JPS6218502A - Optical device - Google Patents

Optical device

Info

Publication number
JPS6218502A
JPS6218502A JP60156952A JP15695285A JPS6218502A JP S6218502 A JPS6218502 A JP S6218502A JP 60156952 A JP60156952 A JP 60156952A JP 15695285 A JP15695285 A JP 15695285A JP S6218502 A JPS6218502 A JP S6218502A
Authority
JP
Japan
Prior art keywords
light
center
lens
grating
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60156952A
Other languages
Japanese (ja)
Inventor
Kazunari Mori
一成 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60156952A priority Critical patent/JPS6218502A/en
Publication of JPS6218502A publication Critical patent/JPS6218502A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To obtain a parallel flux having a uniform intensity distribution by dropping the diffraction efficiency in the center of a grading lens rather than in its vicinity. CONSTITUTION:The diffraction efficiency of a strong incident light part is dropped. To realize said dropping, the depth of a diffraction grating groove is made shallow. Namely, the depth is made gradually shallower toward center part 24 from periphery part 23. Thus Gauss type light beam having a light intensity distribution which is largest in the center of a light emitting source and gradually smaller toward the periphery can be shaped to a light beam with a uniform intensity.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は光強度分布が均一でない発光源とグレーティ
ングレンズを有する光学装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an optical device having a light emitting source with non-uniform light intensity distribution and a grating lens.

[背景技術とその問題点] 光ピツクアップなどの光学情報処理装置においては、発
光源として各種の気体レーザや半導体レーザが用いられ
ている。これらのレーザからの光波は、一般にガウスビ
ームとよばれる特定の位相分布、撮幅分布を持つ波動で
ある。その位相分布は発光源の近くでは平面波とも球面
波とも異なるが、発光源から遠ざかるにつれて球面波に
近ずく。
[Background Art and Problems Therein] In optical information processing devices such as optical pickups, various gas lasers and semiconductor lasers are used as light emission sources. The light waves from these lasers are generally called Gaussian beams and have a specific phase distribution and width distribution. Its phase distribution differs from a plane wave and a spherical wave near the light source, but approaches a spherical wave as it moves away from the light source.

ところが、進行方向に垂直な面内での娠幅分布は発光源
から離れた場所においてもガウス型の分布である。その
ためレーザから発散光を適当なレンズ系を用いることに
よって波面の揃った平行光束とすることは可能であるが
、その強度分布は一様でなく、必ずガウス分布となって
しまう。
However, the spread width distribution in a plane perpendicular to the direction of travel is a Gaussian distribution even at a location away from the light source. Therefore, although it is possible to convert the diverging light from a laser into a parallel beam with a uniform wavefront by using a suitable lens system, the intensity distribution is not uniform and always becomes a Gaussian distribution.

ところで、光ピツクアップはレーザ光源の光をコリメー
トレンズで平行光束にした後、対物レンズによりディス
クに焦点を結ばせる構造でなる。
Incidentally, the optical pickup has a structure in which the light from the laser light source is collimated into a parallel beam using a collimating lens, and then focused onto a disk using an objective lens.

その際、対物レンズの焦点かディスクの情報記録面に刻
まれた微細なピット列から外れないようにする、いわゆ
るトラッキング機構が必要である。
In this case, a so-called tracking mechanism is required to prevent the focus of the objective lens from deviating from the fine pit rows carved on the information recording surface of the disk.

その為には、対物レンズを光軸に垂直な面内で数mm移
動させなければならない。したがってコリメートレンズ
からの平行光束直径は、対物レンズの口径よりも大きく
とっである。
To do this, the objective lens must be moved several mm in a plane perpendicular to the optical axis. Therefore, the diameter of the parallel beam from the collimating lens is larger than the aperture of the objective lens.

ところが、コリメートレンズからの平行光は均一強度で
なくカラス型分イ1を持つため、対物レンズか左右に移
動した場合、レンズに入射する光は非対称な強度分布を
持つことになる。そのため、焦点での収束スポット径は
大きくなり、かつ非対称となる。その様子を第7図に示
す。(a)は光束中心Yに対して対物レンズOLが左方
にずれた場合、(b)は光束中心Yと対物レンズOLの
光軸が一致した場合、(C)は光束中心Yに対して対物
レンズOLの光軸が右方にずれた場合を模式的に示し、
その状態での各スポットパターンSを示している。なあ
りはディスクの情報記録面である。このような非対称性
は特に書き込み可能な光ディスクシスデム(DRAW>
において重大な欠陥′となる。また収束スポットが非対
称でればディスクからの反射、回折光も非対称となるた
め、非点収差法や臨界角法によって1qられるフォーカ
スエラー信号に大きなオフセットが生じることになる。
However, since the parallel light from the collimating lens does not have a uniform intensity but has a crow-shaped distribution, if the objective lens moves from side to side, the light incident on the lens will have an asymmetric intensity distribution. Therefore, the convergence spot diameter at the focal point becomes large and asymmetrical. The situation is shown in FIG. (a) is when the objective lens OL is shifted to the left with respect to the beam center Y, (b) is when the optical axis of the objective lens OL is aligned with the beam center Y, and (C) is with respect to the beam center Y. A case in which the optical axis of the objective lens OL is shifted to the right is schematically shown,
Each spot pattern S in that state is shown. This is the information recording surface of the disc. This asymmetry is particularly noticeable in writeable optical disk systems (DRAW).
This is a serious defect. Furthermore, if the convergence spot is asymmetrical, the reflected and diffracted light from the disk will also be asymmetrical, resulting in a large offset in the focus error signal that is calculated by 1q by the astigmatism method or the critical angle method.

以上述べた問題を解決するため、従来の光ピツクアップ
ではコリメートレンズの開口数(NA>を小さくする方
法を採用している。これはガウス分布の中心部付近の光
のみを利用する方法である。
In order to solve the above-mentioned problems, conventional optical pickups employ a method of reducing the numerical aperture (NA>) of the collimating lens. This method uses only light near the center of the Gaussian distribution.

したがって確かに対物レンズの移動により生じる非対称
性は小さくなるが、反面、発光源からの光量をわずかし
か利用できないという欠点をもつ。
Therefore, the asymmetry caused by the movement of the objective lens is certainly reduced, but on the other hand, it has the disadvantage that only a small amount of light from the light source can be used.

[発明の目的] この発明はほぼ均一な強度分布をもつ平行光束を得るこ
とができるような光学装置を1qることである。
[Object of the Invention] The object of the present invention is to provide an optical device capable of obtaining a parallel light beam having a substantially uniform intensity distribution.

[発明の概要] すなわち、この発明は、中心部で光強度が大で周辺部で
光強度が小となる光強度分布をもつ発光源と、この発光
源から所定間隔を置いて設置され少なくとも一面に同心
円状の回折格子が形成されたグレーティングレンズを具
備する光学装置にあり、前記グレーティングレンズの中
心部における回折効率を周辺部よりも低下させた光学装
置にある。グレーティングレンズの焦点距離は同心円状
不等間隔回折格子のピッチによって決定される。
[Summary of the Invention] That is, the present invention provides a light emitting source having a light intensity distribution in which the light intensity is high in the center and low in the peripheral area, and a light emitting source installed at a predetermined distance from the light emitting source and having at least one surface. The present invention relates to an optical device including a grating lens in which a concentric diffraction grating is formed, and in which the diffraction efficiency at the center of the grating lens is lower than that at the periphery. The focal length of the grating lens is determined by the pitch of the concentric non-uniformly spaced diffraction gratings.

一方、その回折効率は回折格子の溝の深さや形状によっ
て大ぎく変化する。したがって所定の焦点距離をもつよ
うなグレーティングレンズにおいて、各回折格子の溝の
深さや形状を入射光の強度分イ1に応じて変化させるこ
とによって、均一な強度分布をもつ平行光を得ることが
できる [発明の実施例] 第1図はこの発明を光ピツクアップに適用した実施例を
示すもので、半導体レーザダイオード発光源11から発
射した光12をコリメートレンズとなるグレーティング
レンズ13で受けて、この光を平行光束にした後、ビー
ムスプリッタ14を経て対物レンズ15の位置に到達さ
せる。対物レンズ15の有効面を平行光束径よりも小さ
くしてあり、トラッキング機構16による対物レンズ1
5の移動範囲に余裕をもたせておる。対物レンズ15に
より光束はディスク17の情報記録面に焦点を結び、情
報を担うピット列を照射する。ピットからの反射光は同
じ対物レンズ15を経て再び平行光束となりビームスプ
リッタ14で反射し、検出光学系19を通して光検出器
20に入射し情報として読取られる。
On the other hand, the diffraction efficiency varies greatly depending on the depth and shape of the grooves in the diffraction grating. Therefore, in a grating lens with a predetermined focal length, by changing the depth and shape of the grooves of each diffraction grating according to the intensity of the incident light, it is possible to obtain parallel light with a uniform intensity distribution. [Embodiment of the Invention] Fig. 1 shows an embodiment in which the present invention is applied to optical pickup, in which light 12 emitted from a semiconductor laser diode light source 11 is received by a grating lens 13 serving as a collimating lens. After the light is made into a parallel beam, it passes through a beam splitter 14 and reaches the position of an objective lens 15 . The effective surface of the objective lens 15 is made smaller than the parallel beam diameter, and the objective lens 1
The range of movement of 5 is provided with some leeway. The light beam is focused by the objective lens 15 on the information recording surface of the disk 17, and illuminates the pit array that carries information. The reflected light from the pit passes through the same objective lens 15, becomes a parallel beam again, is reflected by the beam splitter 14, enters the photodetector 20 through the detection optical system 19, and is read as information.

グレーティングレンズ13は、第2図に示すようにガラ
スでできており、そのレーザダイオード発光源11側に
回折格子面22を形成したもので、第3図のように、同
心円形状の断面矩形状回折格子を有している。第2図か
ら、発光源11からの入射光波長をλとし、焦点距離を
fとすれば、m番目の輪帯半径rmは rm 2=2rrrtλ+(mλ) 2・−・・−(1
)になる。
The grating lens 13 is made of glass, as shown in FIG. 2, and has a diffraction grating surface 22 formed on the side of the laser diode light source 11. As shown in FIG. It has a grid. From FIG. 2, if the wavelength of the incident light from the light source 11 is λ and the focal length is f, then the radius of the m-th ring zone rm is rm 2 = 2rrrtλ + (mλ) 2・−・・−(1
)become.

さて、この実施例における矩形状回折格子の場合、その
1次回折効率η2は、溝の深さをdとすれば、 772 =(4/ y’r2)  −5inDr−Δn
−d/λ)・・・・・・(2) で与えられる。ただし、△nは空気と回折格子材質との
屈折率差である。上式から△n−d−λ/2のとぎ最大
の回折効率40.5%が得られることがわかる。したが
って各輪帯の深さが同じであるようなグレーティングレ
ンズに焦点を中心とする球面波が入射した場合、均一な
強度弁イ5をもつ平面波が得られる。ところが、このよ
うなレンズにガウスビームのような不均一な強度弁イ1
をもつ発散光が入射したときには、通過後の光は平行光
束にはなるがその強度分布はいぜんとして不均一である
。この不均一性を是正するためにこの実施例では入射光
の強い部分の回折効率を低下させる。そのために(2)
式にしたがって、回折格子溝の深さを浅くしている。す
なわち、周辺部(23)から中心部(24)に徐々に深
さを浅くしていく。その結果、第4図(a)に示すよう
な発光源の中心部で光強度が大で周辺部にむかって徐々
に小となる光強度分布をもつガウス型光ビームを同図(
b)のような均一強度をもつ光ビームに整形することが
できる。
Now, in the case of the rectangular diffraction grating in this example, the first-order diffraction efficiency η2 is 772 = (4/ y'r2) -5inDr-Δn, where d is the groove depth.
-d/λ)...(2) It is given by: However, Δn is the refractive index difference between air and the diffraction grating material. From the above equation, it can be seen that the maximum diffraction efficiency of 40.5% can be obtained at Δnd-λ/2. Therefore, when a spherical wave centered at the focal point is incident on a grating lens in which each annular zone has the same depth, a plane wave having a uniform intensity value 5 is obtained. However, such a lens has a non-uniform intensity valve like a Gaussian beam.
When a diverging light beam having . In order to correct this non-uniformity, this embodiment lowers the diffraction efficiency of the strong portion of the incident light. For that purpose (2)
According to the formula, the depth of the diffraction grating groove is made shallow. That is, the depth gradually becomes shallower from the peripheral portion (23) to the center portion (24). As a result, we created a Gaussian light beam with a light intensity distribution where the light intensity is high at the center of the light source and gradually decreases toward the periphery, as shown in Figure 4(a).
It is possible to shape the light beam into a light beam with uniform intensity as shown in b).

定量的に説明すれば次の通りである。いま通常の組合u
力“ラスレンズや同一の深さをもつグレーティングレン
ズを通過した後の平行光の強度弁イ[がf(r)=Ae
xp(−αr”)  ・・・−<3>というガウス型で
あるとする。ここでrは光軸からの距離である。また、
レンズの有効径をr maXとすれば、平行光束の中心
ではA、最外周ではAexp(−λr max” )の
強度をもつ。したがってm番目の輪帯の溝め深さdmを π2        λ −exp  (−αr  max2)    ・・・・
・・(4)を満足するように決定すれば、均一な強度分
布をもつ平行光束が1qられる。第5図に示される鋸歯
状回折格子に適用した例では先の実施例のように溝の深
さを変化させる構造ばかりでなく、グレーティングレン
ズ30の回折格子31の溝底を平坦とし、この平坦面3
2を中心部で広く、周辺部にむかって徐々に狭くまたは
無くして、レンズ中心部の回折効率を100%以下に調
整し低下させたものである。
A quantitative explanation is as follows. Now normal union u
The force ``intensity of parallel light after passing through a lath lens or grating lens with the same depth, i [is f(r) = Ae
Assume that it is a Gaussian type xp(-αr") ...-<3>. Here, r is the distance from the optical axis. Also,
If the effective diameter of the lens is r max, then the parallel beam has an intensity of A at the center and Aexp (-λr max") at the outermost periphery. Therefore, the groove depth dm of the m-th annular zone is π2 λ - exp (-αr max2)...
...If it is determined to satisfy (4), 1q of parallel light beams with a uniform intensity distribution can be obtained. In the example applied to the sawtooth diffraction grating shown in FIG. 5, in addition to the structure in which the groove depth is changed as in the previous embodiment, the groove bottom of the diffraction grating 31 of the grating lens 30 is made flat. Side 3
2 is wide at the center and gradually narrows or disappears toward the periphery, thereby adjusting and lowering the diffraction efficiency at the center of the lens to 100% or less.

第6図の鋸歯状回折格子の実施例では、グレーティング
レンズ33の格子34を断面三角型状にして、格子溝を
形成する斜面35の角度をレンズ光軸に対して中心部で
緩かにして回折効率の低減化をはかつている。
In the embodiment of the sawtooth diffraction grating shown in FIG. 6, the grating 34 of the grating lens 33 has a triangular cross section, and the angle of the slope 35 forming the grating groove is gentle at the center with respect to the lens optical axis. Efforts are being made to reduce diffraction efficiency.

このようにして光強度の均一化が可能である。In this way, the light intensity can be made uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す略図、第2図は第1
図の一部を取り出して示す略図、第3図は第1図のグレ
ーティングレンズの断面図、第4図は第1図の実施例を
説明する曲線図で(a)は発光源の光の強度分布、(b
)はグレーティングレンズ通過後の光強度分布を示す図
、第5図はこの発明の他の実施例の一部断面図、第6図
はこの発明のざらに仙の実施例の一部断面図、第7図(
a)(b)(C)は従来装置を説明する図である。 11・・・・・・発光源、12・・・・・・光、13・
・・・・・グレーティングレンズ、22・・・・・・回
折格子面1.23・・・・・・周辺部、24・・・・・
・中心部。 第1図 第2図 第3図 ■ 第5図     第6図 (a)             (bン      
      (C)第7図
FIG. 1 is a schematic diagram showing one embodiment of the present invention, and FIG.
A schematic diagram showing a part of the figure; Figure 3 is a cross-sectional view of the grating lens in Figure 1; Figure 4 is a curve diagram explaining the embodiment of Figure 1; (a) is the intensity of light from the light emitting source. distribution, (b
) is a diagram showing the light intensity distribution after passing through the grating lens, FIG. 5 is a partial cross-sectional view of another embodiment of the present invention, and FIG. 6 is a partial cross-sectional view of a further embodiment of the present invention. Figure 7 (
a), (b), and (C) are diagrams illustrating a conventional device. 11... Light source, 12... Light, 13.
... Grating lens, 22 ... Diffraction grating surface 1.23 ... Peripheral part, 24 ...
·Central part. Figure 1 Figure 2 Figure 3 ■ Figure 5 Figure 6 (a) (b)
(C) Figure 7

Claims (4)

【特許請求の範囲】[Claims] (1)中心部で光強度が大で周辺部で光強度が小となる
光強度分布をもつ発光源と、この発光源から所定間隔を
置いて設置され少なくとも一面に同心円状の回折格子が
形成されたグレーティングレンズを具備する光学装置に
おいて、前記グレーティングレンズの中心部における回
折効率を周辺部よりも低下させてなることを特徴とする
光学装置。
(1) A light emitting source with a light intensity distribution where the light intensity is high at the center and low at the periphery, and a concentric diffraction grating installed at a predetermined distance from this light source on at least one surface. What is claimed is: 1. An optical device comprising a grating lens, characterized in that diffraction efficiency at a central portion of the grating lens is lower than at a peripheral portion.
(2)回折格子の溝の深さが中心部において浅いことを
特徴とする特許請求の範囲第1項記載の光学装置。
(2) The optical device according to claim 1, wherein the grooves of the diffraction grating are shallow in depth at the center.
(3)回折格子が断面鋸歯状であり溝の底を平坦として
中心部で広い面積としたことを特徴とする特許請求の範
囲第2項記載の光学装置。
(3) The optical device according to claim 2, wherein the diffraction grating has a sawtooth cross section, the bottom of the groove is flat, and the area is wide at the center.
(4)回折格子の格子が断面三角形状であり斜面の角度
が中心部で緩かであることを特徴とする特許請求の範囲
第1項記載の光学装置。
(4) The optical device according to claim 1, wherein the grating of the diffraction grating has a triangular cross section and the angle of the slope is gentle at the center.
JP60156952A 1985-07-18 1985-07-18 Optical device Pending JPS6218502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60156952A JPS6218502A (en) 1985-07-18 1985-07-18 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60156952A JPS6218502A (en) 1985-07-18 1985-07-18 Optical device

Publications (1)

Publication Number Publication Date
JPS6218502A true JPS6218502A (en) 1987-01-27

Family

ID=15638914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60156952A Pending JPS6218502A (en) 1985-07-18 1985-07-18 Optical device

Country Status (1)

Country Link
JP (1) JPS6218502A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223703A (en) * 1987-03-13 1988-09-19 Fujitsu Ltd Grating lens optical system
EP0632295A1 (en) * 1993-07-02 1995-01-04 Xerox Corporation Phase apodization in a binary diffractive optical element
US5585968A (en) * 1993-12-01 1996-12-17 International Business Machines Corporation Optical elements having regions of different indices of refraction and method of fabricating the same
JP2009522628A (en) * 2005-12-30 2009-06-11 データロジック・スキャニング・グループ・エス・エール・エル Optical code reader
US8054731B2 (en) 2006-08-29 2011-11-08 Sanyo Electric Co., Ltd. Photodetector and optical pickup apparatus
US9864208B2 (en) 2015-07-30 2018-01-09 Microsoft Technology Licensing, Llc Diffractive optical elements with varying direction for depth modulation
US9910276B2 (en) 2015-06-30 2018-03-06 Microsoft Technology Licensing, Llc Diffractive optical elements with graded edges
US10038840B2 (en) 2015-07-30 2018-07-31 Microsoft Technology Licensing, Llc Diffractive optical element using crossed grating for pupil expansion
US10073278B2 (en) 2015-08-27 2018-09-11 Microsoft Technology Licensing, Llc Diffractive optical element using polarization rotation grating for in-coupling
US10234686B2 (en) 2015-11-16 2019-03-19 Microsoft Technology Licensing, Llc Rainbow removal in near-eye display using polarization-sensitive grating
US10241332B2 (en) 2015-10-08 2019-03-26 Microsoft Technology Licensing, Llc Reducing stray light transmission in near eye display using resonant grating filter
US10429645B2 (en) 2015-10-07 2019-10-01 Microsoft Technology Licensing, Llc Diffractive optical element with integrated in-coupling, exit pupil expansion, and out-coupling
US10670862B2 (en) 2015-07-02 2020-06-02 Microsoft Technology Licensing, Llc Diffractive optical elements with asymmetric profiles

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223703A (en) * 1987-03-13 1988-09-19 Fujitsu Ltd Grating lens optical system
EP0632295A1 (en) * 1993-07-02 1995-01-04 Xerox Corporation Phase apodization in a binary diffractive optical element
US5585968A (en) * 1993-12-01 1996-12-17 International Business Machines Corporation Optical elements having regions of different indices of refraction and method of fabricating the same
US5808806A (en) * 1993-12-01 1998-09-15 International Business Machines Corporation Optical element having regions of different refractive indices for refraction of light transmitted therethrough and wherein the regions form a refractive lens and method of fabricating the same
JP2009522628A (en) * 2005-12-30 2009-06-11 データロジック・スキャニング・グループ・エス・エール・エル Optical code reader
US8054731B2 (en) 2006-08-29 2011-11-08 Sanyo Electric Co., Ltd. Photodetector and optical pickup apparatus
US9910276B2 (en) 2015-06-30 2018-03-06 Microsoft Technology Licensing, Llc Diffractive optical elements with graded edges
US10670862B2 (en) 2015-07-02 2020-06-02 Microsoft Technology Licensing, Llc Diffractive optical elements with asymmetric profiles
US9864208B2 (en) 2015-07-30 2018-01-09 Microsoft Technology Licensing, Llc Diffractive optical elements with varying direction for depth modulation
US10038840B2 (en) 2015-07-30 2018-07-31 Microsoft Technology Licensing, Llc Diffractive optical element using crossed grating for pupil expansion
US10073278B2 (en) 2015-08-27 2018-09-11 Microsoft Technology Licensing, Llc Diffractive optical element using polarization rotation grating for in-coupling
US10429645B2 (en) 2015-10-07 2019-10-01 Microsoft Technology Licensing, Llc Diffractive optical element with integrated in-coupling, exit pupil expansion, and out-coupling
US10241332B2 (en) 2015-10-08 2019-03-26 Microsoft Technology Licensing, Llc Reducing stray light transmission in near eye display using resonant grating filter
US10234686B2 (en) 2015-11-16 2019-03-19 Microsoft Technology Licensing, Llc Rainbow removal in near-eye display using polarization-sensitive grating

Similar Documents

Publication Publication Date Title
US6337774B2 (en) Optical pickup device
US5440427A (en) Optical pick-up device having an optical diffraction grating element
US5373519A (en) Semiconductor laser device, an optical device and a method of producing the same
KR100452904B1 (en) Optical pickup device, Objective lens for optical pickup, Condensing optical system and optical disc device for optical pickup
KR100657247B1 (en) Objective lens for high density optical condensing and optical pickup apparatus employing it and optical disk
JPS6218502A (en) Optical device
US4635244A (en) Optical beam shaping system
US5025438A (en) Recording and reproducing optical information device which converts the first beam into a second beam having different light intensity distribution
US5870369A (en) Objective lens device including an objective lens and a transparent member having two light control portions and optical pickup using the objective lens device
US5410529A (en) Optical pickup apparatus
US5986993A (en) Optical pickup device having a diaphram with a predetermined aperture
US5737295A (en) Dual-focus optical pickup for different thicknesses of recording medium
US5745304A (en) Integrated optical pickup system capable of reading optical disks of different thickness
US4797545A (en) Optical head device having positionally adjustable parts
JPS60182526A (en) Optical information processor
US5708641A (en) Multiple focus optical pickup system
US6801492B2 (en) Solid immersion mirror type objective lens and optical pickup device adopting the same
JP2626106B2 (en) Optical pickup device
JP2656136B2 (en) Optical pickup device
JP2003045066A (en) Optical head and optical disk device
JPH05135402A (en) Optical scanning head
JPH0460931A (en) Optical pickup
JPS62229203A (en) Grating lens
JP2580726B2 (en) Optical head device
KR20090014379A (en) Optical scanning device