps.
  • the disintegrating process is performed continuously and causes a particles sizes up to 25 mm, preferred particle size is 0.5-10 mm and more preferred 1.0-8 mm.
  • the particle size distribution represents one of the aspects of the invention because the fluoride has a tendency to leak out of the milled material and mingle with the rest of the raw material.
  • this lealdng process takes time and is not as rapid as being preventive for a subsequent enzymatic hydrolysis step, provided the hydrolysis step is is performed within specific parameters with respect to time and optimal or near-optimal conditions such as pH and temperature and optionally with the addition of co-factors suck as specific ions depending on the used enzymes.
  • the temperature of the disintegrated material shall according to the present invention be elevated to a temperature suitable for the subsequent enzymatic hydrolysis.
  • the 20 temperature shall be increased as soon as possible (within seconds [e.g. 1-300 seconds, more preferred 1-100 seconds, even mo preferred 1-60 seconds, most preferred 1-10 seconds]) subsequent to the disintegrating step for reducing the processing time and thereby preventing diffusion of fluoride and for preparing the material for the enzymatic hydrolysis.
  • enzymes may be added directly to the disintegrated material or through the added water or both, before, during or after the disintegration process.
  • exogenous proteolytic enzymes e.g. alkalase, neutrase, and enzymes derived from microorganisms [ Bacillus subtilis, Aspergillus niger, etc] or plant species
  • the added enzyme(s) may be in the form of one single enzyme or a mixture of enzymes.
  • the conditions of the hydrolysis should match the optimal hydrolytic conditions of the added enzyme(s) and the selection of optimal conditions for the selected exogenous hydrolytic enzyme(s) is known to the person skilled in the art.
  • the exogenous enzyme alkalase having a pH optimum of about 8, a temperature optimum of 60° C. and a hydrolysis time of 40-120 minutes.
  • the selected enzymes, or combination of enzymes should also be chosen for reducing emulsions caused by high content of phospholipids in the raw material.
  • the efficient amount of proteolytic enzyme(s) will be set after a process- and product optimization, and will also depend on the efficiency of the specific chosen commercial enzyme or mix of enzymes.
  • a typical amount by weight of commercial enzymes, as a ratio of the amount of the weight of the disintegrated raw material, are preferably between 0.5% and 0.05%, more preferably between 0.3% and 0.07% and most preferable between 0.2% and 0.09%.
  • Fresh caught krill is known for rapid and uncontrolled autolysis by endogenous (natural) enzymes.
  • the reason for adding exogenous enzymes is to take control of, and guide, the is breakdown of the proteinaceous material in the disintegrated substance as well as aiding in speeding up/accelerating the hydrolysis of the material (see infra) on account of avoiding/preceding the leaking of fluorine from the shell, carapace and crust as mentioned supra.
  • the enzymes, or the combination of enzymes should also be carefully chosen to reduce emulsion in the production process. Enzymes may be selected from exo- and/or endopepdidases. If a mixture of enzymes is used, such a mixture may also include one or more her chitinases for subsequently making the chitin-containing fraction(s) more amenable to further downstream processing.
  • chitinases are used care must be taken for not increasing the leakage of fluorine from the shell/crust/carapace of the krill into the other fractions. However, since such fluorine leakage takes time, it is possible to perform such an enzymatic treatment within the time parameters indicated supra.
  • a more convenient alternative to including chitinases in the enzyme mix of the initial hydrolysis step will be to process the separated chitin-containing fraction subsequently to the separation step.
  • the enzymatic hydrolysis step should be finished within a time interval of 100 minutes, preferably within 60 minutes, most preferred within 45 minutes calculated from the addition of the endogenous enzyme(s).
  • the amount of enzyme(s) added is related to the type of enzyme product used. As an example it may be mentioned that the enzyme alkalase may be added in an amount of 0.1-0.5% (w/w) of the raw material. This should be taken into context with the added endogenous enzymes since the addition of more enzymes will reduce the time interval of the hydrolytic step.
  • the time of the hydrolytic step is one of the crucial features of the present process since a short hydrolysis time reduces the diffusion time of fluorine from shell, carapace and crust particles.
  • the hydrolytic enzymatic processing step is intended to remove the binding between the soft tissue of the krill to the external shell, crust and carapace of the crustacean.
  • the krill material is passed through a particle removal device operating through a gravitational force such as a decanter.
  • This separation step removes the fine particles containing a considerable amount of the fluoride from the hydrolysed or hydrolysing krill material.
  • the decanter is operated with a g force between 1,000 and 1,800 g, more preferably between 1,200 and 1,600g and most preferably between 1,300 and 1,500g.
  • This particle removal step a substantial amount of fluorine is removed from the proteinaceous krill fraction.
  • the reduction of fluorine on a dry weight basis as compared to conventional krill meal, with a typical fluorine content of 1,500 p.p.m, may be up to 80%, even more preferred up to 85%, most preferred up to 95%.
  • the enzymatic hydrolysis may be terminated by heating of the hydrolysing material (incubate) to a temperature over 90° C., preferably between 92-93° C. and most preferred between 92-95° C., prior to, during or after the separation step, as long as the hydrolysis duration lies within the above given boundaries.
  • the hydrolysis is terminated before, during or after the fine particle removal step, most preferred after the fine particle removal step.
  • the temperature of the decanter particle removal step will in one embodiment depend on the optimal activity temperature of the enzyme (in the case as where the enzymatic hydrolysis step is terminated by heating after the fine particle separation step).
  • the fluorine content in the prior art processed krill protein material has limited applications and are less suitable for food or feed or corresponding food or feed additives, as mentioned supra but the fluorine content of the removed shell material is not preventive for further separation/purification of this fraction.
  • materials such as chitin, chitosan and astaxanthin may be isolated from the separated shell material. Such isolation procedures are known within the art. Steps may also be taken for removing the fluorine from the isolated shell material e.g. through dialysis, nanofiltration, through electrophoresis or other appropriate technologies.
  • the hydrolytic enzyme(s) is/are deactivated. Such deactivation may be performed in different ways, such as adding inhibitors, removing co-factors (e.g. crucial ions through dialysis), through thermal inactivation or any other deactivating means. Among this thermal inactivation, as mentioned supra, is preferred by heating the proteinaceous material to a temperature where the hydrolytic enzymes become denatured and deactivated. However, if a product where the relevant native proteins are not denatured is wanted, other means than heating for deactivating the hydrolytic enzymes should be selected.
  • the proteinaceous material exiting the decanter forms a de-fluorinated incubate and to may be separated forming a Phospholipids/Peptide Complex (PPC), a lean hydrolysate fraction as food or feed additives and a lipid fraction mainly consisting of neutral lipids.
  • PPC Phospholipids/Peptide Complex
  • the PPC is rich in lipids, like a smooth cream with no particles, and is well suspended in the proteinaceous material. This gives small density differences in the material and makes it difficult to separate with common centrifugal separators and decanters. This is especially accentuated with krill catches during the second half of the fishing season.
  • the specially designed decanter is essentially a decanter centrifuge but with some novel differences.
  • the feed enters the bowl through a central placed feed pipe in the middle of the separation zone.
  • this special decanter the feed enters at the end and at the opposite side of the outlet (1.).
  • the drive is able to impart high g-forces: 10 000 g for small machines and 5 000 to 6 000 g for high capacity machines, to facilitating the separation of very fine, slow-settling PPC without emulsification.
  • the concentrated PPC will be subjected to the highest g-force just before entering under the baffle (3.).
  • the different liquid layers from PPC are concentrated gradually and the PPC can solely escape under the baffle, be pressurised by the g force and pushed out by the machine (4).
  • concentration of the PPC to about 27-30% dry matter makes the is downstream processing efficient in terms of operating/robustness and as well economically considering both yield and costs for drying of PPC to a meal. It is also of importance to have a good separation in this step to get a lean hydrolysate without disturbing, macromolecules being able to concentrate the hydrolysate by evaporation to a final concentration of more than 60%.
  • the lipid content in the PPC on dry matter basis is reflected by the seasonal variations of the lipid content in the raw material and is typically around 50%.
  • the fluorine reduction on dry weight basis compared to commercial krill meal in the PPC is preferably over 70%, more preferred over 75% and most preferred over 80%.
  • the dry matter content in the CHF (Concentrated Hydrolysate Fraction) after separation and after evaporation is preferably over 45%, more preferred over 50% and most preferred over 55%.
  • the lipid content in the CHF dry matter basis is preferably below 5%, more preferred below 4% and most preferred below 3%.
  • the fluorine reduction on dry weight basis compared to commercial krill meal in the CHF is preferably over 85%, more preferred over 90%, most preferred over 96%.
  • the CHF has a low lipid content and a low water activity (a w ⁇ 0.79) this fraction could be stored in a temperature below 4° C. for more than 12 months without any significant microbial growth or other degradation of the product.
  • the lipid oxidation in marine lipids proceeds relatively rapidly also during cold storage, being the reason why the process according to the invention should be conducted on fresh caught material onboard a fishing vessel.
  • the PPC may be frozen, but the best industrial and cost efficient way to provide a storage-stable product is, however, to dry the PPC, preferably in a gentle drying process with low temperatures (0-15° C., e.g. 1-10° C. or 2.8° C.) and under inert conditions. This gives a reduced oxidative stress on the long-chain poly-unsaturated omega-3 fatty acids (n-3 LCPUFA).
  • a lyophilisation process is also well suited since this avoids an over-heating of the product.
  • an improved product may be obtained by vacuum (pressure . . . ? mm Hg) is and low temperature (within the interval supra) and scraped surface drying of the PPC.
  • the unique low-fluoride-containing dried PPC product is well suited for pharrna production, human consummation such as nutraceutical products, food ingredient products, human consummation in general and special ingredients in feed.
  • the dried PPC is well suited for further downstream processing of the separate is substances of interest, especially since water has been removed. This makes a succeeding extraction process significantly simpler and more cost efficient compared to extraction of raw/thawed material.
  • the storage stability of the PPC meal is extraordinarily good on account of low initial values of oxidation products being present in the fresh catch.
  • the PPC meal is preferably produced in an inert atmosphere, packed under an inert atmosphere and in a packaging with a good oxygen barrier, prolonging the storage life period significantly.
  • a fraction of 500 kg from a 10 ton catch of Antarctic krill was immediately (maximally 20 minutes after catch) shredded through a knife cutter into pieces of a particle size of 3-6 mm at a temperature of 1-2° C., and immediately thereafter added 500 litres fresh water and alkalase in an amount of 0.2% (w/w) of the krill wet weight and then heated to a temperature of 55-60° C.
  • the enzyme was allowed to function for 45 minutes at said temperature.
  • the material was thereafter fed to a decanter operated at the following conditions; Temperature: 90° C., gravity force at 1400 g and with a feed rate of 1.2 ton krill/water/enzyme suspension per hour causing a separation of the fluorine-containing fine particles and a liquid proteinaceous fraction exiting the decanter.
  • the material was then heated to a temperature of 93° C. in order to terminate the enzymatic hydrolysis and denaturing/agglomerating the insoluble protein together with polar lipids for following separation.
  • the liquid proteinaceous fraction was immediately thereafter transferred to a separation step by a specially designed decanter (sedicanter) mentioned supra, separating the solid phase containing insoluble proteins and polar lipids concentrate (PPC) from the hydrolysate.
  • the PPC are thereafter mixed with a food-grade anti-caking agent, dried in a thin film vacuum drier and packed in air tight bags under nitrogen atmosphere.
  • the aqueous soluble protein (hydrolysate) and neutral lipid phase are feed to a separator separating the neutral lipid phase from the hydrolysate.
  • the oil is stored in air tight containers under nitrogen atmosphere.
  • the hydrolysate are continuously feed into a flash evaporator for dewatering/concentration giving a concentrated hydrolysate fraction (CHF) with dry weight of 55-70% and stored in air tight containers under nitrogen atmosphere.
  • CHF concentrated hydrolysate fraction
  • FIG. 1 A specially designed decanter with an extended separation path. This example is a FLOTTWEG SEDICANTER® horizontal decanter centrifuge.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Insects & Arthropods (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Diabetes (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Meat, Egg Or Seafood Products (AREA)
  • Fodder In General (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Fluorine being present in the exoskeleton of crustaceans, and especially krill represents a problem for using hill as a source for food, feed, food additives and/or feed additives. There has been developed a process for removing such fluorine from krill material by subjecting the krill to disintegration and to an enzymatic hydrolysis process prior to or simultaneously with a removal of the exoskeleton particles producing a fluorine-reduced product. Inherent in the disclosed process is the ability to process krill material with a high polar lipid content for producing superior quality, low fluorine, products suitable for the food and feed as well as the pharmaceutical, neutraceutical and cosmetic industry.

Description

  • This application is a continuation of co-pending U.S. patent application Ser. No. 15/891,985 filed on Feb. 8, 2018 which is a Continuation of U.S. patent application Ser. No. 14/923,954 filed on Oct. 27, 2015 (now issued as U.S. Pat. No. 9,907,321), which is a Continuation of U.S. patent application Ser. No. 14/074,392 filed on Nov. 7, 2013 (now issued as U.S. Pat. No. 9,167,832), which is a Divisional of U.S. patent application Ser. No. 13/063,488, with a 371 date of May 24, 2011 (now issued as U.S. Pat. No. 8,758,829) which is a US Natl Entry of PCT/NO2009/000322 filed Sep. 14, 2009 which claims priority to NO 20083906 filed on Sept. 12, 2008.
  • The present invention concerns an industrial method for removing fluoride and unwanted trace elements contained in crustaceans. The process is especially favourable and effective for substantial reduction of fluoride from krill by removing substantial amounts of the shell and carapace and forming several fractions from the crustaceans, inter alia a fluoride-reduced lipidaceous and proteinaceous emulsion. The invention also solves processing problems related to such emulsions caused by high lipid content, and especially high polar lipid content with lipids such as phospholipids. The produced end products obtained by the process according to the invention may be used per se as food or feed, as food/feed additives, as nutraceuticals, cosmaceuticals/cosmeticals or pharmaceuticals or used as starting materials for further downstream processing. The process according to the invention is also suitable to be used on other crustaceans than krill.
  • BACKGROUND FOR THE INVENTION
  • A problem not sufficiently addressed by the prior art is the fluoride and unwanted trace material content included in the shell, carapace and crust of crustaceans. In the disclosure infra the notion “krill” is used, signifying that krill is one kind of crustaceans wherein this problem is especially accentuated, but also other types of crustaceans are relevant in the present invention. Another problem related to krill, and especially the Antarctic krill, is the high content of polar lipids during the second half of the fishing season.
  • As mentioned a well known problem when processing Antarctic krill (Euphausia superba) is that the lipid content, and especially the polar lipid content such as phospholipids, can be very high during the second half of the season from April/May- to June/July.
  • As a rule for most known animal species the content of polar lipids, such as phospholipids, is nearly constant and variations in total lipid content is caused by variations in the content of neutral lipids such as triglycerides. Despite these very high variations of lipid content, the ratio between triglycerides and phospholipids is nearly constant for the Antarctic krill. It is also well known that lipids, and especially phospholipids, cause strong emulsions. Such emulsions cause problems in the separation of the fractions in the processes, such as hydrolysis, which involves separation of lipid- and proteinaceous fractions. The developed process according to the present invention also solves the emulsion problems by creating an aggregate of non-soluble proteins and phospholipids before and during the last separation step in the process.
  • Krill represent a vast resource for biological material. The amount of Antarctic krill (Euphausia superba) which live in the Antarctic Ocean, although varying depend on the calculation method and investigation, is roughly 1 to 2×109 tons and the possible weight of catch is estimated at 5 to 7×106 tons. These small crustaceans that live in the cold waters around the Antarctic, are interesting as a source for proteins, lipids such as is phospholipids, poly-unsaturated fatty acids etc., chitin/chitosan, astaxanthin and other carotenoids, enzymes and other materials, and several methods for isolating such materials have been developed.
  • The background for the present invention resides in the circumstance that krill accumulate fluoride in their shell, increasing the fluoride amount of any produced is material either through the inclusion of such shell parts, through extraction processes not taking into account the transfer of fluoride to the final material through the extraction steps or through time-consuming processes wherein free fluoride or loosely bound fluoride may diffuse from the shell material and into the further processed material, making the end product high in fluoride ions or fluorinated compounds.
  • Fluoride is a compound that in high concentrations is detrimental for the health of land-dwelling animals as well as all kind of fish and crustaceans and especially fresh-water fish species, since fluoride atoms have the tendency of entering into the bone structure of such organisms and creating fluorosis (a weakening of the bone structure similar in its effect to osteoporosis, but different since it is the bone structure itself, and not the porosity of the bone that is affected). Skeletal fluorosis is a condition characterised by skeletal abnormalities and joint pain. It is caused by pathological bone formation due to the mitogenic action of fluoride on osteoblasts. In its more severe forms, skeletal fluorosis causes kyphosis, crippling and invalidism. Secondary neurological complications in the form of myelopathy, with or without radiculopathy, may also occur. High fluoride intake has also been shown to be toxic to the male reproductive system in rat experiments, and in humans high fluoride intake and symptoms of skeletal fluorosis have been associated with decreased serum testosterone levels.
  • Consequently, if krill material is to be used as a starting material for food or feed products, precautions have to be taken for removing fluoride through the processing steps. However, the diffusion of fluoride and the presence of miniscule krill shell material represent a problem that is most difficult to overcome when processing krill material in an industrial scale.
  • Additionally it can be advantageous to reduce the ash content including trace elements from the proteinaceous material produced from the catch.
  • Thus there exists a need for an industrial method producing proteinaceous materials and lipids from krill wherein fluoride is cost-effectively removed for producing products with significantly reduced fluoride content.
  • Polar lipids such as phospholipids are essential for cell membranes and are also called membrane lipids. Normally the total lipid content in fish and other aquatic and terrestrial animals varies due to variations in feed accessibility through the year. The variations is normally caused by variations in the content of non polar lipids in the organisms which is stored and used as energy reserve's during periods of low or no access to feed, while the content of phospholipids is relatively constant. However, for Antarctic krill this is different because the relative content of triglycerides and phospholipids remains almost constant also when the fat content in this species varies from 2% up to 10% during the fishing/harvesting season. This means that the phospholipid content in raw Antarctic krill can be up to 5%. Lipids, and especially polar lipids as phospholipids, are known to create strong emulsions in industrial processing according to prior art which involves heating-, stirring- and separation steps such as a hydrolysis process. This emulsion will normally cause problems in separating the lipid- and protein fractions.
  • Thus there also exists a need for an industrial method for elimination of separation problems caused by emulsion when producing proteinaceous concentrates from krill.
  • There also is a need for a versatile industrial method addressing both the removal of fluorine from the processed krill material and the varying contents of polar lipids in the krill material.
  • PRIOR ART
  • In FR patent 2835703 (Applicant: Techniagro, Inventor: Panni, J. et al., Mar. 15, 2002) there is disclosed an isolation method for obtaining a protein hydrolysate from a marine source such as filleting discards and other marine waste materials (among others shellfish). The patent includes steps of crushing, hydrolysis, filtration and centrifugation, but is not particularly suited for processing krill and certainly does not concern itself with the problem of removing fluoride from the material.
  • Also the sequence of steps in any processing method has an impact on the quality and composition of the final product. Thus the above mentioned process according to Fanni does not produce, nor is suitable, for removing fluoride from the processed material.
  • Also the process according to Fanni does not address the problem with high polar lipid content in the processed material, and offers no solution to this problem.
  • In EP patent 1 417 211 B1 (Neptune Technologies & Bioresources, Inc.) there is disclosed a composition including a particular phospholipid and a particular flavonoid and the use thereof for producing a medicament suitable for treating or preventing a number of diseases. The composition is produced from natural marine or aquatic sources, inter alia krill (Euphausia superba, Antarctic krill and Euphausia pacifica, Atlantic krill) as well as krill from the Indian Ocean, Mauritius Islands and or Religion Island off Madagaskar, the Canadian West coast, the Japanese Coast, the Gulf of St. Lawrence and the Bay of Fundy and other krill habitats. The method for extracting the relevant phospholipid and flavonoid is described to be by a method carried out by successive acetone and alcohol treatments after an initial milling/crushing step. Again there are no precautions taken for removing the fluoride from the material, and actually the produced product, albeit containing the indicated phospholipid and falvonoid, has in no way the same composition as the product according to the present invention at least for the reason that the present process includes no acetone or alcohol extractions, and also includes a number of mechanical steps for removing solid krill material from the initial krill mass.
  • In GB patent 2 240 786 (Korea Food Research Institute) the problem with the high fluoride content of krill is recognized, but there is proposed passing electric current through pulverized krill for removing fluoride using aluminium electrodes, not taking into account the problem with actually removing the fine particles from the crushed krill substance, thus potentially removing the free fluoride but instead creating other problems concerning the removal of the fine particles and also not taking into account the rather large amounts of bound fluoride that still is present in the miniscule shell particles remaining in the electrolysed material.
  • In U.S. Pat. No. 5 053 234 (Anderson et al.) there is disclosed a proteinaceous product produced through a process involving a milling stage, a hydrolyzing stage using proteolytic enzymes, an inactivating stage involving heating of the material and simultaneously producing an oil through the heating, a screening stage for removing water from the product, and a subsequent oil-separation stage for removing oil to form the final product. Again nothing is indicated concerning removing fluoride from the material.
  • GENERAL DISCLOSURE OF THE INVENTION
  • The present invention provides an industrial method for processing catches of krill to comprising a number of steps presenting a very early and substantially complete removal of crust, carapace and shell and thereby a substantial removal of fluoride from the krill material. The method also prevents separation problems caused by emulsions when processing a raw material with high content of phospholipids.
  • The method according to the present invention is initiated immediately subsequent to decking a catch of krill. It is of importance that the method according to the present invention is initiated as soon as possible after the catch of krill has been decked since fluoride immediately starts to leak/diffuse from the crust and carapace into the flesh and juices from dead krill.
  • When using the term “immediately” in connection with starting the process according to the present invention this relates to the period from decking the krill catch and to the initial disintegration of the krill (see infra). This period of time should be kept to a minimum, and should preferably not exceed 60 minutes, more preferred not exceed 30 minutes, even more preferred not exceed 15 minutes, and should include a direct transfer of the krill catch from the trawl bag/net to a suitable disintegrator. A disintegrator of the krill material may be a conventional pulping, milling, grinding or shredding machine.
  • The krill catch is initially loaded into an apparatus for disintegration of the raw material through e.g. pulping/milling/grinding/shredding. The temperature of the disintegration process is around the ambient temperature of the water, i.e. between −2 and +10° C., preferably around +0° C. to +6° C., and may be performed by any convenient disintegration method. This disintegration process is also conventionally done by the previous known processing methods, and represents one of the obstacles according to the prior art because it produces large amounts of shell and crust debris from the krill mixing in the milled material and producing a disintegrated paste with a high fluoride content. However, this high fluoride content is one of the reasons why the prior art processed krill material has limited applications and is less suitable for food, feed or corresponding food or feed additives compared to other marine raw materials e.g. pelagic fish.
  • According to the present invention the krill material is divided into a particle size suitable for a further separation step for not interfering with the subsequent processing steps.
  • The disintegrating process is performed continuously and causes a particles sizes up to 25 mm, preferred particle size is 0.5-10 mm and more preferred 1.0-8 mm. The particle size distribution represents one of the aspects of the invention because the fluoride has a tendency to leak out of the milled material and mingle with the rest of the raw material. However, this lealdng process takes time and is not as rapid as being preventive for a subsequent enzymatic hydrolysis step, provided the hydrolysis step is is performed within specific parameters with respect to time and optimal or near-optimal conditions such as pH and temperature and optionally with the addition of co-factors suck as specific ions depending on the used enzymes.
  • The temperature of the disintegrated material shall according to the present invention be elevated to a temperature suitable for the subsequent enzymatic hydrolysis. The 20 temperature shall be increased as soon as possible (within seconds [e.g. 1-300 seconds, more preferred 1-100 seconds, even mo preferred 1-60 seconds, most preferred 1-10 seconds]) subsequent to the disintegrating step for reducing the processing time and thereby preventing diffusion of fluoride and for preparing the material for the enzymatic hydrolysis.
  • According to the present invention enzymes may be added directly to the disintegrated material or through the added water or both, before, during or after the disintegration process.
  • According to the present invention exogenous proteolytic enzymes (e.g. alkalase, neutrase, and enzymes derived from microorganisms [Bacillus subtilis, Aspergillus niger, etc] or plant species) shall be added before, during or after the disintegration, and before, during or after the heating of the disintegrated material. The added enzyme(s) may be in the form of one single enzyme or a mixture of enzymes. The conditions of the hydrolysis should match the optimal hydrolytic conditions of the added enzyme(s) and the selection of optimal conditions for the selected exogenous hydrolytic enzyme(s) is known to the person skilled in the art. As an example the exogenous enzyme alkalase having a pH optimum of about 8, a temperature optimum of 60° C. and a hydrolysis time of 40-120 minutes. The selected enzymes, or combination of enzymes, should also be chosen for reducing emulsions caused by high content of phospholipids in the raw material.
  • The efficient amount of proteolytic enzyme(s) will be set after a process- and product optimization, and will also depend on the efficiency of the specific chosen commercial enzyme or mix of enzymes. A typical amount by weight of commercial enzymes, as a ratio of the amount of the weight of the disintegrated raw material, are preferably between 0.5% and 0.05%, more preferably between 0.3% and 0.07% and most preferable between 0.2% and 0.09%. Fresh caught krill is known for rapid and uncontrolled autolysis by endogenous (natural) enzymes.
  • The reason for adding exogenous enzymes is to take control of, and guide, the is breakdown of the proteinaceous material in the disintegrated substance as well as aiding in speeding up/accelerating the hydrolysis of the material (see infra) on account of avoiding/preceding the leaking of fluorine from the shell, carapace and crust as mentioned supra. The enzymes, or the combination of enzymes, should also be carefully chosen to reduce emulsion in the production process. Enzymes may be selected from exo- and/or endopepdidases. If a mixture of enzymes is used, such a mixture may also include one or more her chitinases for subsequently making the chitin-containing fraction(s) more amenable to further downstream processing. If chitinases are used care must be taken for not increasing the leakage of fluorine from the shell/crust/carapace of the krill into the other fractions. However, since such fluorine leakage takes time, it is possible to perform such an enzymatic treatment within the time parameters indicated supra. A more convenient alternative to including chitinases in the enzyme mix of the initial hydrolysis step will be to process the separated chitin-containing fraction subsequently to the separation step.
  • As it is important to avoid the leaking of fluoride from the milled material, and since the leaking to some degree is related to the increased surface area created through the disintegrating step, the enzymatic hydrolysis step should be finished within a time interval of 100 minutes, preferably within 60 minutes, most preferred within 45 minutes calculated from the addition of the endogenous enzyme(s). The amount of enzyme(s) added is related to the type of enzyme product used. As an example it may be mentioned that the enzyme alkalase may be added in an amount of 0.1-0.5% (w/w) of the raw material. This should be taken into context with the added endogenous enzymes since the addition of more enzymes will reduce the time interval of the hydrolytic step. As mentioned supra the time of the hydrolytic step is one of the crucial features of the present process since a short hydrolysis time reduces the diffusion time of fluorine from shell, carapace and crust particles. The hydrolytic enzymatic processing step is intended to remove the binding between the soft tissue of the krill to the external shell, crust and carapace of the crustacean.
  • Subsequent to or together with the hydrolytic processing step the krill material is passed through a particle removal device operating through a gravitational force such as a decanter. This separation step removes the fine particles containing a considerable amount of the fluoride from the hydrolysed or hydrolysing krill material. The decanter is operated with a g force between 1,000 and 1,800 g, more preferably between 1,200 and 1,600g and most preferably between 1,300 and 1,500g. Though this particle removal step a substantial amount of fluorine is removed from the proteinaceous krill fraction. The reduction of fluorine on a dry weight basis as compared to conventional krill meal, with a typical fluorine content of 1,500 p.p.m, may be up to 80%, even more preferred up to 85%, most preferred up to 95%.
  • The enzymatic hydrolysis may be terminated by heating of the hydrolysing material (incubate) to a temperature over 90° C., preferably between 92-93° C. and most preferred between 92-95° C., prior to, during or after the separation step, as long as the hydrolysis duration lies within the above given boundaries. The hydrolysis is terminated before, during or after the fine particle removal step, most preferred after the fine particle removal step. The temperature of the decanter particle removal step will in one embodiment depend on the optimal activity temperature of the enzyme (in the case as where the enzymatic hydrolysis step is terminated by heating after the fine particle separation step).
  • The fluorine content in the prior art processed krill protein material has limited applications and are less suitable for food or feed or corresponding food or feed additives, as mentioned supra but the fluorine content of the removed shell material is not preventive for further separation/purification of this fraction. Thus materials such as chitin, chitosan and astaxanthin may be isolated from the separated shell material. Such isolation procedures are known within the art. Steps may also be taken for removing the fluorine from the isolated shell material e.g. through dialysis, nanofiltration, through electrophoresis or other appropriate technologies.
  • The hydrolytic enzyme(s) is/are deactivated. Such deactivation may be performed in different ways, such as adding inhibitors, removing co-factors (e.g. crucial ions through dialysis), through thermal inactivation or any other deactivating means. Among this thermal inactivation, as mentioned supra, is preferred by heating the proteinaceous material to a temperature where the hydrolytic enzymes become denatured and deactivated. However, if a product where the relevant native proteins are not denatured is wanted, other means than heating for deactivating the hydrolytic enzymes should be selected.
  • The proteinaceous material exiting the decanter forms a de-fluorinated incubate and to may be separated forming a Phospholipids/Peptide Complex (PPC), a lean hydrolysate fraction as food or feed additives and a lipid fraction mainly consisting of neutral lipids.
  • The PPC is rich in lipids, like a smooth cream with no particles, and is well suspended in the proteinaceous material. This gives small density differences in the material and makes it difficult to separate with common centrifugal separators and decanters. This is especially accentuated with krill catches during the second half of the fishing season.
  • Ordinary disc centrifugal separators would not work properly since emptying and necessary cleaning cycles with water will disturb separation zones, cause emulsions in products with high phospholipids content, and result in low dry matter concentrations of PPC. Standard decanters would not have possibility to separate due to low g force, short separation zone and intermixing of light and heavy phase at the discharge of heavy phase from the machine. The separation of the proteinaceous material into sub-fractions will therefore preferably be performed by a specially designed horizontal decanter centrifuge with an extended separation path as shown in FIG. 1 below.
  • The specially designed decanter is essentially a decanter centrifuge but with some novel differences. As for ordinary decanters, the feed enters the bowl through a central placed feed pipe in the middle of the separation zone. In this special decanter the feed enters at the end and at the opposite side of the outlet (1.). This gives the feature of a considerably longer clarification/separation zone than ordinary decanters and utilizes the total available separation length (2.) of the machine. The drive is able to impart high g-forces: 10 000 g for small machines and 5 000 to 6 000 g for high capacity machines, to facilitating the separation of very fine, slow-settling PPC without emulsification. The concentrated PPC will be subjected to the highest g-force just before entering under the baffle (3.). The different liquid layers from PPC are concentrated gradually and the PPC can solely escape under the baffle, be pressurised by the g force and pushed out by the machine (4). The concentration of the PPC to about 27-30% dry matter makes the is downstream processing efficient in terms of operating/robustness and as well economically considering both yield and costs for drying of PPC to a meal. It is also of importance to have a good separation in this step to get a lean hydrolysate without disturbing, macromolecules being able to concentrate the hydrolysate by evaporation to a final concentration of more than 60%.
  • The lipid content in the PPC on dry matter basis is reflected by the seasonal variations of the lipid content in the raw material and is typically around 50%. The fluorine reduction on dry weight basis compared to commercial krill meal in the PPC is preferably over 70%, more preferred over 75% and most preferred over 80%.
  • The dry matter content in the CHF (Concentrated Hydrolysate Fraction) after separation and after evaporation is preferably over 45%, more preferred over 50% and most preferred over 55%. The lipid content in the CHF dry matter basis is preferably below 5%, more preferred below 4% and most preferred below 3%. The fluorine reduction on dry weight basis compared to commercial krill meal in the CHF is preferably over 85%, more preferred over 90%, most preferred over 96%.
  • While the CHF has a low lipid content and a low water activity (aw <0.79) this fraction could be stored in a temperature below 4° C. for more than 12 months without any significant microbial growth or other degradation of the product.
  • The lipid oxidation in marine lipids proceeds relatively rapidly also during cold storage, being the reason why the process according to the invention should be conducted on fresh caught material onboard a fishing vessel. The PPC may be frozen, but the best industrial and cost efficient way to provide a storage-stable product is, however, to dry the PPC, preferably in a gentle drying process with low temperatures (0-15° C., e.g. 1-10° C. or 2.8° C.) and under inert conditions. This gives a reduced oxidative stress on the long-chain poly-unsaturated omega-3 fatty acids (n-3 LCPUFA). A lyophilisation process is also well suited since this avoids an over-heating of the product. Furthermore, an improved product may be obtained by vacuum (pressure . . . ? mm Hg) is and low temperature (within the interval supra) and scraped surface drying of the PPC.
  • The unique low-fluoride-containing dried PPC product is well suited for pharrna production, human consummation such as nutraceutical products, food ingredient products, human consummation in general and special ingredients in feed.
  • The dried PPC is well suited for further downstream processing of the separate is substances of interest, especially since water has been removed. This makes a succeeding extraction process significantly simpler and more cost efficient compared to extraction of raw/thawed material.
  • The storage stability of the PPC meal is extraordinarily good on account of low initial values of oxidation products being present in the fresh catch. The PPC meal is preferably produced in an inert atmosphere, packed under an inert atmosphere and in a packaging with a good oxygen barrier, prolonging the storage life period significantly.
  • EXAMPLE
  • A fraction of 500 kg from a 10 ton catch of Antarctic krill was immediately (maximally 20 minutes after catch) shredded through a knife cutter into pieces of a particle size of 3-6 mm at a temperature of 1-2° C., and immediately thereafter added 500 litres fresh water and alkalase in an amount of 0.2% (w/w) of the krill wet weight and then heated to a temperature of 55-60° C.
  • The enzyme was allowed to function for 45 minutes at said temperature. The material was thereafter fed to a decanter operated at the following conditions; Temperature: 90° C., gravity force at 1400 g and with a feed rate of 1.2 ton krill/water/enzyme suspension per hour causing a separation of the fluorine-containing fine particles and a liquid proteinaceous fraction exiting the decanter. The material was then heated to a temperature of 93° C. in order to terminate the enzymatic hydrolysis and denaturing/agglomerating the insoluble protein together with polar lipids for following separation. The liquid proteinaceous fraction was immediately thereafter transferred to a separation step by a specially designed decanter (sedicanter) mentioned supra, separating the solid phase containing insoluble proteins and polar lipids concentrate (PPC) from the hydrolysate.
  • The PPC are thereafter mixed with a food-grade anti-caking agent, dried in a thin film vacuum drier and packed in air tight bags under nitrogen atmosphere. The aqueous soluble protein (hydrolysate) and neutral lipid phase are feed to a separator separating the neutral lipid phase from the hydrolysate. The oil is stored in air tight containers under nitrogen atmosphere.
  • The hydrolysate are continuously feed into a flash evaporator for dewatering/concentration giving a concentrated hydrolysate fraction (CHF) with dry weight of 55-70% and stored in air tight containers under nitrogen atmosphere.
  • A typical mass balance for processing of raw lean Antarctic krill is shown in table 1 below:
  • TABLE I
    Mass balance for processing of raw lean Antarctic krill.
    From 500 kg Dry weight
    Fraction raw krill in fraction
    PPC (Phospholipids/Peptide 80 kg 28%
    Complex)
    Dried PPC (with anti-caking 25 kg 97%
    agent)
    Hydrolysate 770 kg 6.1% 
    CHF (Concentrated 78 kg 60%
    Hydrolysate Fraction)
    Fluorine-containing fine 45 kg 40%
    particles (shell and carapace
    fragments)
    Neutrals oils <5 kg 100% 
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1. A specially designed decanter with an extended separation path. This example is a FLOTTWEG SEDICANTER® horizontal decanter centrifuge.

Claims (18)

We claim:
1. A method, comprising:
a) providing a crustacean catch;
b) adding fresh water to said crustacean catch;
c) disintegrating said crustacean catch with a disintegration apparatus in said fresh water to produce a disintegrated crustacean catch comprising shell and carapace particles, wherein said particles has a size not larger than 25 mm;
d) adding one or more proteolytic enzymes;
e) hydrolyzing said disintegrated crustacean catch with said one or more proteolytic enzymes to produce a hydrolyzed crustacean material; and
f) separating said shell and carapace particles from said hydrolyzed crustacean material with a particle removal device to produce a proteinaceous crustacean fraction having an at least 85% reduction in fluorine content as compared to a fluorine content of 1500 ppm in a conventional crustacean meal.
2. The method of claim 1 wherein said particle removal device removes a solids fraction from said hydrolyzed crustacean material.
3. The method of claim 1, wherein said hydrolyzing has a duration selected from the group consisting of no longer than 100 minutes and within 60 minutes.
4. The method of claim 1, further comprising deactivating said one or more proteolytic enzymes.
5. The method of claim 4, wherein said deactivating occurs at a step selected from the group consisting of before said separating, during said separating and after said separating.
6. The method claim 1, wherein said proteinaceous crustacean fraction comprises a polar lipids concentrate.
7. The method of claim 6, wherein said polar lipids concentrate comprises phospholipids.
8. The method of claim 1, wherein said disintegrated crustacean catch has a particle size ranging between approximately 0.5-10 mm.
9. The method of claim 1, wherein said crustacean catch and said fresh water are in a ratio of 0.5 to 1.5 (w/w).
10. The method of claim 1, wherein said particle removal device comprises a long clarification/separation zone and is operated with a gravitational separation force between 1,000 and 1,800 g.
11. The method of claim 1, wherein said particle removal device is a sedicanter.
12. The method of claim 1, wherein said fresh water is heated within 1-300 seconds after said disintegrating.
13. The method of claim 1, wherein said one or more proteolytic enzymes are selected from the group consisting of alkalase, neutrase, microorganism enzymes and plant enzymes.
14. The method of claim 4, wherein said deactivating comprises heating said fresh water to a temperature over 90° C.
15. The method of claim 1, wherein said crustacean catch is a fresh crustacean catch.
16. The method of claim 1, wherein said crustacean catch is selected from the group consisting of a krill catch and an Antarctic krill catch.
17. The method of claim 1, wherein said method is performed on a fishing vessel.
18. The method of claim 17, wherein said crustacean catch has been immediately landed on said fishing vessel.
US16/895,576 2008-09-12 2020-06-08 Fresh water methods for reduced fluorine crustacean compositions Abandoned US20200296991A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/895,576 US20200296991A1 (en) 2008-09-12 2020-06-08 Fresh water methods for reduced fluorine crustacean compositions

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
NO20083906 2008-09-12
NONO20083906 2008-09-12
US13/063,488 US8758829B2 (en) 2008-09-12 2009-09-14 Reduced fluoride content phospholipids/peptide complex meal
PCT/NO2009/000322 WO2010030193A1 (en) 2008-09-12 2009-09-14 Process for reducing the fluoride content when producing proteinaceous concentrates from krill
US14/074,392 US9167832B2 (en) 2008-09-12 2013-11-07 Low flouride crustacean concentrated hydrolysate fraction compositions
US14/923,954 US9907321B2 (en) 2008-09-12 2015-10-27 Separating crustacean polar phospholipid compositions without emulsification
US15/891,985 US10701954B2 (en) 2008-09-12 2018-02-08 Reduced fluorine crustacean polar phospholipid compositions
US16/895,576 US20200296991A1 (en) 2008-09-12 2020-06-08 Fresh water methods for reduced fluorine crustacean compositions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/891,985 Continuation US10701954B2 (en) 2008-09-12 2018-02-08 Reduced fluorine crustacean polar phospholipid compositions

Publications (1)

Publication Number Publication Date
US20200296991A1 true US20200296991A1 (en) 2020-09-24

Family

ID=42005314

Family Applications (5)

Application Number Title Priority Date Filing Date
US13/063,488 Active 2030-07-26 US8758829B2 (en) 2008-09-12 2009-09-14 Reduced fluoride content phospholipids/peptide complex meal
US14/074,392 Active US9167832B2 (en) 2008-09-12 2013-11-07 Low flouride crustacean concentrated hydrolysate fraction compositions
US14/923,954 Active US9907321B2 (en) 2008-09-12 2015-10-27 Separating crustacean polar phospholipid compositions without emulsification
US15/891,985 Active 2029-11-29 US10701954B2 (en) 2008-09-12 2018-02-08 Reduced fluorine crustacean polar phospholipid compositions
US16/895,576 Abandoned US20200296991A1 (en) 2008-09-12 2020-06-08 Fresh water methods for reduced fluorine crustacean compositions

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US13/063,488 Active 2030-07-26 US8758829B2 (en) 2008-09-12 2009-09-14 Reduced fluoride content phospholipids/peptide complex meal
US14/074,392 Active US9167832B2 (en) 2008-09-12 2013-11-07 Low flouride crustacean concentrated hydrolysate fraction compositions
US14/923,954 Active US9907321B2 (en) 2008-09-12 2015-10-27 Separating crustacean polar phospholipid compositions without emulsification
US15/891,985 Active 2029-11-29 US10701954B2 (en) 2008-09-12 2018-02-08 Reduced fluorine crustacean polar phospholipid compositions

Country Status (19)

Country Link
US (5) US8758829B2 (en)
EP (4) EP3238551B1 (en)
JP (2) JP6139056B2 (en)
KR (2) KR101741763B1 (en)
CN (1) CN102170795B (en)
AU (1) AU2009292317B2 (en)
BR (1) BRPI0918538A2 (en)
CA (1) CA2737305C (en)
CL (1) CL2011000508A1 (en)
DK (3) DK2334199T3 (en)
ES (3) ES2639959T3 (en)
IL (1) IL211708A (en)
MX (1) MX2011002699A (en)
NZ (1) NZ592160A (en)
PL (1) PL2334199T3 (en)
PT (2) PT3516966T (en)
RU (1) RU2498620C2 (en)
WO (1) WO2010030193A1 (en)
ZA (1) ZA201102676B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202023103877U1 (en) 2023-07-11 2023-07-26 Abhijit Dey A system for removing transition ions from water

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8557297B2 (en) 2008-09-12 2013-10-15 Olympic Seafood, As Method for processing crustaceans and products thereof
US9814256B2 (en) 2009-09-14 2017-11-14 Rimfrost Technologies As Method for processing crustaceans to produce low fluoride/low trimethyl amine products thereof
JP6139056B2 (en) 2008-09-12 2017-05-31 リムフロスト テクノロジーズ エーエス Process for reducing fluoride content when producing proteinaceous concentrates
CN102485016B (en) * 2010-12-06 2013-03-13 中国水产科学研究院东海水产研究所 Preparation method of euphausia superba protein peptide mixture
CN102524510B (en) * 2010-12-14 2014-03-12 大连工业大学 Preparation method of low-fluorine Euphasia superb protein base stock
KR101045258B1 (en) * 2011-02-11 2011-06-30 대덕에프알디(주) Krill oil and method for manufacturing the same
US20120231087A1 (en) 2011-03-07 2012-09-13 Olympic Seafood Compositions And Methods for Nutritional Supplementation
CN102342541B (en) * 2011-09-02 2013-02-20 中国水产科学研究院东海水产研究所 Method for reducing content of fluorine in enzymatic hydrolysate of Euphausia superb by using calcined lime
CN102559825A (en) * 2012-01-18 2012-07-11 辽宁省大连海洋渔业集团公司 Method for preparing antarctic krill low-fluorine hydrolysis polypeptide
CN103238723B (en) * 2012-02-10 2014-10-29 上海市水产研究所 Preparation method of low-fluorine euphausia superb hydrolyzed protein powder
KR101451078B1 (en) * 2012-04-19 2014-10-16 부경대학교 산학협력단 Decreasing Methods of Fluoride Content in Antarctic Krill by Different Physicochemical Treatment
WO2014184655A1 (en) * 2013-02-07 2014-11-20 Olympic Seafood As Methods for using crustacean phospholipid-peptide-protein complexes
US9826757B2 (en) 2013-03-15 2017-11-28 Advance International Inc. Automated method and system for recovering protein powder meal, pure omega 3 oil and purified distilled water from animal tissue
CN105433293B (en) * 2015-12-07 2017-04-05 中国海洋大学 The krill shrimp gruel of enrichment phosphatide and its production method
CN106798073A (en) * 2017-01-12 2017-06-06 广东泰宝医疗器械技术研究院有限公司 One kind method for extracting proteins from krill
CN107125492A (en) * 2017-04-28 2017-09-05 广东越群海洋生物研究开发有限公司 Application of the euphausia superba powder in terms of madai opening material is prepared
EP3720294A1 (en) * 2017-12-04 2020-10-14 Rimfrost Technologies AS Method for producing a protein phospholipid complex from a crustacean catch
BR112020015369A2 (en) 2018-01-30 2020-12-08 Aker Biomarine Antarctic As MARINE PROTEIN HYDROLYZE WITH LOW FLUORIDE AND TRIMETHYLAMINE CONTENT
EP3807324A1 (en) 2018-06-12 2021-04-21 Rimfrost Technologies AS Krill-derived chitin products and methods of making same
CN110720558A (en) * 2019-09-12 2020-01-24 浙江海洋大学 Preparation method of piglet feed additive based on euphausia superba
WO2022175557A1 (en) 2021-02-22 2022-08-25 Rimfrost Technologies As Treatment of aquatic animals
CN114181988B (en) * 2021-12-23 2024-07-05 武汉梁子湖水产品加工有限公司 Euphausia superba meat protein peptide and preparation method thereof

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1383223A (en) 1972-05-22 1975-02-05 Nestle Sa Soluble protein
JPS5264453A (en) * 1975-11-21 1977-05-27 Kiyokuyou Kk Method of separating protein from euphausiid
JPS5823053B2 (en) * 1979-04-19 1983-05-12 東海区水産研究所長 Method for separating salt-soluble proteins from krill
US4505936A (en) * 1983-09-14 1985-03-19 Louisiana State University Process for the utilization of shellfish waste
US5053234A (en) * 1984-04-30 1991-10-01 Advanced Hydrolyzing Systems, Inc. Method for producing a proteinaceous product by digestion of raw animal parts
NO176323C (en) * 1988-11-18 1995-03-15 Mikalsen Ester Process for Extraction of Astaxanthin, Related Carotenoids and Astaxanthin Esters from Krill, Shrimp and Other Crustaceans
JP2909508B2 (en) 1989-02-14 1999-06-23 マルハ株式会社 Krill phospholipid fractionation method
JP2870871B2 (en) * 1989-10-23 1999-03-17 第三化成株式会社 A method for treating crustacean shells using enzymes
KR920001478B1 (en) * 1990-02-13 1992-02-15 한국식품 개발연구원 Process for reducing fluorine of euphausia superba
JP3397258B2 (en) * 1993-12-29 2003-04-14 日本水産株式会社 Calcium absorption promoting water-soluble fraction, composition containing the same, and calcium absorption promoting additive
DE69704963T2 (en) 1996-01-18 2002-01-24 Rapanelli Fioravante S.P.A., Foligno Horizontal centrifuge for optimal oil extraction
CA2197137A1 (en) * 1997-02-07 1998-08-07 Biozyme Systems Inc. Method and apparatus for co-drying krill hydrolysate, liquid marine protein and dry carrier
US6555155B2 (en) 1996-10-21 2003-04-29 Biozyme Systems, Inc. Method and apparatus for harvesting, digestion and dehydrating of krill hydrolysates and co-drying and processing of such hydrolysates
JP3408958B2 (en) * 1997-10-24 2003-05-19 旭化成株式会社 Composition containing useful substance derived from fish and shellfish and method for producing the useful substance
JP3961429B2 (en) * 1998-04-24 2007-08-22 哲夫 山根 Nutritional enhancement composition for feed or feed
CA2251265A1 (en) 1998-10-21 2000-04-21 Universite De Sherbrooke Process for lipid extraction of aquatic animal tissues producing a dehydrated residue
JP2003511093A (en) 1999-10-20 2003-03-25 ノルデュール・イーエイチエフ Protein hydrolyzate produced using marine protease
WO2002000908A2 (en) * 2000-09-25 2002-01-03 Novozymes A/S Methods for processing crustacean material
CN102319266B (en) 2001-06-18 2014-12-17 海王星技术&生物资源有限公司 krill and/or marine extracts for prevention and/or treatment of cardiovascular diseases, arthritis, skin cancer, diabetes, premenstrual syndrome and transdermal transport
DE60220415T2 (en) 2001-07-27 2008-02-14 Neptune Technologies & Bioressources Inc., Laval FLAVONOIDS AND MULTIPLE UNSATURATED NATURAL PHOSPHOLIPIDE MARITIME ORIGINS AND THEIR APPLICATIONS
FR2835703B1 (en) 2002-02-08 2006-05-05 Techniagro PROCESS FOR OBTAINING PROTEIN OIL AND HYDROLYSAT FROM A MARINE PROTEIN TISSUE SOURCE AND OIL AND PROTEIN HYDROLYSAT OBTAINED BY CARRYING OUT SAID METHOD
NO320964B1 (en) * 2004-05-26 2006-02-20 Norcape Biotechnology As Hydrolyzed marine protein product and a feed product comprising this, method of preparation and use
EP2094823A4 (en) 2006-11-16 2011-02-02 Pronova Biopharma Norge As Process for production of omega-3 rich marine phospholipids from krill
NO325805B1 (en) 2006-11-27 2008-07-21 Lars Aglen Device for pressing krill and other marine organisms
EP2095722A4 (en) * 2006-12-11 2013-02-20 Nippon Suisan Kaisha Ltd Feed using peeled krill as the starting material and method of preventing decrease in fish growth rate by using the same
EP2144618B1 (en) 2007-03-28 2013-05-15 Aker Biomarine ASA Bioeffective krill oil compositions
US8557297B2 (en) * 2008-09-12 2013-10-15 Olympic Seafood, As Method for processing crustaceans and products thereof
JP6139056B2 (en) * 2008-09-12 2017-05-31 リムフロスト テクノロジーズ エーエス Process for reducing fluoride content when producing proteinaceous concentrates
KR101616446B1 (en) 2009-10-30 2016-04-28 샤로스 리미티드 Solvent-free process for obtaining phospholipids and neutral enriched krill oils

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202023103877U1 (en) 2023-07-11 2023-07-26 Abhijit Dey A system for removing transition ions from water

Also Published As

Publication number Publication date
AU2009292317A1 (en) 2010-03-18
RU2011113689A (en) 2012-10-20
EP3516966B1 (en) 2022-11-30
EP3238551B1 (en) 2019-11-27
ES2639959T3 (en) 2017-10-30
IL211708A (en) 2015-01-29
US20160081367A1 (en) 2016-03-24
US20110217386A1 (en) 2011-09-08
US10701954B2 (en) 2020-07-07
EP2334199B1 (en) 2017-06-28
EP4159049A1 (en) 2023-04-05
AU2009292317B2 (en) 2013-09-12
US8758829B2 (en) 2014-06-24
DK2334199T3 (en) 2017-09-18
US20140178489A1 (en) 2014-06-26
CA2737305A1 (en) 2010-03-18
BRPI0918538A2 (en) 2015-10-06
JP2012501675A (en) 2012-01-26
US9167832B2 (en) 2015-10-27
CN102170795A (en) 2011-08-31
KR20110084878A (en) 2011-07-26
JP2017140026A (en) 2017-08-17
DK3516966T3 (en) 2023-02-13
ES2772753T3 (en) 2020-07-08
MX2011002699A (en) 2011-09-01
KR101741763B1 (en) 2017-06-15
EP3238551A1 (en) 2017-11-01
CN102170795B (en) 2014-10-29
EP2334199A4 (en) 2014-06-11
ES2939304T3 (en) 2023-04-20
RU2498620C2 (en) 2013-11-20
NZ592160A (en) 2012-11-30
IL211708A0 (en) 2011-06-30
EP3516966A1 (en) 2019-07-31
JP6139056B2 (en) 2017-05-31
US20180168187A1 (en) 2018-06-21
CA2737305C (en) 2016-11-08
CL2011000508A1 (en) 2011-08-19
EP2334199A1 (en) 2011-06-22
PL2334199T3 (en) 2017-11-30
KR20170019492A (en) 2017-02-21
US9907321B2 (en) 2018-03-06
PT2334199T (en) 2017-09-13
PT3516966T (en) 2023-02-20
DK3238551T3 (en) 2020-03-02
ZA201102676B (en) 2012-06-27
WO2010030193A1 (en) 2010-03-18

Similar Documents

Publication Publication Date Title
US20200296991A1 (en) Fresh water methods for reduced fluorine crustacean compositions
US9480273B2 (en) Reduced flouride crustacean de-oiled protein-phospholipid complex compositions
US10499673B2 (en) Method for processing crustaceans to produce low fluoride/low trimethyl amine products thereof

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION