US20200292814A1 - Diffractive optical elements with asymmetric profiles - Google Patents

Diffractive optical elements with asymmetric profiles Download PDF

Info

Publication number
US20200292814A1
US20200292814A1 US16/854,948 US202016854948A US2020292814A1 US 20200292814 A1 US20200292814 A1 US 20200292814A1 US 202016854948 A US202016854948 A US 202016854948A US 2020292814 A1 US2020292814 A1 US 2020292814A1
Authority
US
United States
Prior art keywords
doe
coupling
molded
substrate
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/854,948
Other versions
US11112605B2 (en
Inventor
Tuomas Vallius
Lauri SAINIEMI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Technology Licensing LLC
Original Assignee
Microsoft Technology Licensing LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Technology Licensing LLC filed Critical Microsoft Technology Licensing LLC
Priority to US16/854,948 priority Critical patent/US11112605B2/en
Assigned to MICROSOFT TECHNOLOGY LICENSING, LLC reassignment MICROSOFT TECHNOLOGY LICENSING, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAINIEMI, LAURI, VALLIUS, TUOMAS
Publication of US20200292814A1 publication Critical patent/US20200292814A1/en
Application granted granted Critical
Publication of US11112605B2 publication Critical patent/US11112605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1852Manufacturing methods using mechanical means, e.g. ruling with diamond tool, moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features

Definitions

  • DOEs Diffractive optical elements
  • gratings in one or more of the DOEs may have an asymmetric profile in which gratings are slanted (i.e., walls of the grating are non-orthogonal to the plane of the waveguide) or blazed.
  • Asymmetric gratings in a DOE can provide increased display uniformity in the optical display system by reducing the “banding” resulting from optical interference that is manifested as dark stripes in the display. Banding may be more pronounced when polymeric materials are used in volume production of the DOEs to minimize system weight, but which have less optimal optical properties compared with other materials such as glass.
  • Asymmetric gratings can further enable the optical system to be more tolerant to variations—such as variations in thickness, surface roughness, and grating geometry—that may not be readily controlled during manufacturing, particularly since such variations are in the submicron range.
  • FIG. 1 shows a block diagram of an illustrative near eye display system which may incorporate the diffractive optical elements (DOEs) with asymmetric features;
  • DOEs diffractive optical elements
  • FIG. 2 shows propagation of light in a waveguide by total internal reflection
  • FIG. 3 shows a view of an illustrative exit pupil expander
  • FIG. 4 shows a view of the illustrative exit pupil expander in which the exit pupil is expanded along two directions
  • FIG. 5 shows an illustrative arrangement of three DOEs
  • FIG. 6 shows a profile of a portion of an illustrative diffraction grating that has straight gratings
  • FIG. 7 shows an asymmetric profile of a portion of an illustrative diffraction grating that has slanted gratings
  • FIGS. 8 and 9 show an illustrative arrangement for DOE fabrication
  • FIGS. 10-12 show various illustrative asymmetric profiles for slanted gratings
  • FIG. 13 shows an illustrative method
  • FIG. 14 is a pictorial view of an illustrative example of a virtual reality or mixed reality head mounted display (HMD) device;
  • HMD head mounted display
  • FIG. 15 shows a block diagram of an illustrative example of a virtual reality or mixed reality HMD device.
  • FIG. 16 shows a block diagram of an illustrative electronic device that incorporates an exit pupil expander.
  • FIG. 1 shows a block diagram of an illustrative near eye display system 100 which may incorporate diffractive optical elements (DOEs) with asymmetric profiles.
  • Near eye display systems are frequently used, for example, in head mounted display (HMD) devices in industrial, commercial, and consumer applications. Other devices and systems may also use DOEs with asymmetric profiles, as described below, and it is emphasized that the near eye display system 100 is intended to be an example that is used to illustrate various features and aspects, and the present DOEs are not necessarily limited to near eye display systems.
  • DOEs diffractive optical elements
  • System 100 may include an imager 105 that works with an optical system 110 to deliver images as a virtual display to a user's eye 115 .
  • the imager 105 may include, for example, RGB (red, green, blue) light emitting diodes (LEDs), LCOS (liquid crystal on silicon) devices, OLED (organic light emitting diode) arrays, MEMS (micro-electro mechanical system) devices, or any other suitable displays or micro-displays operating in transmission, reflection, or emission.
  • the imager 105 may also include mirrors and other components that enable a virtual display to be composed and provide one or more input optical beams to the optical system.
  • the optical system 110 can typically include magnifying optics 120 , pupil forming optics 125 , and one or more waveguides 130 .
  • the imager does not actually shine the images on a surface such as glass lenses to create the visual display for the user. This is not feasible because the human eye cannot focus on something that is that close. Indeed, rather than create a visible image on a surface, the near eye optical system 100 uses the pupil forming optics 125 to form a pupil and the eye 115 acts as the last element in the optical chain and converts the light from the pupil into an image on the eye's retina as a virtual display.
  • the waveguide 130 facilitates light transmission between the imager and the eye.
  • One or more waveguides can be utilized in the near eye display system because they are transparent and because they are generally small and lightweight (which is desirable in applications such as HMD devices where size and weight is generally sought to be minimized for reasons of performance and user comfort).
  • the waveguide 130 can enable the imager 105 to be located out of the way, for example, on the side of the head, leaving only a relatively small, light, and transparent waveguide optical element in front of the eyes.
  • the waveguide 130 operates using a principle of total internal reflection, as shown in FIG. 2 , so that light can be coupled among the various optical elements in the system 100 .
  • FIG. 3 shows a view of an illustrative exit pupil expander (EPE) 305 .
  • EPE 305 receives an input optical beam from the imager 105 through magnifying optics 120 to produce one or more output optical beams with expanded exit pupil in one or two dimensions relative to the exit pupil of the imager (in general, the input may include more than one optical beam which may be produced by separate sources).
  • the expanded exit pupil typically facilitates a virtual display to be sufficiently sized to meet the various design requirements of a given optical system, such as image resolution, field of view, and the like, while enabling the imager and associated components to be relatively light and compact.
  • the EPE 305 is configured, in this illustrative example, to support binocular operation for both the left and right eyes (components which may be utilized for stereoscopic operation such as scanning mirrors, lenses, filters, beam splitters, MEMS devices, or the like are not shown in FIG. 3 for sake of clarity in exposition). Accordingly, the EPE 305 utilizes two out-coupling gratings, 310 L and 310 R that are supported on a waveguide 330 and a central in-coupling grating 340 .
  • the in-coupling and out-coupling gratings may be configured using multiple DOEs, as described in the illustrative example below. While the EPE 305 is depicted as having a planar configuration, other shapes may also be utilized including, for example, curved or partially spherical shapes, in which case the gratings disposed thereon are non-co-planar.
  • the EPE 305 may be configured to provide an expanded exit pupil in two directions (i.e., along each of a first and second coordinate axis). As shown, the exit pupil is expanded in both the vertical and horizontal directions.
  • direction i.e., along each of a first and second coordinate axis
  • vertical are used primarily to establish relative orientations in the illustrative examples shown and described herein for ease of description. These terms may be intuitive for a usage scenario in which the user of the near eye display device is upright and forward facing, but less intuitive for other usage scenarios. Accordingly, the listed terms are not to be construed to limit the scope of the configurations (and usage scenarios therein) of DOEs with asymmetric grating features.
  • FIG. 5 shows an illustrative arrangement of three DOEs that may be used as part of a waveguide to provide in-coupling and expansion of the exit pupil in two directions.
  • Each DOE is an optical element comprising a periodic structure that can modulate various properties of light in a periodic pattern such as the direction of optical axis, optical path length, and the like.
  • the first DOE, DOE 1 (indicated by reference numeral 505 ), is configured to couple the beam from the imager into the waveguide.
  • the second DOE, DOE 2 ( 510 ) expands the exit pupil in a first direction along a first coordinate axis
  • the third DOE, DOE 3 ( 515 ), expands the exit pupil in a second direction along a second coordinate axis and couples light out of the waveguide.
  • the angle ⁇ is a rotation angle between the periodic lines of DOE 2 and DOE 3 as shown.
  • DOE 1 thus functions as an in-coupling grating and DOE 3 functions as an out-coupling grating while expanding the pupil in one direction.
  • DOE 2 may be viewed as an intermediate grating that functions to couple light between the in-coupling and out-coupling gratings while performing exit pupil expansion in the other direction. Using such intermediate grating may eliminate a need for conventional functionalities for exit pupil expansion in an EPE such as collimating lenses.
  • the DOEs and waveguides used in an EPE may be fabricated using lightweight polymers.
  • Such polymeric components can support design goals for size, weight, and cost, and generally facilitate manufacturability, particularly in volume production settings.
  • polymeric optical elements generally have lower optical resolution relative to heavier high quality glass.
  • Such reduced optical resolution and the waveguide's configuration to be relatively thin for weight savings and packaging constraints within a device can result in optical interference which appears as a phenomena referred to as “banding” in the display.
  • the optical interference that results in banding arises from light propagating within the EPE that has several paths to the same location, in which the optical path lengths differ.
  • the banding is generally visible in the form of dark stripes which decrease optical uniformity of the display. Their location on the display may depend on small nanometer-scale variations in the optical elements including the DOEs in one or more of thickness, surface roughness, or grating geometry including grating line width, angle, fill factor, or the like. Such variation can be difficult to characterize and manage using tools that are generally available in manufacturing environments, and particularly for volume production.
  • Conventional solutions to reduce banding include using thicker waveguides which can add weight and complicate package design for devices and systems.
  • Other solutions use pupil expansion in the EPE in just one direction which can result in a narrow viewing angle and heightened sensitivity to natural eye variations among users.
  • FIG. 6 shows a profile of straight (i.e., non-slanted) grating features 600 (referred to as grating bars, grating lines, or simply “gratings”), that are formed in a substrate 605 .
  • FIG. 7 shows grating features 700 formed in a substrate 705 that have an asymmetric profile.
  • the gratings may be slanted (i.e., non-orthogonal) relative to a plane of the waveguide.
  • the gratings may be slanted relative to a direction of light propagation in the waveguide.
  • Asymmetric grating profiles can also be implemented using blazed gratings, or echelette gratings, in which grooves are formed to create grating features with asymmetric triangular or sawtooth profiles.
  • the slanted gratings in FIG. 7 may be described by slant angles ⁇ 1 and ⁇ 2 .
  • d 390 nm
  • c d/2
  • h 300 nm
  • f 0.5
  • the refractive index of the substrate material is approximately 1.71.
  • DOE 2 is configured with portions that have asymmetric profiles, while DOE 1 and DOE 3 are configured with conventional symmetric profiles using straight gratings.
  • banding can be reduced to increase optical uniformity while enabling manufacturing tolerances for the DOEs to be less strict, as compared with using the straight grating features shown in FIG. 6 for the same level of uniformity. That is, the slanted gratings shown in FIG. 7 are more tolerant to manufacturing variations noted above than the straight gratings shown in FIG. 6 , for comparable levels of optical performance (e.g., optical resolution and optical uniformity).
  • FIGS. 8 and 9 show an illustrative arrangement for DOE fabrication using a substrate holder 805 that rotates a grating substrate 810 about an axis 815 relative to a reactive ion etching plasma source 820 .
  • Exposure to the plasma may be used, for example, to adjust the thickness and orientation of the etching on the grating substrate at various positions by angling the substrate relative to the source as shown in FIG. 9 using, for example, a computer-controller or other suitable control system (not shown).
  • the etching may be performed using a reactive ion beam etching (RIBE).
  • RIBE reactive ion beam etching
  • ion beam etching may be utilized in various implementations including, for example, magnetron reactive ion etching (MRIE), high density plasma etching (HDP), transformer coupled plasma etching (TCP), inductively coupled plasma etching (ICP), and electron cyclotron resonance plasma etching (ECR).
  • MEM magnetron reactive ion etching
  • HDP high density plasma etching
  • TCP transformer coupled plasma etching
  • ICP inductively coupled plasma etching
  • ECR electron cyclotron resonance plasma etching
  • grating angle and depth can be controlled to create a slanted microstructure on the substrate.
  • the microstructure may be replicated for mass production in a lightweight polymer material using one of cast-and-cure, embossing, compression molding, or compression injection molding, for example.
  • Ion beam etching may produce variations from the idealized grating shown in FIG. 6 in which the gratings have parallel walls.
  • the profile 1000 in FIG. 10 includes non-parallel sidewalls (representatively indicated by reference numeral 1005 ) that are undercut and the profile 1100 in FIG. 11 includes non-parallel sidewalls 1105 that are overcut.
  • the change in angle of the sidewalls is denoted by ⁇ , as shown in FIG. 10 , and a positive value of ⁇ implies undercutting while a negative value of ⁇ implies overcutting.
  • Compensation for the effects of undercutting and overcutting can be realized in some implementations by ensuring that a fill factor f mid in the center of the feature meets the design value for the grating, as shown in profile 1200 in FIG. 12 .
  • the grating walls essentially pivot about this center position as ⁇ varies.
  • FIG. 13 is a flowchart 13 of an illustrative method 1300 .
  • the methods or steps shown in the flowchart and described in the accompanying text are not constrained to a particular order or sequence.
  • some of the methods or steps thereof can occur or be performed concurrently and not all the methods or steps have to be performed in a given implementation depending on the requirements of such implementation and some methods or steps may be optionally utilized.
  • step 1305 light is received at an in-coupling DOE.
  • the in-coupling grating is disposed in an EPE and interfaces with the downstream intermediate DOE that is disposed in the EPE.
  • the exit pupil of the received light is expanded along a first coordinate axis in the intermediate DOE.
  • the intermediate DOE is configured with gratings having an asymmetric profile such as slanted gratings or blazed gratings.
  • the exit pupil is expanded in an out-coupling DOE which outputs light with an expanded exit pupil relative to the received light at the in-coupling DOE along the first and second coordinate axes in step 1320 .
  • the intermediate DOE is configured to interface with a downstream out-coupling DOE.
  • the out-coupling DOE may be apodized with shallow gratings that are configured to be either straight or slanted.
  • DOEs with asymmetric profiles may be incorporated into a display system that is utilized in a virtual or mixed reality display device.
  • a display system that is utilized in a virtual or mixed reality display device.
  • Such device may take any suitable form, including but not limited to near-eye devices such as an HMD device.
  • a see-through display may be used in some implementations while an opaque (i.e., non-see-through) display using a camera-based pass-through or outward facing sensor, for example, may be used in other implementations.
  • FIG. 14 shows one particular illustrative example of a see-through, mixed reality or virtual reality display system 1400
  • FIG. 15 shows a functional block diagram of the system 1400
  • Display system 1400 comprises one or more lenses 1402 that form a part of a see-through display subsystem 1404 , such that images may be displayed using lenses 1402 (e.g. using projection onto lenses 1402 , one or more waveguide systems incorporated into the lenses 1402 , and/or in any other suitable manner).
  • Display system 1400 further comprises one or more outward-facing image sensors 1406 configured to acquire images of a background scene and/or physical environment being viewed by a user, and may include one or more microphones 1408 configured to detect sounds, such as voice commands from a user.
  • Outward-facing image sensors 1406 may include one or more depth sensors and/or one or more two-dimensional image sensors.
  • a mixed reality or virtual reality display system instead of incorporating a see-through display subsystem, may display mixed reality or virtual reality images through a viewfinder mode for an outward-facing image sensor.
  • the display system 1400 may further include a gaze detection subsystem 1410 configured for detecting a direction of gaze of each eye of a user or a direction or location of focus, as described above. Gaze detection subsystem 1410 may be configured to determine gaze directions of each of a user's eyes in any suitable manner.
  • a gaze detection subsystem 1410 includes one or more glint sources 1412 , such as infrared light sources, that are configured to cause a glint of light to reflect from each eyeball of a user, and one or more image sensors 1414 , such as inward-facing sensors, that are configured to capture an image of each eyeball of the user. Changes in the glints from the user's eyeballs and/or a location of a user's pupil, as determined from image data gathered using the image sensor(s) 1414 , may be used to determine a direction of gaze.
  • glint sources 1412 such as infrared light sources
  • image sensors 1414 such as inward-facing sensors
  • Gaze detection subsystem 1410 may have any suitable number and arrangement of light sources and image sensors. In some implementations, the gaze detection subsystem 1410 may be omitted.
  • the display system 1400 may also include additional sensors.
  • display system 1400 may comprise a global positioning system (GPS) subsystem 1416 to allow a location of the display system 1400 to be determined. This may help to identify real world objects, such as buildings, etc. that may be located in the user's adjoining physical environment.
  • GPS global positioning system
  • the display system 1400 may further include one or more motion sensors 1418 (e.g., inertial, multi-axis gyroscopic, or acceleration sensors) to detect movement and position/orientation/pose of a user's head when the user is wearing the system as part of a mixed reality or virtual reality HMD device.
  • Motion data may be used, potentially along with eye-tracking glint data and outward-facing image data, for gaze detection, as well as for image stabilization to help correct for blur in images from the outward-facing image sensor(s) 1406 .
  • the use of motion data may allow changes in gaze location to be tracked even if image data from outward-facing image sensor(s) 1406 cannot be resolved.
  • motion sensors 1418 as well as microphone(s) 1408 and gaze detection subsystem 1410 , also may be employed as user input devices, such that a user may interact with the display system 1400 via gestures of the eye, neck and/or head, as well as via verbal commands in some cases. It may be understood that sensors illustrated in FIGS. 14 and 15 and described in the accompanying text are included for the purpose of example and are not intended to be limiting in any manner, as any other suitable sensors and/or combination of sensors may be utilized to meet the needs of a particular implementation.
  • biometric sensors e.g., for detecting heart and respiration rates, blood pressure, brain activity, body temperature, etc.
  • environmental sensors e.g., for detecting temperature, humidity, elevation, UV (ultraviolet) light levels, etc.
  • biometric sensors e.g., for detecting heart and respiration rates, blood pressure, brain activity, body temperature, etc.
  • environmental sensors e.g., for detecting temperature, humidity, elevation, UV (ultraviolet) light levels, etc.
  • the display system 1400 can further include a controller 1420 having a logic subsystem 1422 and a data storage subsystem 1424 in communication with the sensors, gaze detection subsystem 1410 , display subsystem 1404 , and/or other components through a communications subsystem 1426 .
  • the communications subsystem 1426 can also facilitate the display system being operated in conjunction with remotely located resources, such as processing, storage, power, data, and services. That is, in some implementations, an HMD device can be operated as part of a system that can distribute resources and capabilities among different components and subsystems.
  • the storage subsystem 1424 may include instructions stored thereon that are executable by logic subsystem 1422 , for example, to receive and interpret inputs from the sensors, to identify location and movements of a user, to identify real objects using surface reconstruction and other techniques, and dim/fade the display based on distance to objects so as to enable the objects to be seen by the user, among other tasks.
  • the display system 1400 is configured with one or more audio transducers 1428 (e.g., speakers, earphones, etc.) so that audio can be utilized as part of a mixed reality or virtual reality experience.
  • a power management subsystem 1430 may include one or more batteries 1432 and/or protection circuit modules (PCMs) and an associated charger interface 1434 and/or remote power interface for supplying power to components in the display system 1400 .
  • PCMs protection circuit modules
  • the display system 1400 is described for the purpose of example, and thus is not meant to be limiting. It is to be further understood that the display device may include additional and/or alternative sensors, cameras, microphones, input devices, output devices, etc. than those shown without departing from the scope of the present arrangement. Additionally, the physical configuration of a display device and its various sensors and subcomponents may take a variety of different forms without departing from the scope of the present arrangement.
  • an EPE incorporating DOEs with asymmetric profiles can be used in a mobile or portable electronic device 1600 , such as a mobile phone, smartphone, personal digital assistant (PDA), communicator, portable Internet appliance, hand-held computer, digital video or still camera, wearable computer, computer game device, specialized bring-to-the-eye product for viewing, or other portable electronic device.
  • the portable device 1600 includes a housing 1605 to house a communication module 1610 for receiving and transmitting information from and to an external device, or a remote system or service (not shown).
  • the portable device 1600 may also include an image processing module 1615 for handling the received and transmitted information, and a virtual display system 1620 to support viewing of images.
  • the virtual display system 1620 can include a micro-display or an imager 1625 and an optical engine 1630 .
  • the image processing module 1615 may be operatively connected to the optical engine 1630 to provide image data, such as video data, to the imager 1625 to display an image thereon.
  • An EPE 1635 using one or more DOEs with asymmetric profiles can be optically linked to an optical engine 1630 .
  • An EPE using one or more DOEs with asymmetric profiles may also be utilized in non-portable devices, such as gaming devices, multimedia consoles, personal computers, vending machines, smart appliances, Internet-connected devices, and home appliances, such as an oven, microwave oven and other appliances, and other non-portable devices.
  • non-portable devices such as gaming devices, multimedia consoles, personal computers, vending machines, smart appliances, Internet-connected devices, and home appliances, such as an oven, microwave oven and other appliances, and other non-portable devices.
  • An example includes an optical system, comprising: a substrate of optical material; a first diffractive optical element (DOE) disposed on the substrate, the first DOE having an input surface and configured as an in-coupling grating to receive one or more optical beams as an input; and a second DOE disposed on the substrate and configured for pupil expansion of the one or more optical beams along a first direction, wherein at least a portion of the second DOE includes gratings that are configured with a predetermined slant angle to a direction orthogonal to a plane of the substrate.
  • DOE diffractive optical element
  • the optical system further includes a third DOE disposed on the substrate, the third DOE having an output surface and configured for pupil expansion of the one or more optical beams along a second direction, and further configured as an out-coupling grating to couple, as an output from the output surface, one or more optical beams with expanded pupil relative to the input.
  • at least a portion of the third DOE includes gratings that are configured with a second predetermined slant angle to a direction orthogonal to a plane of the output surface.
  • at least a portion of the first DOE includes gratings that are configured with a third predetermined slant angle to a direction orthogonal to a plane of the input surface.
  • the one or more optical beams received at the first DOE emanate as a virtual image produced by a micro-display or imager.
  • a further example includes an electronic device, comprising: a data processing unit; an optical engine operatively connected to the data processing unit for receiving image data from the data processing unit; an imager operatively connected to the optical engine to form images based on the image data and to generate one or more input optical beams incorporating the images; and an exit pupil expander, responsive to the one or more input optical beams, comprising a structure on which multiple diffractive optical elements (DOEs) are disposed, in which the exit pupil expander is configured to provide one or more output optical beams, using one or more of the DOEs, as a near eye virtual display with an expanded exit pupil, and wherein at least one of the DOEs is configured with gratings having an asymmetric profile.
  • DOEs diffractive optical elements
  • the asymmetric profile comprises one of gratings with slanted sidewalls or blazed gratings.
  • the exit pupil expander provides pupil expansion in two directions.
  • the imager includes one of light emitting diode, liquid crystal on silicon device, organic light emitting diode array, or micro-electro mechanical system device.
  • the imager comprises a micro-display operating in one of transmission, reflection, or emission.
  • the electronic device is implemented in a head mounted display device or portable electronic device.
  • each of the one or more input optical beams is produced by a corresponding one or more sources.
  • the structure is curved or partially spherical.
  • two or more of the DOEs are non-co-planar.
  • a further example includes a method, comprising: receiving light at an in-coupling diffractive optical element (DOE) disposed in an exit pupil expander; expanding an exit pupil of the received light along a first coordinate axis in an intermediate DOE disposed in the exit pupil expander; expanding the exit pupil along a second coordinate axis in an out-coupling DOE disposed in the exit pupil expander; and outputting light with an expanded exit pupil relative to the received light at the in-coupling DOE along the first and second coordinate axes using the out-coupling DOE, in which the intermediate DOE is configured with gratings that have non-orthogonal orientation relative to a plane of the exit pupil expander.
  • DOE diffractive optical element
  • the non-orthogonal orientation comprises a slant angle of between 30 and 50 degrees from a normal to the plane.
  • the in-coupling DOE, the intermediate DOE, or the out-coupling DOE is formed with a polymer that is molded from a substrate that is etched using ion beam etching in which the substrate is rotatable relative to an ion beam source.
  • at least a portion of the out-coupling DOE is an apodized diffraction grating having shallow grooves relative to the in-coupling DOE or the intermediate DOE.
  • the method is performed in a near eye display system.
  • the output light provides a virtual display to a user of the near eye display system.

Abstract

In an optical display system that includes a waveguide with multiple diffractive optical elements (DOEs), gratings in one or more of the DOEs may have an asymmetric profile in which gratings may be slanted or blazed. Asymmetric gratings in a DOE can provide increased display uniformity in the optical display system by reducing the “banding” resulting from optical interference that is manifested as dark stripes in the display. Banding may be more pronounced when polymeric materials are used in volume production of the DOEs to minimize system weight, but which have less optimal optical properties compared with other materials such as glass. The asymmetric gratings can further enable the optical system to be more tolerant to variations—such as variations in thickness, surface roughness, and grating geometry—that may not be readily controlled during manufacturing particularly since such variations are in the submicron range.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is a continuation of U.S. Ser. No. 14/790,379, filed Jul. 2, 2015, entitled, “DIFFRACTIVE OPTICAL ELEMENTS WITH ASYMMETRIC PROFILES”, the contents of which are hereby incorporated by reference in its entirety.
  • BACKGROUND
  • Diffractive optical elements (DOEs) are optical elements with a periodic structure that are commonly utilized in applications ranging from bio-technology, material processing, sensing, and testing to technical optics and optical metrology. By incorporating DOEs in an optical field of a laser or emissive display, for example, the light's “shape” can be controlled and changed flexibly according to application needs.
  • SUMMARY
  • In an optical display system that includes a waveguide with multiple diffractive optical elements (DOEs), gratings in one or more of the DOEs may have an asymmetric profile in which gratings are slanted (i.e., walls of the grating are non-orthogonal to the plane of the waveguide) or blazed. Asymmetric gratings in a DOE can provide increased display uniformity in the optical display system by reducing the “banding” resulting from optical interference that is manifested as dark stripes in the display. Banding may be more pronounced when polymeric materials are used in volume production of the DOEs to minimize system weight, but which have less optimal optical properties compared with other materials such as glass. Asymmetric gratings can further enable the optical system to be more tolerant to variations—such as variations in thickness, surface roughness, and grating geometry—that may not be readily controlled during manufacturing, particularly since such variations are in the submicron range.
  • This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a block diagram of an illustrative near eye display system which may incorporate the diffractive optical elements (DOEs) with asymmetric features;
  • FIG. 2 shows propagation of light in a waveguide by total internal reflection;
  • FIG. 3 shows a view of an illustrative exit pupil expander;
  • FIG. 4 shows a view of the illustrative exit pupil expander in which the exit pupil is expanded along two directions;
  • FIG. 5 shows an illustrative arrangement of three DOEs;
  • FIG. 6 shows a profile of a portion of an illustrative diffraction grating that has straight gratings;
  • FIG. 7 shows an asymmetric profile of a portion of an illustrative diffraction grating that has slanted gratings;
  • FIGS. 8 and 9 show an illustrative arrangement for DOE fabrication;
  • FIGS. 10-12 show various illustrative asymmetric profiles for slanted gratings;
  • FIG. 13 shows an illustrative method;
  • FIG. 14 is a pictorial view of an illustrative example of a virtual reality or mixed reality head mounted display (HMD) device;
  • FIG. 15 shows a block diagram of an illustrative example of a virtual reality or mixed reality HMD device; and
  • FIG. 16 shows a block diagram of an illustrative electronic device that incorporates an exit pupil expander.
  • Like reference numerals indicate like elements in the drawings. Elements are not drawn to scale unless otherwise indicated.
  • DETAILED DESCRIPTION
  • FIG. 1 shows a block diagram of an illustrative near eye display system 100 which may incorporate diffractive optical elements (DOEs) with asymmetric profiles. Near eye display systems are frequently used, for example, in head mounted display (HMD) devices in industrial, commercial, and consumer applications. Other devices and systems may also use DOEs with asymmetric profiles, as described below, and it is emphasized that the near eye display system 100 is intended to be an example that is used to illustrate various features and aspects, and the present DOEs are not necessarily limited to near eye display systems.
  • System 100 may include an imager 105 that works with an optical system 110 to deliver images as a virtual display to a user's eye 115. The imager 105 may include, for example, RGB (red, green, blue) light emitting diodes (LEDs), LCOS (liquid crystal on silicon) devices, OLED (organic light emitting diode) arrays, MEMS (micro-electro mechanical system) devices, or any other suitable displays or micro-displays operating in transmission, reflection, or emission. The imager 105 may also include mirrors and other components that enable a virtual display to be composed and provide one or more input optical beams to the optical system. The optical system 110 can typically include magnifying optics 120, pupil forming optics 125, and one or more waveguides 130.
  • In a near eye display system the imager does not actually shine the images on a surface such as glass lenses to create the visual display for the user. This is not feasible because the human eye cannot focus on something that is that close. Indeed, rather than create a visible image on a surface, the near eye optical system 100 uses the pupil forming optics 125 to form a pupil and the eye 115 acts as the last element in the optical chain and converts the light from the pupil into an image on the eye's retina as a virtual display.
  • The waveguide 130 facilitates light transmission between the imager and the eye. One or more waveguides can be utilized in the near eye display system because they are transparent and because they are generally small and lightweight (which is desirable in applications such as HMD devices where size and weight is generally sought to be minimized for reasons of performance and user comfort). For example, the waveguide 130 can enable the imager 105 to be located out of the way, for example, on the side of the head, leaving only a relatively small, light, and transparent waveguide optical element in front of the eyes. In one implementation, the waveguide 130 operates using a principle of total internal reflection, as shown in FIG. 2, so that light can be coupled among the various optical elements in the system 100.
  • FIG. 3 shows a view of an illustrative exit pupil expander (EPE) 305. EPE 305 receives an input optical beam from the imager 105 through magnifying optics 120 to produce one or more output optical beams with expanded exit pupil in one or two dimensions relative to the exit pupil of the imager (in general, the input may include more than one optical beam which may be produced by separate sources). The expanded exit pupil typically facilitates a virtual display to be sufficiently sized to meet the various design requirements of a given optical system, such as image resolution, field of view, and the like, while enabling the imager and associated components to be relatively light and compact.
  • The EPE 305 is configured, in this illustrative example, to support binocular operation for both the left and right eyes (components which may be utilized for stereoscopic operation such as scanning mirrors, lenses, filters, beam splitters, MEMS devices, or the like are not shown in FIG. 3 for sake of clarity in exposition). Accordingly, the EPE 305 utilizes two out-coupling gratings, 310 L and 310 R that are supported on a waveguide 330 and a central in-coupling grating 340. The in-coupling and out-coupling gratings may be configured using multiple DOEs, as described in the illustrative example below. While the EPE 305 is depicted as having a planar configuration, other shapes may also be utilized including, for example, curved or partially spherical shapes, in which case the gratings disposed thereon are non-co-planar.
  • As shown in FIG. 4, the EPE 305 may be configured to provide an expanded exit pupil in two directions (i.e., along each of a first and second coordinate axis). As shown, the exit pupil is expanded in both the vertical and horizontal directions. It may be understood that the terms “direction,” “horizontal,” and “vertical” are used primarily to establish relative orientations in the illustrative examples shown and described herein for ease of description. These terms may be intuitive for a usage scenario in which the user of the near eye display device is upright and forward facing, but less intuitive for other usage scenarios. Accordingly, the listed terms are not to be construed to limit the scope of the configurations (and usage scenarios therein) of DOEs with asymmetric grating features.
  • FIG. 5 shows an illustrative arrangement of three DOEs that may be used as part of a waveguide to provide in-coupling and expansion of the exit pupil in two directions. Each DOE is an optical element comprising a periodic structure that can modulate various properties of light in a periodic pattern such as the direction of optical axis, optical path length, and the like. The first DOE, DOE 1 (indicated by reference numeral 505), is configured to couple the beam from the imager into the waveguide. The second DOE, DOE 2 (510), expands the exit pupil in a first direction along a first coordinate axis, and the third DOE, DOE 3 (515), expands the exit pupil in a second direction along a second coordinate axis and couples light out of the waveguide. The angle ρ is a rotation angle between the periodic lines of DOE 2 and DOE 3 as shown. DOE 1 thus functions as an in-coupling grating and DOE 3 functions as an out-coupling grating while expanding the pupil in one direction. DOE 2 may be viewed as an intermediate grating that functions to couple light between the in-coupling and out-coupling gratings while performing exit pupil expansion in the other direction. Using such intermediate grating may eliminate a need for conventional functionalities for exit pupil expansion in an EPE such as collimating lenses.
  • Some near eye display system applications, such as those using HMD devices for example, can benefit by minimization of weight and bulk. As a result, the DOEs and waveguides used in an EPE may be fabricated using lightweight polymers. Such polymeric components can support design goals for size, weight, and cost, and generally facilitate manufacturability, particularly in volume production settings. However, polymeric optical elements generally have lower optical resolution relative to heavier high quality glass. Such reduced optical resolution and the waveguide's configuration to be relatively thin for weight savings and packaging constraints within a device can result in optical interference which appears as a phenomena referred to as “banding” in the display. The optical interference that results in banding arises from light propagating within the EPE that has several paths to the same location, in which the optical path lengths differ.
  • The banding is generally visible in the form of dark stripes which decrease optical uniformity of the display. Their location on the display may depend on small nanometer-scale variations in the optical elements including the DOEs in one or more of thickness, surface roughness, or grating geometry including grating line width, angle, fill factor, or the like. Such variation can be difficult to characterize and manage using tools that are generally available in manufacturing environments, and particularly for volume production. Conventional solutions to reduce banding include using thicker waveguides which can add weight and complicate package design for devices and systems. Other solutions use pupil expansion in the EPE in just one direction which can result in a narrow viewing angle and heightened sensitivity to natural eye variations among users.
  • By comparison, when one or more of the DOEs 505, 510, and 515 (FIG. 5) are configured with gratings that have an asymmetric profile, banding can be reduced even when the DOEs are fabricated from polymers and the waveguide 130 (FIG. 1) is relatively thin. FIG. 6 shows a profile of straight (i.e., non-slanted) grating features 600 (referred to as grating bars, grating lines, or simply “gratings”), that are formed in a substrate 605. By comparison, FIG. 7 shows grating features 700 formed in a substrate 705 that have an asymmetric profile. That is, the gratings may be slanted (i.e., non-orthogonal) relative to a plane of the waveguide. In implementations where the waveguide is non-planar, then the gratings may be slanted relative to a direction of light propagation in the waveguide. Asymmetric grating profiles can also be implemented using blazed gratings, or echelette gratings, in which grooves are formed to create grating features with asymmetric triangular or sawtooth profiles.
  • In FIGS. 6 and 7, the grating period is represented by d, the grating height by h, bar width by c, and the filling factor by f, where f=c/d. The slanted gratings in FIG. 7 may be described by slant angles α1 and α2. In one exemplary embodiment, for a DOE, d=390 nm, c=d/2, h=300 nm, α12=45 degrees, f=0.5, and the refractive index of the substrate material is approximately 1.71. In other implementations, ranges of suitable values may include d=250 nm−450 nm, h=200 nm−400 nm, f=0.3−0.0, and α1=30-50 degrees, with refractive indices of 1.7 to 1.9. In another exemplary embodiment, DOE 2 is configured with portions that have asymmetric profiles, while DOE 1 and DOE 3 are configured with conventional symmetric profiles using straight gratings.
  • By slanting the gratings in one or more of the DOEs 505, 510, and 515, banding can be reduced to increase optical uniformity while enabling manufacturing tolerances for the DOEs to be less strict, as compared with using the straight grating features shown in FIG. 6 for the same level of uniformity. That is, the slanted gratings shown in FIG. 7 are more tolerant to manufacturing variations noted above than the straight gratings shown in FIG. 6, for comparable levels of optical performance (e.g., optical resolution and optical uniformity).
  • FIGS. 8 and 9 show an illustrative arrangement for DOE fabrication using a substrate holder 805 that rotates a grating substrate 810 about an axis 815 relative to a reactive ion etching plasma source 820. Exposure to the plasma may be used, for example, to adjust the thickness and orientation of the etching on the grating substrate at various positions by angling the substrate relative to the source as shown in FIG. 9 using, for example, a computer-controller or other suitable control system (not shown). In an illustrative example, the etching may be performed using a reactive ion beam etching (RIBE). However, other variations of ion beam etching may be utilized in various implementations including, for example, magnetron reactive ion etching (MRIE), high density plasma etching (HDP), transformer coupled plasma etching (TCP), inductively coupled plasma etching (ICP), and electron cyclotron resonance plasma etching (ECR).
  • By controlling the exposure of the substrate to the plasma, grating angle and depth can be controlled to create a slanted microstructure on the substrate. The microstructure may be replicated for mass production in a lightweight polymer material using one of cast-and-cure, embossing, compression molding, or compression injection molding, for example.
  • Ion beam etching may produce variations from the idealized grating shown in FIG. 6 in which the gratings have parallel walls. The profile 1000 in FIG. 10 includes non-parallel sidewalls (representatively indicated by reference numeral 1005) that are undercut and the profile 1100 in FIG. 11 includes non-parallel sidewalls 1105 that are overcut. The change in angle of the sidewalls is denoted by β, as shown in FIG. 10, and a positive value of β implies undercutting while a negative value of β implies overcutting. Compensation for the effects of undercutting and overcutting can be realized in some implementations by ensuring that a fill factor fmid in the center of the feature meets the design value for the grating, as shown in profile 1200 in FIG. 12. Here, the grating walls essentially pivot about this center position as β varies.
  • FIG. 13 is a flowchart 13 of an illustrative method 1300. Unless specifically stated, the methods or steps shown in the flowchart and described in the accompanying text are not constrained to a particular order or sequence. In addition, some of the methods or steps thereof can occur or be performed concurrently and not all the methods or steps have to be performed in a given implementation depending on the requirements of such implementation and some methods or steps may be optionally utilized.
  • In step 1305, light is received at an in-coupling DOE. The in-coupling grating is disposed in an EPE and interfaces with the downstream intermediate DOE that is disposed in the EPE. In step 1310, the exit pupil of the received light is expanded along a first coordinate axis in the intermediate DOE. The intermediate DOE is configured with gratings having an asymmetric profile such as slanted gratings or blazed gratings. In step 1315, the exit pupil is expanded in an out-coupling DOE which outputs light with an expanded exit pupil relative to the received light at the in-coupling DOE along the first and second coordinate axes in step 1320. The intermediate DOE is configured to interface with a downstream out-coupling DOE. In some implementations, the out-coupling DOE may be apodized with shallow gratings that are configured to be either straight or slanted.
  • DOEs with asymmetric profiles may be incorporated into a display system that is utilized in a virtual or mixed reality display device. Such device may take any suitable form, including but not limited to near-eye devices such as an HMD device. A see-through display may be used in some implementations while an opaque (i.e., non-see-through) display using a camera-based pass-through or outward facing sensor, for example, may be used in other implementations.
  • FIG. 14 shows one particular illustrative example of a see-through, mixed reality or virtual reality display system 1400, and FIG. 15 shows a functional block diagram of the system 1400. Display system 1400 comprises one or more lenses 1402 that form a part of a see-through display subsystem 1404, such that images may be displayed using lenses 1402 (e.g. using projection onto lenses 1402, one or more waveguide systems incorporated into the lenses 1402, and/or in any other suitable manner). Display system 1400 further comprises one or more outward-facing image sensors 1406 configured to acquire images of a background scene and/or physical environment being viewed by a user, and may include one or more microphones 1408 configured to detect sounds, such as voice commands from a user. Outward-facing image sensors 1406 may include one or more depth sensors and/or one or more two-dimensional image sensors. In alternative arrangements, as noted above, a mixed reality or virtual reality display system, instead of incorporating a see-through display subsystem, may display mixed reality or virtual reality images through a viewfinder mode for an outward-facing image sensor.
  • The display system 1400 may further include a gaze detection subsystem 1410 configured for detecting a direction of gaze of each eye of a user or a direction or location of focus, as described above. Gaze detection subsystem 1410 may be configured to determine gaze directions of each of a user's eyes in any suitable manner. For example, in the illustrative example shown, a gaze detection subsystem 1410 includes one or more glint sources 1412, such as infrared light sources, that are configured to cause a glint of light to reflect from each eyeball of a user, and one or more image sensors 1414, such as inward-facing sensors, that are configured to capture an image of each eyeball of the user. Changes in the glints from the user's eyeballs and/or a location of a user's pupil, as determined from image data gathered using the image sensor(s) 1414, may be used to determine a direction of gaze.
  • In addition, a location at which gaze lines projected from the user's eyes intersect the external display may be used to determine an object at which the user is gazing (e.g. a displayed virtual object and/or real background object). Gaze detection subsystem 1410 may have any suitable number and arrangement of light sources and image sensors. In some implementations, the gaze detection subsystem 1410 may be omitted.
  • The display system 1400 may also include additional sensors. For example, display system 1400 may comprise a global positioning system (GPS) subsystem 1416 to allow a location of the display system 1400 to be determined. This may help to identify real world objects, such as buildings, etc. that may be located in the user's adjoining physical environment.
  • The display system 1400 may further include one or more motion sensors 1418 (e.g., inertial, multi-axis gyroscopic, or acceleration sensors) to detect movement and position/orientation/pose of a user's head when the user is wearing the system as part of a mixed reality or virtual reality HMD device. Motion data may be used, potentially along with eye-tracking glint data and outward-facing image data, for gaze detection, as well as for image stabilization to help correct for blur in images from the outward-facing image sensor(s) 1406. The use of motion data may allow changes in gaze location to be tracked even if image data from outward-facing image sensor(s) 1406 cannot be resolved.
  • In addition, motion sensors 1418, as well as microphone(s) 1408 and gaze detection subsystem 1410, also may be employed as user input devices, such that a user may interact with the display system 1400 via gestures of the eye, neck and/or head, as well as via verbal commands in some cases. It may be understood that sensors illustrated in FIGS. 14 and 15 and described in the accompanying text are included for the purpose of example and are not intended to be limiting in any manner, as any other suitable sensors and/or combination of sensors may be utilized to meet the needs of a particular implementation. For example, biometric sensors (e.g., for detecting heart and respiration rates, blood pressure, brain activity, body temperature, etc.) or environmental sensors (e.g., for detecting temperature, humidity, elevation, UV (ultraviolet) light levels, etc.) may be utilized in some implementations.
  • The display system 1400 can further include a controller 1420 having a logic subsystem 1422 and a data storage subsystem 1424 in communication with the sensors, gaze detection subsystem 1410, display subsystem 1404, and/or other components through a communications subsystem 1426. The communications subsystem 1426 can also facilitate the display system being operated in conjunction with remotely located resources, such as processing, storage, power, data, and services. That is, in some implementations, an HMD device can be operated as part of a system that can distribute resources and capabilities among different components and subsystems.
  • The storage subsystem 1424 may include instructions stored thereon that are executable by logic subsystem 1422, for example, to receive and interpret inputs from the sensors, to identify location and movements of a user, to identify real objects using surface reconstruction and other techniques, and dim/fade the display based on distance to objects so as to enable the objects to be seen by the user, among other tasks.
  • The display system 1400 is configured with one or more audio transducers 1428 (e.g., speakers, earphones, etc.) so that audio can be utilized as part of a mixed reality or virtual reality experience. A power management subsystem 1430 may include one or more batteries 1432 and/or protection circuit modules (PCMs) and an associated charger interface 1434 and/or remote power interface for supplying power to components in the display system 1400.
  • It may be appreciated that the display system 1400 is described for the purpose of example, and thus is not meant to be limiting. It is to be further understood that the display device may include additional and/or alternative sensors, cameras, microphones, input devices, output devices, etc. than those shown without departing from the scope of the present arrangement. Additionally, the physical configuration of a display device and its various sensors and subcomponents may take a variety of different forms without departing from the scope of the present arrangement.
  • As shown in FIG. 16, an EPE incorporating DOEs with asymmetric profiles can be used in a mobile or portable electronic device 1600, such as a mobile phone, smartphone, personal digital assistant (PDA), communicator, portable Internet appliance, hand-held computer, digital video or still camera, wearable computer, computer game device, specialized bring-to-the-eye product for viewing, or other portable electronic device. As shown, the portable device 1600 includes a housing 1605 to house a communication module 1610 for receiving and transmitting information from and to an external device, or a remote system or service (not shown).
  • The portable device 1600 may also include an image processing module 1615 for handling the received and transmitted information, and a virtual display system 1620 to support viewing of images. The virtual display system 1620 can include a micro-display or an imager 1625 and an optical engine 1630. The image processing module 1615 may be operatively connected to the optical engine 1630 to provide image data, such as video data, to the imager 1625 to display an image thereon. An EPE 1635 using one or more DOEs with asymmetric profiles can be optically linked to an optical engine 1630.
  • An EPE using one or more DOEs with asymmetric profiles may also be utilized in non-portable devices, such as gaming devices, multimedia consoles, personal computers, vending machines, smart appliances, Internet-connected devices, and home appliances, such as an oven, microwave oven and other appliances, and other non-portable devices.
  • Various exemplary embodiments of the present diffractive optical elements with asymmetric profiles are now presented by way of illustration and not as an exhaustive list of all embodiments. An example includes an optical system, comprising: a substrate of optical material; a first diffractive optical element (DOE) disposed on the substrate, the first DOE having an input surface and configured as an in-coupling grating to receive one or more optical beams as an input; and a second DOE disposed on the substrate and configured for pupil expansion of the one or more optical beams along a first direction, wherein at least a portion of the second DOE includes gratings that are configured with a predetermined slant angle to a direction orthogonal to a plane of the substrate.
  • In another example, the optical system further includes a third DOE disposed on the substrate, the third DOE having an output surface and configured for pupil expansion of the one or more optical beams along a second direction, and further configured as an out-coupling grating to couple, as an output from the output surface, one or more optical beams with expanded pupil relative to the input. In another example, at least a portion of the third DOE includes gratings that are configured with a second predetermined slant angle to a direction orthogonal to a plane of the output surface. In another example, at least a portion of the first DOE includes gratings that are configured with a third predetermined slant angle to a direction orthogonal to a plane of the input surface. In another example, the one or more optical beams received at the first DOE emanate as a virtual image produced by a micro-display or imager.
  • A further example includes an electronic device, comprising: a data processing unit; an optical engine operatively connected to the data processing unit for receiving image data from the data processing unit; an imager operatively connected to the optical engine to form images based on the image data and to generate one or more input optical beams incorporating the images; and an exit pupil expander, responsive to the one or more input optical beams, comprising a structure on which multiple diffractive optical elements (DOEs) are disposed, in which the exit pupil expander is configured to provide one or more output optical beams, using one or more of the DOEs, as a near eye virtual display with an expanded exit pupil, and wherein at least one of the DOEs is configured with gratings having an asymmetric profile.
  • In another example, the asymmetric profile comprises one of gratings with slanted sidewalls or blazed gratings. In another example, the exit pupil expander provides pupil expansion in two directions. In another example, the imager includes one of light emitting diode, liquid crystal on silicon device, organic light emitting diode array, or micro-electro mechanical system device. In another example, the imager comprises a micro-display operating in one of transmission, reflection, or emission. In another example, the electronic device is implemented in a head mounted display device or portable electronic device. In another example, each of the one or more input optical beams is produced by a corresponding one or more sources. In another example, the structure is curved or partially spherical. In another example, two or more of the DOEs are non-co-planar.
  • A further example includes a method, comprising: receiving light at an in-coupling diffractive optical element (DOE) disposed in an exit pupil expander; expanding an exit pupil of the received light along a first coordinate axis in an intermediate DOE disposed in the exit pupil expander; expanding the exit pupil along a second coordinate axis in an out-coupling DOE disposed in the exit pupil expander; and outputting light with an expanded exit pupil relative to the received light at the in-coupling DOE along the first and second coordinate axes using the out-coupling DOE, in which the intermediate DOE is configured with gratings that have non-orthogonal orientation relative to a plane of the exit pupil expander.
  • In another example, the non-orthogonal orientation comprises a slant angle of between 30 and 50 degrees from a normal to the plane. In another example, the in-coupling DOE, the intermediate DOE, or the out-coupling DOE is formed with a polymer that is molded from a substrate that is etched using ion beam etching in which the substrate is rotatable relative to an ion beam source. In another example, at least a portion of the out-coupling DOE is an apodized diffraction grating having shallow grooves relative to the in-coupling DOE or the intermediate DOE. In another example, the method is performed in a near eye display system. In another example, the output light provides a virtual display to a user of the near eye display system.
  • Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (21)

1-20. (canceled)
21. A method of manufacturing an optical display system, comprising:
providing a polymeric substrate of planar optical material;
disposing a first diffractive optical element (DOE) arranged on the polymeric substrate, the first DOE having an input surface and configured as an in-coupling grating to receive one or more optical beams as an input;
creating a glass mold having a planar microstructure comprising features that are asymmetric with respect to an axis that is orthogonal to the plane of the mold; and
using the mold to form a second DOE on the polymeric substrate which is configured to receive one or more optical beams from the first DOE and couples the received one or more optical beams to a third DOE, and in which the second DOE is configured for pupil expansion of the received one or more optical beams along a first direction,
wherein at least a portion of the second DOE includes grating features each having a slant angle to a respective axis orthogonal to the plane of the polymeric substrate, such that each grating feature is asymmetric about the axis, and
wherein the second DOE is configured with uniform grating features that are periodic in only a single direction.
22. The method of claim 21 in which the third DOE is arranged on the polymeric substrate, the third DOE having an output surface and configured for pupil expansion of the one or more optical beams along a second direction, and further configured as an out-coupling grating to couple, as an output from the output surface, one or more optical beams with expanded pupil relative to the input.
23. The method of claim 22 in which at least a portion of the third DOE includes gratings that are configured with a second slant angle to a direction orthogonal to a plane of the output surface.
24. The method of claim 23 in which at least a portion of the first DOE includes gratings that are configured with a third slant angle to a direction orthogonal to a plane of the input surface.
25. The method of claim 21 in which one or more of the asymmetric grating features comprise one of gratings with slanted sidewalls or blazed gratings.
26. The method of claim 21 in which microstructure is formed from one of reactive ion beam etching (RIBE), magnetron reactive ion etching (MRIE), high density plasma etching (HDP), transformer coupled plasma etching (TCP), inductively coupled plasma etching (ICP), or electron cyclotron resonance plasma etching (ECR).
27. A method of producing a molded diffractive optical element (DOE) in a waveguide-based display system, comprising:
providing an in-coupling DOE that is configured to in-couple input images from an imager into the waveguide-based display system;
providing an out-coupling DOE that is configured to out-couple output images from the waveguide-based display system to an eye of a user;
providing a substrate having at least one planar surface;
exposing the substrate to a plasma source to etch a microstructure into the planar surface in which the microstructure comprises features that are asymmetric with respect to an axis that is orthogonal to the planar surface of the substrate;
using the etched substrate to mold a planar DOE from a polymer material in which the molded DOE includes grating features each having a slant angle to a respective axis orthogonal to the plane of the DOE;
assembling the molded DOE into the waveguide-based display system with the in-coupling DOE and the out-coupling DOE to create a light path that sequentially traverses the in-coupling DOE, the molded DOE, and the output DOE,
wherein at least a portion of the molded DOE includes grating features each having a slant angle to a respective axis orthogonal to the plane of the molded DOE, and
wherein the molded DOE is configured with uniform grating features that are periodic in only a single direction.
28. The method of claim 27 in which the molding comprises one of cast-and-cure, embossing, compression molding, or injection molding.
29. The method of claim 27 in which the molded DOE is configured to provide pupil expansion of the input images from the imager in a first direction.
30. The method of claim 29 in which the out-coupling DOE is configured to provide pupil expansion of the input images from the imager in a second direction.
31. The method of claim 29 in which the imager comprises a micro-display operating in one of transmission, reflection, or emission.
32. The method of claim 27 in which at least a portion of the out-coupling DOE comprises an apodized diffraction grating having shallow grooves relative to the in-coupling DOE or the molded DOE.
33. The method of claim 27 in which the display system is configured as a near eye display system.
34. A method for fabricating a diffractive optical element (DOE), comprising:
providing a reactive ion etching source;
affixing a substrate having at least one planar surface to a moveable holder;
exposing the substrate to the reactive ion etching source to thereby etch grating features that are asymmetric with respect to an axis that is orthogonal to the planar surface;
controlling the etching of the substrate to the reactive ion etching source by motion of the substrate relative to the reactive ion etching source;
using the etched substrate to mold a planar DOE from a polymer material in which the molded DOE includes grating features each having a slant angle to a respective axis orthogonal to the plane of the DOE; and
disposing the molded DOE on a waveguide that includes an in-coupling DOE configured as an in-coupling grating to receive one or more optical beams as an input,
wherein the molded DOE receives the one or more optical beams from the in-coupling DOE, and
wherein the molded DOE is configured for pupil expansion along a first direction, and
wherein at least a portion of the molded DOE includes grating features each having a slant angle to a respective axis orthogonal to the plane of the molded DOE, and
wherein the molded DOE is configured with uniform grating features that are periodic in only a single direction.
35. The method of claim 34 in which the controlling further comprises controlling a time of exposure of the substrate to the reactive ion etching source.
36. The method of claim 34 in which the motion comprises rotation.
37. The method of claim 34 in which the molded DOE is optically coupled to an out-coupling DOE disposed on the waveguide, in which the out-coupling DOE is configured for pupil expansion in a second direction and for out-coupling the one or more optical beams to an eye of a user.
38. The method of claim 37 in which the in-coupling DOE, molded DOE, and out-coupling DOE form an exit pupil expander providing pupil expansion in two directions.
39. The method of claim 37 in which the exit pupil expander is incorporated into a head mounted display (HMD) that includes an imager.
40. The method of claim 39 in which the imager includes one of light emitting diode, liquid crystal on silicon device, organic light emitting diode array, or micro-electromechanical system device.
US16/854,948 2015-07-02 2020-04-22 Diffractive optical elements with asymmetric profiles Active US11112605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/854,948 US11112605B2 (en) 2015-07-02 2020-04-22 Diffractive optical elements with asymmetric profiles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/790,379 US10670862B2 (en) 2015-07-02 2015-07-02 Diffractive optical elements with asymmetric profiles
US16/854,948 US11112605B2 (en) 2015-07-02 2020-04-22 Diffractive optical elements with asymmetric profiles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/790,379 Continuation US10670862B2 (en) 2015-07-02 2015-07-02 Diffractive optical elements with asymmetric profiles

Publications (2)

Publication Number Publication Date
US20200292814A1 true US20200292814A1 (en) 2020-09-17
US11112605B2 US11112605B2 (en) 2021-09-07

Family

ID=56369218

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/790,379 Active 2035-07-09 US10670862B2 (en) 2015-07-02 2015-07-02 Diffractive optical elements with asymmetric profiles
US16/854,948 Active US11112605B2 (en) 2015-07-02 2020-04-22 Diffractive optical elements with asymmetric profiles

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/790,379 Active 2035-07-09 US10670862B2 (en) 2015-07-02 2015-07-02 Diffractive optical elements with asymmetric profiles

Country Status (4)

Country Link
US (2) US10670862B2 (en)
EP (1) EP3317711A1 (en)
CN (1) CN107735716B (en)
WO (1) WO2017003795A1 (en)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0522968D0 (en) 2005-11-11 2005-12-21 Popovich Milan M Holographic illumination device
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US9341846B2 (en) 2012-04-25 2016-05-17 Rockwell Collins Inc. Holographic wide angle display
US9274349B2 (en) 2011-04-07 2016-03-01 Digilens Inc. Laser despeckler based on angular diversity
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
EP2995986B1 (en) 2011-08-24 2017-04-12 Rockwell Collins, Inc. Data display
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
WO2013102759A2 (en) 2012-01-06 2013-07-11 Milan Momcilo Popovich Contact image sensor using switchable bragg gratings
US9456744B2 (en) 2012-05-11 2016-10-04 Digilens, Inc. Apparatus for eye tracking
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US10209517B2 (en) 2013-05-20 2019-02-19 Digilens, Inc. Holographic waveguide eye tracker
WO2015015138A1 (en) 2013-07-31 2015-02-05 Milan Momcilo Popovich Method and apparatus for contact image sensing
US10359736B2 (en) 2014-08-08 2019-07-23 Digilens Inc. Method for holographic mastering and replication
WO2016042283A1 (en) 2014-09-19 2016-03-24 Milan Momcilo Popovich Method and apparatus for generating input images for holographic waveguide displays
US10423222B2 (en) 2014-09-26 2019-09-24 Digilens Inc. Holographic waveguide optical tracker
CN111323867A (en) 2015-01-12 2020-06-23 迪吉伦斯公司 Environmentally isolated waveguide display
US20180275402A1 (en) 2015-01-12 2018-09-27 Digilens, Inc. Holographic waveguide light field displays
CN107533137A (en) 2015-01-20 2018-01-02 迪吉伦斯公司 Holographical wave guide laser radar
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
WO2016146963A1 (en) 2015-03-16 2016-09-22 Popovich, Milan, Momcilo Waveguide device incorporating a light pipe
US10591756B2 (en) 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
US9910276B2 (en) 2015-06-30 2018-03-06 Microsoft Technology Licensing, Llc Diffractive optical elements with graded edges
US10670862B2 (en) 2015-07-02 2020-06-02 Microsoft Technology Licensing, Llc Diffractive optical elements with asymmetric profiles
US10038840B2 (en) 2015-07-30 2018-07-31 Microsoft Technology Licensing, Llc Diffractive optical element using crossed grating for pupil expansion
US9864208B2 (en) * 2015-07-30 2018-01-09 Microsoft Technology Licensing, Llc Diffractive optical elements with varying direction for depth modulation
US10073278B2 (en) * 2015-08-27 2018-09-11 Microsoft Technology Licensing, Llc Diffractive optical element using polarization rotation grating for in-coupling
EP3359999A1 (en) 2015-10-05 2018-08-15 Popovich, Milan Momcilo Waveguide display
US10429645B2 (en) 2015-10-07 2019-10-01 Microsoft Technology Licensing, Llc Diffractive optical element with integrated in-coupling, exit pupil expansion, and out-coupling
US10241332B2 (en) 2015-10-08 2019-03-26 Microsoft Technology Licensing, Llc Reducing stray light transmission in near eye display using resonant grating filter
US9946072B2 (en) * 2015-10-29 2018-04-17 Microsoft Technology Licensing, Llc Diffractive optical element with uncoupled grating structures
US10234686B2 (en) 2015-11-16 2019-03-19 Microsoft Technology Licensing, Llc Rainbow removal in near-eye display using polarization-sensitive grating
IL301785A (en) 2016-01-07 2023-05-01 Magic Leap Inc Virtual and augmented reality systems and methods having unequal numbers of component color images distributed across depth planes
WO2017134412A1 (en) 2016-02-04 2017-08-10 Milan Momcilo Popovich Holographic waveguide optical tracker
CN108780224B (en) 2016-03-24 2021-08-03 迪吉伦斯公司 Method and apparatus for providing a polarization selective holographic waveguide device
WO2017178781A1 (en) 2016-04-11 2017-10-19 GRANT, Alastair, John Holographic waveguide apparatus for structured light projection
US10241244B2 (en) 2016-07-29 2019-03-26 Lumentum Operations Llc Thin film total internal reflection diffraction grating for single polarization or dual polarization
CN107870430B (en) * 2016-09-26 2021-06-15 精工爱普生株式会社 Optical element and display device
US11513350B2 (en) 2016-12-02 2022-11-29 Digilens Inc. Waveguide device with uniform output illumination
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
US10108014B2 (en) * 2017-01-10 2018-10-23 Microsoft Technology Licensing, Llc Waveguide display with multiple focal depths
EP3370100A1 (en) * 2017-03-03 2018-09-05 Nokia Technologies Oy Virtual and augmented reality apparatus, near-eye displays comprising the same, and method of displaying virtual and augmented reality
AU2018236353B2 (en) 2017-03-15 2023-12-21 The Regents Of The University Of California Methods of treating lysosomal disorders
AU2018240363B2 (en) * 2017-03-22 2023-02-23 Magic Leap, Inc. Wearable display device utilizing a composite field of view
US10969585B2 (en) 2017-04-06 2021-04-06 Microsoft Technology Licensing, Llc Waveguide display with increased uniformity and reduced cross-coupling between colors
FI128831B (en) * 2017-05-03 2021-01-15 Dispelix Oy Display element, personal display device, method of producing an image on a personal display and use
CN111065951A (en) * 2017-07-13 2020-04-24 视瑞尔技术公司 Display device for enlarging field of view
CN116149058A (en) 2017-10-16 2023-05-23 迪吉伦斯公司 System and method for multiplying image resolution of pixellated display
JP2021504760A (en) * 2017-12-15 2021-02-15 エルジー・ケム・リミテッド Wearable device
IL303076A (en) * 2017-12-15 2023-07-01 Magic Leap Inc Eyepieces for augmented reality display system
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
CN115356905A (en) 2018-01-08 2022-11-18 迪吉伦斯公司 System and method for holographic grating high throughput recording in waveguide cells
CN112088332A (en) 2018-03-16 2020-12-15 迪吉伦斯公司 Holographic waveguides including birefringence control and methods for their manufacture
US10761256B2 (en) 2018-04-16 2020-09-01 Samsung Electronics Co., Ltd. Backlight unit providing uniform light and display apparatus including the same
US10302826B1 (en) * 2018-05-30 2019-05-28 Applied Materials, Inc. Controlling etch angles by substrate rotation in angled etch tools
US10761334B2 (en) 2018-07-13 2020-09-01 Varian Semiconductor Equipment Associates, Inc. System and method for optimally forming gratings of diffracted optical elements
WO2020023779A1 (en) 2018-07-25 2020-01-30 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
WO2020048129A1 (en) * 2018-09-07 2020-03-12 Huawei Technologies Co., Ltd. High refractive index waveguide for augmented reality
CN112805613B (en) 2018-10-31 2023-07-11 应用材料公司 Controlled hard mask formation to create tapered angled fins
JP7293352B2 (en) * 2018-11-07 2023-06-19 アプライド マテリアルズ インコーポレイテッド Forming an angled grid
US10775158B2 (en) * 2018-11-15 2020-09-15 Applied Materials, Inc. System and method for detecting etch depth of angled surface relief gratings
JP2022512366A (en) 2018-12-17 2022-02-03 アプライド マテリアルズ インコーポレイテッド Adjustment of rolling K vector of tilted diffraction grating
US11150394B2 (en) * 2019-01-31 2021-10-19 Facebook Technologies, Llc Duty cycle range increase for waveguide combiners
CN113692544A (en) 2019-02-15 2021-11-23 迪吉伦斯公司 Method and apparatus for providing holographic waveguide display using integrated grating
US20200292745A1 (en) 2019-03-12 2020-09-17 Digilens Inc. Holographic Waveguide Backlight and Related Methods of Manufacturing
CN111751987B (en) * 2019-03-29 2023-04-14 托比股份公司 Holographic eye imaging apparatus
WO2020247930A1 (en) 2019-06-07 2020-12-10 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
CN110231714B (en) * 2019-06-17 2021-01-29 杭州光粒科技有限公司 Method for enhancing light intensity uniformity of optical waveguide of AR glasses
US11609424B2 (en) 2019-07-08 2023-03-21 Meta Platforms Technologies, Llc Apodized reflective optical elements for eye-tracking and optical artifact reduction
US11067821B2 (en) * 2019-07-08 2021-07-20 Facebook Technologies, Llc Apodized optical elements for optical artifact reduction
JP2022543571A (en) 2019-07-29 2022-10-13 ディジレンズ インコーポレイテッド Method and Apparatus for Multiplying Image Resolution and Field of View for Pixelated Displays
US11442222B2 (en) 2019-08-29 2022-09-13 Digilens Inc. Evacuated gratings and methods of manufacturing
CN110632690B (en) * 2019-09-16 2021-08-24 宁波南大光电材料有限公司 Manufacturing method of staggered inclined-hole-structure grating plate and grating plate
CN110658575B (en) * 2019-09-16 2021-08-24 宁波南大光电材料有限公司 Manufacturing method of helical-tooth grating plate with high aspect ratio structure and grating plate
CN110764261B (en) * 2019-09-18 2022-03-11 深圳市光舟半导体技术有限公司 Optical waveguide structure, AR equipment optical imaging system and AR equipment
CN115151844B (en) * 2020-02-25 2024-01-16 华为技术有限公司 Imaging system for electronic device
US11927758B1 (en) * 2022-08-26 2024-03-12 Meta Platforms Technologies, Llc Multi-laser illuminated mixed waveguide display with volume Bragg grating (VBG) and mirror

Family Cites Families (193)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980883A (en) 1973-05-15 1976-09-14 National Research Development Corporation X-ray diffraction gratings
US4711512A (en) 1985-07-12 1987-12-08 Environmental Research Institute Of Michigan Compact head-up display
JPS6218502A (en) 1985-07-18 1987-01-27 Toshiba Corp Optical device
US4743083A (en) 1985-12-30 1988-05-10 Schimpe Robert M Cylindrical diffraction grating couplers and distributed feedback resonators for guided wave devices
US5340637A (en) 1986-09-16 1994-08-23 Hitachi, Ltd. Optical device diffraction gratings and a photomask for use in the same
US5161059A (en) 1987-09-21 1992-11-03 Massachusetts Institute Of Technology High-efficiency, multilevel, diffractive optical elements
US5061025A (en) 1990-04-13 1991-10-29 Eastman Kodak Company Hologon scanner with beam shaping stationary diffraction grating
US5140980A (en) 1990-06-13 1992-08-25 Ilc Dover, Inc. Hood mask and air filter system and method of manufacture thereof
US5224198A (en) 1991-09-30 1993-06-29 Motorola, Inc. Waveguide virtual image display
JP3027065B2 (en) 1992-07-31 2000-03-27 日本電信電話株式会社 Display / imaging device
JP2827773B2 (en) 1992-12-21 1998-11-25 株式会社日立製作所 Method of forming rotating armature and armature winding
US6232044B1 (en) 1993-11-30 2001-05-15 Raytheon Company Infrared chopper using binary diffractive optics
US5751388A (en) 1995-04-07 1998-05-12 Honeywell Inc. High efficiency polarized display
IL115295A0 (en) 1995-09-14 1996-12-05 Yeda Res & Dev Multilevel diffractive optical element
US5701132A (en) 1996-03-29 1997-12-23 University Of Washington Virtual retinal display with expanded exit pupil
JP3472103B2 (en) 1997-09-10 2003-12-02 キヤノン株式会社 Diffractive optical element and optical system using the same
US5907427A (en) 1997-10-24 1999-05-25 Time Domain Corporation Photonic band gap device and method using a periodicity defect region to increase photonic signal delay
JP3808992B2 (en) 1997-11-21 2006-08-16 三菱電機株式会社 LCD panel module
US6046541A (en) 1997-12-15 2000-04-04 Motorola, Inc. Flat panel display having a random spacer arrangement
AU3052499A (en) * 1998-04-02 1999-10-25 Elop Electro-Optics Industries Ltd. Holographic optical devices
US6410213B1 (en) 1998-06-09 2002-06-25 Corning Incorporated Method for making optical microstructures having profile heights exceeding fifteen microns
AUPP444498A0 (en) 1998-07-02 1998-07-23 Commonwealth Scientific And Industrial Research Organisation Diffractive structure with interstitial elements
US6259561B1 (en) 1999-03-26 2001-07-10 The University Of Rochester Optical system for diffusing light
JP2001174615A (en) 1999-04-15 2001-06-29 Nikon Corp Diffraction optical element, method of producing the element, illumination device equipped with the element, projection exposure device, exposure method, light homogenizer, and method of producing the light homogenizer
US6728034B1 (en) 1999-06-16 2004-04-27 Matsushita Electric Industrial Co., Ltd. Diffractive optical element that polarizes light and an optical pickup using the same
JP2001235611A (en) 2000-02-25 2001-08-31 Shimadzu Corp Holographic grating
US6985656B2 (en) 2000-03-16 2006-01-10 Lightsmyth Technologies Inc Temperature-compensated planar waveguide optical apparatus
GB2360604A (en) 2000-03-20 2001-09-26 Vision Eng Diffractive optical element
JP2001305365A (en) 2000-04-25 2001-10-31 Nec Corp Light shielding structure of stray light in optical wavelength module
US7627018B1 (en) 2000-05-26 2009-12-01 Opticomp Corporation Polarization control using diffraction gratings in VCSEL waveguide grating couplers
JP4587418B2 (en) 2000-09-27 2010-11-24 キヤノン株式会社 Diffractive optical element and optical system having the diffractive optical element
JP4786027B2 (en) 2000-12-08 2011-10-05 オリンパス株式会社 Optical system and optical apparatus
FI111357B (en) 2001-05-03 2003-07-15 Nokia Corp Electrically controllable sheet of varying thickness and method for its formation
US20030035231A1 (en) 2001-08-03 2003-02-20 Epstein Kenneth A. Optical film having microreplicated structures; and methods
EP1437608A4 (en) 2001-09-13 2006-07-26 Asahi Glass Co Ltd Diffraction device
US20030107787A1 (en) 2001-09-26 2003-06-12 Arkady Bablumyan Planar and fiber optical apodized diffraction structures fabrication
US6805490B2 (en) 2002-09-30 2004-10-19 Nokia Corporation Method and system for beam expansion in a display device
US7013064B2 (en) 2002-10-09 2006-03-14 Nanoopto Corporation Freespace tunable optoelectronic device and method
FI114946B (en) 2002-12-16 2005-01-31 Nokia Corp Diffractive grating element for balancing diffraction efficiency
US20040218172A1 (en) 2003-01-24 2004-11-04 Deverse Richard A. Application of spatial light modulators for new modalities in spectrometry and imaging
JP3807374B2 (en) 2003-01-31 2006-08-09 住友電気工業株式会社 Batch multi-point homogenizing optical system
EP1447690A1 (en) 2003-02-14 2004-08-18 Avanex Corporation Stray light deflector
US6888676B2 (en) 2003-03-20 2005-05-03 Nokia Corporation Method of making polarizer and antireflection microstructure for mobile phone display and window
US7492517B2 (en) 2003-05-06 2009-02-17 New Light Industries, Ltd. Form birefringent grating structure, viewer, anticounterfeit security device, and method for making the same
FI115169B (en) 2003-05-13 2005-03-15 Nokia Corp Method and optical system for coupling light to a waveguide
US20060132914A1 (en) 2003-06-10 2006-06-22 Victor Weiss Method and system for displaying an informative image against a background image
WO2005043701A1 (en) 2003-10-31 2005-05-12 Bookham Technology Plc Method for manufacturing gratings in semiconductor materials
US8463080B1 (en) 2004-01-22 2013-06-11 Vescent Photonics, Inc. Liquid crystal waveguide having two or more control voltages for controlling polarized light
US7224854B2 (en) 2004-02-12 2007-05-29 Panorama Labs Pty. Ltd. System, method, and computer program product for structured waveguide including polarizer region
US20050180674A1 (en) 2004-02-12 2005-08-18 Panorama Flat Ltd. Faraday structured waveguide display
WO2005088384A1 (en) 2004-03-12 2005-09-22 Nikon Corporation Image display optical system and image display apparatus
US7173764B2 (en) 2004-04-22 2007-02-06 Sandia Corporation Apparatus comprising a tunable nanomechanical near-field grating and method for controlling far-field emission
US7454103B2 (en) 2004-04-23 2008-11-18 Parriaux Olivier M High efficiency optical diffraction device
US7492512B2 (en) 2004-07-23 2009-02-17 Mirage International Ltd. Wide field-of-view binocular device, system and kit
US7391524B1 (en) 2004-09-13 2008-06-24 N&K Technology, Inc. System and method for efficient characterization of diffracting structures with incident plane parallel to grating lines
US20060056028A1 (en) 2004-09-13 2006-03-16 Wildnauer Kenneth R Apodized diffraction grating with improved dynamic range
US7564612B2 (en) 2004-09-27 2009-07-21 Idc, Llc Photonic MEMS and structures
EP1828832B1 (en) 2004-12-13 2013-05-22 Nokia Corporation General diffractive optics method for expanding an exit pupil
US7573640B2 (en) * 2005-04-04 2009-08-11 Mirage Innovations Ltd. Multi-plane optical apparatus
JP4567786B2 (en) 2005-06-03 2010-10-20 ノキア コーポレイション A versatile diffractive optical method to enlarge the exit pupil
US20080043334A1 (en) 2006-08-18 2008-02-21 Mirage Innovations Ltd. Diffractive optical relay and method for manufacturing the same
US20090128911A1 (en) * 2005-09-14 2009-05-21 Moti Itzkovitch Diffraction Grating With a Spatially Varying Duty-Cycle
EP1938141A1 (en) 2005-09-28 2008-07-02 Mirage Innovations Ltd. Stereoscopic binocular system, device and method
CN101351765B (en) 2005-10-24 2010-08-25 Rpo私人有限公司 Improved optical elements for waveguide-based optical touch screens and method therefor
WO2007062098A2 (en) 2005-11-21 2007-05-31 Microvision, Inc. Display with image-guiding substrate
US7525672B1 (en) 2005-12-16 2009-04-28 N&K Technology, Inc. Efficient characterization of symmetrically illuminated symmetric 2-D gratings
JP2007219106A (en) 2006-02-16 2007-08-30 Konica Minolta Holdings Inc Optical device for expanding diameter of luminous flux, video display device and head mount display
US7440174B2 (en) 2006-02-24 2008-10-21 Northrop Grumman Corporation Coherent fiber diffractive optical element beam combiner
US7719675B2 (en) 2006-02-28 2010-05-18 Applied Extrusion Technologies, Inc. Method for optical characterization and evaluation of optically variable devices and media
JP2007240228A (en) 2006-03-07 2007-09-20 Fujifilm Corp Optical tomographic imaging apparatus
US7948606B2 (en) 2006-04-13 2011-05-24 Asml Netherlands B.V. Moving beam with respect to diffractive optics in order to reduce interference patterns
CN100433043C (en) 2006-04-18 2008-11-12 南京大学 Automatic tracking invasive iris image collection device
WO2007141588A1 (en) 2006-06-02 2007-12-13 Nokia Corporation Split exit pupil expander
EP2033040B1 (en) 2006-06-02 2020-04-29 Magic Leap, Inc. Stereoscopic exit pupil expander display
EP2035881B8 (en) 2006-06-02 2013-11-13 Nokia Corporation Color distribution in exit pupil expanders
US8488242B2 (en) 2006-06-20 2013-07-16 Opsec Security Group, Inc. Optically variable device with diffraction-based micro-optics, method of creating the same, and article employing the same
WO2008023375A1 (en) * 2006-08-23 2008-02-28 Mirage Innovations Ltd. Diffractive optical relay device with improved color uniformity
JP5004279B2 (en) 2006-09-07 2012-08-22 大日本スクリーン製造株式会社 Output light quantity correction method, correction apparatus, image recording apparatus, and image recording method in spatial light modulator
EP2076813B1 (en) 2006-09-28 2017-12-20 Nokia Technologies Oy Beam expansion with three-dimensional diffractive elements
US20100277803A1 (en) 2006-12-14 2010-11-04 Nokia Corporation Display Device Having Two Operating Modes
WO2008081071A1 (en) 2006-12-28 2008-07-10 Nokia Corporation Light guide plate and a method of manufacturing thereof
US8160411B2 (en) * 2006-12-28 2012-04-17 Nokia Corporation Device for expanding an exit pupil in two dimensions
CN101765793B (en) * 2007-02-23 2011-11-30 纳诺科普有限公司 A method for designing a diffraction grating structure and a diffraction grating structure
US20080212921A1 (en) 2007-03-02 2008-09-04 Georgia Tech Research Corporation Optical interconnect devices and structures based on metamaterials
US8014050B2 (en) 2007-04-02 2011-09-06 Vuzix Corporation Agile holographic optical phased array device and applications
CA2916780C (en) 2007-04-02 2020-12-22 Esight Corp. An apparatus and method for augmenting sight
DE102007021036A1 (en) 2007-05-04 2008-11-06 Carl Zeiss Ag Display device and display method for binocular display of a multicolor image
US20080297731A1 (en) 2007-06-01 2008-12-04 Microvision, Inc. Apparent speckle reduction apparatus and method for mems laser projection system
US8320032B2 (en) 2007-06-04 2012-11-27 Nokia Corporation Diffractive beam expander and a virtual display based on a diffractive beam expander
JP4945345B2 (en) 2007-07-03 2012-06-06 株式会社 日立ディスプレイズ Display device with touch panel
US7755718B2 (en) 2007-08-10 2010-07-13 Seiko Epson Corporation Optical element, liquid crystal device, and display
US20140300695A1 (en) 2007-08-11 2014-10-09 Massachusetts Institute Of Technology Full-Parallax Acousto-Optic/Electro-Optic Holographic Video Display
US7565041B2 (en) 2007-10-26 2009-07-21 Infinera Corporation Symmetric optical circuit with integrated polarization rotator
US20090161203A1 (en) 2007-11-26 2009-06-25 Michael Kempe Method and Configuration for the Optical Detection of an Illuminated Specimen
EP2229603B1 (en) 2007-12-17 2012-08-29 Nokia Corporation Exit pupil expanders with spherical and aspheric substrates
US8508848B2 (en) 2007-12-18 2013-08-13 Nokia Corporation Exit pupil expanders with wide field-of-view
US20090180166A1 (en) 2008-01-16 2009-07-16 Samsung Electronics Co., Ltd. Imaging using diffraction optics elements
DE102008005817A1 (en) 2008-01-24 2009-07-30 Carl Zeiss Ag Optical display device
US8331006B2 (en) 2008-02-13 2012-12-11 Nokia Corporation Display device and a method for illuminating a light modulator array of a display device
ES2562063T3 (en) 2008-02-14 2016-03-02 Nokia Technologies Oy Device and method to determine the direction of the gaze
US7981591B2 (en) 2008-03-27 2011-07-19 Corning Incorporated Semiconductor buried grating fabrication method
US20100149073A1 (en) 2008-11-02 2010-06-17 David Chaum Near to Eye Display System and Appliance
US8194233B2 (en) 2008-04-11 2012-06-05 Microsoft Corporation Method and system to reduce stray light reflection error in time-of-flight sensor arrays
ATE478357T1 (en) 2008-04-15 2010-09-15 Jds Uniphase Corp WAVELENGTH PLATE BASED DEVICE AND METHOD FOR REDUCING SPECKLES IN LASER ILLUMINATION SYSTEMS
US8922898B2 (en) 2008-09-04 2014-12-30 Innovega Inc. Molded lens with nanofilaments and related methods
EP2163924A1 (en) 2008-09-16 2010-03-17 BAE Systems PLC Improvements in or relating to waveguides
US20100079865A1 (en) 2008-09-26 2010-04-01 Nokia Corporation Near-to-eye scanning display with exit-pupil expansion
US8208191B2 (en) 2008-10-30 2012-06-26 Leigh University Ultra-wide band slow light structure using plasmonic graded grating structures
CN103119512A (en) 2008-11-02 2013-05-22 大卫·乔姆 Near to eye display system and appliance
WO2011015843A2 (en) 2009-08-07 2011-02-10 Light Blue Optics Ltd Head up displays
US8233204B1 (en) 2009-09-30 2012-07-31 Rockwell Collins, Inc. Optical displays
US9341846B2 (en) 2012-04-25 2016-05-17 Rockwell Collins Inc. Holographic wide angle display
TWI417624B (en) 2009-11-19 2013-12-01 Innolux Display Corp Touch display device
US8152307B2 (en) 2009-12-21 2012-04-10 Microvision, Inc. Diffractive optical element having periodically repeating phase mask and system for reducing perceived speckle
US8531783B2 (en) 2010-02-09 2013-09-10 Xceed Imaging Ltd. Imaging method and system for imaging with extended depth of focus
US9128281B2 (en) 2010-09-14 2015-09-08 Microsoft Technology Licensing, Llc Eyepiece with uniformly illuminated reflective display
US8482859B2 (en) 2010-02-28 2013-07-09 Osterhout Group, Inc. See-through near-eye display glasses wherein image light is transmitted to and reflected from an optically flat film
US8488246B2 (en) 2010-02-28 2013-07-16 Osterhout Group, Inc. See-through near-eye display glasses including a curved polarizing film in the image source, a partially reflective, partially transmitting optical element and an optically flat film
EP2542145B1 (en) 2010-03-05 2020-08-12 The General Hospital Corporation Systems which provide microscopic images of at least one anatomical structure at a particular resolution
US8376548B2 (en) 2010-09-22 2013-02-19 Vuzix Corporation Near-eye display with on-axis symmetry
JP5953311B2 (en) 2010-11-08 2016-07-20 シーリアル テクノロジーズ ソシエテ アノニムSeereal Technologies S.A. Display device
DE102010051762B4 (en) 2010-11-17 2023-01-19 Rodenstock Gmbh Computer-implemented method and device for evaluating at least one imaging property of an optical element, computer program product, storage medium and method and device for producing an optical element
US8792169B2 (en) 2011-01-24 2014-07-29 Arizona Board Of Regents On Behalf Of Arizona State University Optical diffraction gratings and methods for manufacturing same
ES2862398T3 (en) 2011-04-18 2021-10-07 Bae Systems Plc Projection screen
EP2533077A1 (en) 2011-06-08 2012-12-12 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Diffraction grating and method for producing same
US8749796B2 (en) 2011-08-09 2014-06-10 Primesense Ltd. Projectors of structured light
US8548290B2 (en) * 2011-08-23 2013-10-01 Vuzix Corporation Dynamic apertured waveguide for near-eye display
CN104040410B (en) 2011-08-29 2017-06-09 伊奎蒂公司 For the controllable waveguide of near-to-eye application
JP6223341B2 (en) 2011-08-31 2017-11-01 オーエルイーディーワークス ゲーエムベーハーOLEDWorks GmbH Output coupling device and light source
US8998414B2 (en) 2011-09-26 2015-04-07 Microsoft Technology Licensing, Llc Integrated eye tracking and display system
US8903207B1 (en) * 2011-09-30 2014-12-02 Rockwell Collins, Inc. System for and method of extending vertical field of view in head up display utilizing a waveguide combiner
GB201117029D0 (en) 2011-10-04 2011-11-16 Bae Systems Plc Optical waveguide and display device
US8773599B2 (en) 2011-10-24 2014-07-08 Google Inc. Near-to-eye display with diffraction grating that bends and focuses light
US9323041B2 (en) 2011-11-30 2016-04-26 Pixtronix, Inc. Electromechanical systems display apparatus incorporating charge dissipation surfaces
CN102402005B (en) 2011-12-06 2015-11-25 北京理工大学 Bifocal-surface monocular stereo helmet-mounted display device with free-form surfaces
US20140002608A1 (en) 2011-12-28 2014-01-02 Faro Technologies, Inc. Line scanner using a low coherence light source
US8848289B2 (en) 2012-03-15 2014-09-30 Google Inc. Near-to-eye display with diffractive lens
US8736963B2 (en) 2012-03-21 2014-05-27 Microsoft Corporation Two-dimensional exit-pupil expansion
US9274338B2 (en) 2012-03-21 2016-03-01 Microsoft Technology Licensing, Llc Increasing field of view of reflective waveguide
GB2500631B (en) 2012-03-27 2017-12-27 Bae Systems Plc Improvements in or relating to optical waveguides
US9456744B2 (en) 2012-05-11 2016-10-04 Digilens, Inc. Apparatus for eye tracking
US10502876B2 (en) 2012-05-22 2019-12-10 Microsoft Technology Licensing, Llc Waveguide optics focus elements
US8989535B2 (en) 2012-06-04 2015-03-24 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure
CZ304065B6 (en) 2012-07-31 2013-09-18 Iq Structures S.R.O. Diffractive element and method of making the diffractive element
TWI530883B (en) 2012-12-19 2016-04-21 茂丞科技股份有限公司 Stray-light-coupled biometrics sensing module and electronic apparatus using the same
US9933684B2 (en) * 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US20140168260A1 (en) 2012-12-13 2014-06-19 Paul M. O'Brien Waveguide spacers within an ned device
US9785287B2 (en) 2012-12-17 2017-10-10 Flatfrog Laboratories Ab Optical coupling in touch-sensing systems
US8947783B2 (en) 2013-01-02 2015-02-03 Google Inc. Optical combiner for near-eye display
EP2752691A1 (en) 2013-01-08 2014-07-09 BAE Systems PLC Variable-efficiency diffraction grating
WO2014108670A1 (en) 2013-01-08 2014-07-17 Bae Systems Plc Diffraction gratings and the manufacture thereof
US9063331B2 (en) 2013-02-26 2015-06-23 Microsoft Technology Licensing, Llc Optical system for near-eye display
US20140240843A1 (en) 2013-02-28 2014-08-28 Joel S. Kollin Near-eye display system
US10533850B2 (en) 2013-07-12 2020-01-14 Magic Leap, Inc. Method and system for inserting recognized object data into a virtual world
US10908417B2 (en) 2013-09-19 2021-02-02 Magna Electronics Inc. Vehicle vision system with virtual retinal display
US20150083917A1 (en) 2013-09-23 2015-03-26 Qualcomm Incorporated Infrared light director for gesture or scene sensing fsc display
US10378933B2 (en) * 2013-10-18 2019-08-13 Nikon Corporation Encoder head designs
US9202821B2 (en) 2013-10-23 2015-12-01 Pixtronix, Inc. Thin-film transistors incorporated into three dimensional MEMS structures
CN105659148B (en) 2013-10-28 2018-06-12 奥林巴斯株式会社 Light guiding prism and image display device
US10302995B2 (en) 2013-11-21 2019-05-28 Finisar Corporation High reflectivity LCOS device
US11402629B2 (en) 2013-11-27 2022-08-02 Magic Leap, Inc. Separated pupil optical systems for virtual and augmented reality and methods for displaying images using same
EP2887119A1 (en) 2013-12-19 2015-06-24 BAE Systems PLC Improvements in and relating to waveguides
US9459451B2 (en) 2013-12-26 2016-10-04 Microsoft Technology Licensing, Llc Eye tracking apparatus, method and system
CN103677448B (en) 2013-12-31 2017-03-22 上海交通大学 Grating structure-based optical waveguide touch screen
TWI522896B (en) 2014-02-14 2016-02-21 友達光電股份有限公司 Data transmission system, data transmission method, data transmitting method, data receiving method, and electronic device
US10203762B2 (en) 2014-03-11 2019-02-12 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
US9465215B2 (en) 2014-03-28 2016-10-11 Google Inc. Lightguide with multiple in-coupling holograms for head wearable display
CN103995354B (en) 2014-05-16 2016-05-04 北京理工大学 Based on the achromatic waveguide display system of hologram diffraction optical element
US20150382465A1 (en) 2014-06-25 2015-12-31 Pixtronix, Inc. Systems and methods for implementing display drivers
US20160018637A1 (en) 2014-07-15 2016-01-21 Pixtronix, Inc. Display apparatus incorporating optically inactive display elements
NZ730509A (en) 2014-09-29 2018-08-31 Magic Leap Inc Architectures and methods for outputting different wavelength light out of waveguides
US10018844B2 (en) 2015-02-09 2018-07-10 Microsoft Technology Licensing, Llc Wearable image display system
US9827209B2 (en) 2015-02-09 2017-11-28 Microsoft Technology Licensing, Llc Display system
US9513480B2 (en) 2015-02-09 2016-12-06 Microsoft Technology Licensing, Llc Waveguide
US9535253B2 (en) 2015-02-09 2017-01-03 Microsoft Technology Licensing, Llc Display system
US20160234485A1 (en) 2015-02-09 2016-08-11 Steven John Robbins Display System
US10133084B2 (en) 2015-05-15 2018-11-20 Canon Kabushiki Kaisha Diffractive optical element, optical system, and optical apparatus which reduce generation of unnecessary light
US9910276B2 (en) 2015-06-30 2018-03-06 Microsoft Technology Licensing, Llc Diffractive optical elements with graded edges
US10670862B2 (en) 2015-07-02 2020-06-02 Microsoft Technology Licensing, Llc Diffractive optical elements with asymmetric profiles
US9864208B2 (en) 2015-07-30 2018-01-09 Microsoft Technology Licensing, Llc Diffractive optical elements with varying direction for depth modulation
US10038840B2 (en) 2015-07-30 2018-07-31 Microsoft Technology Licensing, Llc Diffractive optical element using crossed grating for pupil expansion
US10073278B2 (en) 2015-08-27 2018-09-11 Microsoft Technology Licensing, Llc Diffractive optical element using polarization rotation grating for in-coupling
US10429645B2 (en) 2015-10-07 2019-10-01 Microsoft Technology Licensing, Llc Diffractive optical element with integrated in-coupling, exit pupil expansion, and out-coupling
US10241332B2 (en) 2015-10-08 2019-03-26 Microsoft Technology Licensing, Llc Reducing stray light transmission in near eye display using resonant grating filter
US9946072B2 (en) 2015-10-29 2018-04-17 Microsoft Technology Licensing, Llc Diffractive optical element with uncoupled grating structures
NZ742518A (en) 2015-11-04 2019-08-30 Magic Leap Inc Dynamic display calibration based on eye-tracking
US11231544B2 (en) 2015-11-06 2022-01-25 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
US9791696B2 (en) 2015-11-10 2017-10-17 Microsoft Technology Licensing, Llc Waveguide gratings to improve intensity distributions
US9915825B2 (en) 2015-11-10 2018-03-13 Microsoft Technology Licensing, Llc Waveguides with embedded components to improve intensity distributions
US10359627B2 (en) 2015-11-10 2019-07-23 Microsoft Technology Licensing, Llc Waveguide coatings or substrates to improve intensity distributions having adjacent planar optical component separate from an input, output, or intermediate coupler
US10234686B2 (en) 2015-11-16 2019-03-19 Microsoft Technology Licensing, Llc Rainbow removal in near-eye display using polarization-sensitive grating
US9671615B1 (en) 2015-12-01 2017-06-06 Microsoft Technology Licensing, Llc Extended field of view in near-eye display using wide-spectrum imager
US9927614B2 (en) 2015-12-29 2018-03-27 Microsoft Technology Licensing, Llc Augmented reality display system with variable focus

Also Published As

Publication number Publication date
EP3317711A1 (en) 2018-05-09
US20170003505A1 (en) 2017-01-05
WO2017003795A1 (en) 2017-01-05
CN107735716B (en) 2021-01-22
US11112605B2 (en) 2021-09-07
US10670862B2 (en) 2020-06-02
CN107735716A (en) 2018-02-23

Similar Documents

Publication Publication Date Title
US11112605B2 (en) Diffractive optical elements with asymmetric profiles
US9864208B2 (en) Diffractive optical elements with varying direction for depth modulation
US10429645B2 (en) Diffractive optical element with integrated in-coupling, exit pupil expansion, and out-coupling
US10038840B2 (en) Diffractive optical element using crossed grating for pupil expansion
US10073278B2 (en) Diffractive optical element using polarization rotation grating for in-coupling
US9946072B2 (en) Diffractive optical element with uncoupled grating structures
EP3317715B1 (en) Diffractive optical elements with graded edges
US10241332B2 (en) Reducing stray light transmission in near eye display using resonant grating filter
US9939647B2 (en) Extended field of view in near-eye display using optically stitched imaging
EP3377932B1 (en) Rainbow removal in near-eye display using polarization-sensitive grating
EP3398008B1 (en) Augmented reality display system with variable focus
EP3384340B1 (en) Extended field of view in near-eye display using wide-spectrum imager
US20220137408A1 (en) Waveguide assembly with virtual image focus

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: MICROSOFT TECHNOLOGY LICENSING, LLC, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VALLIUS, TUOMAS;SAINIEMI, LAURI;SIGNING DATES FROM 20150630 TO 20150701;REEL/FRAME:052861/0453

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE