US20200017766A1 - Methods of using ionic liquids as corrosion inhibitors - Google Patents

Methods of using ionic liquids as corrosion inhibitors Download PDF

Info

Publication number
US20200017766A1
US20200017766A1 US16/509,431 US201916509431A US2020017766A1 US 20200017766 A1 US20200017766 A1 US 20200017766A1 US 201916509431 A US201916509431 A US 201916509431A US 2020017766 A1 US2020017766 A1 US 2020017766A1
Authority
US
United States
Prior art keywords
anionic
group
alkyl
esters
ionic liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/509,431
Inventor
Jerry Weers
Mary Jane Felipe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Priority to US16/509,431 priority Critical patent/US20200017766A1/en
Publication of US20200017766A1 publication Critical patent/US20200017766A1/en
Assigned to BAKER HUGHES, A GE COMPANY, LLC reassignment BAKER HUGHES, A GE COMPANY, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FELIPE, MARY JANE, WEERS, JERRY
Priority to US17/545,910 priority patent/US11485915B2/en
Assigned to BAKER HUGHES HOLDINGS LLC reassignment BAKER HUGHES HOLDINGS LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: BAKER HUGHES, A GE COMPANY, LLC
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/30Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing heterocyclic ring with at least one nitrogen atom as ring member
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G33/00Dewatering or demulsification of hydrocarbon oils
    • C10G33/04Dewatering or demulsification of hydrocarbon oils with chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/047Breaking emulsions with separation aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J43/00Amphoteric ion-exchange, i.e. using ion-exchangers having cationic and anionic groups; Use of material as amphoteric ion-exchangers; Treatment of material for improving their amphoteric ion-exchange properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/682Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of chemical compounds for dispersing an oily layer on water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with monohydric phenols having only one hydrocarbon substituent ortho on para to the OH group, e.g. p-tert.-butyl phenol
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/20Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/26Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing nitrogen and sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • C09K8/524Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning organic depositions, e.g. paraffins or asphaltenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/22Organic compounds not containing metal atoms containing oxygen as the only hetero atom
    • C10G29/24Aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/28Organic compounds not containing metal atoms containing sulfur as the only hetero atom, e.g. mercaptans, or sulfur and oxygen as the only hetero atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/08Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by treating with water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • C10L10/16Pour-point depressants
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1055Diesel having a boiling range of about 230 - 330 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1059Gasoil having a boiling range of about 330 - 427 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/304Pour point, cloud point, cold flow properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4075Limiting deterioration of equipment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • C10L2200/0446Diesel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine

Abstract

Ionic liquid containing compositions may be used in the production, recovery and refining of oil and gas. In addition, they may be used to treat cooling water and/or to inhibit and/or prevent corrosion of metals.

Description

    FIELD
  • The disclosure relates to the use of ionic liquids as corrosion inhibitors.
  • BACKGROUND
  • Corrosion of metallic surfaces is often an acute problem which arises during the production and refining of hydrocarbon streams as well as in other industries which rely on aqueous fluids for the removal of heat from one medium to another. For instance, cooling towers extract waste heat to the atmosphere by cooling of a water stream to a lower temperature. Cooling towers are used in oil refineries, petrochemical and other chemical plants, thermal power stations and power plants, steel mills, natural gas processing plants, food processing plants, semi-conductor plants as well as HVAC systems. Aqueous fluids, including those with high salt content, cause corrosion which may lead to equipment failure requiring equipment to be replaced. Corrosion also decreases plant efficiency due to loss of heat transfer. This is often the result of heat exchanger fouling caused by the accumulation of corrosion products.
  • Highly corrosive conditions also arise during well stimulation operations, such as pickling, acid washing, matrix acidizing and acid fracturing where aqueous acidic solutions are applied to the production zone to increase the size of pores within the formation and to provide enlarged passageways for the flow of hydrocarbons.
  • Corrosive aqueous fluids having high salt content are also used in drilling and completion fluids. Marked corrosivity is often seen when such brines are used as packer fluids since they remain in contact with production tubing and casing for extended periods of time.
  • Concerns of corrosion also arise in the treatment of gas streams, such as carbon dioxide and hydrogen sulfide, which generate highly acidic environments to which metallic surfaces become exposed. For instance, corrosion effects from brine and hydrogen sulfide are seen in flow lines during the processing of gas streams. The presence of methanol, often added to such streams to prevent the formation of undesirable hydrates, further often increases the corrosion tendencies of metallic surfaces.
  • Further, naturally occurring and synthetic gases are often conditioned by treatment with absorbing acidic gases, carbon dioxide, hydrogen sulfide and hydrogen cyanide. Degradation of the absorbent and acidic components as well as the generation of by-products (from reaction of the acidic components with the absorbent) results in corrosion of metallic surfaces.
  • Corrosion of metallic surfaces is evidenced by surface pitting, embrittlement and loss of metal. Pitting occurs when anodic and cathodic sites become stationary due to large differences in surface conditions. Once a pit is formed, the solution inside it is isolated from the environment and becomes increasingly corrosive with time. The high corrosion rate in the pit produces an excess of positively charged metal cations, which attract chloride anions. In addition, hydrolysis produces hydrogen ions. The increase in acidity and concentration within the pit promotes even higher corrosion rates, and the process becomes self-sustaining.
  • Various corrosion inhibitors for diminishing corrosive effects on metal surfaces have been developed. Some corrosion inhibitors can have serious consequences. For instance, sulfur containing corrosion inhibitors may cause corrosion cracking which translates into tubular failures. Such inhibitors further may decompose at elevated bottomhole temperatures and release hydrogen sulfide. The release of hydrogen sulfide as a decomposition product likely induces sulfide stress corrosion cracking of the alloy tubulars. Zinc based corrosion inhibitors have also been used especially to address corrosive effects in cooling towers. Unfortunately, zinc salts, oxides and sulfates often precipitate in cooling water. In alkaline waters, particularly above about pH 7.5, dissolved zinc tends to deposit or drop out. Thus, zinc salts are known to be unstable in neutral or alkaline water. Scale formation further typically results from the metals in inorganic corrosion inhibitors. For instance, zinc scales typically form by use of zinc containing corrosion inhibitors. The effectiveness of corrosion inhibitors in aqueous systems thus significantly decreases.
  • Efforts have been undertaken to find more effective corrosion inhibitors which do not render the negative effects of those previously seen. For instance, alternative corrosion inhibitors have been sought which are capable of controlling, reducing or inhibiting corrosion without inducing sulfur-related corrosion cracking of metallic alloy tubulars. Further, there exists a need for improved compositions for inhibiting or preventing corrosion in cooling water systems which are more effective and are more environmentally acceptable compositions.
  • SUMMARY
  • In an embodiment, the disclosure relates to the use of electronically neutral ionic liquids as corrosion inhibitors, the ionic liquids represented by (I):

  • A+X  (I)
  • wherein A is or contains nitrogen, a nitrogen containing heterocyclic ring, is or contains phosphorus, or a phosphorus containing heterocycle; and X is an anion selected from the group consisting of halides; hydroxyl; hydroxyl containing nitrogen or sulfur compounds; sulfonates; sulfates; bisulfites; carbonates; alkyl carbonates; bicarbonates; thiocarbonates; dithiocarbonates; trithiocarbonates; xanthates, thiocyanates; alkoxides; carboxylates; hydroxycarboxylates; amino fatty acids; anionic alkoxylated fatty acids; anionic metallic complexes, sulfur or silicon containing anions; sulfides; polysulfides; anionic phosphate esters, anionic thiophosphate esters; anionic phosphonate esters; anionic thiophosphonate esters; alkyl substituted phosphines; anionic urea; anionic thiourea; anionic natural products; anionic thiols; anionic phenols; anionic phenol resins; anionic copolymers of alpha olefins and maleic anhydride, esters, amides, imides or derivatives thereof; anionic acrylamido-methyl propane sulfonate/acrylic acid copolymers; anionic homopolymers, copolymers and terpolymers of one or more acrylates, methacrylates, acrylamides and acids, optionally copolymerized with one or more ethylenically unsaturated monomers; anionic phosphated maleic copolymers; an anionic homo or copolymer of an oxirane or methyloxirane and mixtures thereof or a zwitterion.
  • Another embodiment relates to the use of ionic liquids as corrosion inhibitors, the ionic liquids represented by (II) and (Ill):

  • R1R2R3R4A+X  (II);

  • R1R2R3A+R8A+R5R6R7X  (III)
  • wherein:
  • A in formula (II) is or contains nitrogen or phosphorus or a heterocyclic ring thereof and wherein each A in formula (III) is independently selected from nitrogen or phosphorus or a heterocyclic ring thereof; and
  • X is an anion selected from the group consisting of halides; hydroxyl; hydroxy containing nitrogen or sulfur compounds; carbonates; alkyl carbonates; bicarbonates; carboxylates; hydroxycarboxylates; dithiocarbonates; trithiocarbonates; xanthates, thiocyanates; alkoxides; anionic urea; anionic alkyl substituted phosphines; anionic amino fatty acids; anionic alkoxylated fatty acids; anionic acrylamido-methyl propane sulfonate/acrylic acid copolymers; anionic phosphated maleic copolymers; anionic homo or copolymers of an oxirane or methyloxirane; anionic metal complexes; sulfur or silicon containing anions; anionic phosphate esters; anionic thiophosphate esters; anionic phosphonate esters; anionic thiophosphonate esters; anionic thiols; anionic natural products; anionic phenols; anionic phenol resins; anionic copolymers of alpha olefins and maleic anhydride, esters, amides, imides or derivatives thereof; anionic alkyl substituted phosphines; and anionic homopolymers, copolymers and terpolymers of one or more acrylates, methacrylates and acrylamides, optionally copolymerized with one or more ethylenically unsaturated monomers; and mixtures thereof; and further wherein R1, R2, R3, R4, R5, R6 and R7 are independently selected from the group consisting of hydrogen; benzyl; alkylbenzyl, or oxyalkyl (including —CH2CH2OH) or —CH2CH(CH3)OH); a straight or branched alkyl group, an alkylbenzyl group, an arylalkyl group, a straight or branched chain alkenyl group, a hydroxyalkyl group or a hydroxyalkylbenzyl group; and a polyoxyalkylene group; and R8 is a straight or branched alkylene group, an alkylene oxyalkylene, or an alkylene polyoxyalkylene or a zwitterion; and further wherein R groups may be joined to form a heterocyclic nitrogen, sulfur or phosphorus containing ring.
  • In another embodiment, a method of enhancing the performance of a corrosion inhibitor is provided by contacting the corrosion inhibitor with a corrosion inhibiting ionic liquid. In these instances, the corrosion inhibiting ionic liquid may act as an intensifier for the corrosion inhibitor; the corrosion inhibitor not being an ionic liquid.
  • DETAILED DESCRIPTION
  • The description provides specific details, such as material types, compositions, and processing conditions in order to provide a thorough description of embodiments of the disclosure. Characteristics and advantages of this disclosure and additional features and benefits will be readily apparent to those skilled in the art upon consideration of the following detailed description of exemplary embodiments. The description herein, being of exemplary embodiments, is not intended to limit the scope of the claims.
  • As used herein and throughout various portions (and headings) of this patent application, the terms “disclosure”, “present disclosure” and variations thereof are not intended to mean every possible embodiment encompassed by this disclosure or any particular embodiment(s). Thus, the subject matter of each such reference should not be considered as necessary for, or part of, every embodiment hereof or of any particular embodiment(s) merely because of such reference.
  • Certain terms are used herein and in the appended embodiments to refer to particular components. As one skilled in the art will appreciate, different persons may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. Also, the terms “including” and “comprising” are used herein and in the appended embodiments in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . .” Further, reference herein and in the appended embodiments to components and aspects in a singular tense does not limit the present disclosure or appended embodiments to only one such component or aspect, but should be interpreted generally to mean one or more, as may be suitable and desirable in each particular instance. Thus, the use of the terms “a”, “an”, “the” the suffix “(s)” and similar references are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context.
  • All ranges disclosed herein are inclusive of the endpoints, and the endpoints are independently combinable with each other. Unless stated otherwise, any range of values within the endpoints is encompassed. For example, where the endpoints of a range are stated to be from 1 to 10, any range of values, such as from 2 to 6 or from 3 to 5 will be defined by the range.
  • All references are incorporated herein by reference.
  • The phrase “ionic liquid” refers to a neutral molten salt composed entirely of ions and which is liquid at ambient or near ambient temperatures. The phrase shall include the quaternary organic salts of (I), (II) and (Ill). The ionic liquid functions as a corrosion inhibitor.
  • The phrase “second corrosion inhibitor” shall refer to any material (other than an ionic liquid) which enhances the performance of an ionic liquid or whose performance is enhanced by an ionic liquid.
  • The phrase “treatment composition” shall refer to a composition resulting from contact of an ionic liquid with a second corrosion inhibitor. The phrase shall include blends, mixtures, complexes and reactions products of the ionic liquid and second corrosion inhibitor.
  • As used herein, unless otherwise restricted, “inhibit”, “inhibiting” or “inhibition” shall include the inhibition, prevention, reduction or control of corrosion of a metallic surface.
  • The phrase “corrosion inhibitor” shall refer to a material capable of inhibiting, preventing or reducing corrosion of a metallic surface.
  • As used herein, “petroleum hydrocarbon fluid” shall include crude oil, shale oil, shale gas condensate, bitumen, diluted bitumen (dil-bit), refinery fractions including distillates including gas oil cuts, finished fuel including diesel fuel, petroleum fuel and biofuel, finished petroleum products, residual oil, fuel gas, flare gas, propane, butane, liquefied petroleum gas (LPG), natural gas liquid (NGL) and combinations thereof. The ionic liquids and treatment compositions described herein are especially useful in the treatment of crude oil, bitumen, diesel fuel, petroleum fuel, biofuel, residual oil, fuel gas, flare gas, propane, butane, liquefied petroleum gas (LPG), natural gas liquid (NGL) and refinery fractions (including gas oil cuts and light lubricating oils) and combinations thereof. In addition, any of these may contain water, brines, gases such as hydrocarbon gases, or a combination thereof.
  • As used herein, the word “conduit” may refer to any pipeline, pipe, tubing, tubular, flow conduit, thoroughfare or other artery in which a chemical, including a petroleum hydrocarbon fluid, travels or contacts. The word “vessel” shall include any equipment or container in which a petroleum hydrocarbon fluid is in contact, such as heat exchangers, etc. The conduit may, but not limited to, those composed of a metal, plastic or glass. The site of the “conduit” or “vessel” shall include, but not be restricted to reservoirs, wells, pipelines, refineries, fluid processing or treatment facilities (including those where gas or oil production or treatment occur, chemical plants, thermal power stations, power plants, steel mills, natural gas processing plants, food processing plants, semi-conductor plants and HVAC systems) as well as thoroughfares leading to or from any of the above.
  • The ionic liquids and treatment compositions described herein may be used during the production of crude oil and gas.
  • In addition, the ionic liquids and treatment compositions may be used during the recovery of petroleum hydrocarbon fluids from underground reservoirs.
  • The ionic liquids and treatment compositions are most useful during the production of oil and gas from a well and during in a refinery operation including light-ends recovery, solid waste and cooling water treatment, process-water treatment, cooling, storage, and handling, product movement, hydrogen production, acid and tail-gas treatment and sulfur recovery.
  • The ionic liquids and treatment compositions may also be used during the purification or another treatment phase of an industrial product. For instance, the ionic liquids and treatment compositions may be used to treat cooling water streams. Such streams include produced water (aqueous fluids produced along with crude oil and natural gas during from reservoirs water naturally present in oil and gas bearing geological formations, aqueous fluids produced or used during the production of oil and gas from reservoirs or an industrial product, aqueous fluids produced during the refining of oil and gas or an industrial product, aqueous fluids used during the refining of oil and gas or an industrial product, aqueous fluids used or produced during transit or storage of petroleum hydrocarbon fluids or an industrial product). Exemplary water streams include flowback water, degassed sour water, boiler blowdown streams, cooling tower bleed-off/blowdown (originating from oil refineries, petrochemical and natural gas processing plants, other chemical plants, thermal power stations, power plants, steel mills, food processing plants, semi-conductor plants and HVAC systems). Wastewater streams from industrial applications include municipal wastewater treatment facilities, streams in transit to or from municipal wastewater treatment facilities, tanning facilities, and the like. Exemplary products removed during water treatments described herein may include inorganic salts, polymers, breakers, friction reducers, lubricants, acids and caustics, bactericides, defoamers, emulsifiers, filtrate reducers, shale control inhibitors, phosphorus ions, ions of calcium, magnesium and carbonates, bacteria as well other production chemicals.
  • The ionic liquids and treatment compositions may also be used within a conduit or vessel or introduced into a conduit or vessel. The ionic liquids and treatment compositions may also be used during transit of petroleum hydrocarbon fluids or an industrial product as well as during storage of petroleum hydrocarbon fluid or an industrial product.
  • The ionic liquid and treatment compositions are typically liquid at relatively low temperature. While the ionic liquids are salts, they typically exhibit high flash points, good solvency for other chemicals and strong basicity.
  • Suitable ionic liquids as PIPPFLI are those of the formula (I):

  • A+X  (I)
  • wherein A is or contains nitrogen or phosphorus, a nitrogen containing heterocyclic ring or a phosphorus containing heterocyclic ring; and X is an anion selected from the group consisting of halides; hydroxyl; hydroxy containing nitrogen or sulfur compounds; carbonates; alkyl carbonates; bicarbonates; dithiocarbonates; trithiocarbonates; xanthates, thiocyanates; alkoxides; carboxylates; hydroxycarboxylates; amino fatty acids; anionic alkoxylated fatty acids; anionic metallic complexes, sulfur or silicon containing anions; anionic phosphate esters, anionic thiophosphate esters; anionic phosphonate esters; anionic thiophosphonate esters; alkyl substituted phosphines; anionic urea; anionic thiourea; anionic natural products; anionic thiols; anionic phenols; anionic phenol resins; anionic copolymers of alpha olefins and maleic anhydride, esters, amides, imides or derivatives thereof; anionic acrylamido-methyl propane sulfonate/acrylic acid copolymers; anionic polyacrylamides, anionic aminomethylated polyacrylamides, anionic homopolymers, copolymers and terpolymers of one or more acrylates, methacrylates and acrylamides, optionally copolymerized with one or more ethylenically unsaturated monomers; anionic phosphated maleic copolymers; an anionic homo or copolymer of an oxirane or methyloxirane and mixtures thereof or a zwitterion.
  • Further, ionic liquids of formula (II) or (III) may be used as the PIPPCFI ionic liquid:

  • R1R2R3R4A+X  (II);

  • R1R2R3A+R8A+R5R6R7X  (III)
  • wherein:
  • A in formula (II) is or contains nitrogen or phosphorus or a heterocyclic ring thereof and wherein each A in formula (III) is independently selected from nitrogen or phosphorus or a heterocyclic ring thereof; and
  • X is an anion selected from the group consisting of halides; hydroxyl; hydroxy containing nitrogen or sulfur compounds; carbonates; alkyl carbonates; bicarbonates; carboxylates; hydroxycarboxylates; sulfonates; sulfates; bisulfites; thiocyanates; dithiocarbonates; trithiocarbonates; xanthates, thiocyanates; carbamates; dithiocarbamates; sulfides; polysulfides; alkoxides; anionic urea; anionic alkyl substituted phosphines; anionic amino fatty acids; anionic alkoxylated fatty acids; anionic acrylamido-methyl propane sulfonate/acrylic acid copolymers; anionic phosphated maleic copolymers; anionic homo or copolymers of an oxirane or methyloxirane; anionic metal complexes; sulfur or silicon containing anions; anionic phosphate esters; anionic thiophosphate esters; anionic phosphonate esters; anionic thiophosphonate esters; anionic thiols; anionic natural products; anionic phenols; anionic phenol resins; anionic homo or copolymer of oxirane or methyloxirane; anionic copolymers of alpha olefins and maleic anhydride, esters, amides, imides or derivatives thereof; anionic alkyl substituted phosphines; anionic polyacrylamides; anionic aminomethylated polyacrylamide, and anionic homopolymers, copolymers and terpolymers of one or more acrylates, methacrylates, acrylamides and acid; optionally copolymerized with one or more ethylenically unsaturated monomers; and mixtures thereof; and further wherein R1, R2, R3, R4, R5, R6 and R7 are independently selected from the group consisting of hydrogen; benzyl; alkylbenzyl, or oxyalkyl (including —CH2CH2OH) or —CH2CH(CH3)OH); a straight or branched alkyl group, an alkylbenzyl group, an arylalkyl group, a straight or branched chain alkenyl group, a hydroxyalkyl group or a hydroxyalkylbenzyl group; and a polyoxyalkylene group; and R8 is a straight or branched alkylene group, an alkylene oxyalkylene, or an alkylene polyoxyalkylene or a zwitterion; and further wherein R groups may be joined to form a heterocyclic nitrogen, sulfur or phosphorus containing ring.
  • In an embodiment, cation of (I), (II) or (III) is phosphorus or a phosphorus containing ring and X is an anion selected from the group consisting of hydroxyl; hydroxy containing nitrogen or sulfur compounds; bicarbonates; alkoxides; hydroxycarboxylates; silicon containing anions; anionic amino fatty acids; anionic alkoxylated fatty acids; anionic thiophosphonate esters; alkyl substituted phosphines; anionic urea; anionic thiourea; anionic natural products; anionic phenols; anionic phenol resins; anionic copolymers of alpha olefins and maleic anhydride, esters, amides, imides or derivatives thereof; anionic acrylamido-methyl propane sulfonate/acrylic acid copolymers; anionic homopolymers, copolymers and terpolymers of one or more acrylates, methacrylates and acrylamides, optionally copolymerized with one or more ethylenically unsaturated monomers; phosphated maleic copolymers; an anionic homo or copolymer of an oxirane or methyloxirane and mixtures thereof.
  • In another embodiment, cation A of formula (I), (II) or (III) is or contains nitrogen or a nitrogen heterocyclic ring and anion X is selected from the group consisting of silicon containing anions; anionic thiophosphonate esters; anionic natural products; anionic phenol resins; alkoxides; anionic copolymers of alpha olefins and maleic anhydride, esters, amides, imides or derivatives thereof or a mixture thereof; amino fatty acids; anionic alkoxylated fatty acids; alkyl substituted phosphines; anionic urea; anionic thiourea; anionic acrylamido-methyl propane sulfonate/acrylic acid copolymers; anionic homopolymers, copolymers and terpolymers containing acrylamide units; anionic phosphated maleic copolymers; anionic oxirane or methyloxirane homo or copolymers; and mixtures thereof.
  • In another embodiment, the ionic liquid represented by (II) or (III) has a cation A of is nitrogen (for II) and each A in (III) is nitrogen as defined herein and wherein X is an anion selected from the group consisting of anionic metallic complexes; sulfur or silicon containing anions; anionic phosphate esters; anionic thiophosphate esters; anionic phosphonate esters; anionic thiophosphonate esters; anionic thiols; anionic natural products; anionic phenols; anionic phenol resins; anionic copolymers of alpha olefins and maleic anhydride, esters, amides, imides or derivatives thereof amino fatty acids; anionic alkoxylated fatty acids; alkyl substituted phosphines; an oxirane or methyloxirane homo or copolymer; anionic urea; anionic thiourea; anionic acrylamido-methyl propane sulfonate/acrylic acid copolymers; anionic homopolymers, copolymers and terpolymers containing acrylamide units; anionic phosphated maleic copolymers and mixtures thereof; and further wherein R1, R2, R3, R4, R5, R6 and R7 are independently selected from the group consisting of hydrogen; benzyl; alkylbenzyl, or oxyalkyl (including —CH2CH2OH) or —CH2CH(CH3)OH); a straight or branched alkyl group, an alkylbenzyl group, an arylalkyl group, a straight or branched chain alkenyl group, a hydroxyalkyl group or a hydroxyalkylbenzyl group; and a polyoxyalkylene group; and R8 is a straight or branched alkylene group, an alkylene oxyalkylene, or an alkylene polyoxyalkylene or a zwitterion; and further wherein R groups may be joined to form a heterocyclic nitrogen, sulfur or phosphorus containing ring.
  • Preferred ionic liquids are those of (III) having structures R1R2R3R4N+; R1R2R3N+R8N+R5R6R7; S+R1R2R3; R1R2R3R4P+; and R1R2R3N+R4P+R5R6R7.
  • In one preferred embodiment, anion X of (I), (II) or (III) is a hydroxide, bicarbonate, carbonate, alkyl carbonate or an alkoxide.
  • In a preferred embodiment, R1, R2, R3, R4, R5, R6 and R7 of formula (II) and (III) are independently selected from the group consisting of a straight or branched C1-30 alkyl group, a C7-30 alkylbenzyl group, a C7-30 arylalkyl group, a straight or branched C3-30 alkenyl group, a C1-30 hydroxyalkyl group, a C7-30 hydroxyalkylbenzyl group, a zwitterion (such as those from oxyalkylation of an amine with an alkylene oxide; or a polyoxyalkylene group; and R8 is a straight or branched C1-30 alkylene, an alkylene oxyalkylene, or an alkylene polyoxyalkylene or R groups may be joined to form a heterocyclic nitrogen, sulfur or phosphorus ring; and the anion comprises halides, hydroxide, bicarbonate, carbonate, alkyl carbonates, alkoxides, carboxylates, or a combination thereof; and further wherein X is hydroxide, bicarbonate, carbonate, alkyl carbonates, alkoxides, carboxylates, or a combination thereof. In an exemplary embodiment, A of formula (II) or (III) is nitrogen or a nitrogen containing heterocyclic ring and anion X anion is a hydroxide, bicarbonate, carbonate, alkyl carbonate or an alkoxide.
  • In another preferred embodiment, R1, R2, R3, R4, R5, R6 and R7 of (II) and (III) are independently —H or a C1-20 alkyl; wherein at least one (or at least two) of R1, R2, R3, R4, R5, R6 and R7 is a C2-20 alkyl, preferably a C6-12 alkyl.
  • Exemplary ionic liquids of formulas (I), (II) and (III) include, but are not limited to, those ionic liquids having a cation of dicocodimethyl ammonium and ditallowdimethyl ammonium. Further specific exemplary ionic liquids are dicocodimethyl ammonium hydroxide, benzyltrimethylammonium hydroxide, ditallowdimethyl ammonium hydroxide, tributylmethylammonium methyl carbonate, tetraethylammonium bicarbonate, tetrapropylammonium hydroxide, coco dimethylethylammonium methyl carbonate, dodecyl trimethylammonium hydroxide, (2-hydroxyethyl) cocoalkyl ammonium hydroxide (including dialkyl, trialkyl, tetralkyl derivatives like dicocodimethyl ammonium hydroxide cocotrimethyl ammonium hydroxide), cocodialkylammonium chloride derivatives (such as (oxydi-2,1-ethanediyl) bis(cocodimethylammonium) chloride), tri-n-butyl methylammonium methyl carbonate, tetrabutylammonium hydroxide, tallowtrimethyl ammonium hydroxide, cocotrialkyl ammonium hydroxide (such as cocotrimethyl ammonium hydroxide), cocodialkylammonium chloride derivatives (such as (oxydi-2,1-ethanediyl) bis(cocodimethylammonium) chloride), hydrogenated tallow trimethyl ammonium hydroxide, dihydrogenated tallow dimethyl ammonium hydroxide, oxydiethylene bis(cocodimethylammonium hydroxide having a structure represented by the formula: Coco(CH3)2N+(CH2)2O(CH2)2N+(CH3)2Coco (OH)2 or a combination comprising at least one of the foregoing.
  • In some instances, the cation of (III) may be a polyamine, meaning the cation may have two or more nitrogen atoms (and in some cases up to 5 nitrogen atoms). In some instances, one or more of the nitrogens of the polyamine may be cationic such that the cation of (III) may be a polyamine containing two or more cationic sites (and in some cases up to 5 cationic sites). In such cases, R8 may correspond to (—NR1R2)y or (—NR1R2R3)y wherein y corresponds to 1, 2 or 3 to render the number of nitrogen sites and R1, R2 and R3 are as defined above. Specifically, y is 1 when A is a triamine, y is 2 when A is a tetramine and y is 3 when A is a pentamine. Exemplary are cations of diethylenediamine, triethylenetetraamine, tetraethylenepentamine and (bis) hexamethylenetriamine. In other instances, where both of A are phosphorus in (III), the cation may consist of multiple cationic sites on the phosphorus wherein R8 may correspond to (—PR1R2)y or (—PR1R2R3)y wherein y corresponds to 1, 2 or 3 to render the number of phosphorus sites and R1, R2, and R3 are as defined above.
  • As used herein, the term “alkyl” refers to a straight or branched chain, saturated monovalent hydrocarbon group regardless whether straight or branched chain is specifically mentioned or not; “aryl” refers to an aromatic monovalent group containing only carbon in the aromatic ring or rings; “arylalkyl” refers to an alkyl group that has been substituted with an aryl group, with benzyl being an exemplary arylalkyl group; “alkylbenzyl” refers to a benzyl group that has been substituted with an alkyl group in the aromatic ring; “hydroxyalkyl” refers to an alkyl group that has been substituted with a hydroxyl group with 2-hydroxyethyl as an exemplary hydroxyalkyl group; “hydroxyalkylbenzyl” refers to a benzyl group that has been substituted with a hydroxyalkyl group as defined herein in the aromatic ring; “alkylene” refers to a straight or branched chain, saturated, divalent hydrocarbon group, and “alkenyl” refers to a straight or branched chain monovalent hydrocarbon group having at least two carbons joined by a carbon-carbon double bond. The term “substituted” as used herein means that at least one hydrogen on the designated atom or group is replaced with another group, provided that the designated atom's normal valence is not exceeded. Substituted with a group means substituted with one or more groups.
  • Suitable nitrogen containing heterocyclic rings referenced herein include pyridinium, imidazolinium and a pyrrole cation (including alkylated derivatives thereof). Further reference to “nitrogen” shall include nitrogen containing cations such as an oxyalkylated nitrogen.
  • In an embodiment, the cation of (I), (II) or (III) is a quaternary amine salt, triethanolamine methyl chloride, oxyalkylated amine, polyamine, oxyalkylated polyimines, cationic melamine acid colloid or an oxyamine such as those of the formula (CH3)2N(CH2)xOH where x is 1 to 6, preferably 2.
  • As used herein, a polyoxyalkylene group has a formula
  • Figure US20200017766A1-20200116-C00001
  • where each occurrence of R1 is independently a C1-10 alkylene or C2-8 alkylene, specifically ethylene, propylene, butylene, or a combination thereof, and z is an integer greater than 1 such as 2 to 30, 4 to 25, or 8 to 25.
  • An alkylene polyoxyalkylene group has a formula
  • Figure US20200017766A1-20200116-C00002
  • wherein R2 is a 01-30 alkylene, each occurrence of R3 is independently a C1-10 alkylene or C2-6 alkylene, specifically ethylene, propylene, butylene, or a combination thereof, and y is an integer from 1 to 500, such as 2 to 30, 4 to 25, or 8 to 25.
  • An alkylene oxyalkylene group has a formula of —R7—O—R8—, wherein R7 and R8 are each independently a C1-20, or C1-10, or C1-5 branched or straight chain alkylene. Optionally, R7 and R8 can be ethylene.
  • Exemplary halides for the anion X are —Cl, —Br, —F and —I. In an embodiment —Cl is preferred.
  • Suitable sulfur and phosphorus containing anions include sulfates (SO4 ), bisulfate (HSO4 ), thiocyanate (SCN), thiocarbonate
  • Figure US20200017766A1-20200116-C00003
  • dithiocarbamates
  • Figure US20200017766A1-20200116-C00004
  • wherein R1 and R2 are independently selected from C1-20 alkyl groups, xanthates
  • Figure US20200017766A1-20200116-C00005
  • wherein R is a C1-20 alkyl, sulfides (RS) wherein R is a C1-20 alkyl, anionic polysulfides (RS(S)xS) wherein R is a C1-20 alkyl and x is one to five, anionic phosphate esters [ROP(═O)(OH)2] and anionic phosphonate ester [R—P(═O)(OH)2 (wherein R is a C1-20 alkyl or a C1-20 oxyalkyl-(RO—); anionic thiophosphate esters
  • Figure US20200017766A1-20200116-C00006
  • as well as anionic thiophosphonate esters (wherein R is a C1-20 alkyl or a C1-20 oxyalkyl- (RO—); sulfonates (RSO3 ) wherein R is C1-20 alkyl or aryl or alkylaryl group; and anionic thiols (RSH) where R is —(CH)x)H and x is from 1 to 4.
  • Exemplary oxirane or methyloxirane homo or copolymers include those containing units of the structure —(CH2CH2O)xCH2CH(CH3)O)y where x and y are independently selected from 1 to 1500.
  • Exemplary anionic metal complexes in formulae (I), (II) and (Ill) may include, but not be limited to Fe (such as Fe containing anions like FeCl4 ), aluminum (such as Al containing anions like AlCl4 ), etc. Further, the anionic metal complex may be formed from copper, zinc, boron, tin and mixtures thereof.
  • The anion may further be an anionic natural products like anions of a polysaccharide, polyphenol or lignin. Suitable anions of polysaccharides include anionic starches (such as mixtures of amylose and amylopectin), anionic polyphenols (such as anionic flavonoids or anionic natural polyphenols and anionic tannins (such as water soluble anionic polyphenols with a molecular weight between 500 and 3,000).
  • Suitable anions may also be anionic phenolics such as anionic phenols, anionic alkyl substituted phenols, anionic phenol oxyalkylates, anionic alkyl substituted phenol oxyalkylates, anionic phenolic or alkylphenol resins and anionic phenol resin oxyalkylates. Typically, the alkyl groups of the anionic phenolics are C1-28.
  • The anion may also be an alkoxide. Suitable alkoxides include those of the formula RO— where R is a C1-30 alkyl or cycloalkyl group. In an embodiment, R is C1-18 alkyl, C6-12 aryl, or C5-12 cycloalkyl, Exemplary alkoxides are tert-butoxide, n-butoxide, isopropoxide, n-propoxide, isobutoxide, ethoxide, methoxide, n-pentoxide, isopentoxide, 2-ethylhexoxide, 2-propylheptoxide, nonoxide, octoxide, decoxide and isomers thereof. Preferably, the alkoxides are tert-butoxide, isopropoxide, ethoxide, or methoxide. Tert-butoxide and methoxide are specifically mentioned. The alkoxides may further be anionic ethylene or propylene oxide homopolymers, anionic copolymers or terpolymers (which may optionally be crosslinked). Suitable crosslinking agents include bisphenol A or maleic anhydride.
  • Suitable alkyl carbonates are those of the formula ROCO2 , where R is a halogenated or non-halogenated linear or branched alkyl, or hydroxyl alkyl group, preferably a halogenated or non-halogenated linear or branched C1-8 or C1-5 alkyl group.
  • Exemplary carboxylates include formate, acetate, propionate, benzoate, n-butyrate, isobutyrate, pivalate, octanoate and laurate, as well as anions of C18 fatty acids such as oleate, linolate and stearate. Exemplary hydroxycarboxylates include glycolate, lactate, citrate, glucarate, gluconate and tartrate.
  • Suitable anionic copolymers of alpha olefins and maleic anhydride, esters, amides, imides (and derivatives thereof) include those of the general structure
  • Figure US20200017766A1-20200116-C00007
  • where R is a C1-30 alkyl group.
  • Suitable alkyl carbonates, carboxylates, anionic metal complexes, anionic natural products, anionic phenolics, alkoxides, anionic alpha olefin/maleic anhydride polymers, anionic polymers of acrylates, methacrylates and acrylamides and sulfur cations are those referenced in the paragraphs above.
  • The ionic liquids of (I), (II), and (III) are salts having a melting point range of −100° C. to 200° C., typically below 100° C. They are generally non-volatile and exhibit low vapor pressures and are environmentally more benign than other organic solvents, such as volatile aromatics and alkanes. They are thermally stable over a wide temperature range with some having a liquid range of up to 300° C. or higher. Typically they are molten salts of organic compounds or eutectic mixtures of organic and inorganic salts. Stability and other fundamental physical properties of the ionic liquids are influenced by the selection of cation while the selection of anion generally determines the functionality of the ionic liquid.
  • In an exemplary embodiment, ionic liquids disclosed herein may be prepared by first forming a quaternary salt followed by ion exchange with an acid or salt or by an anionic metathesis reaction with an appropriate anion source to introduce the desired counter anion. As an example, a nitrogen or phosphorus containing heterocyclic compound (such as an imidazole or pyridine) may first react with an alkylating agent to form the quaternary salt. The alkylating agent may be an alkyl chloride providing a broad range of alkyl groups on the nitrogen including straight and branched or cyclic C1-C20 alkyl groups. The quaternary salt may then be subjected to ion exchange with an acid or salt to form the ionic liquid.
  • Ionic liquids (I), (II) and (III) may be tailored by varying the cation and anion pairing may be combined with a second corrosion inhibitor to form a treatment composition. In some instances, the amount of ionic liquid in the treatment composition may be from about 3 to about 99 weight percent.
  • In an embodiment, the anion of the ionic liquid may be the same as the conjugate base of the second corrosion inhibitor. For instance, a suitable ionic liquid may be prepared of formula (II) or (Ill) where the cation is nitrogen, each of R1, R2, R3 and R4 are hydrogen and anion A is a phosphonate. The ionic liquid functions as a corrosion inhibitor. The treatment composition may consist of the ionic liquid and the second corrosion inhibitor. The conjugate base of the second corrosion inhibitor is a phosphonate, the same as the anion of the ionic liquid.
  • In some cases, corrosion inhibition improves when the ionic liquid is used in combination with the second corrosion inhibitor. The presence of the ionic liquid in the treatment composition may boost the corrosion inhibition power of the second corrosion inhibitor. (Likewise, the presence of the second corrosion inhibitor in the treatment composition may boost the corrosion inhibition power of the ionic liquid.) The combination of ionic liquid and second corrosion inhibitor may therefore substantially reduce the amount of corrosion and rate of corrosion onto the metallic surface compared to when a fluid containing only one of the ionic liquid or second corrosion inhibitor is used. In one non-limiting example, the presence of the ionic liquid in the treatment composition decreases the rate of corrosion onto a metallic surface by at least 25% and sometimes 50% or higher.
  • The ionic liquids and/or treatment compositions described herein may exhibit multiple functions. For example, an ionic liquid(s) or treatment composition(s) may be effective as a scale inhibitor as well as a corrosion inhibitor.
  • One or more ionic liquids and/or treatment compositions may be concurrently used.
  • The second corrosion inhibitor is preferably a liquid material. If the inhibitor is a solid, it may be dissolved in a suitable solvent, thus making it a liquid.
  • The ionic liquid and treatment compositions are typically introduced to their targeted location in an organic solvent or in an aqueous fluid such as fresh water, brackish water, brine as well as salt-containing water solutions such as sodium chloride, potassium chloride and ammonium chloride solutions. Suitable organic solvents include alkyl alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol and butyl alcohol and alkylene glycols like ethylene glycol, propylene glycol. The fluid containing the ionic liquid or treatment composition may further contain one or more surfactants, mutual solvents, sequestering agents, friction reducers, gelling agents, and other conventional additives as well as mixtures thereof.
  • The amount of ionic liquid or treatment composition in the organic solvent or aqueous fluid is dependent on the corrosive conditions, temperature and intended time of contact. Typically, the amount of ionic liquid or treatment composition in the fluid introduced to the targeted site is from 1 ppm to about 5,000 ppm, or about 1 ppm to about 500 ppm, or about 5 ppm to about 150 ppm.
  • In an embodiment an effective corrosion inhibiting or preventative amount of the ionic liquid or treatment composition is introduced to an acidic fluid prior to introduction of the acidic fluid into a targeted well or conduit. This may especially be the case where the ionic liquid or treatment composition is used during a well treatment operation as discussed below.
  • When use of a treatment composition is desired, the ionic liquid and second corrosion inhibitor are first combined and then introduced into the targeted location in the organic solvent or aqueous fluid. At times however, the ionic liquid and second corrosion inhibitor may be introduced in different stages.
  • The ionic liquid and treatment compositions dramatically inhibits the amount of corrosion and the rate of corrosion on metallic surfaced caused by aqueous acids including mineral acids, like hydrochloric acid, hydrofluoric acid, sulfuric and phosphoric acids as well as weak acids, such as formic acid, acetic acid, hydroxyacetic acid, citric acid, phosphonic acid, methanesulfonic acid and propionic acid as well as other acids affecting industrial operations.
  • Inhibition of corrosion may be seen on a wide host of metallic surfaces including iron, chromium, ferrous base metals, alloys of steel, alloys of nickel, duplex steels, stainless steel, chrome steel, martensitic alloy steel, ferritic alloy steel, carbon steel, precipitation-hardened stainless steels and the like. Pitting is dramatically reduced when the ionic liquids and treatment compositions are used.
  • The ionic liquids and treatment compositions may be contacted with a hydrocarbon-containing stream under severe conditions of heat, pressure, agitation and/or turbulence. They may be used at a wide variety of temperatures, typically ranging from 120° F. to 180° F. as well as up to 350° F. beyond.
  • The ionic liquids and treatment compositions are very useful in the inhibition of corrosion of metallic surfaces during well treatment operations. The treated well may be a hydrocarbon producing well, such as a gas or oil well, or non-hydrocarbon producing wells, such as water injection wells, water producing wells or geothermal wells. They can be used during various types of treatment operations that occur in or before the wellbore and in subterranean formation applications. For example, they can be used in pickling a tubular, cleaning a wellbore, scale treatment, and coiled tubing applications. They can also be used in matrix acid stimulation, acid fracturing, acid tunneling, drilling mud removal, scale treatment, coiled tubing application, or damage removal. Any known method of introducing the ionic liquid(s) or treatment composition(s) into the reservoir can be used. In all of these applications, the ionic liquids and treatment compositions protect metal tubulars and alloy surfaces from acidic fluids that are introduced or produced downhole.
  • The ionic liquids and treatment compositions can also be used to inhibit corrosion during refining of hydrocarbon fluids, during transport or storage of the fluids or during any period in between.
  • Further, the ionic liquids and treatment compositions are highly useful in the prevention or inhibition of corrosion attributable to carbon dioxide and hydrogen sulfide. The hydrogen sulfide may be formed when the treating acid contacts a sulfur-containing mineral, such as iron sulfide.
  • The ionic liquids and treatment compositions are further particularly effective in the treatment of cooling towers relying on aqueous fluids for the removal of heat from one medium to another. As such, the ionic liquids and treatment compositions may be used in oil refineries, petrochemical and other chemical plants, thermal power stations and power plants, steel mills, natural gas processing plants, food processing plants, semi-conductor plants as well as HVAC systems.
  • Exemplary ionic liquids as corrosion inhibitors include those wherein X in (I), (II) or (Ill) is an anionic phosphate ester, anionic thiophosphate ester, anionic phosphonate ester; anionic thiophosphonate ester; anionic diphosphonic acid; and anionic carboxylic acids (such as anionic glucaric acid).
  • Exemplary corrosion inhibitors further those wherein the cation is pyridinium or an imidazolinium as well as quat ammonium halides such as quat ammonium chlorides.
  • Other corrosion inhibitors include hydroxyl containing nitrogen or sulfur compounds such as alkylated thiols such as those of the formula HS(CH2)xOH where x is from 1 to 8, like HSCH2CH2OH; anionic sulfonyl alcohols such as 2-(methylsulfonyl) ethanol; 2-sulfanylethanol; 2-sulfanyl, propan-1-ol; 2-sulfanylbutan-2-ol; 1-sulfanylbutanol-2-ol and mixtures thereof.
  • Exemplary ionic liquids include those of structure (IV):
  • Figure US20200017766A1-20200116-C00008
  • wherein R is a C12-C18 alkyl or alkenyl group and X is —OH, NH2 or C(═O)R; exemplary phosphate esters or thiophosphate esters are those having one of structures (VA) or (VB):
  • Figure US20200017766A1-20200116-C00009
  • wherein R is an alkyl or RO(CH2CH2O)nCH2CH2) and R″ and R′″ are independently selected from —H and a C1-C20 alkyl; exemplary quat ammonium chlorides are those of structure (VI):
  • Figure US20200017766A1-20200116-C00010
  • wherein the alkyl group may contain from 1 to 20 carbon atoms; and exemplary alkyl pyridine quats are those of structure (VII):
  • Figure US20200017766A1-20200116-C00011
  • wherein R is a C1-C18 alkyl or benzyl. In an embodiment, more than one R group can be a substituent to the pyridinyl ring. In such case, the second R group is typically a C1-C12 alkyl group.
  • Further exemplary corrosion inhibitors include thiazoles, triazoles and thiadiazoles such as benzotriazole, tolyltriazole, octyltriazole, decyltriazole, dodecyltriazole, 2-mercaptobenzothiazole, 2,5-dimercapto-1,3,4-thiadiazole, 2-mercapto-5-hydrocarbylthio-1,3,4-thiadiazoles, 2-mercapto-5-hydrocarbyldithio-1,3,4-thiadiazoles, 2,5-bis(hydrocarbylthio)-1,3,4-thiadiazoles, and 2,5-(bis)hydrocarbyldithio)-1,3,4-thiadiazoles.
  • Suitable anionic groups for anion X of formula (I), (II) and (III) include the counter anions of any of the corrosion inhibitors referenced above. For example, anion X of ionic liquid of formula (I), (II) and (III) may be an anionic phosphate ester, anionic thiophosphate ester, anionic phosphonate ester, anionic thiophosphonate ester, an anionic thiol, etc.
  • In a preferred embodiment, a treatment composition may be used for the inhibition, prevention or reduction of corrosion of metals; the treatment composition comprising the ionic liquids set forth above and one or more corrosion inhibitors (other than an ionic liquid). Exemplary corrosion inhibitors include those set forth in the paragraphs above. In an embodiment, the anion X of the formula (I), (II) and (III) of the treatment composition may be the same anion as the counter anion of the corrosion inhibitor. For example, the treatment composition may contain (as corrosion inhibitor), the ionic liquid of (II) wherein R1, R2, R3 and R4 are hydrogen and anion X is the counter cation of (I) above.
  • Pitting of metallic surfaces decreases when metallic surfaces are contacted with the ionic liquids and/or corrosion inhibiting treatment compositions described in the paragraphs above.
  • Further, corrosion inhibiting treatment compositions have been noted to provide a synergistic effect compared to the ionic liquid or the corrosion inhibitor by themselves. i.e., inhibition, prevention and/or reduction of corrosion significantly increases when fluids are contacted with a corrosion inhibiting treatment composition versus contacting of the metallic surface with the ionic liquid or corrosion inhibitor by themselves.
  • EXAMPLES
  • All percentages set forth in the Examples are given in terms of weight units except as may otherwise be indicated.
  • Example 1
  • An anion exchange method was followed to prepare sulfur based ionic liquids. A general procedure for the anion exchange method was followed wherein about 1 gram of KOH was dissolved in 5 grams methanol. About 1.36 grams 2-mercaptoethanol was added while stirring at 60° C. for 15 minutes. About 5 grams of a solution of N-benzyl, 2 methyl pyridinium chloride (75%) in methanol (25%) was then added dropwise and the mix stirred at 60° C. After 30 minutes of stirring, the solution was filtered while still hot to remove the potassium chloride by-product. The product was characterized by the replacement of the chloride on the pyridinium by the mercaptide of the 2-mercaptoethanol.
  • A second procedure which avoided the need to filter the product. The following general procedure was followed. About 1.36 grams of 2-mercaptoethanol was added with stirring at room temp to 8 grams 55% aqueous tetrabutylammonium hydroxide. A slight exotherm occurred on mixing. The mixture was stirred for 15 minutes at 60° C. before 27 grams of a solution containing 36% oxydi-2,1-ethanediyl) bis(cocodimethylammonium) dichloride in 30% water & 30% methanol was added dropwise. The solution was stirred for 30 minutes at 60° C. and cooled and used in all testing without further modification. No filtration was required as the tetrabutylammonium chloride by-product formed in the reaction was soluble in the product.
  • The synthesis of ionic liquids may be illustrated as follows:
  • Figure US20200017766A1-20200116-C00012
  • A kettle test run was under the conditions of 10 ppm additive in a brine with a carbon dioxide sparge, run for 18 hours at 180° F. and the corrosion rate (CR) monitored using linear polarization resistance (LPR) probes. The results are set forth in Table I.
  • TABLE I
    Additive Dose 17.8
    Additive (ppm) Hour CR
    Untreated None 273 (303)
    oxydi-2,1-ethanediyl) bis(cocodimethyl- 10 233
    ammonium) dichloride (ODEBCAC)
    2 mercaptoethanol (2ME) 10 76
    ODEBCAC/2ME 1:2 salt 10 12 (8)
    ODEBCAC/2ME 1:1 salt 10 12
    N-Octyl pyridinum/2 ME salt 10 11 (8)
    N-Dodecyl pyridinium/2 ME salt 10 1 (2)
    N-Hexadecyl pyridinium/2 ME salt 10 1 (2)
    N benzyl 2 methyl pyridinium chloride 10 279
    (NBMPC)
    NBMPC/2 ME salt 10 4 (4)
    NBMPC + sodium trithiocarbonate 2:1 10 49
    salt
    NBMPC + 1,8-Dimercapto-3,6-dioxa- 10 10
    octane (DMDO) 2:1 salt
    NBMPC + DMDO 1:1 salt 10 10
  • Example 2
  • A neutralization procedure was used to prepare ionic liquids. The general procedure for all tests may be represented by preparation of tetra-n-butylammonium bitartrate (1:1 salt) wherein tartaric acid (10 grams, 0.067 moles) was added in portions to a stirred solution of 55% aqueous tetra-n-butylammonium hydroxide (31.6 grams, 0.067 mole). A slight exotherm occurred during the addition. The solution was stirred at room temperature for an additional 30 minutes before testing without further modification. The samples were then subjected to a kettle test using synthetic cooling water and the corrosion rate was monitored using linear polarization resistance (LPR) probes. The results are set forth in Table II.
  • TABLE II
    Corrosion Rate
    Active Dose @ 18 hours
    Additive (ppm) (MPY)
    Tetra-n-butylammonium bi-tartrate 98
    65 3.7
    Tetramethylammonium bi-tartrate 71 5.7
    47 5.0
    Tetraethylammonium bi-tartrate 60 3.9
    Ethyl trimethylammonium b-tartrate 57 3.3
    38 19.0
    Benzyltrimethylammonium bi-tartrate 45 12.4
    Dodecyltrimethylammonium bi-tartrate 98 16.3
    (2-hydroxyethyl)trimethylammonium bi- 65 2.2
    tartrate
    Tetra-n-butylammonium citrate 1:1 salt 90 0.8
    Tetraethylammonium citrate 2:1 salt 90 1.0
    Tetraethylammonium citrate 1:1 salt 110 1.6
    Tetra-n-butylammonium bi-glucarate 86 2.0
    (1:1 salt)
    Tetraethylammonium malate 1:1 salt 100 23.9
    (2-hydroxyethyl)trimethylammonium 90 33.8
    citrate 1:1 salt
    (2-hydroxyethyl)trimethylammonium 90 37.1
    citrate 2:1 salt

Claims (22)

What is claimed is:
1. A method of inhibiting corrosion of a metallic surface in contact with an acidic or aqueous fluid comprising contacting the acidic or aqueous fluid with a corrosive inhibiting effective amount of an ionic liquid of the formula:

A+X  (I)
wherein A is or contains nitrogen, phosphorus or a heterocyclic ring thereof; and X is an anion selected from the group consisting of halides; hydroxyl; hydroxy containing nitrogen or sulfur compounds; carbonates; alkyl carbonates; bicarbonates; dithiocarbonates; trithiocarbonates; xanthates, thiocyanates; alkoxides; carboxylates; hydroxycarboxylates; amino fatty acids; anionic alkoxylated fatty acids; anionic metallic complexes, sulfur or silicon containing anions; anionic phosphate esters, anionic thiophosphate esters; anionic phosphonate esters; anionic thiophosphonate esters; alkyl substituted phosphines; anionic urea; anionic thiourea; anionic natural products; anionic thiols; anionic phenols; anionic phenol resins; anionic copolymers of alpha olefins and maleic anhydride, esters, amides, imides or derivatives thereof; anionic acrylamido-methyl propane sulfonate/acrylic acid copolymers; anionic polyacrylamide; anionic homopolymers, copolymers and terpolymers of one or more acrylates, methacrylates and acrylamides, optionally copolymerized with one or more ethylenically unsaturated monomers; phosphated maleic copolymers; an anionic homo or copolymer of an oxirane or methyloxirane and mixtures thereof or a zwitterion.
2. A method of inhibiting corrosion of a metallic surface in contact with an acidic or aqueous fluid comprising contacting the acidic or aqueous fluid with a corrosive inhibiting effective amount of an ionic liquid of the formula:

R1R2R3R4A+X  (II);

R1R2R3A+R8A+R5R6R7X  (III)
wherein:
A in formula (II) is or contains nitrogen or phosphorus or a heterocyclic ring thereof and wherein each A in formula (III) is independently selected from nitrogen or phosphorus or a heterocyclic ring thereof; and
X is an anion selected from the group consisting of halides; hydroxyl; hydroxy containing nitrogen or sulfur compounds; carbonates; alkyl carbonates; bicarbonates; carboxylates; hydroxycarboxylates; dithiocarbonates; trithiocarbonates; xanthates, thiocyanates; alkoxides; anionic urea; anionic alkyl substituted phosphines; anionic amino fatty acids; anionic alkoxylated fatty acids; anionic acrylamido-methyl propane sulfonate/acrylic acid copolymers; anionic phosphated maleic copolymers; anionic homo or copolymers of an oxirane or methyloxirane; anionic metal complexes; sulfur or silicon containing anions; anionic phosphate esters; anionic thiophosphate esters; anionic phosphonate esters; anionic thiophosphonate esters; anionic thiols; anionic natural products; anionic phenols; anionic phenol resins; anionic polyacrylamides; anionic copolymers of alpha olefins and maleic anhydride, esters, amides, imides or derivatives thereof; anionic alkyl substituted phosphines; and anionic homopolymers, copolymers and terpolymers of one or more acrylates, methacylates and acrylamides, optionally copolymerized with one or more ethylenically unsaturated monomers; and mixtures thereof; and further wherein R1, R2, R3, R4, R5, R6 and R7 are independently selected from the group consisting of hydrogen; benzyl; alkylbenzyl, or oxyalkyl; a straight or branched alkyl group, an alkylbenzyl group, an arylalkyl group, a straight or branched chain alkenyl group, a hydroxyalkyl group or a hydroxyalkylbenzyl group; and a polyoxyalkylene group; and R8 is a straight or branched alkylene group, an alkylene oxyalkylene, or an alkylene polyoxyalkylene or a zwitterion; and further wherein R groups may be joined to form a heterocyclic nitrogen or phosphorus containing ring.
3. The method claim 2, wherein A both occurrences of A in (III) are or contain nitrogen and R1, R2, R3, R4, R5, R6 and R7 are independently selected from the group consisting of hydrogen; benzyl; oxyalkyl; a straight or branched C1-30 alkyl group; a C7-30 alkylbenzyl group; a C7-30 arylalkyl group; a straight or branched C3-30 alkenyl group; a C1-30 hydroxyalkyl group; a C7-30 hydroxyalkylbenzyl group; and a polyoxyalkylene group and further wherein R groups may be joined to form a heterocyclic nitrogen or phosphorus containing ring; and R8 is a straight or branched C1-30 alkylene, an alkylene oxyalkylene, or an alkylene polyoxyalkylene.
4. The method of claim 3, wherein R1, R2, R3, R4, R5, R6 and R7 of (II) and (III) are independently selected from —H, a C1-20 alkyl, —CH2CH2OH, and CH2CH(CH3)OH.
5. The method of claim 1, wherein X is a hydroxide, halide, bicarbonate, carbonate, alkyl carbonate, alkoxide, carboxylate or a hydroxycarboxylate.
6. The method of claim 3, wherein X is selected from the group consisting of —Cl, —Br, —F or —I.
7. The method of claim 1, wherein X is selected from the group consisting of anionic phosphate esters, anionic thiophosphate esters, anionic phosphonate esters; anionic thiophosphonate esters; anionic diphosphonic acids, 2-mercaptoethyl mercaptide, anionic 2-sulfanylethanol; anionic 2-sulfanyl, propan-1-ol; anionic 2-sulfanylbutan-2-ol; anionic 1-sulfanylbutanol-2-ol; and anionic glucaric acid and mixtures thereof.
8. The method of claim 1, wherein A is selected from the group consisting of an imidazolium or pyridinium.
9. The method of claim 8, wherein the pyridinium is an alkylpyridinium.
10. The method of claim 8, wherein the ionic liquid is of the structure:
Figure US20200017766A1-20200116-C00013
wherein R is a C12-C18 alkyl or alkenyl group and X is —OH, NH2 or C(═O)R.
11. The method of claim 7, wherein the ionic liquid is a phosphate ester or thiophosphate ester of the structure (IIA) or (IIB):
Figure US20200017766A1-20200116-C00014
wherein R is an alkyl or RO(CH2CH2O)nCH2CH2) and R″ and R′″ are independently selected from —H and a C1-C20 alkyl.
12. The method of claim 1, wherein the ionic liquid is a quaternary ammonium halide.
13. The method of claim 12, wherein the quaternary ammonium halide is of the structure:
Figure US20200017766A1-20200116-C00015
wherein the alkyl group contains from 1 to 20 carbon atoms.
14. The method of claim 1, wherein the ionic liquid is an alkyl pyridine quat.
15. The method of claim 14, wherein the alkyl pyridine quat contains more than one pyrindyl ring.
16. The method of claim 14, wherein the alkyl pyridine quat is of the structure:
Figure US20200017766A1-20200116-C00016
wherein R is a C1-C18 alkyl or benzyl.
17. The method of claim 1, wherein X is selected from the group consisting of anionic thiazoles, anionic triazoles and anionic thiadiazoles.
18. The method of claim 1, wherein X is a carboxylate selected from the group consisting of formate, acetate, propionate, benzoate, n-butyrate, isobutyrate, pivalate, octanoate, laurate or is an anion of a C18 fatty acid.
19. The method of claim 1, wherein X is a hydroxycarboxylate selected from the group consisting of glycolate, lactate, citrate, glucarate, gluconate and tartrate.
20. The method of claim 1, wherein the ionic liquid is present in a treatment composition containing a second corrosion inhibitor and further wherein the second corrosion inhibitor is not an ionic liquid.
21. The method of claim 20, wherein the anion of the ionic liquid is the same as the counter anion of the second corrosion inhibitor.
22. The method of claim 1, wherein the acidic or aqueous liquid is crude oil, petroleum fuel or oil, a condensate, a distillate or cooling water.
US16/509,431 2018-07-11 2019-07-11 Methods of using ionic liquids as corrosion inhibitors Abandoned US20200017766A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/509,431 US20200017766A1 (en) 2018-07-11 2019-07-11 Methods of using ionic liquids as corrosion inhibitors
US17/545,910 US11485915B2 (en) 2018-07-11 2021-12-08 Methods of using ionic liquids as corrosion inhibitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862696544P 2018-07-11 2018-07-11
US16/509,431 US20200017766A1 (en) 2018-07-11 2019-07-11 Methods of using ionic liquids as corrosion inhibitors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/545,910 Continuation US11485915B2 (en) 2018-07-11 2021-12-08 Methods of using ionic liquids as corrosion inhibitors

Publications (1)

Publication Number Publication Date
US20200017766A1 true US20200017766A1 (en) 2020-01-16

Family

ID=67874497

Family Applications (6)

Application Number Title Priority Date Filing Date
US16/509,418 Pending US20200017790A1 (en) 2018-07-11 2019-07-11 Methods of using ionic liquids as paraffin inhibitors, pour point depressants and cold flow improvers
US16/509,302 Active 2039-08-14 US11254881B2 (en) 2018-07-11 2019-07-11 Methods of using ionic liquids as demulsifiers
US16/509,431 Abandoned US20200017766A1 (en) 2018-07-11 2019-07-11 Methods of using ionic liquids as corrosion inhibitors
US17/258,860 Pending US20220056345A1 (en) 2018-07-11 2019-07-11 Ionic liquids and methods of using same
US17/545,910 Active US11485915B2 (en) 2018-07-11 2021-12-08 Methods of using ionic liquids as corrosion inhibitors
US17/676,735 Abandoned US20220169929A1 (en) 2018-07-11 2022-02-21 Methods of Using Ionic Liquids as Demulsifiers

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US16/509,418 Pending US20200017790A1 (en) 2018-07-11 2019-07-11 Methods of using ionic liquids as paraffin inhibitors, pour point depressants and cold flow improvers
US16/509,302 Active 2039-08-14 US11254881B2 (en) 2018-07-11 2019-07-11 Methods of using ionic liquids as demulsifiers

Family Applications After (3)

Application Number Title Priority Date Filing Date
US17/258,860 Pending US20220056345A1 (en) 2018-07-11 2019-07-11 Ionic liquids and methods of using same
US17/545,910 Active US11485915B2 (en) 2018-07-11 2021-12-08 Methods of using ionic liquids as corrosion inhibitors
US17/676,735 Abandoned US20220169929A1 (en) 2018-07-11 2022-02-21 Methods of Using Ionic Liquids as Demulsifiers

Country Status (5)

Country Link
US (6) US20200017790A1 (en)
EP (4) EP3820968A1 (en)
CA (4) CA3105144C (en)
EA (1) EA202091413A1 (en)
WO (4) WO2020014510A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111621791A (en) * 2020-05-06 2020-09-04 中国石油天然气集团有限公司 Oil refining distillation tower top corrosion inhibitor capable of resisting corrosion of dilute hydrochloric acid and hydrogen sulfide
US11254881B2 (en) 2018-07-11 2022-02-22 Baker Hughes Holdings Llc Methods of using ionic liquids as demulsifiers

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT517729B1 (en) * 2015-09-29 2017-06-15 Grabner Instr Messtechnik Gmbh Method and apparatus for determining low temperature properties
EP3720920B1 (en) 2017-12-08 2024-01-24 Baker Hughes Holdings LLC Ionic liquid based well asphaltene inhibitors and methods of using the same
US11345846B2 (en) 2019-07-03 2022-05-31 Si Group, Inc. Alkylphenol copolymer
US10767119B1 (en) * 2020-01-23 2020-09-08 King Abdulaziz University Amphiphilic asphaltene ionic liquids as demulsifiers for heavy petroleum crude oil-water emulsions
US11566160B2 (en) 2020-07-24 2023-01-31 Baker Hughes Oilfield Operations Llc Additives for winterization of paraffin inhibitors
US11753578B2 (en) 2021-04-26 2023-09-12 Halliburton Energy Services, Inc. Methods of treating paraffins, iron sulfide, hydrogen sulfide, and/or bacteria
US11814576B2 (en) * 2021-12-21 2023-11-14 Halliburton Energy Services, Inc. Increasing scavenging efficiency of H2S scavenger by adding linear polymer
WO2023141379A1 (en) * 2022-01-21 2023-07-27 ExxonMobil Technology and Engineering Company Lost circulation fluids and methods related thereto
US20230340317A1 (en) * 2022-04-26 2023-10-26 Saudi Arabian Oil Company Method and applications of nonstoichiometric ionic emulsions

Family Cites Families (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892944A (en) 1987-05-13 1990-01-09 Mitsubishi Petrochemical Co., Ltd. Process for producing quaternary salts
US5143594A (en) 1989-11-08 1992-09-01 Nalco Chemical Company Refinery anti-foulant - asphaltene dispersant
US5354453A (en) 1993-04-13 1994-10-11 Exxon Chemical Patents Inc. Removal of H2 S hydrocarbon liquid
CA2133270C (en) 1994-03-03 1999-07-20 Jerry J. Weers Quaternary ammonium hydroxides as mercaptan scavengers
US5683626A (en) 1995-08-25 1997-11-04 Exxon Research And Engineering Company Process for neutralization of petroleum acids
US5779855A (en) 1995-08-30 1998-07-14 Kitano Engineering Co., Ltd. Apparatus for curing an optical disc
DE59708189D1 (en) 1997-01-07 2002-10-17 Clariant Gmbh Improving the flowability of mineral oils and mineral oil distillates using alkylphenol-aldehyde resins
DE19709797A1 (en) 1997-03-10 1998-09-17 Clariant Gmbh Synergistic mixtures of alkylphenol formaldehyde resins with oxalkylated amines as asphaltene dispersants
US6350721B1 (en) * 1998-12-01 2002-02-26 Schlumberger Technology Corporation Fluids and techniques for matrix acidizing
US6313367B1 (en) 1999-02-22 2001-11-06 Baker Hughes Incorporated Inhibition of asphaltene deposition in crude oil production systems
EP1278937A1 (en) * 2000-04-07 2003-01-29 Sofitech N.V. Scale removal
FR2814087B1 (en) * 2000-09-15 2003-07-04 Inst Francais Du Petrole OIL BASED DEMULSIZING FORMULATION AND ITS USE IN THE TREATMENT OF DRAINS DRILLED IN OIL MUD
WO2002034863A1 (en) 2000-10-26 2002-05-02 Chevron U.S.A. Inc. Removal of mercaptans from hydrocarbon streams using ionic liquids
DE10155281A1 (en) 2001-11-08 2003-06-05 Solvent Innovation Gmbh Process for removing polarizable impurities from hydrocarbons and hydrocarbon mixtures by extraction with ionic liquids
US7001504B2 (en) 2001-11-06 2006-02-21 Extractica, Llc. Method for extraction of organosulfur compounds from hydrocarbons using ionic liquids
US20050005840A1 (en) 2001-12-04 2005-01-13 Werner Bonrath Production of ionic liquids
CA2466780C (en) 2001-12-14 2008-05-20 Cytec Canada Inc. Preparation of ionic liquids
DE10219227A1 (en) 2002-04-30 2003-11-13 Bayer Ag Ionic liquids
CA2400714A1 (en) 2002-08-28 2004-02-28 Nova Chemicals Corporation Use of ionic liquids to separate olefins, diolefins and aromatics
US7497943B2 (en) 2002-08-30 2009-03-03 Baker Hughes Incorporated Additives to enhance metal and amine removal in refinery desalting processes
US6852229B2 (en) 2002-10-22 2005-02-08 Exxonmobil Research And Engineering Company Method for preparing high-purity ionic liquids
DE10313207A1 (en) 2003-03-25 2004-10-07 Basf Ag Cleaning or processing ionic liquids with adsorptive separation processes
US8058493B2 (en) 2003-05-21 2011-11-15 Baker Hughes Incorporated Removing amines from hydrocarbon streams
US20060261312A1 (en) 2003-05-28 2006-11-23 Lonza Inc. Quaternary ammonium salts containing non-halogen anions as anticorrosive agents
DK1648845T3 (en) 2003-07-21 2008-09-01 Basf Se Process for extraction of contaminants with ionic liquids
US8075803B2 (en) 2003-08-27 2011-12-13 Roland Kalb Method for producing ionic liquids, ionic solids or mixtures thereof
CN100427568C (en) * 2003-12-18 2008-10-22 石油大学(北京) Ion liquid solvent for dissolving and removing asphaltene deposit and preparing method thereof, and method for removing asphaltene and regeneration method of the ion liquid solvent
FR2866345B1 (en) 2004-02-13 2006-04-14 Inst Francais Du Petrole PROCESS FOR TREATING NATURAL GAS WITH EXTRACTION OF THE SOLVENT CONTAINED IN PURIFIED NATURAL GAS
FR2866344B1 (en) 2004-02-13 2006-04-14 Inst Francais Du Petrole PROCESS FOR TREATING NATURAL GAS WITH EXTRACTION OF THE SOLVENT CONTAINED IN ACIDIC GASES
DE102004010662A1 (en) 2004-03-04 2005-09-22 Basf Ag Process for the preparation of compounds with quaternary sp2-hybridized nitrogen atoms
US8168830B2 (en) 2004-07-23 2012-05-01 Sigma-Aldrich Co. Llc High stability diionic liquid salts
US7682502B2 (en) 2004-09-08 2010-03-23 Exxonmobil Research And Engineering Company Process to hydrogenate aromatics present in lube oil boiling range feedstreams
US20060054538A1 (en) 2004-09-14 2006-03-16 Exxonmobil Research And Engineering Company Emulsion neutralization of high total acid number (TAN) crude oil
US7432409B2 (en) 2004-12-21 2008-10-07 Chevron U.S.A. Inc. Alkylation process using chloroaluminate ionic liquid catalysts
GB0500029D0 (en) 2005-01-04 2005-02-09 Univ Belfast Basic ionic liquids
US7786065B2 (en) 2005-02-18 2010-08-31 The Procter & Gamble Company Ionic liquids derived from peracid anions
JP4499594B2 (en) 2005-03-29 2010-07-07 第一工業製薬株式会社 Ultra high purity ionic liquid
MY145090A (en) 2005-09-15 2011-12-30 Shell Int Research Process and apparatus for removal of sour species from a natural gas stream
WO2007033477A1 (en) 2005-09-21 2007-03-29 Innovative Chemical Technologies Canada Ltd. Fluid with asphaltene control
DE102005045133B4 (en) 2005-09-22 2008-07-03 Clariant Produkte (Deutschland) Gmbh Additives for crude oils
US7737106B2 (en) 2005-11-29 2010-06-15 The Procter & Gamble Company Process for making an ionic liquid comprising ion actives
US7572944B2 (en) 2005-12-20 2009-08-11 Chevron U.S.A. Inc. Process for making and composition of superior lubricant or lubricant blendstock
US7737067B2 (en) 2005-12-20 2010-06-15 Chevron U.S.A. Inc. Regeneration of ionic liquid catalyst
GB0526418D0 (en) 2005-12-23 2006-02-08 Ass Octel Process
CN101032677A (en) * 2006-03-08 2007-09-12 波克股份有限公司 Method of gas purification
WO2007138307A2 (en) 2006-05-25 2007-12-06 The Queen's University Of Belfast Process for removing sulfur-containing acids from crude oil
DE102006031952A1 (en) 2006-07-11 2008-01-17 Goldschmidt Gmbh Use of ionic liquids or solutions of metal salts in ionic liquids as antistatic agents for plastics
SI2079705T1 (en) 2006-10-10 2011-02-28 Proionic Production Of Ionic Substances Gmbh & Co Kg Method for producing quaternary carbonates
EP1970432A1 (en) 2006-12-19 2008-09-17 Castrol Limited Lubricating oil compositions and uses
US8679203B2 (en) 2007-03-19 2014-03-25 Baker Hughes Incorporated Method of scavenging mercaptans from hydrocarbons
ITMI20070808A1 (en) * 2007-04-19 2008-10-20 Eni Spa ADDITIVES FOR THE RECOVERY OF OIL FROM THE FIELDS
JP5686595B2 (en) 2007-05-05 2015-03-18 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se New ionic liquid
US7918905B2 (en) 2007-05-17 2011-04-05 Baker Hughes Incorporated Method for improving biodiesel fuel
MX2007008524A (en) 2007-07-13 2009-01-14 Mexicano Inst Petrol Liquid ionic catalyst for improvement of heavy and super-heavy crudes.
US8084402B2 (en) 2007-07-24 2011-12-27 Baker Huges Incorporated Method of using ionic liquids to inhibit or prevent the swelling of clay
GB0715258D0 (en) * 2007-08-06 2007-09-12 Univ Leuven Kath Deposition from ionic liquids
WO2009040242A1 (en) 2007-09-21 2009-04-02 Basf Se Method for producing imidazolium salts
US20090090655A1 (en) 2007-10-04 2009-04-09 Baker Hughes Incorporated Additive Useful for Stabilizing Crude Oil
DE102007053630A1 (en) 2007-11-08 2009-05-14 Basf Se Process and production of ionic liquids by anion exchange
WO2009087184A1 (en) 2008-01-09 2009-07-16 Basf Se Process for working up ionic liquids
KR100958876B1 (en) 2008-04-02 2010-05-20 삼성엔지니어링 주식회사 Ionic liquids miscible with various polar/non-polar solvents and method for preparing the same
US20090291872A1 (en) 2008-05-21 2009-11-26 The Regents Of The University Of Colorado Ionic Liquids and Methods For Using the Same
MX2008006731A (en) 2008-05-26 2009-11-26 Mexicano Inst Petrol Desulfurization of hydrocarbons by ionic liquids and preparation of ionic liquids.
US20090320771A1 (en) 2008-06-10 2009-12-31 Matheson Tri-Gas Ionic liquid mediums for holding solid phase process gas precursors
EA021850B1 (en) 2008-07-30 2015-09-30 Твистер Б. В. System and method for removing hydrogen sulfide from a natural gas stream
WO2010017563A1 (en) 2008-08-08 2010-02-11 University Of Toledo Polymeric ionic liquids, methods of making and methods of use thereof
MX2008011121A (en) 2008-08-29 2010-03-01 Mexicano Inst Petrol Halogen-free ionic liquids in naphtha desulfurization and their recovery.
GB0905896D0 (en) * 2009-04-06 2009-05-20 Univ Belfast Process for removing metals from hydrocarbons
US20100270211A1 (en) 2009-04-27 2010-10-28 Saudi Arabian Oil Company Desulfurization and denitrogenation with ionic liquids and metal ion systems
US20140170041A1 (en) 2009-06-24 2014-06-19 Simbol Inc Methods for Removing Potassium, Rubidium, and Cesium, Selectively or in Combination, From Brines and Resulting Compositions Thereof
CN102574050A (en) 2009-07-29 2012-07-11 联邦科学及工业研究组织 Ionic liquids
BRPI0905253B1 (en) 2009-12-28 2020-02-18 Petroleo Brasileiro S.A. - Petrobras PROCESS FOR THE TREATMENT OF WATER / OIL EMULSIONS
US8992767B2 (en) 2010-03-26 2015-03-31 Saudi Arabian Oil Company Ionic liquid desulfurization process incorporated in a contact vessel
WO2011119807A1 (en) 2010-03-26 2011-09-29 Saudi Arabian Oil Company Ionic liquid desulfurization process incorporated in a low pressure separator
WO2012001703A1 (en) 2010-06-29 2012-01-05 Reliance Industries Ltd. Ionic fluids
US8888993B2 (en) 2010-07-30 2014-11-18 Chevron U.S.A. Inc. Treatment of a hydrocarbon feed
US8540871B2 (en) 2010-07-30 2013-09-24 Chevron U.S.A. Inc. Denitrification of a hydrocarbon feed
US20120053101A1 (en) 2010-09-01 2012-03-01 Baker Hughes Incorporated Functionalized Maleated Fatty Acids as Non Acidic Fluid Additives
GB2547364B8 (en) 2010-10-05 2017-11-29 The Queen's Univ Of Belfast Process for removing metals from hydrocarbons
US8916734B2 (en) 2010-10-21 2014-12-23 Sheeta Global Tech Corp. Using methanesulfonyl halide as a key intermediate for methane gas to liquid conversion and raw commodity chemical generation
GB201018916D0 (en) 2010-11-09 2010-12-22 Champion Technologies Ltd Corrosion inhibition
US8858803B2 (en) 2010-11-22 2014-10-14 General Electric Company Methods of preparing novel halide anion free quaternary ammonium salt monomers, polymerization methods therefor, and methods of use of the resulting polymers
GB2485824B (en) 2010-11-25 2017-12-20 The Queen's Univ Of Belfast Process for removing organic acids from crude oil and crude oil distillates
GB2499772A (en) 2010-12-17 2013-08-28 Univ South Australia Extraction of metals
US8652237B2 (en) 2010-12-17 2014-02-18 Battelle Memorial Institute System and process for capture of H2S from gaseous process streams and process for regeneration of the capture agent
RU2011101428A (en) 2011-01-14 2012-07-20 Недерландсе Органисати Вор Тугепаст-Натюрветенсхаппелейк Ондерзук (Тно) (Nl) METHOD AND DEVICE FOR SEPARATING A GAS MIXTURE
EP2686304B1 (en) 2011-03-15 2016-05-18 Basf Se Process for preparing ionic liquids by anion exchange
US9090567B2 (en) 2011-03-15 2015-07-28 Basf Se Process for preparing ionic liquids by anion exchange
MX2011003848A (en) * 2011-04-11 2012-10-29 Mexicano Inst Petrol Dehydrating and desalting median, heavy and extra-heavy oils using ionic liquids and their formulations.
MX340805B (en) * 2011-04-18 2016-06-24 Inst Mexicano Del Petróleo Synergistic formulations of functionalized copolymers and ionic liquids for dehydrated and desalted of median, heavy and extra heavy crude oils.
ES2702487T3 (en) 2011-06-17 2019-03-01 Nantenergy Inc Ionic liquid containing sulfonate ions
US20130026480A1 (en) 2011-07-25 2013-01-31 Bridgelux, Inc. Nucleation of Aluminum Nitride on a Silicon Substrate Using an Ammonia Preflow
MX2011007922A (en) 2011-07-27 2013-02-07 Mexicano Inst Petrol Denitrogenation of hydrocarbons by liquid-liquid extraction using ionic liquids.
KR101916207B1 (en) 2011-07-29 2018-11-08 사우디 아라비안 오일 컴퍼니 Process for reducing the total acid number in refinery feedstocks
US8927737B2 (en) 2011-08-09 2015-01-06 Basf Se Process for purifying ionic liquids
US8524074B2 (en) 2011-08-17 2013-09-03 Nalco Company Removal of mercury and mercuric compounds from crude oil streams
JP5667328B2 (en) 2011-08-30 2015-02-12 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Bisquaternary ammonium salt ionic liquid having two centers, process for its preparation and use
US20130101460A1 (en) 2011-10-25 2013-04-25 Baker Hughes Incorporated Inhibiting corrosion in aqueous films
CN104011167A (en) * 2011-12-21 2014-08-27 国际壳牌研究有限公司 Method And Composition For Inhibiting Wax In A Hydrocarbon Mixture
AU2012355432B2 (en) * 2011-12-21 2015-09-03 Shell Internationale Research Maatschappij B.V. Method and composition for inhibiting asphaltene deposition in a hydrocarbon mixture
US9637676B2 (en) 2012-01-24 2017-05-02 Baker Hughes Incorporated Asphaltene inhibitors for squeeze applications
US8673800B2 (en) 2012-02-14 2014-03-18 Chevron U.S.A. Inc. Hydrolysis of used ionic liquid catalyst for disposal
US9353261B2 (en) * 2012-03-27 2016-05-31 Nalco Company Demulsifier composition and method of using same
US9233339B2 (en) * 2012-04-23 2016-01-12 Ut-Battelle, Llc Ionic liquid-functionalized mesoporous sorbents and their use in the capture of polluting gases
WO2013171060A1 (en) 2012-05-16 2013-11-21 Basf Se Short path distillation of ionic liquids
US9624758B2 (en) 2012-05-22 2017-04-18 Ecolab Usa Inc. Use of oligo-quaternary compositions to increase scale inhibitor lifetime in a subterranean formation
US9550936B2 (en) * 2012-08-08 2017-01-24 Baker Hughes Incorporated Mobilization of heavy oil
US9370735B2 (en) 2012-10-01 2016-06-21 Dow Global Technologies Llc Ionic liquid grafted mesoporous silica compositions for polar gas/non-polar gas and olefin/paraffin separations
US9733228B2 (en) 2013-01-31 2017-08-15 Purdue Research Foundation Methods of analyzing crude oil
ITMI20130231A1 (en) 2013-02-19 2014-08-20 Eni Spa SEPARATION PROCEDURE OF NATURAL GASOUS COMPOUNDS WITH LOW EXERGY LOSSES
CA2940516C (en) 2013-03-15 2021-06-01 Sandia Corporation Synthesis of novel ionic liquids from lignin-derived compounds
US10815421B2 (en) 2013-03-15 2020-10-27 Ethox Chemicals, Llc Flow back aids
US9360425B2 (en) 2013-05-02 2016-06-07 Baker Hughes Incorporated Method for characterizing the stability of foulants and/or efficacy of foulant inhibitors within petroleum-based fluids
DE102013007733A1 (en) 2013-05-07 2014-11-27 Rainer Pommersheim Process and technical process for the continuous synthesis of different ionic liquids
US9611434B2 (en) 2013-05-09 2017-04-04 Baker Hughes Incorporated Metal removal from liquid hydrocarbon streams
US20160075952A1 (en) 2013-05-20 2016-03-17 Lotte Chemical Corporation Method for separating aromatic compounds contained in naphtha
US20140378718A1 (en) 2013-06-24 2014-12-25 Baker Hughes Incorporated Method for reducing acids in crude oil
GB201313423D0 (en) * 2013-07-26 2013-09-11 Innospec Ltd Compositions and methods
US20150034310A1 (en) * 2013-08-01 2015-02-05 Ionic Research Technologies Llc Compounds, compositions and methods for enhancing oil recovery
US9523054B2 (en) 2013-08-21 2016-12-20 Baker Hughes Incorporated Asphaltene stabilization in petroleum feedstocks by blending with biological source oil and/or chemical additive
US9328295B2 (en) 2013-09-27 2016-05-03 Uop Llc Extract recycle in a hydrocarbon decontamination process
US20150093313A1 (en) 2013-09-30 2015-04-02 Uop Llc Ionic liquid and solvent mixtures for hydrogen sulfide removal
MX359374B (en) 2013-10-22 2018-09-13 Mexicano Inst Petrol Application of a chemical composition for viscosity modification of heavy and extra-heavy crude oils.
MX360197B (en) * 2013-10-29 2018-10-11 Mexicano Inst Petrol Corrosion inhibition composition for pipelines, process of elaboration and synthesis.
CN103555313B (en) * 2013-11-06 2016-01-13 山东大学 A kind of imidazolium ionic liquid acidification corrosion inhibitor and preparation method thereof and application
US9663726B2 (en) 2014-02-10 2017-05-30 Baker Hughes Incorporated Fluid compositions and methods for using cross-linked phenolic resins
CN106232229A (en) 2014-03-04 2016-12-14 信实工业公司 Ion fluid precursor
GB2524570B (en) 2014-03-27 2021-02-24 Univ Belfast Process for preparing alkanolamines useful in removal of acid-gas from a gaseous stream
WO2015160645A1 (en) 2014-04-16 2015-10-22 Saudi Arabian Oil Company Improved sulfur recovery process for treating low to medium mole percent hydrogen sulfide gas feeds with btex in a claus unit
US9926775B2 (en) 2014-07-02 2018-03-27 Chevron U.S.A. Inc. Process for mercury removal
US9550937B2 (en) 2014-07-31 2017-01-24 Baker Hughes Incorporated Methods and compositions for decreasing the viscosity of hydrocarbon-based fluids during refining
US10114001B2 (en) * 2014-08-04 2018-10-30 Phillips 66 Company Quantitation of amines in hydrocarbons
US9453830B2 (en) 2014-08-29 2016-09-27 Ecolab Usa Inc. Quantification of asphaltene inhibitors in crude oil using thermal analysis coupled with mass spectrometry
US9574139B2 (en) 2014-11-24 2017-02-21 Uop Llc Contaminant removal from hydrocarbon streams with lewis acidic ionic liquids
US9921155B2 (en) 2014-11-25 2018-03-20 Baker Hughes, A Ge Company, Llc Methods of decreasing scale in aqueous systems
CA2915596C (en) 2014-12-18 2023-04-25 Chevron U.S.A. Inc. Method for upgrading in situ heavy oil
EP3233871B1 (en) 2014-12-19 2020-04-01 Eastman Chemical Company Quaternary phosphinates with co-solvents for extracting c1 to c4 carboxylic acids from aqueous streams
US9688903B2 (en) 2014-12-30 2017-06-27 Ecolab Usa Inc. Mitigation of corrosion in geothermal systems
US10179879B2 (en) 2015-02-26 2019-01-15 Chevron U.S.A. Inc. Method for removing mercury from crude oil
US10196509B2 (en) 2015-05-07 2019-02-05 Baker Hughes, A Ge Company, Llc Inhibiting fouling tendency in high coal ash-containing water systems
GB2538756A (en) 2015-05-27 2016-11-30 The Queen's Univ Of Belfast A process for refining glyceride oil comprising a basic ionic liquid treatment
US10312551B2 (en) 2015-09-11 2019-06-04 Microvast Power Systems Co., Ltd. Preparation method of ionic liquids and secondary batteries
US20170101375A1 (en) 2015-10-08 2017-04-13 Coorstek Fluorochemicals, Inc. Process for producing quaternary ammonium cations and ionic liquids
WO2017065947A1 (en) 2015-10-16 2017-04-20 Siluria Technologies, Inc. Separation methods and systems for oxidative coupling of methane
US10174429B2 (en) 2015-11-05 2019-01-08 Chemtreat, Inc Corrosion control for water systems using tin corrosion inhibitor with a hydroxycarboxylic acid
WO2017105476A1 (en) 2015-12-18 2017-06-22 Eastman Chemical Company Quaternary arylcarboxylate compositions for extracting c1 to c4 carboxylic acids from aqueous streams
US9611209B1 (en) 2015-12-18 2017-04-04 Eastman Chemical Company Quaternary arylcarboxylate compositions for extracting C1 to C4 carboxylic acids from aqueous streams
CN107021941B (en) 2016-02-02 2020-06-19 微宏动力系统(湖州)有限公司 Ionic liquid and preparation method thereof
CA3013762A1 (en) 2016-02-03 2017-08-10 Ethan NOVEK Integrated process for capturing carbon dioxide
CN107177353A (en) * 2016-03-11 2017-09-19 中国石油化工股份有限公司 A kind of heavy crude thinner and preparation method thereof
CN106047328B (en) * 2016-07-11 2017-11-14 扬州大学 A kind of nanoemulsions corrosion inhibiter containing imidazolium ionic liquid and preparation method thereof
BR112019011040A2 (en) * 2016-11-30 2019-10-08 Ecolab Usa Inc composition, method of inhibition, and use of the composition.
US20190233741A1 (en) * 2017-02-12 2019-08-01 Magēmā Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil
US10301553B2 (en) 2017-02-28 2019-05-28 Ecolab Usa Inc. Use of sulfonium salts as hydrogen sulfide inhibitors
GB201705095D0 (en) 2017-03-30 2017-05-17 Innospec Ltd Composition and methods and uses relating thereto
US20190048712A1 (en) 2017-08-10 2019-02-14 Baker Hughes, A Ge Company, Llc Method for monitoring quality assurance of chemicals in subsea umbilical systems to avoid blockage
US10851299B2 (en) 2017-11-01 2020-12-01 Championx Usa Inc. Corrosion inhibitor compositions and methods of using same
US10988689B2 (en) 2017-11-01 2021-04-27 Championx Usa Inc. Corrosion inhibitor compositions and methods of using same
US10093868B1 (en) 2017-11-15 2018-10-09 Baker Hughes, A Ge Company, Llc Ionic liquid-based hydrogen sulfide and mercaptan scavengers
US10858604B2 (en) 2017-12-08 2020-12-08 Baker Hughes, A Ge Company, Llc Phenol aldehydes asphaltene inhibitors
EP3720920B1 (en) 2017-12-08 2024-01-24 Baker Hughes Holdings LLC Ionic liquid based well asphaltene inhibitors and methods of using the same
US10822547B2 (en) 2017-12-12 2020-11-03 Baker Hughes Holdings Llc Basic ionic liquids as hydrochloric acid scavengers in refinery crude processing
CN108148565A (en) 2017-12-12 2018-06-12 大庆华理生物技术有限公司 It is a kind of to prepare ion liquid type heavy crude thinner and preparation method using MICROBIAL SURFACTANT
EA202091413A1 (en) 2018-07-11 2020-09-24 Бейкер Хьюз Холдингз Ллк WELL ASPHALTEN INHIBITORS BASED ON IONIC LIQUID AND METHODS OF THEIR APPLICATION

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11254881B2 (en) 2018-07-11 2022-02-22 Baker Hughes Holdings Llc Methods of using ionic liquids as demulsifiers
CN111621791A (en) * 2020-05-06 2020-09-04 中国石油天然气集团有限公司 Oil refining distillation tower top corrosion inhibitor capable of resisting corrosion of dilute hydrochloric acid and hydrogen sulfide

Also Published As

Publication number Publication date
WO2020014534A1 (en) 2020-01-16
CA3105170C (en) 2023-12-19
EP3820968A1 (en) 2021-05-19
US20200017776A1 (en) 2020-01-16
US11485915B2 (en) 2022-11-01
CA3105144A1 (en) 2020-01-16
EA202091413A1 (en) 2020-09-24
CA3105166C (en) 2024-02-27
WO2020036698A2 (en) 2020-02-20
WO2020036698A3 (en) 2020-08-20
US20200017790A1 (en) 2020-01-16
CA3105170A1 (en) 2020-01-16
CA3105144C (en) 2023-01-31
EP3820960A1 (en) 2021-05-19
CA3105166A1 (en) 2020-02-20
US20220169929A1 (en) 2022-06-02
US20220098494A1 (en) 2022-03-31
CA3105168C (en) 2023-04-25
EP3820961A2 (en) 2021-05-19
WO2020014510A1 (en) 2020-01-16
US11254881B2 (en) 2022-02-22
CA3105168A1 (en) 2020-01-16
US20220056345A1 (en) 2022-02-24
EP3820962A1 (en) 2021-05-19
WO2020014529A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
US11485915B2 (en) Methods of using ionic liquids as corrosion inhibitors
CA2348468C (en) Mercaptoalcohol corrosion inhibitors
AU2006200176B2 (en) Corrosion Inhibitor Systems for Low, Moderate and High Temperature Fluids and Methods for Making and Using Same
CA2720382C (en) Organic corrosion inhibitor package for organic acids
US7989403B2 (en) Corrosion inhibitors containing amide surfactants for a fluid
EP3119925B1 (en) Dimercaptothiadiazoles to prevent corrosion of mild steel by acid gases in oil and gas products
US6013200A (en) Low toxicity corrosion inhibitor
AU2016261315B2 (en) Corrosion inhibitor formulations
RU2673268C2 (en) Chemical inhibition of pitting corrosion in methanolic solutions containing organic halide
US2799649A (en) Method for inhibiting corrosion
US2614982A (en) Method of prevention of corrosion in wells
Saji Sulfide scavengers and their interference in corrosion inhibition
Waka et al. Review of oilfield chemicals used in oil and gas industry
Haque et al. High‐Temperature Polymeric Corrosion Inhibitors
CA3050258A1 (en) Synergistic corrosion inhibitors
AU2017368084A1 (en) Use of a composition containing at least one biodegradable sugar-amide-compound in combination with at least one sulfur-based synergist for corrosion inhibition of a metallic equipment in oilfield applications
PL226811B1 (en) Thermodynamic hydrate inhibitor of anticorrosion and anti-agglomeration to protect the transporting tubing and pipelines for natural gas and the production method thereof

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: BAKER HUGHES, A GE COMPANY, LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEERS, JERRY;FELIPE, MARY JANE;REEL/FRAME:053864/0228

Effective date: 20200918

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: BAKER HUGHES HOLDINGS LLC, TEXAS

Free format text: CHANGE OF NAME;ASSIGNOR:BAKER HUGHES, A GE COMPANY, LLC;REEL/FRAME:059141/0762

Effective date: 20200413