US20200017766A1 - Methods of using ionic liquids as corrosion inhibitors - Google Patents

Methods of using ionic liquids as corrosion inhibitors Download PDF

Info

Publication number
US20200017766A1
US20200017766A1 US16/509,431 US201916509431A US2020017766A1 US 20200017766 A1 US20200017766 A1 US 20200017766A1 US 201916509431 A US201916509431 A US 201916509431A US 2020017766 A1 US2020017766 A1 US 2020017766A1
Authority
US
United States
Prior art keywords
anionic
group
alkyl
esters
ionic liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/509,431
Other languages
English (en)
Inventor
Jerry Weers
Mary Jane Felipe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Priority to US16/509,431 priority Critical patent/US20200017766A1/en
Publication of US20200017766A1 publication Critical patent/US20200017766A1/en
Assigned to BAKER HUGHES, A GE COMPANY, LLC reassignment BAKER HUGHES, A GE COMPANY, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FELIPE, MARY JANE, WEERS, JERRY
Priority to US17/545,910 priority patent/US11485915B2/en
Assigned to BAKER HUGHES HOLDINGS LLC reassignment BAKER HUGHES HOLDINGS LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: BAKER HUGHES, A GE COMPANY, LLC
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/30Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing heterocyclic ring with at least one nitrogen atom as ring member
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G33/00Dewatering or demulsification of hydrocarbon oils
    • C10G33/04Dewatering or demulsification of hydrocarbon oils with chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/047Breaking emulsions with separation aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J43/00Amphoteric ion-exchange, i.e. using ion-exchangers having cationic and anionic groups; Use of material as amphoteric ion-exchangers; Treatment of material for improving their amphoteric ion-exchange properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/682Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of chemical compounds for dispersing an oily layer on water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with monohydric phenols having only one hydrocarbon substituent ortho on para to the OH group, e.g. p-tert.-butyl phenol
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/20Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/26Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing nitrogen and sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • C09K8/524Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning organic depositions, e.g. paraffins or asphaltenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/22Organic compounds not containing metal atoms containing oxygen as the only hetero atom
    • C10G29/24Aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/28Organic compounds not containing metal atoms containing sulfur as the only hetero atom, e.g. mercaptans, or sulfur and oxygen as the only hetero atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/08Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by treating with water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • C10L10/16Pour-point depressants
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1055Diesel having a boiling range of about 230 - 330 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1059Gasoil having a boiling range of about 330 - 427 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/304Pour point, cloud point, cold flow properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4075Limiting deterioration of equipment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • C10L2200/0446Diesel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine

Definitions

  • the disclosure relates to the use of ionic liquids as corrosion inhibitors.
  • Corrosion of metallic surfaces is often an acute problem which arises during the production and refining of hydrocarbon streams as well as in other industries which rely on aqueous fluids for the removal of heat from one medium to another.
  • cooling towers extract waste heat to the atmosphere by cooling of a water stream to a lower temperature.
  • Cooling towers are used in oil refineries, petrochemical and other chemical plants, thermal power stations and power plants, steel mills, natural gas processing plants, food processing plants, semi-conductor plants as well as HVAC systems.
  • Aqueous fluids, including those with high salt content cause corrosion which may lead to equipment failure requiring equipment to be replaced. Corrosion also decreases plant efficiency due to loss of heat transfer. This is often the result of heat exchanger fouling caused by the accumulation of corrosion products.
  • Corrosive aqueous fluids having high salt content are also used in drilling and completion fluids. Marked corrosivity is often seen when such brines are used as packer fluids since they remain in contact with production tubing and casing for extended periods of time.
  • Corrosion of metallic surfaces is evidenced by surface pitting, embrittlement and loss of metal. Pitting occurs when anodic and cathodic sites become stationary due to large differences in surface conditions. Once a pit is formed, the solution inside it is isolated from the environment and becomes increasingly corrosive with time. The high corrosion rate in the pit produces an excess of positively charged metal cations, which attract chloride anions. In addition, hydrolysis produces hydrogen ions. The increase in acidity and concentration within the pit promotes even higher corrosion rates, and the process becomes self-sustaining.
  • zinc salts are known to be unstable in neutral or alkaline water. Scale formation further typically results from the metals in inorganic corrosion inhibitors. For instance, zinc scales typically form by use of zinc containing corrosion inhibitors. The effectiveness of corrosion inhibitors in aqueous systems thus significantly decreases.
  • the disclosure relates to the use of electronically neutral ionic liquids as corrosion inhibitors, the ionic liquids represented by (I):
  • A is or contains nitrogen, a nitrogen containing heterocyclic ring, is or contains phosphorus, or a phosphorus containing heterocycle
  • X is an anion selected from the group consisting of halides; hydroxyl; hydroxyl containing nitrogen or sulfur compounds; sulfonates; sulfates; bisulfites; carbonates; alkyl carbonates; bicarbonates; thiocarbonates; dithiocarbonates; trithiocarbonates; xanthates, thiocyanates; alkoxides; carboxylates; hydroxycarboxylates; amino fatty acids; anionic alkoxylated fatty acids; anionic metallic complexes, sulfur or silicon containing anions; sulfides; polysulfides; anionic phosphate esters, anionic thiophosphate esters; anionic phosphonate esters; anionic thiophosphonate esters; alkyl substituted phosphines; anionic urea; anionic thioure
  • Another embodiment relates to the use of ionic liquids as corrosion inhibitors, the ionic liquids represented by (II) and (Ill):
  • a in formula (II) is or contains nitrogen or phosphorus or a heterocyclic ring thereof and wherein each A in formula (III) is independently selected from nitrogen or phosphorus or a heterocyclic ring thereof;
  • X is an anion selected from the group consisting of halides; hydroxyl; hydroxy containing nitrogen or sulfur compounds; carbonates; alkyl carbonates; bicarbonates; carboxylates; hydroxycarboxylates; dithiocarbonates; trithiocarbonates; xanthates, thiocyanates; alkoxides; anionic urea; anionic alkyl substituted phosphines; anionic amino fatty acids; anionic alkoxylated fatty acids; anionic acrylamido-methyl propane sulfonate/acrylic acid copolymers; anionic phosphated maleic copolymers; anionic homo or copolymers of an oxirane or methyloxirane; anionic metal complexes; sulfur or silicon containing anions; anionic phosphate esters; anionic thiophosphate esters; anionic phosphonate esters; anionic thiophosphonate esters; anionic thiols; anionic natural products; anionic phenol
  • a method of enhancing the performance of a corrosion inhibitor is provided by contacting the corrosion inhibitor with a corrosion inhibiting ionic liquid.
  • the corrosion inhibiting ionic liquid may act as an intensifier for the corrosion inhibitor; the corrosion inhibitor not being an ionic liquid.
  • ionic liquid refers to a neutral molten salt composed entirely of ions and which is liquid at ambient or near ambient temperatures.
  • the phrase shall include the quaternary organic salts of (I), (II) and (Ill).
  • the ionic liquid functions as a corrosion inhibitor.
  • second corrosion inhibitor shall refer to any material (other than an ionic liquid) which enhances the performance of an ionic liquid or whose performance is enhanced by an ionic liquid.
  • treatment composition shall refer to a composition resulting from contact of an ionic liquid with a second corrosion inhibitor.
  • the phrase shall include blends, mixtures, complexes and reactions products of the ionic liquid and second corrosion inhibitor.
  • inhibitor shall include the inhibition, prevention, reduction or control of corrosion of a metallic surface.
  • corrosion inhibitor shall refer to a material capable of inhibiting, preventing or reducing corrosion of a metallic surface.
  • petroleum hydrocarbon fluid shall include crude oil, shale oil, shale gas condensate, bitumen, diluted bitumen (dil-bit), refinery fractions including distillates including gas oil cuts, finished fuel including diesel fuel, petroleum fuel and biofuel, finished petroleum products, residual oil, fuel gas, flare gas, propane, butane, liquefied petroleum gas (LPG), natural gas liquid (NGL) and combinations thereof.
  • LPG liquefied petroleum gas
  • NTL natural gas liquid
  • ionic liquids and treatment compositions described herein are especially useful in the treatment of crude oil, bitumen, diesel fuel, petroleum fuel, biofuel, residual oil, fuel gas, flare gas, propane, butane, liquefied petroleum gas (LPG), natural gas liquid (NGL) and refinery fractions (including gas oil cuts and light lubricating oils) and combinations thereof.
  • LPG liquefied petroleum gas
  • NNL natural gas liquid
  • refinery fractions including gas oil cuts and light lubricating oils
  • any of these may contain water, brines, gases such as hydrocarbon gases, or a combination thereof.
  • the word “conduit” may refer to any pipeline, pipe, tubing, tubular, flow conduit, thoroughfare or other artery in which a chemical, including a petroleum hydrocarbon fluid, travels or contacts.
  • the word “vessel” shall include any equipment or container in which a petroleum hydrocarbon fluid is in contact, such as heat exchangers, etc.
  • the conduit may, but not limited to, those composed of a metal, plastic or glass.
  • the site of the “conduit” or “vessel” shall include, but not be restricted to reservoirs, wells, pipelines, refineries, fluid processing or treatment facilities (including those where gas or oil production or treatment occur, chemical plants, thermal power stations, power plants, steel mills, natural gas processing plants, food processing plants, semi-conductor plants and HVAC systems) as well as thoroughfares leading to or from any of the above.
  • ionic liquids and treatment compositions described herein may be used during the production of crude oil and gas.
  • the ionic liquids and treatment compositions may be used during the recovery of petroleum hydrocarbon fluids from underground reservoirs.
  • the ionic liquids and treatment compositions are most useful during the production of oil and gas from a well and during in a refinery operation including light-ends recovery, solid waste and cooling water treatment, process-water treatment, cooling, storage, and handling, product movement, hydrogen production, acid and tail-gas treatment and sulfur recovery.
  • the ionic liquids and treatment compositions may also be used during the purification or another treatment phase of an industrial product.
  • the ionic liquids and treatment compositions may be used to treat cooling water streams.
  • Such streams include produced water (aqueous fluids produced along with crude oil and natural gas during from reservoirs water naturally present in oil and gas bearing geological formations, aqueous fluids produced or used during the production of oil and gas from reservoirs or an industrial product, aqueous fluids produced during the refining of oil and gas or an industrial product, aqueous fluids used during the refining of oil and gas or an industrial product, aqueous fluids used or produced during transit or storage of petroleum hydrocarbon fluids or an industrial product).
  • Exemplary water streams include flowback water, degassed sour water, boiler blowdown streams, cooling tower bleed-off/blowdown (originating from oil refineries, petrochemical and natural gas processing plants, other chemical plants, thermal power stations, power plants, steel mills, food processing plants, semi-conductor plants and HVAC systems).
  • Wastewater streams from industrial applications include municipal wastewater treatment facilities, streams in transit to or from municipal wastewater treatment facilities, tanning facilities, and the like.
  • Exemplary products removed during water treatments described herein may include inorganic salts, polymers, breakers, friction reducers, lubricants, acids and caustics, bactericides, defoamers, emulsifiers, filtrate reducers, shale control inhibitors, phosphorus ions, ions of calcium, magnesium and carbonates, bacteria as well other production chemicals.
  • the ionic liquids and treatment compositions may also be used within a conduit or vessel or introduced into a conduit or vessel.
  • the ionic liquids and treatment compositions may also be used during transit of petroleum hydrocarbon fluids or an industrial product as well as during storage of petroleum hydrocarbon fluid or an industrial product.
  • the ionic liquid and treatment compositions are typically liquid at relatively low temperature. While the ionic liquids are salts, they typically exhibit high flash points, good solvency for other chemicals and strong basicity.
  • Suitable ionic liquids as PIPPFLI are those of the formula (I):
  • A is or contains nitrogen or phosphorus, a nitrogen containing heterocyclic ring or a phosphorus containing heterocyclic ring; and
  • X is an anion selected from the group consisting of halides; hydroxyl; hydroxy containing nitrogen or sulfur compounds; carbonates; alkyl carbonates; bicarbonates; dithiocarbonates; trithiocarbonates; xanthates, thiocyanates; alkoxides; carboxylates; hydroxycarboxylates; amino fatty acids; anionic alkoxylated fatty acids; anionic metallic complexes, sulfur or silicon containing anions; anionic phosphate esters, anionic thiophosphate esters; anionic phosphonate esters; anionic thiophosphonate esters; alkyl substituted phosphines; anionic urea; anionic thiourea; anionic natural products; anionic thiols; anionic phenols; anionic phenol resins; anionic copolymers of alpha
  • ionic liquids of formula (II) or (III) may be used as the PIPPCFI ionic liquid:
  • a in formula (II) is or contains nitrogen or phosphorus or a heterocyclic ring thereof and wherein each A in formula (III) is independently selected from nitrogen or phosphorus or a heterocyclic ring thereof;
  • X is an anion selected from the group consisting of halides; hydroxyl; hydroxy containing nitrogen or sulfur compounds; carbonates; alkyl carbonates; bicarbonates; carboxylates; hydroxycarboxylates; sulfonates; sulfates; bisulfites; thiocyanates; dithiocarbonates; trithiocarbonates; xanthates, thiocyanates; carbamates; dithiocarbamates; sulfides; polysulfides; alkoxides; anionic urea; anionic alkyl substituted phosphines; anionic amino fatty acids; anionic alkoxylated fatty acids; anionic acrylamido-methyl propane sulfonate/acrylic acid copolymers; anionic phosphated maleic copolymers; anionic homo or copolymers of an oxirane or methyloxirane; anionic metal complexes; sulfur or silicon containing anions; anionic phosphate esters;
  • cation of (I), (II) or (III) is phosphorus or a phosphorus containing ring and X is an anion selected from the group consisting of hydroxyl; hydroxy containing nitrogen or sulfur compounds; bicarbonates; alkoxides; hydroxycarboxylates; silicon containing anions; anionic amino fatty acids; anionic alkoxylated fatty acids; anionic thiophosphonate esters; alkyl substituted phosphines; anionic urea; anionic thiourea; anionic natural products; anionic phenols; anionic phenol resins; anionic copolymers of alpha olefins and maleic anhydride, esters, amides, imides or derivatives thereof; anionic acrylamido-methyl propane sulfonate/acrylic acid copolymers; anionic homopolymers, copolymers and terpolymers of one or more acrylates, methacrylates and acrylamides, optionally
  • cation A of formula (I), (II) or (III) is or contains nitrogen or a nitrogen heterocyclic ring and anion X is selected from the group consisting of silicon containing anions; anionic thiophosphonate esters; anionic natural products; anionic phenol resins; alkoxides; anionic copolymers of alpha olefins and maleic anhydride, esters, amides, imides or derivatives thereof or a mixture thereof; amino fatty acids; anionic alkoxylated fatty acids; alkyl substituted phosphines; anionic urea; anionic thiourea; anionic acrylamido-methyl propane sulfonate/acrylic acid copolymers; anionic homopolymers, copolymers and terpolymers containing acrylamide units; anionic phosphated maleic copolymers; anionic oxirane or methyloxirane homo or copolymers; and mixtures thereof.
  • the ionic liquid represented by (II) or (III) has a cation A of is nitrogen (for II) and each A in (III) is nitrogen as defined herein and wherein X is an anion selected from the group consisting of anionic metallic complexes; sulfur or silicon containing anions; anionic phosphate esters; anionic thiophosphate esters; anionic phosphonate esters; anionic thiophosphonate esters; anionic thiols; anionic natural products; anionic phenols; anionic phenol resins; anionic copolymers of alpha olefins and maleic anhydride, esters, amides, imides or derivatives thereof amino fatty acids; anionic alkoxylated fatty acids; alkyl substituted phosphines; an oxirane or methyloxirane homo or copolymer; anionic urea; anionic thiourea; anionic acrylamido-methyl propane sulfonate/acrylic
  • Preferred ionic liquids are those of (III) having structures R 1 R 2 R 3 R 4 N + ; R 1 R 2 R 3 N + R 8 N + R 5 R 6 R 7 ; S+R 1 R 2 R 3 ; R 1 R 2 R 3 R 4 P + ; and R 1 R 2 R 3 N + R 4 P + R 5 R 6 R 7 .
  • anion X of (I), (II) or (III) is a hydroxide, bicarbonate, carbonate, alkyl carbonate or an alkoxide.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 of formula (II) and (III) are independently selected from the group consisting of a straight or branched C 1-30 alkyl group, a C 7-30 alkylbenzyl group, a C 7-30 arylalkyl group, a straight or branched C 3-30 alkenyl group, a C 1-30 hydroxyalkyl group, a C 7-30 hydroxyalkylbenzyl group, a zwitterion (such as those from oxyalkylation of an amine with an alkylene oxide; or a polyoxyalkylene group; and R 8 is a straight or branched C 1-30 alkylene, an alkylene oxyalkylene, or an alkylene polyoxyalkylene or R groups may be joined to form a heterocyclic nitrogen, sulfur or phosphorus ring; and the anion comprises halides, hydroxide, bicarbonate, carbonate, alkyl
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 of (II) and (III) are independently —H or a C 1-20 alkyl; wherein at least one (or at least two) of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 is a C 2-20 alkyl, preferably a C 6-12 alkyl.
  • Exemplary ionic liquids of formulas (I), (II) and (III) include, but are not limited to, those ionic liquids having a cation of dicocodimethyl ammonium and ditallowdimethyl ammonium.
  • Further specific exemplary ionic liquids are dicocodimethyl ammonium hydroxide, benzyltrimethylammonium hydroxide, ditallowdimethyl ammonium hydroxide, tributylmethylammonium methyl carbonate, tetraethylammonium bicarbonate, tetrapropylammonium hydroxide, coco dimethylethylammonium methyl carbonate, dodecyl trimethylammonium hydroxide, (2-hydroxyethyl) cocoalkyl ammonium hydroxide (including dialkyl, trialkyl, tetralkyl derivatives like dicocodimethyl ammonium hydroxide cocotrimethyl ammonium hydroxide), cocodialkylammonium chloride derivative
  • the cation of (III) may be a polyamine, meaning the cation may have two or more nitrogen atoms (and in some cases up to 5 nitrogen atoms).
  • one or more of the nitrogens of the polyamine may be cationic such that the cation of (III) may be a polyamine containing two or more cationic sites (and in some cases up to 5 cationic sites).
  • R 8 may correspond to (—NR 1 R 2 ) y or (—NR 1 R 2 R 3 ) y wherein y corresponds to 1, 2 or 3 to render the number of nitrogen sites and R 1 , R 2 and R 3 are as defined above.
  • y is 1 when A is a triamine
  • y is 2 when A is a tetramine
  • y is 3 when A is a pentamine.
  • Exemplary are cations of diethylenediamine, triethylenetetraamine, tetraethylenepentamine and (bis) hexamethylenetriamine.
  • the cation may consist of multiple cationic sites on the phosphorus wherein R 8 may correspond to (—PR 1 R 2 ) y or (—PR 1 R 2 R 3 ) y wherein y corresponds to 1, 2 or 3 to render the number of phosphorus sites and R 1 , R 2 , and R 3 are as defined above.
  • alkyl refers to a straight or branched chain, saturated monovalent hydrocarbon group regardless whether straight or branched chain is specifically mentioned or not; “aryl” refers to an aromatic monovalent group containing only carbon in the aromatic ring or rings; “arylalkyl” refers to an alkyl group that has been substituted with an aryl group, with benzyl being an exemplary arylalkyl group; “alkylbenzyl” refers to a benzyl group that has been substituted with an alkyl group in the aromatic ring; “hydroxyalkyl” refers to an alkyl group that has been substituted with a hydroxyl group with 2-hydroxyethyl as an exemplary hydroxyalkyl group; “hydroxyalkylbenzyl” refers to a benzyl group that has been substituted with a hydroxyalkyl group as defined herein in the aromatic ring; “alkylene” refers to a straight or branched chain, saturated, divalent
  • substituted means that at least one hydrogen on the designated atom or group is replaced with another group, provided that the designated atom's normal valence is not exceeded.
  • Substituted with a group means substituted with one or more groups.
  • Suitable nitrogen containing heterocyclic rings referenced herein include pyridinium, imidazolinium and a pyrrole cation (including alkylated derivatives thereof). Further reference to “nitrogen” shall include nitrogen containing cations such as an oxyalkylated nitrogen.
  • the cation of (I), (II) or (III) is a quaternary amine salt, triethanolamine methyl chloride, oxyalkylated amine, polyamine, oxyalkylated polyimines, cationic melamine acid colloid or an oxyamine such as those of the formula (CH 3 ) 2 N(CH 2 ) x OH where x is 1 to 6, preferably 2.
  • a polyoxyalkylene group has a formula
  • R 1 is independently a C 1-10 alkylene or C 2-8 alkylene, specifically ethylene, propylene, butylene, or a combination thereof, and z is an integer greater than 1 such as 2 to 30, 4 to 25, or 8 to 25.
  • An alkylene polyoxyalkylene group has a formula
  • R 2 is a 01-30 alkylene
  • each occurrence of R 3 is independently a C 1-10 alkylene or C 2-6 alkylene, specifically ethylene, propylene, butylene, or a combination thereof
  • y is an integer from 1 to 500, such as 2 to 30, 4 to 25, or 8 to 25.
  • An alkylene oxyalkylene group has a formula of —R 7 —O—R 8 —, wherein R 7 and R 8 are each independently a C 1-20 , or C 1-10 , or C 1-5 branched or straight chain alkylene.
  • R 7 and R 8 can be ethylene.
  • Exemplary halides for the anion X ⁇ are —Cl, —Br, —F and —I. In an embodiment —Cl is preferred.
  • Suitable sulfur and phosphorus containing anions include sulfates (SO 4 ⁇ ), bisulfate (HSO 4 ⁇ ), thiocyanate (SCN ⁇ ), thiocarbonate
  • R 1 and R 2 are independently selected from C 1-20 alkyl groups, xanthates
  • R is a C 1-20 alkyl, sulfides (RS ⁇ ) wherein R is a C 1-20 alkyl, anionic polysulfides (RS(S) x S ⁇ ) wherein R is a C 1-20 alkyl and x is one to five, anionic phosphate esters [ROP( ⁇ O)(OH) 2 ] and anionic phosphonate ester [R—P( ⁇ O)(OH) 2 (wherein R is a C 1-20 alkyl or a C 1-20 oxyalkyl-(RO—); anionic thiophosphate esters
  • anionic thiophosphonate esters wherein R is a C 1-20 alkyl or a C 1-20 oxyalkyl- (RO—); sulfonates (RSO 3 ⁇ ) wherein R is C 1-20 alkyl or aryl or alkylaryl group; and anionic thiols (RSH) where R is —(CH) x )H and x is from 1 to 4.
  • Exemplary oxirane or methyloxirane homo or copolymers include those containing units of the structure —(CH 2 CH 2 O) x CH 2 CH(CH 3 )O) y where x and y are independently selected from 1 to 1500.
  • Exemplary anionic metal complexes in formulae (I), (II) and (Ill) may include, but not be limited to Fe (such as Fe containing anions like FeCl 4 ⁇ ), aluminum (such as Al containing anions like AlCl 4 ⁇ ), etc. Further, the anionic metal complex may be formed from copper, zinc, boron, tin and mixtures thereof.
  • the anion may further be an anionic natural products like anions of a polysaccharide, polyphenol or lignin.
  • Suitable anions of polysaccharides include anionic starches (such as mixtures of amylose and amylopectin), anionic polyphenols (such as anionic flavonoids or anionic natural polyphenols and anionic tannins (such as water soluble anionic polyphenols with a molecular weight between 500 and 3,000).
  • Suitable anions may also be anionic phenolics such as anionic phenols, anionic alkyl substituted phenols, anionic phenol oxyalkylates, anionic alkyl substituted phenol oxyalkylates, anionic phenolic or alkylphenol resins and anionic phenol resin oxyalkylates.
  • anionic phenolics such as anionic phenols, anionic alkyl substituted phenols, anionic phenol oxyalkylates, anionic alkyl substituted phenol oxyalkylates, anionic phenolic or alkylphenol resins and anionic phenol resin oxyalkylates.
  • the alkyl groups of the anionic phenolics are C 1-28 .
  • the anion may also be an alkoxide.
  • Suitable alkoxides include those of the formula RO— where R is a C 1-30 alkyl or cycloalkyl group. In an embodiment, R is C 1-18 alkyl, C 6-12 aryl, or C 5-12 cycloalkyl, Exemplary alkoxides are tert-butoxide, n-butoxide, isopropoxide, n-propoxide, isobutoxide, ethoxide, methoxide, n-pentoxide, isopentoxide, 2-ethylhexoxide, 2-propylheptoxide, nonoxide, octoxide, decoxide and isomers thereof.
  • the alkoxides are tert-butoxide, isopropoxide, ethoxide, or methoxide. Tert-butoxide and methoxide are specifically mentioned.
  • the alkoxides may further be anionic ethylene or propylene oxide homopolymers, anionic copolymers or terpolymers (which may optionally be crosslinked). Suitable crosslinking agents include bisphenol A or maleic anhydride.
  • Suitable alkyl carbonates are those of the formula ROCO 2 ⁇ , where R is a halogenated or non-halogenated linear or branched alkyl, or hydroxyl alkyl group, preferably a halogenated or non-halogenated linear or branched C 1-8 or C 1-5 alkyl group.
  • Exemplary carboxylates include formate, acetate, propionate, benzoate, n-butyrate, isobutyrate, pivalate, octanoate and laurate, as well as anions of C 18 fatty acids such as oleate, linolate and stearate.
  • Exemplary hydroxycarboxylates include glycolate, lactate, citrate, glucarate, gluconate and tartrate.
  • Suitable anionic copolymers of alpha olefins and maleic anhydride, esters, amides, imides (and derivatives thereof) include those of the general structure
  • R is a C 1-30 alkyl group.
  • Suitable alkyl carbonates, carboxylates, anionic metal complexes, anionic natural products, anionic phenolics, alkoxides, anionic alpha olefin/maleic anhydride polymers, anionic polymers of acrylates, methacrylates and acrylamides and sulfur cations are those referenced in the paragraphs above.
  • the ionic liquids of (I), (II), and (III) are salts having a melting point range of ⁇ 100° C. to 200° C., typically below 100° C. They are generally non-volatile and exhibit low vapor pressures and are environmentally more benign than other organic solvents, such as volatile aromatics and alkanes. They are thermally stable over a wide temperature range with some having a liquid range of up to 300° C. or higher. Typically they are molten salts of organic compounds or eutectic mixtures of organic and inorganic salts. Stability and other fundamental physical properties of the ionic liquids are influenced by the selection of cation while the selection of anion generally determines the functionality of the ionic liquid.
  • ionic liquids disclosed herein may be prepared by first forming a quaternary salt followed by ion exchange with an acid or salt or by an anionic metathesis reaction with an appropriate anion source to introduce the desired counter anion.
  • a nitrogen or phosphorus containing heterocyclic compound such as an imidazole or pyridine
  • the alkylating agent may be an alkyl chloride providing a broad range of alkyl groups on the nitrogen including straight and branched or cyclic C 1 -C 20 alkyl groups.
  • the quaternary salt may then be subjected to ion exchange with an acid or salt to form the ionic liquid.
  • Ionic liquids (I), (II) and (III) may be tailored by varying the cation and anion pairing may be combined with a second corrosion inhibitor to form a treatment composition.
  • the amount of ionic liquid in the treatment composition may be from about 3 to about 99 weight percent.
  • the anion of the ionic liquid may be the same as the conjugate base of the second corrosion inhibitor.
  • a suitable ionic liquid may be prepared of formula (II) or (Ill) where the cation is nitrogen, each of R 1 , R 2 , R 3 and R 4 are hydrogen and anion A is a phosphonate.
  • the ionic liquid functions as a corrosion inhibitor.
  • the treatment composition may consist of the ionic liquid and the second corrosion inhibitor.
  • the conjugate base of the second corrosion inhibitor is a phosphonate, the same as the anion of the ionic liquid.
  • corrosion inhibition improves when the ionic liquid is used in combination with the second corrosion inhibitor.
  • the presence of the ionic liquid in the treatment composition may boost the corrosion inhibition power of the second corrosion inhibitor.
  • the presence of the second corrosion inhibitor in the treatment composition may boost the corrosion inhibition power of the ionic liquid.
  • the combination of ionic liquid and second corrosion inhibitor may therefore substantially reduce the amount of corrosion and rate of corrosion onto the metallic surface compared to when a fluid containing only one of the ionic liquid or second corrosion inhibitor is used.
  • the presence of the ionic liquid in the treatment composition decreases the rate of corrosion onto a metallic surface by at least 25% and sometimes 50% or higher.
  • ionic liquids and/or treatment compositions described herein may exhibit multiple functions.
  • an ionic liquid(s) or treatment composition(s) may be effective as a scale inhibitor as well as a corrosion inhibitor.
  • One or more ionic liquids and/or treatment compositions may be concurrently used.
  • the second corrosion inhibitor is preferably a liquid material. If the inhibitor is a solid, it may be dissolved in a suitable solvent, thus making it a liquid.
  • the ionic liquid and treatment compositions are typically introduced to their targeted location in an organic solvent or in an aqueous fluid such as fresh water, brackish water, brine as well as salt-containing water solutions such as sodium chloride, potassium chloride and ammonium chloride solutions.
  • Suitable organic solvents include alkyl alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol and butyl alcohol and alkylene glycols like ethylene glycol, propylene glycol.
  • the fluid containing the ionic liquid or treatment composition may further contain one or more surfactants, mutual solvents, sequestering agents, friction reducers, gelling agents, and other conventional additives as well as mixtures thereof.
  • the amount of ionic liquid or treatment composition in the organic solvent or aqueous fluid is dependent on the corrosive conditions, temperature and intended time of contact. Typically, the amount of ionic liquid or treatment composition in the fluid introduced to the targeted site is from 1 ppm to about 5,000 ppm, or about 1 ppm to about 500 ppm, or about 5 ppm to about 150 ppm.
  • an effective corrosion inhibiting or preventative amount of the ionic liquid or treatment composition is introduced to an acidic fluid prior to introduction of the acidic fluid into a targeted well or conduit. This may especially be the case where the ionic liquid or treatment composition is used during a well treatment operation as discussed below.
  • the ionic liquid and second corrosion inhibitor are first combined and then introduced into the targeted location in the organic solvent or aqueous fluid. At times however, the ionic liquid and second corrosion inhibitor may be introduced in different stages.
  • the ionic liquid and treatment compositions dramatically inhibits the amount of corrosion and the rate of corrosion on metallic surfaced caused by aqueous acids including mineral acids, like hydrochloric acid, hydrofluoric acid, sulfuric and phosphoric acids as well as weak acids, such as formic acid, acetic acid, hydroxyacetic acid, citric acid, phosphonic acid, methanesulfonic acid and propionic acid as well as other acids affecting industrial operations.
  • mineral acids like hydrochloric acid, hydrofluoric acid, sulfuric and phosphoric acids as well as weak acids, such as formic acid, acetic acid, hydroxyacetic acid, citric acid, phosphonic acid, methanesulfonic acid and propionic acid as well as other acids affecting industrial operations.
  • Inhibition of corrosion may be seen on a wide host of metallic surfaces including iron, chromium, ferrous base metals, alloys of steel, alloys of nickel, duplex steels, stainless steel, chrome steel, martensitic alloy steel, ferritic alloy steel, carbon steel, precipitation-hardened stainless steels and the like. Pitting is dramatically reduced when the ionic liquids and treatment compositions are used.
  • the ionic liquids and treatment compositions may be contacted with a hydrocarbon-containing stream under severe conditions of heat, pressure, agitation and/or turbulence. They may be used at a wide variety of temperatures, typically ranging from 120° F. to 180° F. as well as up to 350° F. beyond.
  • the ionic liquids and treatment compositions are very useful in the inhibition of corrosion of metallic surfaces during well treatment operations.
  • the treated well may be a hydrocarbon producing well, such as a gas or oil well, or non-hydrocarbon producing wells, such as water injection wells, water producing wells or geothermal wells. They can be used during various types of treatment operations that occur in or before the wellbore and in subterranean formation applications. For example, they can be used in pickling a tubular, cleaning a wellbore, scale treatment, and coiled tubing applications. They can also be used in matrix acid stimulation, acid fracturing, acid tunneling, drilling mud removal, scale treatment, coiled tubing application, or damage removal.
  • any known method of introducing the ionic liquid(s) or treatment composition(s) into the reservoir can be used.
  • the ionic liquids and treatment compositions protect metal tubulars and alloy surfaces from acidic fluids that are introduced or produced downhole.
  • the ionic liquids and treatment compositions can also be used to inhibit corrosion during refining of hydrocarbon fluids, during transport or storage of the fluids or during any period in between.
  • the ionic liquids and treatment compositions are highly useful in the prevention or inhibition of corrosion attributable to carbon dioxide and hydrogen sulfide.
  • the hydrogen sulfide may be formed when the treating acid contacts a sulfur-containing mineral, such as iron sulfide.
  • the ionic liquids and treatment compositions are further particularly effective in the treatment of cooling towers relying on aqueous fluids for the removal of heat from one medium to another.
  • the ionic liquids and treatment compositions may be used in oil refineries, petrochemical and other chemical plants, thermal power stations and power plants, steel mills, natural gas processing plants, food processing plants, semi-conductor plants as well as HVAC systems.
  • Exemplary ionic liquids as corrosion inhibitors include those wherein X in (I), (II) or (Ill) is an anionic phosphate ester, anionic thiophosphate ester, anionic phosphonate ester; anionic thiophosphonate ester; anionic diphosphonic acid; and anionic carboxylic acids (such as anionic glucaric acid).
  • Exemplary corrosion inhibitors further those wherein the cation is pyridinium or an imidazolinium as well as quat ammonium halides such as quat ammonium chlorides.
  • corrosion inhibitors include hydroxyl containing nitrogen or sulfur compounds such as alkylated thiols such as those of the formula HS(CH 2 ) x OH where x is from 1 to 8, like HSCH 2 CH 2 OH; anionic sulfonyl alcohols such as 2-(methylsulfonyl) ethanol; 2-sulfanylethanol; 2-sulfanyl, propan-1-ol; 2-sulfanylbutan-2-ol; 1-sulfanylbutanol-2-ol and mixtures thereof.
  • alkylated thiols such as those of the formula HS(CH 2 ) x OH where x is from 1 to 8, like HSCH 2 CH 2 OH
  • anionic sulfonyl alcohols such as 2-(methylsulfonyl) ethanol; 2-sulfanylethanol; 2-sulfanyl, propan-1-ol; 2-sulfanylbutan-2-ol; 1-sulfanylbutano
  • Exemplary ionic liquids include those of structure (IV):
  • R is a C 12 -C 18 alkyl or alkenyl group and X is —OH, NH 2 or C( ⁇ O)R;
  • exemplary phosphate esters or thiophosphate esters are those having one of structures (VA) or (VB):
  • R is an alkyl or RO(CH 2 CH 2 O) n CH 2 CH 2 ) and R′′ and R′′′ are independently selected from —H and a C 1 -C 20 alkyl;
  • exemplary quat ammonium chlorides are those of structure (VI):
  • alkyl group may contain from 1 to 20 carbon atoms; and exemplary alkyl pyridine quats are those of structure (VII):
  • R is a C 1 -C 18 alkyl or benzyl.
  • more than one R group can be a substituent to the pyridinyl ring.
  • the second R group is typically a C 1 -C 12 alkyl group.
  • Further exemplary corrosion inhibitors include thiazoles, triazoles and thiadiazoles such as benzotriazole, tolyltriazole, octyltriazole, decyltriazole, dodecyltriazole, 2-mercaptobenzothiazole, 2,5-dimercapto-1,3,4-thiadiazole, 2-mercapto-5-hydrocarbylthio-1,3,4-thiadiazoles, 2-mercapto-5-hydrocarbyldithio-1,3,4-thiadiazoles, 2,5-bis(hydrocarbylthio)-1,3,4-thiadiazoles, and 2,5-(bis)hydrocarbyldithio)-1,3,4-thiadiazoles.
  • benzotriazole tolyltriazole
  • octyltriazole decyltriazole
  • dodecyltriazole 2-mercaptobenzothiazole
  • anionic groups for anion X of formula (I), (II) and (III) include the counter anions of any of the corrosion inhibitors referenced above.
  • anion X of ionic liquid of formula (I), (II) and (III) may be an anionic phosphate ester, anionic thiophosphate ester, anionic phosphonate ester, anionic thiophosphonate ester, an anionic thiol, etc.
  • a treatment composition may be used for the inhibition, prevention or reduction of corrosion of metals; the treatment composition comprising the ionic liquids set forth above and one or more corrosion inhibitors (other than an ionic liquid).
  • Exemplary corrosion inhibitors include those set forth in the paragraphs above.
  • the anion X of the formula (I), (II) and (III) of the treatment composition may be the same anion as the counter anion of the corrosion inhibitor.
  • the treatment composition may contain (as corrosion inhibitor), the ionic liquid of (II) wherein R 1 , R 2 , R 3 and R 4 are hydrogen and anion X is the counter cation of (I) above.
  • corrosion inhibiting treatment compositions have been noted to provide a synergistic effect compared to the ionic liquid or the corrosion inhibitor by themselves. i.e., inhibition, prevention and/or reduction of corrosion significantly increases when fluids are contacted with a corrosion inhibiting treatment composition versus contacting of the metallic surface with the ionic liquid or corrosion inhibitor by themselves.
  • An anion exchange method was followed to prepare sulfur based ionic liquids.
  • a general procedure for the anion exchange method was followed wherein about 1 gram of KOH was dissolved in 5 grams methanol. About 1.36 grams 2-mercaptoethanol was added while stirring at 60° C. for 15 minutes. About 5 grams of a solution of N-benzyl, 2 methyl pyridinium chloride (75%) in methanol (25%) was then added dropwise and the mix stirred at 60° C. After 30 minutes of stirring, the solution was filtered while still hot to remove the potassium chloride by-product. The product was characterized by the replacement of the chloride on the pyridinium by the mercaptide of the 2-mercaptoethanol.
  • a kettle test run was under the conditions of 10 ppm additive in a brine with a carbon dioxide sparge, run for 18 hours at 180° F. and the corrosion rate (CR) monitored using linear polarization resistance (LPR) probes.
  • the results are set forth in Table I.
  • a neutralization procedure was used to prepare ionic liquids.
  • the general procedure for all tests may be represented by preparation of tetra-n-butylammonium bitartrate (1:1 salt) wherein tartaric acid (10 grams, 0.067 moles) was added in portions to a stirred solution of 55% aqueous tetra-n-butylammonium hydroxide (31.6 grams, 0.067 mole). A slight exotherm occurred during the addition. The solution was stirred at room temperature for an additional 30 minutes before testing without further modification. The samples were then subjected to a kettle test using synthetic cooling water and the corrosion rate was monitored using linear polarization resistance (LPR) probes. The results are set forth in Table II.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Polymers & Plastics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Physical Water Treatments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
US16/509,431 2018-07-11 2019-07-11 Methods of using ionic liquids as corrosion inhibitors Abandoned US20200017766A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/509,431 US20200017766A1 (en) 2018-07-11 2019-07-11 Methods of using ionic liquids as corrosion inhibitors
US17/545,910 US11485915B2 (en) 2018-07-11 2021-12-08 Methods of using ionic liquids as corrosion inhibitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862696544P 2018-07-11 2018-07-11
US16/509,431 US20200017766A1 (en) 2018-07-11 2019-07-11 Methods of using ionic liquids as corrosion inhibitors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/545,910 Continuation US11485915B2 (en) 2018-07-11 2021-12-08 Methods of using ionic liquids as corrosion inhibitors

Publications (1)

Publication Number Publication Date
US20200017766A1 true US20200017766A1 (en) 2020-01-16

Family

ID=67874497

Family Applications (6)

Application Number Title Priority Date Filing Date
US16/509,431 Abandoned US20200017766A1 (en) 2018-07-11 2019-07-11 Methods of using ionic liquids as corrosion inhibitors
US16/509,302 Active 2039-08-14 US11254881B2 (en) 2018-07-11 2019-07-11 Methods of using ionic liquids as demulsifiers
US16/509,418 Pending US20200017790A1 (en) 2018-07-11 2019-07-11 Methods of using ionic liquids as paraffin inhibitors, pour point depressants and cold flow improvers
US17/258,860 Pending US20220056345A1 (en) 2018-07-11 2019-07-11 Ionic liquids and methods of using same
US17/545,910 Active US11485915B2 (en) 2018-07-11 2021-12-08 Methods of using ionic liquids as corrosion inhibitors
US17/676,735 Abandoned US20220169929A1 (en) 2018-07-11 2022-02-21 Methods of Using Ionic Liquids as Demulsifiers

Family Applications After (5)

Application Number Title Priority Date Filing Date
US16/509,302 Active 2039-08-14 US11254881B2 (en) 2018-07-11 2019-07-11 Methods of using ionic liquids as demulsifiers
US16/509,418 Pending US20200017790A1 (en) 2018-07-11 2019-07-11 Methods of using ionic liquids as paraffin inhibitors, pour point depressants and cold flow improvers
US17/258,860 Pending US20220056345A1 (en) 2018-07-11 2019-07-11 Ionic liquids and methods of using same
US17/545,910 Active US11485915B2 (en) 2018-07-11 2021-12-08 Methods of using ionic liquids as corrosion inhibitors
US17/676,735 Abandoned US20220169929A1 (en) 2018-07-11 2022-02-21 Methods of Using Ionic Liquids as Demulsifiers

Country Status (5)

Country Link
US (6) US20200017766A1 (de)
EP (4) EP3820961A2 (de)
CA (4) CA3105168C (de)
EA (1) EA202091413A1 (de)
WO (4) WO2020014510A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111621791A (zh) * 2020-05-06 2020-09-04 中国石油天然气集团有限公司 一种抗稀盐酸和硫化氢腐蚀的炼油蒸馏塔顶缓蚀剂
US11254881B2 (en) 2018-07-11 2022-02-22 Baker Hughes Holdings Llc Methods of using ionic liquids as demulsifiers

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT517729B1 (de) * 2015-09-29 2017-06-15 Grabner Instr Messtechnik Gmbh Verfahren und Vorrichtung zur Bestimmung der Niedertemperatureigenschaften
US11124692B2 (en) 2017-12-08 2021-09-21 Baker Hughes Holdings Llc Methods of using ionic liquid based asphaltene inhibitors
WO2021003363A1 (en) 2019-07-03 2021-01-07 Si Group, Inc. Alkylphenol copolymer
US10767119B1 (en) * 2020-01-23 2020-09-08 King Abdulaziz University Amphiphilic asphaltene ionic liquids as demulsifiers for heavy petroleum crude oil-water emulsions
US11566160B2 (en) 2020-07-24 2023-01-31 Baker Hughes Oilfield Operations Llc Additives for winterization of paraffin inhibitors
US11753578B2 (en) 2021-04-26 2023-09-12 Halliburton Energy Services, Inc. Methods of treating paraffins, iron sulfide, hydrogen sulfide, and/or bacteria
US11814576B2 (en) * 2021-12-21 2023-11-14 Halliburton Energy Services, Inc. Increasing scavenging efficiency of H2S scavenger by adding linear polymer
CN116333696A (zh) * 2021-12-23 2023-06-27 中石化石油工程技术服务有限公司 一种固体页岩抑制剂及其制备方法
US20230235633A1 (en) * 2022-01-21 2023-07-27 ExxonMobil Technology and Engineering Company Lost circulation fluids and methods related thereto
US20230340317A1 (en) * 2022-04-26 2023-10-26 Saudi Arabian Oil Company Method and applications of nonstoichiometric ionic emulsions
US20240228861A1 (en) * 2022-12-29 2024-07-11 Halliburton Energy Services, Inc. Ionic Liquid Chain Transfer Agent As Well Treatment Additive

Family Cites Families (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892944A (en) 1987-05-13 1990-01-09 Mitsubishi Petrochemical Co., Ltd. Process for producing quaternary salts
US5143594A (en) 1989-11-08 1992-09-01 Nalco Chemical Company Refinery anti-foulant - asphaltene dispersant
US5354453A (en) 1993-04-13 1994-10-11 Exxon Chemical Patents Inc. Removal of H2 S hydrocarbon liquid
CA2133270C (en) 1994-03-03 1999-07-20 Jerry J. Weers Quaternary ammonium hydroxides as mercaptan scavengers
US5683626A (en) 1995-08-25 1997-11-04 Exxon Research And Engineering Company Process for neutralization of petroleum acids
US5779855A (en) 1995-08-30 1998-07-14 Kitano Engineering Co., Ltd. Apparatus for curing an optical disc
ATE223953T1 (de) 1997-01-07 2002-09-15 Clariant Gmbh Verbesserung der fliessfähigkeit von mineralölen und mineralöldestillaten unter verwendung von alkylphenol-aldehydharzen
DE19709797A1 (de) 1997-03-10 1998-09-17 Clariant Gmbh Synergistische Mischungen von Alkylphenolformaldehydharzen mit oxalkylierten Aminen als Asphalten-Dispergatoren
US6350721B1 (en) * 1998-12-01 2002-02-26 Schlumberger Technology Corporation Fluids and techniques for matrix acidizing
US6313367B1 (en) 1999-02-22 2001-11-06 Baker Hughes Incorporated Inhibition of asphaltene deposition in crude oil production systems
EP1278937A1 (de) * 2000-04-07 2003-01-29 Sofitech N.V. Verfahren zur entfernung von ablagerungen
FR2814087B1 (fr) * 2000-09-15 2003-07-04 Inst Francais Du Petrole Formulation desemulsionnante en base huile et son utilisation dans les traitements des drains fores en boue a l'huile
CA2426770A1 (en) 2000-10-26 2002-05-02 Laura C. Boudreau Removal of mercaptans from hydrocarbon streams using ionic liquids
DE10155281A1 (de) 2001-11-08 2003-06-05 Solvent Innovation Gmbh Verfahren zur Entfernung polarisierbarer Verunreinigungen aus Kohlenwasserstoffen und Kohlenwasserstoffgemischen durch Extraktion mit ionischen Flüssigkeiten
WO2003040264A1 (en) 2001-11-06 2003-05-15 Extractica, Llc Method for extraction of organosulfur compounds from hydrocarbons using ionic liquids
JP2005511666A (ja) 2001-12-04 2005-04-28 ディーエスエム アイピー アセッツ ビー.ブイ. イオン性液体の製造
AU2002350318A1 (en) 2001-12-14 2003-06-30 Cytec Canada Inc. Preparation of ionic liquids
DE10219227A1 (de) 2002-04-30 2003-11-13 Bayer Ag Ionische Flüssigkeiten
CA2400714A1 (en) 2002-08-28 2004-02-28 Nova Chemicals Corporation Use of ionic liquids to separate olefins, diolefins and aromatics
US7497943B2 (en) 2002-08-30 2009-03-03 Baker Hughes Incorporated Additives to enhance metal and amine removal in refinery desalting processes
US6852229B2 (en) 2002-10-22 2005-02-08 Exxonmobil Research And Engineering Company Method for preparing high-purity ionic liquids
DE10313207A1 (de) 2003-03-25 2004-10-07 Basf Ag Reinigung oder Aufarbeitung von Ionischen Flüssigkeiten mit adsorptiven Trennverfahren
US8058493B2 (en) 2003-05-21 2011-11-15 Baker Hughes Incorporated Removing amines from hydrocarbon streams
US20060261312A1 (en) 2003-05-28 2006-11-23 Lonza Inc. Quaternary ammonium salts containing non-halogen anions as anticorrosive agents
KR20060076269A (ko) 2003-07-21 2006-07-04 바스프 악티엔게젤샤프트 이온성 액체를 사용하는 불순물 추출 방법
DK1658262T3 (da) 2003-08-27 2013-05-13 Proionic Production Of Ionic Substances Gmbh & Co Kg Fremgangsmåde til fremstilling af ioniske væsker, ioniske faste stoffer eller blandinger deraf
CN100427568C (zh) 2003-12-18 2008-10-22 石油大学(北京) 一种采用离子液体溶剂清除沥青质沉积物及其之后再生的方法
FR2866345B1 (fr) 2004-02-13 2006-04-14 Inst Francais Du Petrole Procede de traitement d'un gaz naturel avec extraction du solvant contenu dans le gaz naturel purifie
FR2866344B1 (fr) 2004-02-13 2006-04-14 Inst Francais Du Petrole Procede de traitement d'un gaz naturel avec extraction du solvant contenu dans les gaz acides
DE102004010662A1 (de) 2004-03-04 2005-09-22 Basf Ag Verfahren zur Herstellung von Verbindungen mit quaternären sp2-hybridisierten Stickstoffatomen
US8168830B2 (en) 2004-07-23 2012-05-01 Sigma-Aldrich Co. Llc High stability diionic liquid salts
US7682502B2 (en) 2004-09-08 2010-03-23 Exxonmobil Research And Engineering Company Process to hydrogenate aromatics present in lube oil boiling range feedstreams
US20060054538A1 (en) 2004-09-14 2006-03-16 Exxonmobil Research And Engineering Company Emulsion neutralization of high total acid number (TAN) crude oil
US7432409B2 (en) 2004-12-21 2008-10-07 Chevron U.S.A. Inc. Alkylation process using chloroaluminate ionic liquid catalysts
GB0500029D0 (en) 2005-01-04 2005-02-09 Univ Belfast Basic ionic liquids
US7786065B2 (en) 2005-02-18 2010-08-31 The Procter & Gamble Company Ionic liquids derived from peracid anions
JP4499594B2 (ja) 2005-03-29 2010-07-07 第一工業製薬株式会社 超高純度イオン性液体
CA2622570A1 (en) 2005-09-15 2007-03-22 Cool Energy Limited Process and apparatus for removal of sour species from a natural gas stream
US7500522B2 (en) 2005-09-21 2009-03-10 Innovative Chemical Technologies Canada Ltd. Fluid with asphaltene control
DE102005045133B4 (de) 2005-09-22 2008-07-03 Clariant Produkte (Deutschland) Gmbh Additive für Rohöle
US7737106B2 (en) 2005-11-29 2010-06-15 The Procter & Gamble Company Process for making an ionic liquid comprising ion actives
US7572944B2 (en) 2005-12-20 2009-08-11 Chevron U.S.A. Inc. Process for making and composition of superior lubricant or lubricant blendstock
US7737067B2 (en) 2005-12-20 2010-06-15 Chevron U.S.A. Inc. Regeneration of ionic liquid catalyst
GB0526418D0 (en) 2005-12-23 2006-02-08 Ass Octel Process
CN101032677A (zh) * 2006-03-08 2007-09-12 波克股份有限公司 气体净化方法
WO2007138307A2 (en) 2006-05-25 2007-12-06 The Queen's University Of Belfast Process for removing sulfur-containing acids from crude oil
DE102006031952A1 (de) 2006-07-11 2008-01-17 Goldschmidt Gmbh Verwendung von ionischen Flüssigkeiten oder Lösungen aus Metallsalzen in ionischen Flüssigkeiten als Antistatika für Kunststoffe
ATE481391T1 (de) 2006-10-10 2010-10-15 Proionic Production Of Ionic S Verfahren zur herstellung quarternärer carbonate
EP1970432A1 (de) 2006-12-19 2008-09-17 Castrol Limited Schmiermittelzusammensetzungen und ihre Verwendung
US8679203B2 (en) 2007-03-19 2014-03-25 Baker Hughes Incorporated Method of scavenging mercaptans from hydrocarbons
ITMI20070808A1 (it) * 2007-04-19 2008-10-20 Eni Spa Additivi per il recupero di olio dai giacimenti
EP2146949B1 (de) 2007-05-05 2017-03-01 Basf Se Ionische flüssigkeiten mit polyethercarboxylaten als anionen, deren herstellung und verwendung
US7918905B2 (en) 2007-05-17 2011-04-05 Baker Hughes Incorporated Method for improving biodiesel fuel
MX2007008524A (es) 2007-07-13 2009-01-14 Mexicano Inst Petrol Catalizador liquido ionico para el mejoramiento de crudos pesados y extrapesados.
US8084402B2 (en) 2007-07-24 2011-12-27 Baker Huges Incorporated Method of using ionic liquids to inhibit or prevent the swelling of clay
GB0715258D0 (en) * 2007-08-06 2007-09-12 Univ Leuven Kath Deposition from ionic liquids
WO2009040242A1 (de) 2007-09-21 2009-04-02 Basf Se Verfahren zur herstellung von imidazoliumsalzen
US20090090655A1 (en) 2007-10-04 2009-04-09 Baker Hughes Incorporated Additive Useful for Stabilizing Crude Oil
DE102007053630A1 (de) 2007-11-08 2009-05-14 Basf Se Verfahren und Herstellung ionischer Flüssigkeiten durch Anionenaustausch
WO2009087184A1 (de) 2008-01-09 2009-07-16 Basf Se Verfahren zur aufarbeitung ionischer flüssigkeiten
KR100958876B1 (ko) 2008-04-02 2010-05-20 삼성엔지니어링 주식회사 다양한 극성/비극성 용매 혼화성 이온성 액체 및 그의제조방법
US20090291872A1 (en) 2008-05-21 2009-11-26 The Regents Of The University Of Colorado Ionic Liquids and Methods For Using the Same
MX2008006731A (es) 2008-05-26 2009-11-26 Mexicano Inst Petrol Liquidos ionicos en la desulfuracion de hidrocarburos y procedimiento de obtencion.
US20090320771A1 (en) 2008-06-10 2009-12-31 Matheson Tri-Gas Ionic liquid mediums for holding solid phase process gas precursors
CN102186556B (zh) 2008-07-30 2015-01-21 缠绕机公司 用于除去天然气流中硫化氢的系统和方法
US8734673B2 (en) 2008-08-08 2014-05-27 The University Of Toledo Boron selective ionic liquids and polymeric ionic liquids, methods of making and methods of use thereof
MX2008011121A (es) 2008-08-29 2010-03-01 Mexicano Inst Petrol Liquidos ionicos libres de halogenos en la desulfuracion de naftas y su recuperacion.
GB0905896D0 (en) * 2009-04-06 2009-05-20 Univ Belfast Process for removing metals from hydrocarbons
US20100270211A1 (en) 2009-04-27 2010-10-28 Saudi Arabian Oil Company Desulfurization and denitrogenation with ionic liquids and metal ion systems
US20140170041A1 (en) 2009-06-24 2014-06-19 Simbol Inc Methods for Removing Potassium, Rubidium, and Cesium, Selectively or in Combination, From Brines and Resulting Compositions Thereof
KR20120047281A (ko) 2009-07-29 2012-05-11 커먼웰쓰 사이언티픽 앤드 인더스트리얼 리서치 오가니제이션 이온성 액체
BRPI0905253B1 (pt) * 2009-12-28 2020-02-18 Petroleo Brasileiro S.A. - Petrobras Processo para o tratamento de emulsões água/óleo
WO2011119807A1 (en) 2010-03-26 2011-09-29 Saudi Arabian Oil Company Ionic liquid desulfurization process incorporated in a low pressure separator
US8992767B2 (en) 2010-03-26 2015-03-31 Saudi Arabian Oil Company Ionic liquid desulfurization process incorporated in a contact vessel
WO2012001703A1 (en) 2010-06-29 2012-01-05 Reliance Industries Ltd. Ionic fluids
US8888993B2 (en) 2010-07-30 2014-11-18 Chevron U.S.A. Inc. Treatment of a hydrocarbon feed
US8540871B2 (en) 2010-07-30 2013-09-24 Chevron U.S.A. Inc. Denitrification of a hydrocarbon feed
US20120053101A1 (en) 2010-09-01 2012-03-01 Baker Hughes Incorporated Functionalized Maleated Fatty Acids as Non Acidic Fluid Additives
GB2547364B8 (en) 2010-10-05 2017-11-29 The Queen's Univ Of Belfast Process for removing metals from hydrocarbons
US8916734B2 (en) 2010-10-21 2014-12-23 Sheeta Global Tech Corp. Using methanesulfonyl halide as a key intermediate for methane gas to liquid conversion and raw commodity chemical generation
GB201018916D0 (en) 2010-11-09 2010-12-22 Champion Technologies Ltd Corrosion inhibition
US8858803B2 (en) 2010-11-22 2014-10-14 General Electric Company Methods of preparing novel halide anion free quaternary ammonium salt monomers, polymerization methods therefor, and methods of use of the resulting polymers
GB2485824B (en) 2010-11-25 2017-12-20 The Queen's Univ Of Belfast Process for removing organic acids from crude oil and crude oil distillates
US20140299543A1 (en) 2010-12-17 2014-10-09 University Of South Australia Extraction of metals
US8652237B2 (en) 2010-12-17 2014-02-18 Battelle Memorial Institute System and process for capture of H2S from gaseous process streams and process for regeneration of the capture agent
RU2011101428A (ru) 2011-01-14 2012-07-20 Недерландсе Органисати Вор Тугепаст-Натюрветенсхаппелейк Ондерзук (Тно) (Nl) Способ и устройство для разделения газовой смеси
WO2012123336A1 (de) 2011-03-15 2012-09-20 Basf Se Verfahren zur herstellung von ionischen flüssigkeiten durch anionenaustausch
US9090567B2 (en) 2011-03-15 2015-07-28 Basf Se Process for preparing ionic liquids by anion exchange
MX2011003848A (es) * 2011-04-11 2012-10-29 Mexicano Inst Petrol Deshidratacion y desalado de crudos medios, pesados y extrapesados utilizando liquidos ionicos y sus formulaciones.
MX340805B (es) * 2011-04-18 2016-06-24 Inst Mexicano Del Petróleo Formulaciones sinergicas de copolimeros funcionalizados y liquidos ionicos para el deshidratado y desalado de aceites crudos medianos, pesados y extrapesados.
ES2702487T3 (es) 2011-06-17 2019-03-01 Nantenergy Inc Líquido iónico que contiene iones sulfonato
US20130026480A1 (en) 2011-07-25 2013-01-31 Bridgelux, Inc. Nucleation of Aluminum Nitride on a Silicon Substrate Using an Ammonia Preflow
MX2011007922A (es) 2011-07-27 2013-02-07 Mexicano Inst Petrol Desnitrogenacion de hidrocarburos mediante extraccion liquido-liquido empleando liquidos ionicos.
EP2737015A2 (de) * 2011-07-29 2014-06-04 Saudi Arabian Oil Company Verfahren zur verringerung der gesamtsäurezahl von raffinerierohstoffen
US8927737B2 (en) 2011-08-09 2015-01-06 Basf Se Process for purifying ionic liquids
US8524074B2 (en) 2011-08-17 2013-09-03 Nalco Company Removal of mercury and mercuric compounds from crude oil streams
JP5667328B2 (ja) 2011-08-30 2015-02-12 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド 2つの中心を有するビス第四級アンモニウム塩のイオン液体、その調製方法及び使用
US20130101460A1 (en) 2011-10-25 2013-04-25 Baker Hughes Incorporated Inhibiting corrosion in aqueous films
CN104011330B (zh) * 2011-12-21 2017-02-22 国际壳牌研究有限公司 用于抑制烃混合物内的沥青质沉积的方法和组合物
BR112014015256A8 (pt) * 2011-12-21 2017-07-04 Shell Int Research método e composição para inibir a formação ou deposição de cera, e, mistura inibida com cera
US9637676B2 (en) 2012-01-24 2017-05-02 Baker Hughes Incorporated Asphaltene inhibitors for squeeze applications
US8673800B2 (en) 2012-02-14 2014-03-18 Chevron U.S.A. Inc. Hydrolysis of used ionic liquid catalyst for disposal
US9353261B2 (en) * 2012-03-27 2016-05-31 Nalco Company Demulsifier composition and method of using same
US9233339B2 (en) * 2012-04-23 2016-01-12 Ut-Battelle, Llc Ionic liquid-functionalized mesoporous sorbents and their use in the capture of polluting gases
WO2013171060A1 (de) 2012-05-16 2013-11-21 Basf Se Destillation ionischer flüssigkeiten durch kurzwegdestillation
WO2013177237A1 (en) 2012-05-22 2013-11-28 Corsicana Technologies, Inc. The use of oligo-quaternary compositions to increase scale inhibitor lifetime in a subterranean formation
US9550936B2 (en) * 2012-08-08 2017-01-24 Baker Hughes Incorporated Mobilization of heavy oil
WO2014055274A1 (en) 2012-10-01 2014-04-10 Dow Global Technologies Llc Ionic liquid grafted mesoporous silica compositions for polar gas/non-polar gas and olefin/paraffin separations
BR112015018484A2 (pt) 2013-01-31 2017-07-18 Purdue Research Foundation métodos de analisar o petróleo bruto
ITMI20130231A1 (it) 2013-02-19 2014-08-20 Eni Spa Procedimento di separazione di composti gassosi da gas naturale con basse perdite di exergia
US10815421B2 (en) 2013-03-15 2020-10-27 Ethox Chemicals, Llc Flow back aids
WO2014172042A1 (en) 2013-03-15 2014-10-23 Sandia Corporation Synthesis of novel ionic liquids from lignin-derived compounds
US9360425B2 (en) 2013-05-02 2016-06-07 Baker Hughes Incorporated Method for characterizing the stability of foulants and/or efficacy of foulant inhibitors within petroleum-based fluids
DE102013007733A1 (de) 2013-05-07 2014-11-27 Rainer Pommersheim Verfahren und technischer Prozess zur kontinuierlichen Synthese von unterschiedlichen lonischen Flüssigkeiten
WO2014182779A1 (en) 2013-05-09 2014-11-13 Baker Hughes Incorporated Metal removal from liquid hydrocarbon streams
US20160075952A1 (en) 2013-05-20 2016-03-17 Lotte Chemical Corporation Method for separating aromatic compounds contained in naphtha
US20140378718A1 (en) 2013-06-24 2014-12-25 Baker Hughes Incorporated Method for reducing acids in crude oil
GB201313423D0 (en) * 2013-07-26 2013-09-11 Innospec Ltd Compositions and methods
US20150034310A1 (en) * 2013-08-01 2015-02-05 Ionic Research Technologies Llc Compounds, compositions and methods for enhancing oil recovery
US9523054B2 (en) 2013-08-21 2016-12-20 Baker Hughes Incorporated Asphaltene stabilization in petroleum feedstocks by blending with biological source oil and/or chemical additive
US9328295B2 (en) 2013-09-27 2016-05-03 Uop Llc Extract recycle in a hydrocarbon decontamination process
US20150093313A1 (en) 2013-09-30 2015-04-02 Uop Llc Ionic liquid and solvent mixtures for hydrogen sulfide removal
MX359374B (es) * 2013-10-22 2018-09-13 Mexicano Inst Petrol Aplicacion de una composicion quimica para la reduccion de la viscosidad de petroleos crudos pesados y extrapesados.
MX360197B (es) * 2013-10-29 2018-10-11 Mexicano Inst Petrol Composicion inhibidora de corrosion para oleoductos, proceso de obtencion y de sintesis.
CN103555313B (zh) * 2013-11-06 2016-01-13 山东大学 一种咪唑盐离子液体酸化缓蚀剂及其制备方法与应用
US9663726B2 (en) 2014-02-10 2017-05-30 Baker Hughes Incorporated Fluid compositions and methods for using cross-linked phenolic resins
EP3113878A4 (de) 2014-03-04 2017-08-30 Reliance Industries Limited Ionische flüssigkeitsvorläufer
GB2524570B (en) 2014-03-27 2021-02-24 Univ Belfast Process for preparing alkanolamines useful in removal of acid-gas from a gaseous stream
WO2015160645A1 (en) 2014-04-16 2015-10-22 Saudi Arabian Oil Company Improved sulfur recovery process for treating low to medium mole percent hydrogen sulfide gas feeds with btex in a claus unit
WO2016004232A1 (en) 2014-07-02 2016-01-07 Chevron U.S.A. Inc. Process for mercury removal
US9550937B2 (en) 2014-07-31 2017-01-24 Baker Hughes Incorporated Methods and compositions for decreasing the viscosity of hydrocarbon-based fluids during refining
US10114001B2 (en) * 2014-08-04 2018-10-30 Phillips 66 Company Quantitation of amines in hydrocarbons
US9453830B2 (en) 2014-08-29 2016-09-27 Ecolab Usa Inc. Quantification of asphaltene inhibitors in crude oil using thermal analysis coupled with mass spectrometry
US9574139B2 (en) 2014-11-24 2017-02-21 Uop Llc Contaminant removal from hydrocarbon streams with lewis acidic ionic liquids
US9921155B2 (en) 2014-11-25 2018-03-20 Baker Hughes, A Ge Company, Llc Methods of decreasing scale in aqueous systems
CA2915596C (en) 2014-12-18 2023-04-25 Chevron U.S.A. Inc. Method for upgrading in situ heavy oil
WO2016100768A1 (en) 2014-12-19 2016-06-23 Eastman Chemical Company Quaternary carboxylate compositions for extracting c1 to c4 carboxylic acids from aqueous streams
US9688903B2 (en) 2014-12-30 2017-06-27 Ecolab Usa Inc. Mitigation of corrosion in geothermal systems
WO2016137724A1 (en) 2015-02-26 2016-09-01 Chevron U.S.A. Inc. Method for removing mercury from crude oil
US10196509B2 (en) 2015-05-07 2019-02-05 Baker Hughes, A Ge Company, Llc Inhibiting fouling tendency in high coal ash-containing water systems
GB2538756A (en) 2015-05-27 2016-11-30 The Queen's Univ Of Belfast A process for refining glyceride oil comprising a basic ionic liquid treatment
US10312551B2 (en) 2015-09-11 2019-06-04 Microvast Power Systems Co., Ltd. Preparation method of ionic liquids and secondary batteries
US20170101375A1 (en) 2015-10-08 2017-04-13 Coorstek Fluorochemicals, Inc. Process for producing quaternary ammonium cations and ionic liquids
US20170107162A1 (en) 2015-10-16 2017-04-20 Siluria Technologies, Inc. Separation methods and systems for oxidative coupling of methane
US10174429B2 (en) 2015-11-05 2019-01-08 Chemtreat, Inc Corrosion control for water systems using tin corrosion inhibitor with a hydroxycarboxylic acid
WO2017105476A1 (en) 2015-12-18 2017-06-22 Eastman Chemical Company Quaternary arylcarboxylate compositions for extracting c1 to c4 carboxylic acids from aqueous streams
US9611209B1 (en) 2015-12-18 2017-04-04 Eastman Chemical Company Quaternary arylcarboxylate compositions for extracting C1 to C4 carboxylic acids from aqueous streams
CN107021941B (zh) 2016-02-02 2020-06-19 微宏动力系统(湖州)有限公司 离子液体及其制备方法
EP3411139A1 (de) 2016-02-03 2018-12-12 Novek, Ethan Integriertes verfahren zur abscheidung von kohlendioxid
CN107177353A (zh) * 2016-03-11 2017-09-19 中国石油化工股份有限公司 一种稠油降粘剂及其制备方法
CN106047328B (zh) * 2016-07-11 2017-11-14 扬州大学 一种含咪唑基离子液体的纳米乳液缓蚀剂及其制备方法
CA3045314A1 (en) * 2016-11-30 2018-06-07 Ecolab Usa Inc. Composition for remediating iron sulfide in oilfield production systems
US20180230389A1 (en) * 2017-02-12 2018-08-16 Magēmā Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil
US10301553B2 (en) 2017-02-28 2019-05-28 Ecolab Usa Inc. Use of sulfonium salts as hydrogen sulfide inhibitors
GB201705095D0 (en) 2017-03-30 2017-05-17 Innospec Ltd Composition and methods and uses relating thereto
US20190048712A1 (en) 2017-08-10 2019-02-14 Baker Hughes, A Ge Company, Llc Method for monitoring quality assurance of chemicals in subsea umbilical systems to avoid blockage
US10988689B2 (en) 2017-11-01 2021-04-27 Championx Usa Inc. Corrosion inhibitor compositions and methods of using same
EP3704209A1 (de) 2017-11-01 2020-09-09 Ecolab USA Inc. Korrosionshemmerzusammensetzungen und verfahren zur verwendung davon
US10093868B1 (en) 2017-11-15 2018-10-09 Baker Hughes, A Ge Company, Llc Ionic liquid-based hydrogen sulfide and mercaptan scavengers
US10858604B2 (en) 2017-12-08 2020-12-08 Baker Hughes, A Ge Company, Llc Phenol aldehydes asphaltene inhibitors
US11124692B2 (en) 2017-12-08 2021-09-21 Baker Hughes Holdings Llc Methods of using ionic liquid based asphaltene inhibitors
US10822547B2 (en) 2017-12-12 2020-11-03 Baker Hughes Holdings Llc Basic ionic liquids as hydrochloric acid scavengers in refinery crude processing
CN108148565A (zh) * 2017-12-12 2018-06-12 大庆华理生物技术有限公司 一种利用微生物表面活性剂制备离子液体型稠油降粘剂及制备方法
EA202091413A1 (ru) 2018-07-11 2020-09-24 Бейкер Хьюз Холдингз Ллк Скважинные ингибиторы асфальтенов на основе ионной жидкости и способы их применения

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11254881B2 (en) 2018-07-11 2022-02-22 Baker Hughes Holdings Llc Methods of using ionic liquids as demulsifiers
CN111621791A (zh) * 2020-05-06 2020-09-04 中国石油天然气集团有限公司 一种抗稀盐酸和硫化氢腐蚀的炼油蒸馏塔顶缓蚀剂

Also Published As

Publication number Publication date
US11254881B2 (en) 2022-02-22
CA3105168A1 (en) 2020-01-16
US20220056345A1 (en) 2022-02-24
WO2020014510A1 (en) 2020-01-16
CA3105166C (en) 2024-02-27
US20220098494A1 (en) 2022-03-31
WO2020036698A3 (en) 2020-08-20
CA3105144C (en) 2023-01-31
US11485915B2 (en) 2022-11-01
CA3105170A1 (en) 2020-01-16
CA3105166A1 (en) 2020-02-20
US20200017776A1 (en) 2020-01-16
WO2020036698A2 (en) 2020-02-20
EP3820960A1 (de) 2021-05-19
WO2020014529A1 (en) 2020-01-16
EA202091413A1 (ru) 2020-09-24
WO2020014534A1 (en) 2020-01-16
US20200017790A1 (en) 2020-01-16
CA3105144A1 (en) 2020-01-16
CA3105170C (en) 2023-12-19
US20220169929A1 (en) 2022-06-02
EP3820961A2 (de) 2021-05-19
EP3820968A1 (de) 2021-05-19
EP3820962A1 (de) 2021-05-19
CA3105168C (en) 2023-04-25

Similar Documents

Publication Publication Date Title
US11485915B2 (en) Methods of using ionic liquids as corrosion inhibitors
CA2348468C (en) Mercaptoalcohol corrosion inhibitors
AU2006200176B2 (en) Corrosion Inhibitor Systems for Low, Moderate and High Temperature Fluids and Methods for Making and Using Same
CA2720382C (en) Organic corrosion inhibitor package for organic acids
US7989403B2 (en) Corrosion inhibitors containing amide surfactants for a fluid
EP3119925B1 (de) Dimercaptothiadiazole zur verhinderung der korrosion von weichstahl durch saure gase in öl- und gasprodukten
US6013200A (en) Low toxicity corrosion inhibitor
EP3110905B1 (de) Quaternäre fettsäureester als korrosionsinhibitoren
AU2016261315B2 (en) Corrosion inhibitor formulations
RU2673268C2 (ru) Химическое ингибирование питтинговой коррозии в метанольных растворах, содержащих органический галогенид
US2799649A (en) Method for inhibiting corrosion
US2614982A (en) Method of prevention of corrosion in wells
Saji Sulfide scavengers and their interference in corrosion inhibition
Waka et al. Review of oilfield chemicals used in oil and gas industry
Haque et al. High‐Temperature Polymeric Corrosion Inhibitors
CA3050258A1 (en) Synergistic corrosion inhibitors
AU2017368084A1 (en) Use of a composition containing at least one biodegradable sugar-amide-compound in combination with at least one sulfur-based synergist for corrosion inhibition of a metallic equipment in oilfield applications
PL226810B1 (pl) Termodynamiczny inhibitor hydratów odziałaniu przeciwkorozyjnym iantyaglomeracyjnym doochrony urzadzen wydobywczych, rurociagów transportujacych rope naftowa isposób jego wytwarzania
PL226811B1 (pl) Termodynamiczny inhibitor hydratów odziałaniu przeciwkorozyjnym iantyaglomeracyjnym doochrony rur wydobywczych irurociagów transportujacych gaz ziemny isposób jego wytwarzania

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: BAKER HUGHES, A GE COMPANY, LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEERS, JERRY;FELIPE, MARY JANE;REEL/FRAME:053864/0228

Effective date: 20200918

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: BAKER HUGHES HOLDINGS LLC, TEXAS

Free format text: CHANGE OF NAME;ASSIGNOR:BAKER HUGHES, A GE COMPANY, LLC;REEL/FRAME:059141/0762

Effective date: 20200413