US20190060320A1 - Medical use of pharmaceutical combination or composition - Google Patents

Medical use of pharmaceutical combination or composition Download PDF

Info

Publication number
US20190060320A1
US20190060320A1 US16/170,134 US201816170134A US2019060320A1 US 20190060320 A1 US20190060320 A1 US 20190060320A1 US 201816170134 A US201816170134 A US 201816170134A US 2019060320 A1 US2019060320 A1 US 2019060320A1
Authority
US
United States
Prior art keywords
patients
stage
metformin
egfr
linagliptin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/170,134
Inventor
Thomas Meinicke
Maximilian von EYNATTEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim International GmbH
Original Assignee
Boehringer Ingelheim International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim International GmbH filed Critical Boehringer Ingelheim International GmbH
Priority to US16/170,134 priority Critical patent/US20190060320A1/en
Publication of US20190060320A1 publication Critical patent/US20190060320A1/en
Assigned to SILICON VALLEY BANK reassignment SILICON VALLEY BANK SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Urban Airship, Inc.
Priority to US16/788,608 priority patent/US20200171038A1/en
Assigned to Urban Airship, Inc. reassignment Urban Airship, Inc. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: SILICON VALLEY BANK
Priority to US17/209,365 priority patent/US20210205315A1/en
Priority to US18/230,693 priority patent/US20230381188A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • A61K31/522Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/155Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines

Definitions

  • the present invention relates to a certain DPP-4 inhibitor (preferably linagliptin) for use in combination with metformin (particularly in the form of metformin hydrochloride) in CKD (chronic kidney disease) patients, particularly in patients having CKD up to stage 3and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45, or even down to 30, such as in patients with CKD of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59 or of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), optionally in combination with one or more other active substances.
  • DPP-4 inhibitor preferably linagliptin
  • Type 2 diabetes mellitus is a common chronic and progressive disease arising from a complex pathophysiology involving the dual endocrine effects of insulin resistance and impaired insulin secretion with the consequence not meeting the required demands to maintain plasma glucose levels in the normal range.
  • This leads to chronic hyperglycaemia and its associated micro- and macrovascular complications or chronic damages, such as e.g. diabetic nephropathy, retinopathy or neuropathy, or macrovascular (e.g. cardio- or cerebro-vascular) complications, and/or cognitive function impairment.
  • the vascular disease component plays a significant role, but is not the only factor in the spectrum of diabetes associated disorders. The high frequency of complications leads to a significant reduction of life expectancy.
  • CV cardiovascular
  • CKD chronic kidney disease
  • type 2 diabetes typically begins with diet and exercise, followed by oral antidiabetic monotherapy, and although conventional monotherapy may initially control blood glucose in some patients, it is however associated with a high secondary failure rate.
  • monotherapy may initially control blood glucose in some patients, it is however associated with a high secondary failure rate.
  • single-agent therapy for maintaining glycemic control may be overcome, at least in some patients, and for a limited period of time by combining multiple drugs to achieve reductions in blood glucose that cannot be sustained during long-term therapy with single agents. Available data support the conclusion that in most patients with type 2 diabetes current monotherapy will fail and treatment with multiple drugs will be required.
  • obesity, overweight or weight gain e.g. as side or adverse effect of some conventional antidiabetic medications
  • This high incidence of therapeutic failure is a major contributor to the high rate of long-term hyperglycemia-associated complications or chronic damages (including micro- and makrovascular complications such as e.g. diabetic nephrophathy, retinopathy or neuropathy, or cerebro- or cardiovascular complications such as e.g. myocardial infarction, stroke or vascular mortality or morbidity) in patients with diabetes.
  • micro- and makrovascular complications such as e.g. diabetic nephrophathy, retinopathy or neuropathy, or cerebro- or cardiovascular complications such as e.g. myocardial infarction, stroke or vascular mortality or morbidity
  • Oral antidiabetic drugs conventionally used in therapy may include, without being restricted thereto, metformin, sulphonylureas, thiazolidinediones, glinides and ⁇ -glucosidase inhibitors.
  • Non-oral (typically injected) antidiabetic drugs conventionally used in therapy may include, without being restricted thereto, GLP-1 or GLP-1 analogues, and insulin or insulin analogues.
  • metformin can be associated with lactic acidosis or gastrointestinal side effects
  • sulfonylureas, glinides and insulin or insulin analogues can be associated with hypoglycemia and weight gain
  • thiazolidinediones can be associated with edema, bone fracture, weight gain and heart failure/cardiac effects
  • alpha-glucosidase blockers and GLP-1 or GLP-1 analogues can be associated with gastrointestinal adverse effects (e.g. dyspepsia, flatulence or diarrhea, or nausea or vomiting).
  • hypoglycemic episodes have also been identified detrimental to cognitive skills and are associated with a greater risk of cognitive impairment or dementia.
  • the risk of hypoglycemia is further increased in the elderly with comorbidities and multiple medication use.
  • CKD chronic kidney disease
  • ACE angiotensin-converting enzyme
  • ARBs angiotensin II receptor blockers
  • type 2 diabetes patients with chronic kidney disease still have substantial risk for cardio-renal morbidity and mortality, an unmet need that is driving a search for novel therapies for diabetic kidney disease.
  • CKD chronic kidney disease
  • CKD stage 3 estimated glomerular filtration rate
  • antidiabetic treatments not only prevent and/or treat the long-term complications often found in advanced stages of diabetes disease, but also are a therapeutic option in those diabetes patients who have developed or are at-risk of developing such complications (e.g. chronic kidney disease/diabetic nephropathy, renal impairment and/or albuminuria).
  • antidiabetic treatments prevent and/or treat preferably both microvascular (renal) complications and macrovascular (CV) complications together, preferably within one therapy.
  • antidiabetic treatments prevent and/or treat accelerated cognitive decline (which may be associated with micro- and/or macrovascular complications), preferably together with both microvascular (renal) complications and macrovascular (CV) complications, preferably within one therapy.
  • the present invention relates to use of a certain DPP-4 inhibitor (preferably linagliptin) in combination with metformin (particularly in the form of metformin hydrochloride) in CKD (chronic kidney disease) patients, particularly in patients having CKD up to stage 3and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45, or even down to 30, such as in patients with CKD of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59 or of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), optionally in combination with one or more other active substances.
  • CKD chronic kidney disease
  • the present invention relates to certain medical uses of a combination or a pharmaceutical composition
  • a certain DPP-4 inhibitor preferably linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • metabolic diseases especially type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications)
  • CKD chronic kidney disease
  • CKD stage 3 estimated glomerular filtration rate
  • the present invention further relates to the medical use of a combination or a pharmaceutical composition comprising a certain DPP-4 inhibitor (preferably linagliptin) and metformin (particularly in the form of metformin hydrochloride), for treating and/or preventing chronic kidney disease (CKD) such as e.g.
  • a certain DPP-4 inhibitor preferably linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • ACE angiotensin-converting enzyme
  • ARB angiotensin II receptor blocker
  • the present invention yet further relates to a certain DPP-4 inhibitor (preferably linagliptin) in combination with metformin (particularly in the form of metformin hydrochloride) (and optionally in combination with one or more other active agents) for use in therapy, prophylaxis, treatment or prevention of diabetic (preferably type 2 diabetes) patients (preferably for use in cardio- and/or renoprotective therapy preferably of type 2 diabetes in human patients),
  • a certain DPP-4 inhibitor preferably linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • one or more other active agents for use in therapy, prophylaxis, treatment or prevention of diabetic (preferably type 2 diabetes) patients (preferably for use in cardio- and/or renoprotective therapy preferably of type 2 diabetes in human patients)
  • CKD chronic kidney disease
  • CKD stage 3 e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45, or even down to 30,
  • CKD stage 3 e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45, or even down to 30,
  • CKD stage 3 estimated glomerular filtration rate
  • CKD stage 3a mild-to-moderate stage
  • CKD stage 3a such as having eGFR levels 45-59 or of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b); optionally in combination with one or more other active substances.
  • the present invention relates to a certain DPP-4 inhibitor (preferably linagliptin) for use in combination with metformin (particularly in the form of metformin hydrochloride), such as e.g. such as e.g. for treating type 2 diabetes and treating, decreasing, delaying the onset and/or delaying the progression of diabetic nephropathy, chronic kidney disease, albuminuria (e.g.
  • micro- or macro-albuminuria renal impairment, retinopathy, neuropathy, learning or memory or cognitive impairment or decline, neurodegenerative or cognitive disorders such as dementia, and/or macrovascular complications such as cardio- or cerebrovascular events such as stroke or myocardial infarction, in patients with type 2 diabetes and micro- or macroalbuminuria, with or without renal function impairment, such as patients with CKD (chronic kidney disease), particularly patients having CKD up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45, or even down to 30, such as patients with CKD of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59 or of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), optionally in combination with one or more other active substances.
  • CKD chronic kidney disease
  • the present invention relates to a DPP-4 inhibitor (preferably linagliptin) in combination with metformin (particularly in the form of metformin hydrochloride), for use in treating and/or preventing (including slowing the progression or delaying the onset) of metabolic diseases, particularly diabetes (especially type 2 diabetes mellitus) and/or conditions related thereto (e.g. diabetic complications, particularly diabetic chronic kidney disease); including in patients with (chronic) renal disease, renal dysfunction or renal impairment (impairment of renal function), particularly in patients having chronic kidney disease (CKD) such as e.g.
  • DPP-4 inhibitor preferably linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • stage 3 up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59, or even of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), with or without residual albuminuria (micro- or macroalbuminuria), optionally in combination with one or more other active substances.
  • CKD stage 3 estimated glomerular filtration rate
  • the present invention further relates to a DPP-4 inhibitor (preferably linagliptin, preferably in a daily dose of 5 mg, administered 5 mg once daily or 2.5 mg twice daily) for use in combination with metformin (particularly in the form of metformin hydrochloride) in treating and/or preventing (including slowing the progression or delaying the onset) of metabolic diseases, particularly diabetes (especially type 2 diabetes mellitus) and/or conditions related thereto (e.g.
  • a DPP-4 inhibitor preferably linagliptin, preferably in a daily dose of 5 mg, administered 5 mg once daily or 2.5 mg twice daily
  • metformin particularly in the form of metformin hydrochloride
  • metabolic diseases particularly diabetes (especially type 2 diabetes mellitus) and/or conditions related thereto (e.g.
  • diabetic complications such as one or more selected from diabetic chronic kidney disease, nephropathy, micro- or macroalbuminuria, renal impairment, retinopathy, neuropathy, learning or memory or cognitive impairment or decline, neurodegenerative or cognitive disorders such as dementia, and/or macrovascular complications such as cardio- or cerebrovascular events such as stroke and/or myocardial infarction); including in patients with (chronic) renal disease, renal dysfunction or renal impairment (impairment of renal function), particularly in patients having chronic kidney disease (CKD) such as e.g.
  • CKD chronic kidney disease
  • stage 3 up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59, or even of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), with or without residual albuminuria (micro- or macroalbuminuria), optionally in combination with one or more other active substances (such as selected from other antidiabetics and/or ACE inhibitors or ARBs),
  • the maximum daily dose of metformin (particularly in the form of metformin hydrochloride) administered to patients of mild-to-moderate stage (CKD stage 3a, such as having eGFR levels 45-59) is 2000 mg, and/or
  • the maximum daily dose of metformin (particularly in the form of metformin hydrochloride) administered to patients of moderate-to-severe stage (CKD stage 3b, such as having eGFR levels 30-44) is 1000 mg.
  • the present invention relates to a pharmaceutical combination or composition
  • a DPP-4 inhibitor preferably linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • auxiliaries for use in treating and/or preventing (including slowing the progression or delaying the onset) of metabolic diseases, particularly diabetes (especially type 2 diabetes mellitus) and/or conditions related thereto (e.g. diabetic complications, particularly diabetic chronic kidney disease), including in patients with (chronic) renal disease, renal dysfunction or renal impairment (impairment of renal function), particularly in patients having chronic kidney disease (CKD) such as e.g.
  • CKD chronic kidney disease
  • stage 3 up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59, or of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), with or without residual albuminuria (micro- or macroalbuminuria); optionally in combination with one or more other active substances.
  • CKD stage 3 estimated glomerular filtration rate
  • the present invention relates to a combination therapy comprising using a DPP-4 inhibitor (preferably linagliptin) and metformin (particularly in the form of metformin hydrochloride) for treating and/or preventing (including slowing the progression or delaying the onset) of metabolic diseases, particularly diabetes (especially type 2 diabetes mellitus) and/or conditions related thereto (e.g. diabetic complications, particularly diabetic chronic kidney disease), including in patients with (chronic) renal disease, renal dysfunction or renal impairment (impairment of renal function), particularly in patients having chronic kidney disease (CKD) such as e.g.
  • a DPP-4 inhibitor preferably linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • metabolic diseases particularly diabetes (especially type 2 diabetes mellitus) and/or conditions related thereto (e.g. diabetic complications, particularly diabetic chronic kidney disease), including in patients with (chronic) renal disease, renal dysfunction or renal impairment (impairment of renal function), particularly in patients having chronic kidney disease (CK
  • stage 3 up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59, or of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), with or without residual albuminuria (micro- or macroalbuminuria); optionally in combination with one or more other active substances.
  • CKD stage 3 estimated glomerular filtration rate
  • the present invention further relates to a certain DPP-4 inhibitor (preferably linagliptin) in combination with metformin (particularly in the form of metformin hydrochloride), and optionally in combination with one or more other active agents, for use in therapy or treatment of diabetes (preferably type 2 diabetes) in (human) patients in need thereof, preferably for use in cardio- and/or renoprotective therapy preferably of type 2 diabetes in human patients, such as e.g. including treating type 2 diabetes and/or preventing diabetic complications
  • albuminuria e.g. micro- or macro-albuminuria
  • a cardio- or cerebrovascular disease, complication or event selected from: cardiovascular (CV) death (including fatal stroke, fatal myocardial infarction and sudden death), non-fatal stroke, non-fatal myocardial infarction (MI) (silent MI may be excluded) and, optionally, hospitalisation for unstable angina pectoris; and/or
  • CV cardiovascular
  • MI myocardial infarction
  • a renal microvascular disease, complication or event selected from: renal death, end-stage renal disease and loss in estimated glomerular filtration rate (e.g. eGFR ⁇ 50% from baseline); and/or
  • patients including in patients (preferably type 2 diabetes patients) with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45, or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59 or of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b); optionally in combination with one or more other active substances; wherein such patients may be with or at-risk of further (major) (micro- and/or macro-)vascular diseases, complications or events, e.g. such patients may be at high vascular risk.
  • CKD chronic kidney disease
  • CKD chronic kidney disease
  • eGFR estimated glomerular filtration
  • combinations or pharmaceutical compositions of these DPP-4 inhibitors with metformin are useful for improving glycemic control and/or for treating and/or preventing (including slowing the progression or delaying the onset) of metabolic diseases, particularly diabetes (especially type 2 diabetes mellitus) and/or conditions related thereto (e.g.
  • diabetic complications particularly diabetic chronic kidney disease, or diabetic nephropathy, micro-or macroalbuminuria and/or renal impairment
  • drug na ⁇ ve type 2 diabetes patients and/or in patients with advanced or late stage type 2 diabetes, including patients with insufficient glycemic control despite a therapy with an oral and/or a non-oral antidiabetic or antihyperglycemic drug and/or with indication on insulin
  • CKD chronic kidney disease
  • stage 3 up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59, or even of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), with or without residual albuminuria, especially including in patients with (chronic) renal impairment of mild-to-moderate stage (CKD stage 3a) such as having estimated glomerular filtration rate [eGFR] 45-59 mL/minute/1.73 m 2 or creatinine clearance [CrCI] 45-59 mL/min, optionally in combination with one or more other active substances.
  • eGFR estimated glomerular filtration rate
  • patients having chronic kidney disease such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30 are amenable to the combination therapy according to the present invention comprising using linagliptin (in a total daily dose of 5 mg) in combination with metformin (e.g. up to maximum total daily dose of 1000 mg metformin hydrochloride (such as e.g. for CKD 3a patients) or 2000 mg metformin hydrochloride (such as e.g.
  • metformin e.g. up to maximum total daily dose of 1000 mg metformin hydrochloride (such as e.g. for CKD 3a patients) or 2000 mg metformin hydrochloride (such as e.g.
  • a tablet containing 2.5 mg linagliptin and 500 mg, 850 mg or 1000 mg metformin hydrochloride (in immediate release form) each administered twice daily or using a tablet containing 5 mg linagliptin and 1000 mg metformin hydrochloride (in extended release form) administered once daily, or using a tablet containing 2.5 mg linagliptin and 750 mg or 1000 mg metformin hydrochloride (in extended release form) each administered as two tablets once daily.
  • the maximum daily dose of metformin (particularly in the form of metformin hydrochloride) administered to patients of mild-to-moderate stage (CKD stage 3a, such as having eGFR levels 45-59) may be 2000 mg, which may be given as two divided doses, such as e.g. 1000 mg twice daily; (the starting dose may be at most half of the maximum dose).
  • the maximum daily dose of metformin (particularly in the form of metformin hydrochloride) administered to patients of moderate-to-severe stage may be 1000 mg, which may be given as two divided doses, such as e.g. 500 mg twice daily; (the starting dose may be at most half of the maximum dose).
  • CKD stage 4 For patients with severe or very severe stage of renal impairment (CKD stage 4, such as having eGFR levels ⁇ 30; or CKD stage 5, such as having eGFR levels ⁇ 15, end-stage renal disease), metformin is contraindicated.
  • CKD stage 5 For patients with severe or very severe stage of renal impairment (CKD stage 4, such as having eGFR levels ⁇ 30; or CKD stage 5, such as having eGFR levels ⁇ 15, end-stage renal disease), metformin is contraindicated.
  • the combination therapy according to the present invention using linagliptin (in a total daily dose of 5 mg) in combination with metformin is also useful for patients in need of >1000 mg metformin daily (e.g. 850 mg or 1000 mg metformin hydrochloride BID) for sufficient glycemic control and having chronic kidney disease (CKD), such as e.g.
  • linagliptin in a total daily dose of 5 mg
  • metformin hydrochloride BID for sufficient glycemic control and having chronic kidney disease (CKD), such as e.g.
  • stage 3 up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 (or, in certain instances, even down to 30); preferably by using a tablet containing 2.5 mg linagliptin and 850 mg or 1000 mg metformin hydrochloride (in immediate release form) each administered twice daily, or using a tablet containing 2.5 mg linagliptin and 750 mg or 1000 mg metformin hydrochloride (in extended release form) each administered as two tablets once daily.
  • eGFR estimated glomerular filtration rate
  • patients in need of >1000 mg metformin daily for sufficient glycemic control but with dose limitation for metformin due to renal impairment (e.g. maximum total daily dose of 1000 mg metformin hydrochloride), such as having moderate renal impairment, e.g., in certain instances, patients with (chronic) renal impairment of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59 mL/minute/1.73 m 2 , or especially of moderate-to-severe stage (CKD stage 3b) such as having eGFR levels 30-44 mL/minute/1.73 m 2 , benefit from the combination therapy according to the present invention comprising using linagliptin (in a total daily dose of 5 mg) in combination with metformin (e.g. up to maximum total daily dose of 1000 mg metformin hydrochloride), preferably using a tablet containing 2.5 mg linagliptin and 500 mg met
  • patients with dose limitation for metformin due to renal impairment e.g. maximum total daily dose of 2000 mg metformin hydrochloride
  • renal impairment e.g. maximum total daily dose of 2000 mg metformin hydrochloride
  • CKD stage 3a mild-to-moderate stage
  • CKD stage 3a mild-to-moderate stage
  • eGFR levels 45-59 mL/minute/1.73 m 2 benefit from the combination therapy according to the present invention comprising using linagliptin (in a total daily dose of 5 mg) in combination with metformin (e.g. up to maximum total daily dose of 2000 mg metformin hydrochloride), preferably using a tablet containing 2.5 mg linagliptin and 1000 mg metformin hydrochloride, administered twice daily.
  • patients with dose limitation for metformin due to renal impairment e.g. maximum total daily dose of 1000 mg metformin hydrochloride
  • renal impairment e.g. maximum total daily dose of 1000 mg metformin hydrochloride
  • CKD stage 3b moderate-to-severe stage
  • CKD stage 3b moderate-to-severe stage
  • eGFR levels 30-44 mL/minute/1.73 m 2 benefit from the combination therapy according to the present invention comprising using linagliptin (in a total daily dose of 5 mg) in combination with metformin (e.g. up to maximum total daily dose of 1000 mg metformin hydrochloride), preferably using a tablet containing 2.5 mg linagliptin and 500 mg metformin hydrochloride, administered twice daily.
  • patients on linagliptin in a total daily dose of 5 mg in combination with metformin (up to maximum total daily dose of 2000 mg metformin hydrochloride), using a tablet containing 2.5 mg linagliptin and 850 mg, administered twice daily, or a tablet containing 2.5 mg linagliptin and 1000 mg metformin hydrochloride, administered twice daily, can maintain these treatments until they reach an eGFR of 45 mL/min/1.73 m 2 (this would not be the case for patients using another major DPP-4 inhibitor (gliptin) other than linagliptin, requiring dose adjustment of the DPP-4 inhibitor component leading to change in the treatment scheme, except for linagliptin).
  • gliptin another major DPP-4 inhibitor
  • patients with an eGFR between 45 and 59 mL/min/1.73 m 2 (CKD stage 3a) already on the maximum dose of metformin can use linagliptin (in a total daily dose of 5 mg) in combination with metformin (e.g. maximum total daily dose of 2000 mg metformin hydrochloride), preferably using a tablet containing 2.5 mg linagliptin and 1000 mg metformin hydrochloride, administered twice daily, when additional therapy is deemed necessary.
  • patients on linagliptin in a total daily dose of 5 mg
  • metformin e.g. up to maximum total daily dose of 1000 mg metformin hydrochloride
  • using a tablet containing 2.5 mg linagliptin and 500 mg, administered twice daily can maintain these treatments until they reach an eGFR of 30 mL/min/1.73 m 2 (this would not be the case for patients using another major DPP-4 inhibitor (gliptin) other than linagliptin, requiring dose adjustment of the DPP-4 inhibitor component leading to change in the treatment scheme, except for linagliptin).
  • metformin e.g. up to maximum total daily dose of 1000 mg metformin hydrochloride
  • patients with an eGFR between 30 and 44 mL/min/1.73 m 2 (CKD stage 3b) already on the maximum dose of metformin can use linagliptin (in a total daily dose of 5 mg) in combination with metformin (e.g. maximum total daily dose of 1000 mg metformin hydrochloride), preferably using a tablet containing 2.5 mg linagliptin and 500 mg metformin hydrochloride, administered twice daily, when additional therapy is deemed necessary.
  • patients with an eGFR between 45 and 59 mL/min/1.73 m 2 who are not receiving metformin can up-titrate to the maximum dose of metformin (e.g. up to maximum total daily dose of 2000 mg metformin hydrochloride) and can then start to use linagliptin (in a total daily dose of 5 mg) in combination with metformin (e.g. up to maximum total daily dose of 2000 mg metformin hydrochloride), preferably using a tablet containing 2.5 mg linagliptin and 850 mg or 1000 mg metformin hydrochloride, administered twice daily.
  • metformin e.g. up to maximum total daily dose of 2000 mg metformin hydrochloride
  • linagliptin in a total daily dose of 5 mg
  • metformin e.g. up to maximum total daily dose of 2000 mg metformin hydrochloride
  • patients with an eGFR between 30 and 44 mL/min/1.73 m 2 who are not receiving metformin can up-titrate to the maximum dose of metformin (e.g. up to maximum total daily dose of 1000 mg metformin hydrochloride) and can then start to use linagliptin (in a total daily dose of 5 mg) in combination with metformin (e.g. up to maximum total daily dose of 1000 mg metformin hydrochloride), preferably using a tablet containing 2.5 mg linagliptin and 500 mg metformin hydrochloride, administered twice daily.
  • metformin e.g. up to maximum total daily dose of 1000 mg metformin hydrochloride
  • linagliptin in a total daily dose of 5 mg
  • metformin e.g. up to maximum total daily dose of 1000 mg metformin hydrochloride
  • patients with an eGFR between 45 and 59 mL/min/1.73 m 2 (CKD stage 3a) who are not receiving metformin can use linagliptin (in a total daily dose of 5 mg) in combination with metformin (e.g. up to maximum total daily dose of 2000 mg metformin hydrochloride), preferably using a tablet containing 2.5 mg linagliptin and 850 mg or 1000 mg metformin hydrochloride, administered twice daily, to start treatment.
  • metformin e.g. up to maximum total daily dose of 2000 mg metformin hydrochloride
  • patients with an eGFR between 30 and 44 mL/min/1.73 m 2 (CKD stage 3b) who are not receiving metformin can use linagliptin (in a total daily dose of 5 mg) in combination with metformin (e.g. up to maximum total daily dose of 1000 mg metformin hydrochloride), preferably using a tablet containing 2.5 mg linagliptin and 500 mg metformin hydrochloride, administered twice daily, to start treatment.
  • metformin e.g. up to maximum total daily dose of 1000 mg metformin hydrochloride
  • the combination therapy according to this invention using a DPP-4 inhibitor (particularly linagliptin) and metformin (e.g. 2.5 mg linagliptin/500 mg metformin hydrochloride BID) is more effective for patients with (chronic) renal impairment, such as of mild-to-moderate stage (CKD stage 3a) or even of moderate-to-severe stage (CKD stage 3b), than metformin alone.
  • a DPP-4 inhibitor particularly linagliptin
  • metformin e.g. 2.5 mg linagliptin/500 mg metformin hydrochloride BID
  • CKD chronic renal impairment
  • a more particular embodiment of the combination therapy according to the present invention relates to 2.5 mg linagliptin/500 mg metformin hydrochloride administered twice daily to patients with (chronic) renal impairment of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b).
  • the combination therapy according to this invention using a DPP-4 inhibitor has beneficial potential on cardio-renal morbidity and/or mortality (cardio-and/or renoprotection) in diabetic kidney disease patients as described herein (especially in type 2 diabetes patients with advanced CKD, such as e.g. having a renal prognosis of high risk or very high risk, and/or over long-term treatment).
  • the combination therapy according to the present invention using a DPP-4 inhibitor (particularly linagliptin) and metformin (optionally in combination with one or more further active agents)
  • i) prevents, protects against, reduces the risk of and/or delays the occurrence of a cardio- or cerebrovascular disease, complication or event selected from: cardiovascular (CV) death (including fatal stroke, fatal myocardial infarction and sudden death), non-fatal stroke, non-fatal myocardial infarction (MI) (silent MI may be excluded) and, optionally, hospitalisation for unstable angina pectoris; and/or
  • CV cardiovascular
  • MI non-fatal stroke
  • MI myocardial infarction
  • ii) prevents, protects against, reduces the risk of, delays the progression and/or delays the occurrence of a renal microvascular disease, complication or event selected from: renal death, end-stage renal disease and loss in estimated glomerular filtration rate (e.g. eGFR ⁇ 50% from baseline).
  • a renal microvascular disease, complication or event selected from: renal death, end-stage renal disease and loss in estimated glomerular filtration rate (e.g. eGFR ⁇ 50% from baseline).
  • the combination therapy according to the present invention using a DPP-4 inhibitor (particularly linagliptin) and metformin (optionally in combination with one or more further active agents)
  • a renal microvascular disease, complication or event selected from: renal death, end-stage renal disease and loss in estimated glomerular filtration rate (e.g. eGFR ⁇ 50% from baseline).
  • the combination therapy according to the present invention using a DPP-4 inhibitor (particularly linagliptin) and metformin (optionally in combination with one or more further active agents)
  • i) decreases, prevents, protects against, delays (e.g. occurrence or progression) and/or reduces the risk of (accelerated) cognitive decline or cognitive impairment or dementia.
  • the combination therapy according to the present invention using a DPP-4 inhibitor (particularly linagliptin) and metformin (optionally in combination with one or more further active agents)
  • i) treats, decreases, prevents, protects against, delays (e.g. occurrence or progression) and/or reduces the risk of diabetic nephropathy.
  • the combination therapy according to the present invention using a DPP-4 inhibitor (particularly linagliptin) and metformin (optionally in combination with one or more further active agents)
  • albuminuria e.g. micro- or macroalbuminuria
  • the combination therapy according to the present invention using a DPP-4 inhibitor (particularly linagliptin) and metformin (optionally in combination with one or more further active agents)
  • i) treats, decreases, prevents, protects against, delays (e.g. occurrence or progression) and/or reduces the risk of renal impairment.
  • a combination therapy according to the present invention using a DPP-4 inhibitor (particularly linagliptin) and metformin is particularly useful for treating and/or preventing (including delaying the onset or slowing the progression) of metabolic diseases, particularly diabetes (especially type 2 diabetes mellitus) and/or conditions related thereto (e.g. diabetic complications, particularly diabetic chronic kidney disease, or diabetic nephropathy, micro-or macroalbuminuria and/or renal impairment), in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g.
  • metabolic diseases particularly diabetes (especially type 2 diabetes mellitus) and/or conditions related thereto (e.g. diabetic complications, particularly diabetic chronic kidney disease, or diabetic nephropathy, micro-or macroalbuminuria and/or renal impairment)
  • CKD chronic kidney disease
  • stage 3 up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59, or even of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), with or without albuminuria, especially including in patients with (chronic) renal impairment of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59;
  • CKD stage 3a estimated glomerular filtration rate
  • antidiabetics such as selected from a sulphonylurea, a thiazolidinedione (e.g. pioglitazone), a glinide, an alpha-glucosidase blocker, GLP-1 or a GLP-1 analogue, and insulin or an insulin analogue, and/or an angiotensin converting enzyme (ACE) inhibitor or an angiotensin receptor blocker (ARB).
  • CKD chronic kidney disease
  • CKD chronic kidney disease
  • CKD chronic kidney disease
  • albuminuria e.g. micro- or macro-albuminuria
  • renal impairment e.g. micro- or macro-albuminuria
  • stage 3 up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59, or even of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), with or without albuminuria, especially including in patients with (chronic) renal impairment of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59; optionally in combination with one or more other active substances, such as e.g. any of those mentioned herein,
  • antidiabetics such as selected from a sulphonylurea, a thiazolidinedione (e.g. pioglitazone), a glinide, an alpha-glucosidase blocker, GLP-1 or a GLP-1 analogue, and insulin or an insulin analogue, and/or an angiotensin converting enzyme (ACE) inhibitor or an angiotensin receptor blocker (ARB); particularly over long-term treatment.
  • a sulphonylurea e.g. pioglitazone
  • a glinide e.g. pioglitazone
  • an alpha-glucosidase blocker e.g. pioglitazone
  • GLP-1 or a GLP-1 analogue e.g. pioglitazone
  • insulin or an insulin analogue e.g. insulin an insulin analogue
  • An embodiment of patients with (chronic) renal impairment (CKD) as described herein relates to type 2 diabetes patients having impaired renal function such as indicated herein with micro- or macroalbuminuria (e.g. urine albumin creatinine ratio (UACR) 30-3000 mg/g creatinine).
  • micro- or macroalbuminuria e.g. urine albumin creatinine ratio (UACR) 30-3000 mg/g creatinine.
  • kidney disease CKD
  • type 2 diabetes patients having impaired renal function such as indicated herein without micro- or macroalbuminuria (e.g. urine albumin creatinine ratio (UACR) 30-3000 mg/g creatinine).
  • UCR urine albumin creatinine ratio
  • CKD chronic renal impairment
  • CKD 3a type 2 diabetes patients having impaired renal function of up to mild-to-moderate stage (CKD 3a) with macro-album inuria (e.g. urine albumin creatinine ratio (UACR) >200 mg/g or >300 mg/g creatinine).
  • UCR urine albumin creatinine ratio
  • a further embodiment of patients with (chronic) renal impairment (CKD) as described herein relates to type 2 diabetes patients at early stages of prevalent renal microvascular complications, such as e.g. having microalbuminuria (e.g. 30-200 or 30-300 mg/g creatinine) and/or early impaired renal function (eGFR, and/or early CKD stage).
  • microalbuminuria e.g. 30-200 or 30-300 mg/g creatinine
  • eGFR early impaired renal function
  • early CKD stage early CKD stage
  • CKD chronic renal impairment
  • type 2 diabetes patients at advanced stages of prevalent renal microvascular complications, such as e.g. having macroalbuminuria (e.g. >200 or >300 mg/g creatinine) and/or advanced impaired renal function (eGFR, and/or advanced CKD stage).
  • macroalbuminuria e.g. >200 or >300 mg/g creatinine
  • eGFR advanced impaired renal function
  • a further embodiment of patients with (chronic) renal impairment (CKD) as described herein relates to type 2 diabetes patients having micro- or macroalbuminuria; optionally with or without renal function impairment.
  • a yet further embodiment of patients with (chronic) renal impairment (CKD) as described herein relates to type 2 diabetes patients having microalbuminuria, with renal function impairment.
  • a yet further embodiment of patients with (chronic) renal impairment (CKD) as described herein relates to type 2 diabetes patients having macroalbuminuria, with renal function impairment.
  • a yet further embodiment of patients with (chronic) renal impairment (CKD) as described herein relates to type 2 diabetes patients having a renal prognosis of high risk or very high risk (such as defined by eGFR and albuminuria categories at baseline).
  • a further embodiment of patients with (chronic) renal impairment (CKD) as described herein relates to type 2 diabetes patients having impaired renal function such as indicated herein, with or without micro- or macroalbuminuria, and having a previous macrovascular disease (e.g. myocardial infarction, coronary artery disease, stroke, carotid artery disease or peripheral artery disease).
  • CKD chronic renal impairment
  • the patients as described herein are treated with a DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride) on top of or in add-on combination with one or more other (conventional) antidiabetics and/or an angiotensin converting enzyme (ACE) inhibitor or an angiotensin receptor blocker (ARB).
  • a DPP-4 inhibitor particularly linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • ACE angiotensin converting enzyme
  • ARB angiotensin receptor blocker
  • the patients as described herein may be with or at-risk of further (major) (micro- and/or macro-)vascular diseases, complications or events, such as e.g. such patients may be at high vascular risk.
  • further (major) (micro- and/or macro-)vascular diseases, complications or events such as e.g. such patients may be at high vascular risk.
  • such patients at high vascular risk may have: both
  • albuminuria e.g. micro- or macro-albuminuria
  • previous macrovascular e.g. cardio- or cerebrovascular
  • myocardial infarction e.g. myocardial infarction, coronary artery disease, (ischemic or haemorrhagic) stroke, carotid artery disease and/or peripheral artery disease
  • CKD stage 1, 2 or 3 such as CKD stage 1, 2 (mild) or 3a (mild-moderate), preferably eGFR 45-75 mL/min/1.73 m 2
  • macro-albuminuria e.g. CKD stage 1, 2 or 3, such as CKD stage 1, 2 (mild) or 3a (mild-moderate), preferably eGFR 45-75 mL/min/1.73 m 2
  • CKD stage 3 [or 4] such as CKD stage 3b (moderate-severe) [or 4 (severe), preferably eGFR 15-45 mL/min/1.73 m 2 ]
  • albuminuria such as e.g. with or without micro- or macro-albuminuria
  • such a patient at high vascular risk may be a patient (preferably diabetic, particularly type 2 diabetes patients) as follows:
  • albuminuria such as e.g. urine albumin creatinine ratio (UACR) ⁇ 30 mg/g creatinine or ⁇ 30 mg/l (milligram albumin per liter of urine) or ⁇ 30 ⁇ g/min (microgram albumin per minute) or ⁇ 30 mg/24 h (milligram albumin per 24 hours)
  • UCR urine albumin creatinine ratio
  • previous macrovascular disease such as e.g. defined as one or more of a) to f):
  • impaired renal function e.g. with or without CV co-morbidities
  • CV co-morbidities such as e.g. defined by:
  • the present invention relates to a combination or a pharmaceutical composition
  • a certain DPP-4 inhibitor particularly linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • the present invention also relates to a fixed or free combination or pharmaceutical composition
  • a fixed or free combination or pharmaceutical composition comprising, consisting essentially of or made of
  • DPP-4 inhibitor particularly linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • auxiliaries such as e.g. including excipients, stabilizers, carriers or the like
  • medical uses as described herein, such as e.g. for improving glycemic control and/or for use in treating and/or preventing (including slowing the progression and/or delaying the onset) of metabolic diseases, especially type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications, such as e.g. diabetic chronic kidney disease, diabetic nephropathy, micro-or macroalbuminuria, renal impairment, diabetic retinopathy and/or diabetic neuropathy, and/or a macrovascular complication), such as e.g.
  • diabetic complications such as e.g. diabetic chronic kidney disease, diabetic nephropathy, micro-or macroalbuminuria, renal impairment, diabetic retinopathy and/or diabetic neuropathy, and/or a macrovascular complication
  • renal impairment e.g. diabetic retinopathy and/or diabetic neuropathy, and
  • first line therapy i.e. in type 2 diabetes patients who have not previously treated with an antihyperglycemic agent (drug-na ⁇ ve patients)
  • glycemic agents selected from metformin, sulphonylureas, thiazolidinediones (e.g. pioglitazone), glinides, alpha-glucosidase blockers, GLP-1 or GLP-1 analogues, and insulin or insulin analogues;
  • CKD chronic kidney disease
  • CKD stage 3 e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30,
  • CKD stage 3 e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30,
  • CKD stage 3 estimated glomerular filtration rate
  • CKD stage 3a mild-to-moderate stage
  • CKD stage 3a such as having eGFR levels 45-59
  • moderate-to-severe stage such as having eGFR levels 30-44
  • CKD stage 3b CKD stage 3b
  • sulphonylureas such as e.g. optionally in combination with one conventional antihyperglycemic agent selected from sulphonylureas, thiazolidinediones (e.g. pioglitazone), glinides, alpha-glucosidase blockers, GLP-1 or GLP-1 analogues, and insulin or insulin analogues, and/or angiotensin converting enzyme (ACE) inhibitors or an angiotensin receptor blockers (ARBs).
  • ACE angiotensin converting enzyme
  • ARBs angiotensin receptor blockers
  • the present invention also relates to medical uses as described herein of a pharmaceutical composition
  • a pharmaceutical composition comprising a fixed dose combination formulation of a DPP-4 inhibitor and metformin (particularly in the form of metformin hydrochloride) and optionally one or more pharmaceutically acceptable auxiliaries.
  • the present invention also relates to a fixed or free combination or pharmaceutical composition
  • a DPP-4 inhibitor particularly linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • auxiliaries for use in treating and/or preventing (including slowing the progression and/or delaying the onset) of metabolic diseases, especially type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), such as e.g.
  • first line therapy i.e. in type 2 diabetes patients who have not previously treated with an antihyperglycemic agent (drug-na ⁇ ve patients)
  • glycemic agents selected from metformin, sulphonylureas, thiazolidinediones, glinides, alpha-glucosidase blockers, GLP-1 or GLP-1 analogues, and insulin or insulin analogues;
  • CKD chronic kidney disease
  • CKD stage 3 e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30,
  • CKD stage 3 e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30,
  • CKD stage 3 estimated glomerular filtration rate
  • antidiabetics such as selected from sulphonylureas, thiazolidinediones (e.g. pioglitazone), glinides, alpha-glucosidase blockers, GLP-1 or GLP-1 analogues, and insulin or insulin analogues, and/or an angiotensin converting enzyme (ACE) inhibitor or an angiotensin receptor blocker (ARB).
  • sulphonylureas thiazolidinediones (e.g. pioglitazone)
  • glinides e.g. pioglitazone
  • alpha-glucosidase blockers e.g. pioglitazone
  • ACE angiotensin converting enzyme
  • ARB angiotensin receptor blocker
  • the present invention relates to a combination or pharmaceutical composition
  • a DPP-4 inhibitor particularly linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • auxiliaries for use in treating and/or preventing (including slowing the progression and/or delaying the onset) of metabolic diseases, especially type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications, such as e.g.
  • diabetic chronic kidney disease diabetic nephropathy, micro-or macroalbuminuria, renal impairment, diabetic retinopathy and/or diabetic neuropathy, and/or a macrovascular complication such as a cardio- or cerebrovascular event
  • a macrovascular complication such as a cardio- or cerebrovascular event
  • the patients have (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59, or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b).
  • CKD chronic kidney disease
  • eGFR estimated glomerular filtration rate
  • the present invention also relates to a combination or pharmaceutical composition
  • a DPP-4 inhibitor particularly linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • auxiliaries for use in combination with a sulphonylurea in treating and/or preventing (including slowing the progression and/or delaying the onset) of metabolic diseases, especially type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications, such as e.g.
  • diabetic chronic kidney disease diabetic nephropathy, micro-or macroalbuminuria, renal impairment, diabetic retinopathy and/or diabetic neuropathy, and/or a macrovascular complication such as a cardio- or cerebrovascular event
  • a macrovascular complication such as a cardio- or cerebrovascular event
  • the patients have (chronic) renal disease, renal dysfunction or renal impairment, particularly patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30, such as patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59 or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b).
  • CKD chronic kidney disease
  • eGFR estimated glomerular filtration rate
  • the present invention also relates to a combination or pharmaceutical composition
  • a DPP-4 inhibitor particularly linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • auxiliaries for use in combination with a thiazolidinedione (e.g. pioglitazone) in treating and/or preventing (including slowing the progression and/or delaying the onset) of metabolic diseases, especially type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications, such as e.g.
  • diabetic chronic kidney disease diabetic nephropathy, micro-or macroalbuminuria, renal impairment, diabetic retinopathy and/or diabetic neuropathy, and/or a macrovascular complication such as a cardio- or cerebrovascular event
  • a macrovascular complication such as a cardio- or cerebrovascular event
  • the patients have (chronic) renal disease, renal dysfunction or renal impairment, particularly patients having chronic kidney disease (CKD) such as e.g.up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30, such as patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59 or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b).
  • CKD chronic kidney disease
  • eGFR estimated glomerular filtration rate
  • the present invention also relates to a combination or pharmaceutical composition
  • a DPP-4 inhibitor particularly linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • auxiliaries for use in combination with an insulin (e.g. basal insulin) in treating and/or preventing (including slowing the progression and/or delaying the onset) of metabolic diseases, especially type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications, such as e.g.
  • diabetic chronic kidney disease diabetic nephropathy, micro-or macroalbuminuria, renal impairment, diabetic retinopathy and/or diabetic neuropathy, and/or a macrovascular complication such as a cardio- or cerebrovascular event
  • an insulin e.g. basal insulin
  • the patients have (chronic) renal disease, renal dysfunction or renal impairment, particularly patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30, such as patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59 or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b).
  • CKD chronic kidney disease
  • eGFR estimated glomerular filtration rate
  • the present invention also relates to a combination or pharmaceutical composition
  • a DPP-4 inhibitor particularly linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • auxiliaries for use in treating and/or preventing (including slowing the progression and/or delaying the onset) of metabolic diseases, especially type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), in drug-na ⁇ ve type 2 diabetes patients (e.g. as first line therapy), such as e.g. as early or initial combination therapy;
  • the patients have (chronic) renal disease, renal dysfunction or renal impairment, particularly patients having chronic kidney disease (CKD) such as e.g.up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30, such as patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59 or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b).
  • CKD chronic kidney disease
  • eGFR estimated glomerular filtration rate
  • the present invention further provides the use of a combination or pharmaceutical composition
  • a combination or pharmaceutical composition comprising a DPP-4 inhibitor (particularly linagliptin), metformin (particularly in the form of metformin hydrochloride) and optionally one or more pharmaceutically acceptable auxiliaries, for the manufacture of a medicament for treating and/or preventing metabolic diseases, particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), e.g. as first, second or third line therapy as described herein, including in the patients as described herein.
  • metabolic diseases particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications)
  • type 2 diabetes mellitus and/or conditions related thereto e.g. diabetic complications
  • the present invention further relates to a pharmaceutical package comprising a pharmaceutical composition as defined herein and optionally instructions for its use, optionally in combination with one or more other active substances, in the treatment and/or prevention of metabolic diseases, particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), such as e.g.
  • metabolic diseases particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), such as e.g.
  • the present invention further relates to a medicament for use in the treatment and/or prevention of metabolic diseases, particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), such as e.g. in drug-na ⁇ ve patients or in patients with insufficient glycemic control despite therapy with one or two conventional antihyperglycemic agents selected from metformin, sulphonylureas, thiazolidinediones, glinides, alpha-glucosidase blockers, GLP-1 or GLP-1 analogues, and insulin or insulin analogues; preferably in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g.up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eG
  • the present invention further provides a method of treating and/or preventing metabolic diseases, particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), such as e.g. in drug-na ⁇ ve patients (e.g. as first line therapy) or in patients with insufficient glycemic control despite therapy with one or two conventional antihyperglycemic agents selected from metformin, sulphonylureas, thiazolidinediones, glinides, alpha-glucosidase blockers, GLP-1 or GLP-1 analogues, and insulin or insulin analogues (e.g.
  • CKD chronic kidney disease
  • CKD stage 3 e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59, or even of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b); said method comprising administering to a subject in need thereof (particularly a human patient) an effective amount of a pharmaceutically composition comprising a DPP-4 inhibitor (particularly linagliptin), metformin (particularly in the form of metformin hydrochloride) and optionally one or more pharmaceutically acceptable auxiliaries, optionally alone or in combination, such as e.
  • the present invention provides a method of treating and/or preventing metabolic diseases, particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), in drug-na ⁇ ve patients (e.g. as first line therapy); including in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g.
  • metabolic diseases particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications)
  • drug-na ⁇ ve patients e.g. as first line therapy
  • CKD chronic kidney disease
  • stage 3 up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59, or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b); said method comprising administering to a subject in need thereof (particularly a human patient) an effective amount of a pharmaceutically composition of a DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride) such as described herein.
  • a DPP-4 inhibitor particularly linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • the present invention provides a method of treating and/or preventing metabolic diseases, particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), in patients with insufficient glycemic control despite mono-therapy with metformin (e.g. as second line therapy); including in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g.
  • metabolic diseases particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications)
  • metformin e.g. as second line therapy
  • CKD chronic kidney disease
  • stage 3 up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59, or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b); said method comprising administering to a subject in need thereof (particularly a human patient) an effective amount of a pharmaceutically composition of a DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride) such as described herein.
  • a DPP-4 inhibitor particularly linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • the present invention provides a method of treating and/or preventing metabolic diseases, particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), in patients with insufficient glycemic control despite dual combination therapy with metformin and a thiazolidinedione (e.g. as third line therapy); including in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g.
  • metabolic diseases particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications)
  • metformin and a thiazolidinedione e.g. as third line therapy
  • CKD chronic kidney disease
  • stage 3 up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59, or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b); said method comprising administering to a subject in need thereof (particularly a human patient) an effective amount of a pharmaceutically composition of a DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride) such as described herein, and a thiazolidinedione.
  • a DPP-4 inhibitor particularly linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • the present invention provides a method of treating and/or preventing metabolic diseases, particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), in patients with insufficient glycemic control despite dual combination therapy with metformin and a sulphonylurea (e.g. as third line therapy); including in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g.
  • metabolic diseases particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications)
  • metformin and a sulphonylurea e.g. as third line therapy
  • CKD chronic kidney disease
  • stage 3 up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59, or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b); said method comprising administering to a subject in need thereof (particularly a human patient) an effective amount of a pharmaceutically composition of a DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride) such as described herein, and a sulphonylurea.
  • a DPP-4 inhibitor particularly linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • the present invention provides a method of treating and/or preventing metabolic diseases, particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), in patients with insufficient glycemic control despite dual combination therapy with metformin and insulin or insulin analog; including in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g.
  • metabolic diseases particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications)
  • CKD chronic kidney disease
  • stage 3 up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59, or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b); said method comprising administering to a subject in need thereof (particularly a human patient) an effective amount of a pharmaceutically composition of a DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride) such as described herein, and insulin or insulin analog.
  • a DPP-4 inhibitor particularly linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • the present invention provides a method of treating and/or preventing metabolic diseases, particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), in patients treated with insulin or insulin analog; including in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g.
  • metabolic diseases particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications)
  • CKD chronic kidney disease
  • stage 3 up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59, or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b); said method comprising administering to a subject in need thereof (particularly a human patient) an effective amount of a pharmaceutically composition of a DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride) such as described herein, thereby replacing said insulin or insulin analog (i.e. switching from insulin therapy to a BI 1356 & metformin combination according to this invention).
  • a DPP-4 inhibitor particularly linagliptin
  • metformin particularly in the form of metformin
  • Examples of metabolic disorders or diseases amenable by the therapy of this invention may include, without being limited to, type 1 diabetes, type 2 diabetes, diabetic complications (e.g. as described herein), impaired glucose tolerance (IGT), impaired fasting blood glucose (IFG), hyperglycemia, postprandial hyperglycemia, postabsorptive hyperglycemia, latent autoimmune diabetes in adults (LADA), overweight, obesity, dyslipidemia, hyperlipidemia, hypercholesterolemia, hypertriglyceridemia, hyperNEFA-emia, fasting or postprandial hyperlipidemia such as postprandial lipemia (e.g.
  • postprandial hypertriglyceridemia hypertension
  • atherosclerosis endothelial dysfunction
  • osteoporosis chronic systemic inflammation
  • non alcoholic fatty liver disease NAFLD
  • retinopathy neuropathy, nephropathy, polycystic ovarian syndrome, and/or metabolic syndrome.
  • the present invention further relates to a certain DPP-4 inhibitor (preferably linagliptin) in combination with metformin (particularly in the form of metformin hydrochloride), and optionally in combination with one or more other active agents, for use in at least one of the following methods:
  • a certain DPP-4 inhibitor preferably linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • one or more other active agents for use in at least one of the following methods:
  • a patient in need thereof such as e.g. a patient as described herein
  • a patient in need thereof such as e.g. a patient as described herein
  • CKD chronic kidney disease
  • CKD stage 3 e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45, or even down to 30,
  • CKD stage 3 e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45, or even down to 30,
  • CKD stage 3 estimated glomerular filtration rate
  • CKD stage 3a mild-to-moderate stage
  • CKD stage 3a such as having eGFR levels 45-59 or of moderate-to-severe stage such as having eGFR levels 30-44
  • CKD stage 3b CKD stage 3b.
  • Such therapy according to this invention may include treatment with such certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) over a lengthy period, such as described in more detail (duration of treatment) herein.
  • DPP-4 inhibitor preferably linagliptin, optionally in combination with one or more other active agents
  • the therapy or prophylaxis according to the present invention may include duration of treatment with a certain DPP-4 inhibitor, particularly linagliptin (preferably 5 mg per day, administered orally), in combination with metformin (and optionally in combination with one or more other active substances, e.g. such as those described herein) over a lengthy period, preferably at least 48 months, more preferably at least 3 years (such as e.g. at least 3-4 years, or at least 5-6 years).
  • a certain DPP-4 inhibitor particularly linagliptin (preferably 5 mg per day, administered orally)
  • metformin and optionally in combination with one or more other active substances, e.g. such as those described herein
  • a lengthy period preferably at least 48 months, more preferably at least 3 years (such as e.g. at least 3-4 years, or at least 5-6 years).
  • the HbA1c value In the monitoring of the treatment of diabetes mellitus the HbA1c value, the product of a non-enzymatic glycation of the haemoglobin B chain, is of exceptional importance. As its formation depends essentially on the blood sugar level and the life time of the erythrocytes the HbA1c in the sense of a “blood sugar memory” reflects the average blood sugar level of the preceding 4-12 weeks. Diabetic patients whose HbA1c level has been well controlled over a long time by more intensive diabetes treatment (i.e. ⁇ 6.5% of the total haemoglobin in the sample) are significantly better protected from diabetic microangiopathy.
  • the available treatments for diabetes can give the diabetic an average improvement in their HbA1c level of the order of 1.0-1.5%. This reduction in the HbA1C level is not sufficient in all diabetics to bring them into the desired target range of ⁇ 7.0%, preferably ⁇ 6.5% and more preferably ⁇ 6% HbA1c.
  • FPG fasting plasma glucose
  • PPG postprandial plasma glucose
  • inadequate or insufficient glycemic control means in particular a condition wherein patients show HbA1c values above 6.5%, in particular above 7.0%, even more preferably above 7.5%, especially above 8%.
  • An embodiment of patients with inadequate or insufficient glycemic control include, without being limited to, patients having a HbA1c value from 6.5 to 10% (or, in another embodiment, from 7.5 to 10%; or, in another embodiment, from 7.5 to 11%, or, in another embodiment, from 6.5 to 8.5% or, in another embodiment, from 6.5 to 7.5%).
  • a special sub-embodiment of inadequately controlled patients refers to patients with poor glycemic control including, without being limited, patients having a HbA1c value ⁇ 9%.
  • diabetes patients within the meaning of this invention may include patients who have not previously been treated with an antidiabetic drug (drug-na ⁇ ve patients).
  • the therapies described herein may be used in na ⁇ ve patients.
  • the DPP-4 inhibitor preferably linagliptin
  • the DPP-4 inhibitor may be used alone or in combination with one or more other antidiabetics in such patients.
  • diabetes patients within the meaning of this invention may include patients pre-treated with conventional antidiabetic background medication, such as e.g. patients with advanced or late stage type 2 diabetes mellitus (including patients with failure to conventional antidiabetic therapy), such as e.g.
  • patients with inadequate glycemic control on one, two or more conventional oral and/or non-oral antidiabetic drugs as defined herein such as e.g. patients with insufficient glycemic control despite (mono-)therapy with metformin, a thiazolidinedione (particularly pioglitazone), a sulphonylurea, a glinide, GLP-1 or GLP-1 analogue, insulin or insulin analogue, or an ⁇ -glucosidase inhibitor, or despite dual combination therapy with metformin/sulphonylurea, metformin/thiazolidinedione (particularly pioglitazone), sulphonylurea/ ⁇ -glucosidase inhibitor, pioglitazone/sulphonylurea, metformin/insulin, pioglitazone/insulin or sulphonylurea/insulin.
  • the therapies described herein may be used in patients experienced with therapy, e.g. with conventional oral and/or non-oral antidiabetic mono- or dual or triple combination medication as mentioned herein.
  • the DPP-4 inhibitor preferably linagliptin
  • the therapies of this invention may be used on top of or added on the existing or ongoing conventional oral and/or non-oral antidiabetic mono- or dual or triple combination medication with which such patients are pre-treated or experienced.
  • a diabetes patient may be treatment-na ⁇ ve or pre-treated with one or more (e.g. one or two) conventional antidiabetic agents selected from metformin, thiazolidinediones (particularly pioglitazone), sulphonylureas, glinides, ⁇ -glucosidase inhibitors (e.g. acarbose, voglibose), and insulin or insulin analogues, such as e.g. pre-treated or experienced with:
  • one or more conventional antidiabetic agents selected from metformin, thiazolidinediones (particularly pioglitazone), sulphonylureas, glinides, ⁇ -glucosidase inhibitors (e.g. acarbose, voglibose), and insulin or insulin analogues, such as e.g. pre-treated or experienced with:
  • the DPP-4 inhibitor (preferably linagliptin) may be used as monotherapy, or as initial combination therapy such as e.g. with metformin, a thiazolidinedione (particularly pioglitazone), a sulphonylurea, a glinide, an ⁇ -glucosidase inhibitor (e.g. acarbose, voglibose), GLP-1 or GLP-1 analogue, or insulin or insulin analogue; preferably as monotherapy.
  • metformin e.g. with metformin, a thiazolidinedione (particularly pioglitazone), a sulphonylurea, a glinide, an ⁇ -glucosidase inhibitor (e.g. acarbose, voglibose), GLP-1 or GLP-1 analogue, or insulin or insulin analogue; preferably as monotherapy.
  • metformin e.g. with metform
  • the DPP-4 inhibitor (preferably linagliptin) may be used as as add-on combination therapy, i.e. added to an existing or background therapy with the one or two conventional antidiabetics in patients with insufficient glycemic control despite therapy with the one or more conventional antidiabetic agents, such as e.g. as add-on therapy to one or more (e.g. one or two) conventional antidiabetics selected from metformin,
  • thiazolidinediones particularly pioglitazone
  • sulphonylureas particularly pioglitazone
  • glinides particularly pioglitazone
  • ⁇ -glucosidase inhibitors e.g. acarbose, voglibose
  • GLP-1 or GLP-1 analogues e.g. insulin or insulin analogues, such as e.g.:
  • metformin plus ⁇ -glucosidase inhibitor to metformin plus sulphonylurea, to metformin plus glinide, to ⁇ -glucosidase inhibitor plus sulphonylurea, or to ⁇ -glucosidase inhibitor plus glinide;
  • an insulin with or without metformin, a thiazolidinedione (particularly pioglitazone), a sulphonylurea, a glinide or an ⁇ -glucosidase inhibitor (e.g. acarbose, voglibose).
  • metformin particularly pioglitazone
  • a sulphonylurea particularly pioglitazone
  • a glinide or an ⁇ -glucosidase inhibitor (e.g. acarbose, voglibose).
  • An embodiment of the patients which may be amenable to the therapies of this invention may include, without being limited, those diabetes patients for whom normal metformin therapy is less appropriate, such as e.g. those diabetes patients who need reduced dose metformin therapy due to reduced tolerability, intolerability or contraindication against metformin or due to impaired/reduced renal function (e.g. elderly patients, such as e.g. ⁇ 60-65 years).
  • the patient described herein is a subject having diabetes (e.g. type 1 or type 2 diabetes or LADA, particularly type 2 diabetes).
  • diabetes e.g. type 1 or type 2 diabetes or LADA, particularly type 2 diabetes.
  • the subject within this invention may be a human, e.g. human child, a human adolescent or, particularly, a human adult.
  • the subject within this invention is a human type 2 diabetes patient.
  • the subject within this invention is a (human) type 2 diabetes patient in early diabetes stage or, particularly, in advanced diabetes stage.
  • the patient has long-standing type 2 diabetes (e.g. >10 years) and/or is treated with insulin.
  • the subject within this invention is a (human) type 2 diabetes patient in early CKD stage or, particularly, in advanced CKD stage.
  • DPP-4 dipeptidyl peptidase IV
  • CD26 The enzyme DPP-4 (dipeptidyl peptidase IV) also known as CD26 is a serine protease known to lead to the cleavage of a dipeptide from the N-terminal end of a number of proteins having at their N-terminal end a prolin or alanin residue. Due to this property DPP-4 inhibitors interfere with the plasma level of bioactive peptides including the peptide GLP-1 and are considered to be promising drugs for the treatment of diabetes mellitus.
  • DPP-4 inhibitor to be emphasized within the present invention is 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine, particularly the free base thereof (which is also known as linagliptin or BI 1356).
  • the DPP-4 inhibitor of this invention may be selected from the group consisting of linagliptin, sitagliptin, vildagliptin, alogliptin, saxagliptin, teneligliptin, anagliptin, gemigliptin and dutogliptin, or a pharmaceutically acceptable salt of one of the herein mentioned DPP-4 inhibitors, or a prodrug thereof.
  • DPP-4 is analogous to CD26 a T-cell antigene which plays a role in T-cell activation and immuno-modulation. Further, some substrates of DPP-4 (beyond incretins) may have potential cardio-renal effects.
  • linagliptin a selective DPP-4 inhibitor may qualify for the instant purposes with certain anti-oxidative and/or anti-inflammatory features.
  • Linagliptin may further have a direct impact on the integrity of the endothelium and podocytes of the glomerula and the proximal tubular cells of the kidney as well as on endothelial function and linagliptin has a relatively high tissue distribution, including in the kidney.
  • samples from human kidneys indicate that proteinuric human diseases (such as e.g. diabetic nephropathy or nephrotic syndrome) seem to be characterized by an upregulation of glomerular DPP-4.
  • proteinuric human diseases such as e.g. diabetic nephropathy or nephrotic syndrome
  • linigliptin may further qualify for the instant purposes by antidiabetic and anti-albuminuric effects/usability preferably in type 2 diabetes patients, with micro- or macroalbuminuria (e.g. 30-3000 mg/g creatinine), preferably on top of current standard treatment for diabetic nephropathy (e.g. ACE inhibitor or ARB).
  • micro- or macroalbuminuria e.g. 30-3000 mg/g creatinine
  • ACE inhibitor or ARB diabetic nephropathy
  • DPP-4 inhibitors e.g. sitagliptin, saxagliptin, alogliptin and vildagliptin
  • CKD renally impaired
  • the DPP-4 inhibitor linagliptin is unique in being secreted via the bile and does not require adjustment of dose with declining renal function.
  • DPP-4 inhibitor linagliptin can exert anti-fibrotic effects, such as on kidney fibrosis.
  • DPP-4 inhibitors of this invention refers to those orally administered DPP-4 inhibitors which are therapeutically efficacious at low dose levels, e.g. at dose levels ⁇ 100 mg or ⁇ 70 mg per patient per day, preferably ⁇ 50 mg, more preferably ⁇ 30 mg or ⁇ 20 mg, even more preferably from 1 mg to 10 mg (if required, divided into 1 to 4 single doses, particularly 1 or 2 single doses, which may be of the same size), particularly from 1 mg to 5 mg (more particularly 5 mg), per patient per day, preferentially, administered orally once-daily, more preferentially, at any time of day, administered with or without food.
  • the therapeutic daily oral dose 5 mg BI 1356 can be given in a once daily dosing regimen (i.e. 5 mg BI 1356 once daily) or in a twice daily dosing regimen (i.e. 2.5 mg BI 1356 twice daily), at any time of day, with or without food.
  • the present invention further relates to a pharmaceutical composition or combination comprising or consisting essentially of a certain DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride), optionally in combination or alternation with one or more other therapeutic agents, each as described herein, such as e.g. for simultaneous, sequential or separate medical use in therapy or prophylaxis as described herein.
  • a pharmaceutical composition or combination comprising or consisting essentially of a certain DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride), optionally in combination or alternation with one or more other therapeutic agents, each as described herein, such as e.g. for simultaneous, sequential or separate medical use in therapy or prophylaxis as described herein.
  • “combination” or “combined” within the meaning of this invention may include, without being limited, fixed and non-fixed (e.g. free) forms (including kits, or other administration, application or dosage forms) and uses, such as e.g. the simultaneous, sequential or separate use of the components.
  • the combined administration or application of this invention may take place by administering the therapeutic components together, such as e.g. by administering them simultaneously in one single or in two separate formulations.
  • the administration may take place by administering the therapeutic components sequentially, such as e.g. successively in two separate formulations.
  • the therapeutic components may be administered separately (which implies that they are formulated separately) or formulated altogether (which implies that they are formulated in the same preparation).
  • the administration of one element of the combination of the present invention may be prior to, concurrent to, or subsequent to the administration of the other element of the combination.
  • combination therapy may refer to first line, second line or third line therapy, or initial or add-on combination therapy or replacement therapy.
  • monotherapy may refer to first line therapy (e.g. therapy of patients with insufficient glycemic control by diet and exercise alone, such as e.g. drug-naive patients, typically patients early after diagnosis and/or who have not been previously treated with an antidiabetic agent, and/or patients ineligible for metformin therapy such as e.g. patients for whom metformin therapy is contraindicated, such as e.g. due to renal impairment, or inappropriate, such as e.g. due to intolerance).
  • first line therapy e.g. therapy of patients with insufficient glycemic control by diet and exercise alone, such as e.g. drug-naive patients, typically patients early after diagnosis and/or who have not been previously treated with an antidiabetic agent, and/or patients ineligible for metformin therapy such as e.g. patients for whom metformin therapy is contraindicated, such as e.g. due to renal impairment, or inappropriate, such as e.g. due to intolerance
  • add-on combination therapy may refer to second line or third line therapy (e.g. therapy of patients with insufficient glycemic control despite (diet and exercise plus) therapy with one or two conventional antidiabetic agents, typically patients who are pre-treated with one or two antidiabetic agents, such as e.g. patients with such existing antidiabetic background medication).
  • second line or third line therapy e.g. therapy of patients with insufficient glycemic control despite (diet and exercise plus) therapy with one or two conventional antidiabetic agents, typically patients who are pre-treated with one or two antidiabetic agents, such as e.g. patients with such existing antidiabetic background medication.
  • initial combination therapy may refer to first line therapy (e.g. therapy of patients with insufficient glycemic control by diet and exercise alone, such as e.g. drug-naive patients, typically patients early after diagnosis and/or who have not been previously treated with an antidiabetic agent).
  • first line therapy e.g. therapy of patients with insufficient glycemic control by diet and exercise alone, such as e.g. drug-naive patients, typically patients early after diagnosis and/or who have not been previously treated with an antidiabetic agent.
  • a DPP-4 inhibitor according to the invention is preferably administered orally.
  • compositions or fixed dose combinations of a DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride) such as described herein include, without being limited to, such compositions which comprise immediate release metformin and the DPP-4 inhibitor (preferably as an immediate release component).
  • a DPP-4 inhibitor particularly linagliptin
  • metformin particularly in the form of metformin hydrochloride
  • pharmaceutical compositions or fixed dose combinations of a DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride) such as described herein include, without being limited to, such compositions which comprise immediate release metformin and the DPP-4 inhibitor (preferably as an immediate release component).
  • WO 2009/121945 the disclosure of which is incorporated herein.
  • Particular reference is made to those tablet forms which are described in more detail in the example section of WO 2009/121945; the mono-layer tablet hereby being preferred.
  • compositions or fixed dose combinations of a DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride) such as described herein include, without being limited to, such compositions which comprise controlled or sustained (e.g. slow or extended) release metformin and the DPP-4 inhibitor (preferably as an immediate release component).
  • examples of such compositions include, without being limited, drug (DPP-4 inhibitor)-coated tablets (which may be optionally over-coated with a non-functional film-coat), e.g. compositions comprising i) an extended release core comprising metformin and one or more suitable excipients and ii) a (preferably immediate release) film-coating comprising DPP-4 inhibitor (e.g.
  • a pharmaceutical composition as mentioned herein comprises a certain DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride), and optionally one or more pharmaceutically acceptable auxiliaries.
  • auxiliaries for the pharmaceutical compositions as described herein may comprise a stabilizer, such as e.g. arginine, particularly L-arginine.
  • a pharmaceutical composition as described herein comprises linagliptin and metformin (particularly in the form of metformin hydrochloride), L-arginine (such as e.g. as inactive ingredient or as stabilizer), and optionally one or more further pharmaceutically acceptable auxiliaries or excipients.
  • auxiliaries or excipients mentioned herein may comprise optionally in addition to L-arginine other auxiliaries such as e.g. one or more fillers, one or more diluents, one or more binders, one or more lubricants, one or more release agents, one or more disintegrants, one or more breakdown agents, one or more flow agents, one or more coating agents, one or more plasticizers, one or more pigments, etc.
  • auxiliaries such as e.g. one or more fillers, one or more diluents, one or more binders, one or more lubricants, one or more release agents, one or more disintegrants, one or more breakdown agents, one or more flow agents, one or more coating agents, one or more plasticizers, one or more pigments, etc.
  • a pharmaceutical composition as described herein comprises linagliptin (e.g. in an amount of 2.5 mg, such as for twice daily administration, or in an amount of 5 mg, such as for once daily administration) and metformin (particularly in the form of metformin hydrochloride; e.g. in an amount of 500, 750, 850 or 1000 mg; e.g. in immediate release formulation or in extended release formulation), L-arginine (particularly as stabilizer) and optionally one or more other auxiliaries.
  • linagliptin e.g. in an amount of 2.5 mg, such as for twice daily administration, or in an amount of 5 mg, such as for once daily administration
  • metformin particularly in the form of metformin hydrochloride; e.g. in an amount of 500, 750, 850 or 1000 mg; e.g. in immediate release formulation or in extended release formulation
  • L-arginine particularly as stabilizer
  • optionally one or more other auxiliaries optionally one or more other auxiliaries.
  • a pharmaceutical composition as described herein comprises linagliptin (e.g. in an amount of 2.5 mg, particularly in immediate release formulation such as for twice daily administration), metformin (particularly metformin hydrochloride, e.g. in an amount of 500, 850 or 1000 mg, particularly in immediate release formulation), L-arginine (particularly as stabilizer), a filler (e.g. maize starch), a binder (e.g. copovidone), and a lubricant (e.g. magnesium stearate) and optionally a flow agent (e.g. anhydrous colloidal silicon dioxide).
  • linagliptin e.g. in an amount of 2.5 mg, particularly in immediate release formulation such as for twice daily administration
  • metformin particularly metformin hydrochloride, e.g. in an amount of 500, 850 or 1000 mg, particularly in immediate release formulation
  • L-arginine particularly as stabilizer
  • a filler e.g. maize starch
  • a binder e.
  • the tablets mentioned herein include for example single-layer, double-layer or triple-layer tablets, coated core tablets, film-coated tablets, etc.
  • Typical dosage strengths of the dual fixed dose combination (tablet) of linagliptin/metformin IR (immediate release) are 2.5/500 mg, 2.5/850 mg and 2.5/1000 mg (linagliptin/metformin hydrochloride), which may be administered twice a day.
  • a particular dosage strength of linagliptin/metformin IR is 2.5/500 mg (linagliptin/metformin hydrochloride), administered twice daily.
  • Typical dosage strengths of the dual fixed dose combination (tablet) of linagliptin/metformin XR (extended release) are 5/1000 mg (linagliptin/metformin hydrochloride), which may be administered as one tablet once a day (preferably to be taken in the evening preferably with meal), or 2.5/750 and 2.5/1000 (linagliptin/metformin hydrochloride), which may be administered as two tablets once a day (preferably to be taken in the evening preferably with meal).
  • a particular dosage strength of linagliptin/metformin XR is 5/1000 mg (linagliptin/metformin hydrochloride), administered once daily.
  • the maximum daily dose may be 1000 mg metformin hydrochloride, preferably given as two divided doses, such as e.g. 500 mg BID.
  • Metformin is usually given in doses varying from about 500 mg to 2000 mg up to 2500 mg or 3000 mg per day using various dosing regimens from about 100 mg to 500 mg or 200 mg to 850 mg (1-3 times a day), or about 300 mg to 1000 mg once or twice a day, or delayed-release metformin in doses of about 100 mg to 1000 mg or preferably 500 mg to 1000 mg once or twice a day or about 500 mg to 2000 mg once a day.
  • Particular dosage strengths may be 250, 500, 625, 750, 850 and 1000 mg of metformin hydrochloride.
  • a DPP-4 inhibitor or pharmaceutical combination or composition according to this invention is combined with active substances customary for the respective disorders, such as e.g. one or more active substances selected from among the other antidiabetic substances, especially active substances that lower the blood sugar level or the lipid level in the blood, raise the HDL level in the blood, lower blood pressure or are indicated in the treatment of atherosclerosis or obesity.
  • Such a combined treatment may be given as a free combination of the substances or in the form of a fixed combination, for example in a tablet or capsule.
  • Pharmaceutical formulations of the combination partner needed for this may either be obtained commercially as pharmaceutical compositions or may be formulated by the skilled man using conventional methods.
  • the active substances which may be obtained commercially as pharmaceutical compositions are described in numerous places in the prior art, for example in the list of drugs that appears annually, the “Rote Liste ®” of the federal association of the pharmaceutical industry, or in the annually updated compilation of manufacturers' information on prescription drugs known as the “Physicians' Desk Reference”.
  • antidiabetic combination partners are sulphonylureas such as glibenclamide, tolbutamide, glimepiride, glipizide, gliquidon, glibornuride and gliclazide; nateglinide; repaglinide; mitiglinide; thiazolidinediones such as rosiglitazone and pioglitazone; PPAR gamma modulators such as metaglidases; PPAR-gamma agonists such as e.g.
  • rivoglitazone mitoglitazone, INT-131 and balaglitazone
  • PPAR-gamma antagonists PPAR-gamma/alpha modulators such as tesaglitazar, muraglitazar, aleglitazar, indeglitazar and KRP297
  • PPAR-gamma/alpha/delta modulators such as e.g.
  • AMPK-activators such as AICAR; acetyl-CoA carboxylase (ACC1 and ACC2) inhibitors; diacylglycerol-acetyltransferase (DGAT) inhibitors; pancreatic beta cell GCRP agonists such as GPR119 agonists (SMT3-receptor-agonists); 11 ⁇ -HSD-inhibitors; FGF19 agonists or analogues; alpha-glucosidase blockers such as acarbose, voglibose and miglitol; alpha2-antagonists; insulin and insulin analogues such as human insulin, insulin lispro, insulin glusilin, r-DNA-insulinaspart, NPH insulin, insulin detemir, insulin degludec, insulin tregopil, insulin zinc suspension and insulin glargin; Gastric inhibitory Peptide (GIP); amylin and amylin analogues (e.
  • GIP Gastric inhibitor
  • GLP-1 and GLP-1 analogues such as Exendin-4, e.g. exenatide, exenatide LAR, liraglutide, taspoglutide, lixisenatide (AVE-0010), LY-2428757 (a PEGylated version of GLP-1), dulaglutide (LY-2189265), semaglutide or albiglutide; SGLT2-inhibitors such as e.g.
  • dapagliflozin sergliflozin (KGT-1251), atigliflozin, canagliflozin, ipragliflozin, luseogliflozin or tofogliflozin; inhibitors of protein tyrosine-phosphatase (e.g.
  • trodusquemine inhibitors of glucose-6-phosphatase; fructose-1,6-bisphosphatase modulators; glycogen phosphorylase modulators; glucagon receptor antagonists; phosphoenolpyruvatecarboxykinase (PEPCK) inhibitors; pyruvate dehydrogenasekinase (PDK) inhibitors; inhibitors of tyrosine-kinases (50 mg to 600 mg) such as PDGF-receptor-kinase (cf. EP-A-564409, WO 98/35958, U.S. Pat. No.
  • PEPCK phosphoenolpyruvatecarboxykinase
  • PDK pyruvate dehydrogenasekinase
  • inhibitors of tyrosine-kinases 50 mg to 600 mg
  • PDGF-receptor-kinase cf. EP-A-564409, WO 98/35958, U.S. Pat
  • a dosage of pioglitazone is usually of about 1-10 mg, 15 mg, 30 mg, or 45 mg once a day.
  • Rosiglitazone is usually given in doses from 4 to 8 mg once (or divided twice) a day (typical dosage strengths are 2, 4 and 8 mg).
  • Glibenclamide is usually given in doses from 2.5-5 to 20 mg once (or divided twice) a day (typical dosage strengths are 1.25, 2.5 and 5 mg), or micronized glibenclamide in doses from 0.75-3 to 12 mg once (or divided twice) a day (typical dosage strengths are 1.5, 3, 4.5 and 6 mg).
  • Glipizide is usually given in doses from 2.5 to 10-20 mg once (up to 40 mg divided twice) a day (typical dosage strengths are 5 and 10 mg), or extended-release glipizide in doses from 5 to 10 mg (up to 20 mg) once a day (typical dosage strengths are 2.5, 5 and 10 mg).
  • Glimepiride is usually given in doses from 1-2 to 4 mg (up to 8 mg) once a day (typical dosage strengths are 1, 2 and 4 mg).
  • a dual combination of glibenclamide/metformin is usually given in doses from 1.25/250 once daily to 10/1000 mg twice daily (typical dosage strengths are 1.25/250, 2.5/500 and 5/500 mg).
  • a dual combination of glipizide/metformin is usually given in doses from 2.5/250 to 10/1000 mg twice daily (typical dosage strengths are 2.5/250, 2.5/500 and 5/500 mg).
  • a dual combination of glimepiride/metformin is usually given in doses from 1/250 to 4/1000 mg twice daily.
  • a dual combination of rosiglitazone/glimepiride is usually given in doses from 4/1 once or twice daily to 4/2 mg twice daily (typical dosage strengths are 4/1, 4/2, 4/4, 8/2 and 8/4 mg).
  • a dual combination of pioglitazone/glimepiride is usually given in doses from 30/2 to 30/4 mg once daily (typical dosage strengths are 30/4 and 45/4 mg).
  • a dual combination of rosiglitazone/metformin is usually given in doses from 1/500 to 4/1000 mg twice daily (typical dosage strengths are 1/500, 2/500, 4/500, 2/1000 and 4/1000 mg).
  • a dual combination of pioglitazone/metformin is usually given in doses from 15/500 once or twice daily to 15/850 mg thrice daily (typical dosage strengths are 15/500 and 15/850 mg).
  • the non-sulphonylurea insulin secretagogue nateglinide is usually given in doses from 60 to 120 mg with meals (up to 360 mg/day, typical dosage strengths are 60 and 120 mg); repaglinide is usually given in doses from 0.5 to 4 mg with meals (up to 16 mg/day, typical dosage strengths are 0.5, 1 and 2 mg).
  • a dual combination of repaglinide/metformin is available in dosage strengths of 1/500 and 2/850 mg.
  • Acarbose is usually given in doses from 25 to 100 mg with meals (up to 300 mg/day, typical dosage strengths are 25, 50 and 100 mg).
  • Miglitol is usually given in doses from 25 to 100 mg with meals (up to 300 mg/day, typical dosage strengths are 25, 50 and 100 mg).
  • Conventional antidiabetics and antihyperglycemics typically used in mono- or dual or triple (add-on or initial) combination therapy may include, without being limited to, metformin, sulphonylureas, thiazolidinediones, glinides, alpha-glucosidase blockers, GLP-1 and GLP-1 analogues, as well as insulin and insulin analogues, such as e.g. those agents indicated herein by way of example, including combinations thereof.
  • HMG-CoA-reductase inhibitors such as simvastatin, atorvastatin, lovastatin, fluvastatin, pravastatin, pitavastatin and rosuvastatin; fibrates such as bezafibrate, fenofibrate, clofibrate, gemfibrozil, etofibrate and etofyllinclofibrate; nicotinic acid and the derivatives thereof such as acipimox; PPAR-alpha agonists; PPAR-delta agonists such as e.g.
  • a dosage of atorvastatin is usually from 1 mg to 40 mg or 10 mg to 80 mg once a day.
  • beta-blockers such as atenolol, bisoprolol, celiprolol, metoprolol and carvedilol
  • diuretics such as hydrochlorothiazide, chlortalidon, xipamide, furosemide, piretanide, torasemide, spironolactone, eplerenone, amiloride and triamterene
  • calcium channel blockers such as amlodipine, nifedipine, nitrendipine, nisoldipine, nicardipine, felodipine, lacidipine, lercanipidine, manidipine, isradipine, nilvadipine, verapamil, gallopamil and diltiazem
  • ACE inhibitors such as ramipril, lisinopril, cilazapril, quinapril, captopril, enalapril, ben
  • a dosage of telmisartan is usually from 20 mg to 320 mg or 40 mg to 160 mg per day.
  • combination partners which increase the HDL level in the blood are Cholesteryl Ester Transfer Protein (CETP) inhibitors; inhibitors of endothelial lipase; regulators of ABC1; LXRalpha antagonists; LXRbeta agonists; PPAR-delta agonists; LXRalpha/beta regulators, and substances that increase the expression and/or plasma concentration of apolipoprotein A-I.
  • CETP Cholesteryl Ester Transfer Protein
  • combination partners for the treatment of obesity are sibutramine; tetrahydrolipstatin (orlistat); alizyme (cetilistat); dexfenfluramine; axokine; cannabinoid receptor 1 antagonists such as the CB1 antagonist rimonobant; MCH-1 receptor antagonists; MC4 receptor agonists; NPY5 as well as NPY2 antagonists (e.g.
  • beta3-AR agonists such as SB-418790 and AD-9677
  • 5HT2c receptor agonists such as APD 356 (lorcaserin); myostatin inhibitors; Acrp30 and adiponectin; steroyl CoA desaturase (SCD1) inhibitors; fatty acid synthase (FAS) inhibitors; CCK receptor agonists; Ghrelin receptor modulators; Pyy 3-36; orexin receptor antagonists; and tesofensine; as well as the dual combinations bupropion/naltrexone, bupropion/zonisamide, topiramate/phentermine and pramlintide/metreleptin.
  • SCD1 steroyl CoA desaturase
  • FES fatty acid synthase
  • CCK receptor agonists Ghrelin receptor modulators
  • Pyy 3-36 orexin receptor antagonists
  • tesofensine as well as the dual combinations bupropion/naltrexone, bupropion/zonisamide,
  • combination partners for the treatment of atherosclerosis are phospholipase A2 inhibitors; inhibitors of tyrosine-kinases (50 mg to 600 mg) such as PDGF-receptor-kinase (cf. EP-A-564409, WO 98/35958, U.S. Pat. No. 5,093,330, WO 2004/005281, and WO 2006/041976); oxLDL antibodies and oxLDL vaccines; apoA-1 Milano; ASA; and VCAM-1 inhibitors.
  • phospholipase A2 inhibitors inhibitors of tyrosine-kinases (50 mg to 600 mg) such as PDGF-receptor-kinase (cf. EP-A-564409, WO 98/35958, U.S. Pat. No. 5,093,330, WO 2004/005281, and WO 2006/041976); oxLDL antibodies and oxLDL vaccines; apoA-1 Milano; ASA
  • DPP-4 inhibitor of this invention may be used in combination with a substrate of DPP-4 (particularly with an anti-inflammatory substrate of DPP-4), which may be other than GLP-1, for the purposes according to the present invention, such substrates of DPP-4 include, for example—without being limited to, one or more of the following: Incretins:
  • GLP Glucagon-like peptide
  • GIP Glucose-dependent insulinotropic peptide
  • Neuropeptide Y (NPY)
  • GHRF Growth hormone releasing factor
  • IGF-1 Insulin-like growth factor
  • the certain DPP-4 inhibitor of this invention may be used in combination with one or more active substances which are indicated in the treatment of nephropathy, such as selected from diuretics, ACE inhibitors and/or ARBs.
  • certain DPP-4 inhibitor of this invention may be used in combination with one or more active substances which are indicated in the treatment or prevention of cardiovascular diseases or events (e.g. major cardiovascular events).
  • the certain DPP-4 inhibitor of this invention may be used in combination with one or more antiplatelet agents, such as e.g. (low-dose) aspirin (acetylsalicylic acid), a selective COX-2 or nonselective COX-1/COX-2 inhibitor, or a ADP receptor inhibitor, such as a thienopyridine (e.g. clopidogrel or prasugrel), elinogrel or ticagrelor, or a thrombin receptor antagonist such as vorapaxar.
  • one or more antiplatelet agents such as e.g. (low-dose) aspirin (acetylsalicylic acid), a selective COX-2 or nonselective COX-1/COX-2 inhibitor, or a ADP receptor inhibitor, such as a thienopyridine (e.g. clopidogrel or prasugrel), elinogrel or ticagrelor, or a thrombin receptor antagonist such as
  • the certain DPP-4 inhibitor of this invention may be used in combination with one or more anticoagulant agents, such as e.g. heparin, a coumarin (such as warfarin or phenprocoumon), a pentasaccharide inhibitor of Factor Xa (e.g. fondaparinux), or a direct thrombin inhibitor (such as e.g. dabigatran), or a Faktor Xa inhibitor (such as e.g. rivaroxaban or apixaban or edoxaban or otamixaban).
  • anticoagulant agents such as e.g. heparin, a coumarin (such as warfarin or phenprocoumon), a pentasaccharide inhibitor of Factor Xa (e.g. fondaparinux), or a direct thrombin inhibitor (such as e.g. dabigatran), or a Faktor Xa inhibitor (such as e.g. rivaroxaban
  • the certain DPP-4 inhibitor of this invention may be used in combination with one or more agents for the treatment of heart failure (such as e.g. those mentioned in WO 2007/128761).
  • the dosage of the active components in the combinations or compositions in accordance with the present invention may be varied, although the amount of the active ingredients shall be such that a suitable dosage form is obtained.
  • the selected dosage and the selected dosage form shall depend on the desired therapeutic effect, the route of administration and the duration of the treatment. Dosage ranges for the combination may be from the maximal tolerated dose for the single agent to lower doses.
  • a multicentre, double-blind, placebo-controlled clinical trial investigates glycaemic and renal effects of linagliptin in patients with type 2 diabetes, album inuria and estimated GFR ⁇ 30 ml/min/1.73 m2 (with or without renal function impairment).
  • HbA1c type 2 diabetes
  • persistent albuminuria urinary albumin-to-creatinine ratio [UACR] 30-3000 mg/gCr; i.e. micro- or macro-albuminuria
  • ARB or ACE inhibitor single renin-angiotensin system blockade
  • Primary glycaemic and key secondary renal surrogate endpoints are HbA1c and UACR change from baseline over 24 weeks, respectively.
  • the gMean for time-weighted average of % change (95% CI) from baseline in UACR over 24 weeks for linagliptin and placebo is ⁇ 11.0% ( ⁇ 16.8, ⁇ 4.7) and ⁇ 5.1% ( ⁇ 11.4, 1.6), respectively;
  • the placebo-adjusted gMean for time-weighted average of % change in UCAR from baseline is ⁇ 6.0% (95% CI ⁇ 15.0, 3.0; NS).
  • the renal effects can be evaluated by a scoring system (diabetic nephropathy score) for staging diabetic kidney disease such as generated from the profiles of a urinary biomarker panel composed of alpha2-HS-glycoprotein, alpha-1-antitrypsin and acid-1-glycoprotein.
  • a scoring system diabetic nephropathy score
  • cardiovascular and renal (microvascular) safety e.g. HbA1c, fasting plasma glucose, treatment sustainability
  • relevant efficacy parameters e.g. HbA1c, fasting plasma glucose, treatment sustainability
  • Type 2 diabetes patient with insufficient glycemic control (na ⁇ ve or pre-treated with any antidiabetic background medication including metformin, excluding treatment with GLP-1 receptor agonists, DPP-4 inhibitors or SGLT-2 inhibitors if consecutive 7 days, e.g. having HbA1c 6.5-10%), and high risk of cardiovascular events, e.g. defined by: albuminuria (micro or macro) and previous macrovascular disease: e.g. defined according to
  • impaired renal function e.g. as defined according to Condition II as indicated below;
  • albuminuria such as e.g. urine albumin creatinine ratio (UACR) ⁇ 30 mg/g creatinine or ⁇ 30 mg/l (milligram albumin per liter of urine) or ⁇ 30 ⁇ g/min (microgram albumin per minute) or ⁇ 30 mg/24 h (milligram albumin per 24 hours)
  • UCR urine albumin creatinine ratio
  • previous macrovascular disease such as e.g. defined as one or more of a) to f):
  • advanced coronary artery disease such as e.g. defined by any one of the following:
  • high-risk single-vessel coronary artery disease such as e.g. defined as the presence of ⁇ 50% narrowing of the luminal diameter of one major coronary artery (e.g. by coronary angiography or CT angiography in patients not revascularised) and at least one of the following:
  • carotid artery disease e.g. symptomatic or not
  • carotid artery disease e.g. symptomatic or not
  • peripheral artery disease such as e.g. documented by either:
  • impaired renal function e.g. with or without CV co-morbidities
  • CV co-morbidities such as e.g. defined by:
  • linagliptin preferably 5 mg per day, administered orally
  • metformin optionally in combination with one or more further active substances, e.g. such as those described herein
  • placebo as add-on therapy on top of standard of care
  • cardiovascular death (non)-fatal myocardial infarction, silent MI, (non)-fatal stroke
  • hospitalisation for unstable angina pectoris hospitalisation for coronary revascularization
  • hospitalisation for peripheral revascularization hospitalisation for congestive heart failure
  • all cause mortality renal death, sustained end-stage renal disease, loss in eGFR, new incidence of macroalbuminuria, progression in albuminuria, progression in CKD, need for anti-retinopathy therapy; or improvement in albuminuria, renal function, CKD; or improvement in cognitive function or prevention of/protection against accelerated cognitive decline.
  • Cognitive functions can be assessed by standardized tests as measure of cognitive functioning such as e.g. by using the Mini-Mental State Examination (MMSE), the Trail Making Test (TMT) and/or the Verbal Fluency Test (VFT).
  • MMSE Mini-Mental State Examination
  • TMT Trail Making Test
  • VFT Verbal Fluency Test
  • Respective subgroup analysis may be made in this study for patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m 2 ) levels down to 45, or down to 30, such as for patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59 or of moderate-to-severe stage (CKD stage 3b) such as having eGFR levels 30-44; optionally with or without micro- or macroalbuminuria.
  • CKD chronic kidney disease
  • eGFR estimated glomerular filtration rate
  • UACR (mg/g) >300 and eGFR (ml/min/1.73 m 2 ) >60, or
  • UACR (mg/g) 30-299 and eGFR (ml/min/1.73 m 2 ) 45-59, or
  • UACR (mg/g) >300 and eGFR (ml/min/1.73 m 2 ) 45-59 or 30-44 or ⁇ 30, or
  • UACR (mg/g) 30-299 and eGFR (ml/min/1.73 m 2 ) 30-44 or ⁇ 30, or
  • UACR (mg/g) ⁇ 30 and eGFR (ml/min/1.73 m2) ⁇ 30.
  • Respective subgroup analysis may be also made in this study for patients having renal prognosis of high risk or very high risk as defined above.

Abstract

The present invention relates to a certain DPP-4 inhibitor for use in combination with metformin in CKD patients.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a certain DPP-4 inhibitor (preferably linagliptin) for use in combination with metformin (particularly in the form of metformin hydrochloride) in CKD (chronic kidney disease) patients, particularly in patients having CKD up to stage 3and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45, or even down to 30, such as in patients with CKD of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59 or of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), optionally in combination with one or more other active substances.
  • BACKGROUND OF THE INVENTION
  • Type 2 diabetes mellitus is a common chronic and progressive disease arising from a complex pathophysiology involving the dual endocrine effects of insulin resistance and impaired insulin secretion with the consequence not meeting the required demands to maintain plasma glucose levels in the normal range. This leads to chronic hyperglycaemia and its associated micro- and macrovascular complications or chronic damages, such as e.g. diabetic nephropathy, retinopathy or neuropathy, or macrovascular (e.g. cardio- or cerebro-vascular) complications, and/or cognitive function impairment. The vascular disease component plays a significant role, but is not the only factor in the spectrum of diabetes associated disorders. The high frequency of complications leads to a significant reduction of life expectancy. Diabetes is currently the most frequent cause of adult-onset loss of vision, renal failure, and amputation in the Industrialised World because of diabetes induced complications and is associated with a two to five fold increase in cardiovascular disease risk. The elevated risk for macrovascular disease is primarily related to increased risk for athero-thrombosis that leads to increased morbidity and premature mortality from cardiovascular (CV) disease and an important predictor for CV diseases is renal impairment, nephropathy and/or chronic kidney disease (CKD) which often co-exists.
  • The treatment of type 2 diabetes typically begins with diet and exercise, followed by oral antidiabetic monotherapy, and although conventional monotherapy may initially control blood glucose in some patients, it is however associated with a high secondary failure rate. The limitations of single-agent therapy for maintaining glycemic control may be overcome, at least in some patients, and for a limited period of time by combining multiple drugs to achieve reductions in blood glucose that cannot be sustained during long-term therapy with single agents. Available data support the conclusion that in most patients with type 2 diabetes current monotherapy will fail and treatment with multiple drugs will be required. But, because type 2 diabetes is a progressive disease, even patients with good initial responses to conventional combination therapy will eventually require an increase of the dosage or further treatment with an additional oral or non-oral antidiabetic drug (often finally with insulin therapy) because the blood glucose level is very difficult to maintain stable for a long period of time. Although existing combination therapy has the potential to enhance glycemic control, it is not without limitations (especially with regard to long term efficacy). Further, traditional therapies may show an increased risk for side effects, such as hypoglycemia or weight gain, which may compromise their efficacy and acceptability.
  • Thus, for many patients, these existing drug therapies result in progressive deterioration in metabolic control despite treatment and do not sufficiently control metabolic status especially over long-term and thus fail to achieve and to maintain glycemic control in advanced, progressed or late stage type 2 diabetes, including diabetes with inadequate glycemic control despite conventional oral and/or non-oral antidiabetic medication.
  • Therefore, although intensive treatment of hyperglycemia can reduce the incidence of chronic damages, many patients with diabetes remain inadequately treated, partly because of limitations in long term efficacy, safety/tolerability and dosing inconvenience of conventional antihyperglycemic therapies.
  • In addition, obesity, overweight or weight gain (e.g. as side or adverse effect of some conventional antidiabetic medications) further complicates the treatment of diabetes and its microvascular or macrovascular, and/or cognitive, complications.
  • This high incidence of therapeutic failure is a major contributor to the high rate of long-term hyperglycemia-associated complications or chronic damages (including micro- and makrovascular complications such as e.g. diabetic nephrophathy, retinopathy or neuropathy, or cerebro- or cardiovascular complications such as e.g. myocardial infarction, stroke or vascular mortality or morbidity) in patients with diabetes.
  • Oral antidiabetic drugs conventionally used in therapy (such as e.g. first-, second- or third-line, and/or mono- or (initial or add-on) combination therapy) may include, without being restricted thereto, metformin, sulphonylureas, thiazolidinediones, glinides and α-glucosidase inhibitors.
  • Non-oral (typically injected) antidiabetic drugs conventionally used in therapy (such as e.g. first-, second- or third-line, and/or mono- or (initial or add-on) combination therapy) may include, without being restricted thereto, GLP-1 or GLP-1 analogues, and insulin or insulin analogues.
  • However, the use of these conventional antidiabetic or antihyperglycemic agents can be associated with various adverse effects. For example, metformin can be associated with lactic acidosis or gastrointestinal side effects; sulfonylureas, glinides and insulin or insulin analogues can be associated with hypoglycemia and weight gain; thiazolidinediones can be associated with edema, bone fracture, weight gain and heart failure/cardiac effects; and alpha-glucosidase blockers and GLP-1 or GLP-1 analogues can be associated with gastrointestinal adverse effects (e.g. dyspepsia, flatulence or diarrhea, or nausea or vomiting).
  • In addition to morbidity associated with each of these side effects, they could also have adverse cardiovascular implications. For example, hypoglycaemia and weight gain are postulated as contributors to adverse CV mortality outcomes.
  • Hypoglycemic episodes have also been identified detrimental to cognitive skills and are associated with a greater risk of cognitive impairment or dementia. The risk of hypoglycemia is further increased in the elderly with comorbidities and multiple medication use.
  • Therefore, it remains a need in the art to provide efficacious, safe and tolerable antidiabetic therapies.
  • In particular, a certain amount of people with type 2 diabetes mellitus have chronic kidney disease (CKD). For these individuals, the current standard of care is intensive glycemic control and treatment with angiotensin-converting enzyme (ACE) inhibitors or angiotensin II receptor blockers (ARBs).
  • Despite such treatment, type 2 diabetes patients with chronic kidney disease (particularly having residual albuminuria) still have substantial risk for cardio-renal morbidity and mortality, an unmet need that is driving a search for novel therapies for diabetic kidney disease.
  • Accordingly, it remains a need in the art to provide efficacious, safe and tolerable antidiabetic therapies both for diabetic patients such as who have not previously been treated with an antidiabetic drug (drug-naïe ve patients) and, particularly, for patients with advanced or late stage type 2 diabetes mellitus, including patients with inadequate glycemic control on conventional oral and/or non-oral antidiabetic drugs, such as e.g. metformin, sulphonylureas, thiazolidinediones, glinides and/or α-glucosidase inhibitors, and/or GLP-1 or GLP-1 analogues, and/or insulin or insulin analogues; particularly in patients with (chronic) renal disease, renal dysfunction or renal impairment, including in patients having chronic kidney disease (CKD) such as e.g. up to stage 3and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59, or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b).
  • Particularly, it is a need for therapies for diabetic patients with moderate-to-severe or severe microvascular burden, such as advanced kidney disease (particularly for those having a renal prognosis of high risk or very high risk).
  • Further, within the therapy of type 2 diabetes, it is a need for treating the condition effectively, avoiding the (micro- and/or macrovascular) complications inherent to the condition, and delaying or modifying disease progression, e.g. in order to achieve a long-lasting therapeutic benefit.
  • Furthermore, it remains a need that antidiabetic treatments not only prevent and/or treat the long-term complications often found in advanced stages of diabetes disease, but also are a therapeutic option in those diabetes patients who have developed or are at-risk of developing such complications (e.g. chronic kidney disease/diabetic nephropathy, renal impairment and/or albuminuria).
  • There is a need that antidiabetic treatments prevent and/or treat preferably both microvascular (renal) complications and macrovascular (CV) complications together, preferably within one therapy.
  • There is also a need to provide a therapeutic option in those diabetes patients who have developed or are at-risk of developing both microvascular (renal) complications and macrovascular (CV) complications.
  • Also, there is a need that antidiabetic treatments prevent and/or treat accelerated cognitive decline (which may be associated with micro- and/or macrovascular complications), preferably together with both microvascular (renal) complications and macrovascular (CV) complications, preferably within one therapy.
  • Moreover, it remains a need to provide prevention or reduction of risk for adverse effects associated with conventional antidiabetic therapies.
  • SUMMARY OF THE INVENTION
  • The present invention relates to use of a certain DPP-4 inhibitor (preferably linagliptin) in combination with metformin (particularly in the form of metformin hydrochloride) in CKD (chronic kidney disease) patients, particularly in patients having CKD up to stage 3and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45, or even down to 30, such as in patients with CKD of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59 or of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), optionally in combination with one or more other active substances.
  • The present invention relates to certain medical uses of a combination or a pharmaceutical composition comprising a certain DPP-4 inhibitor (preferably linagliptin) and metformin (particularly in the form of metformin hydrochloride), such as e.g. for treating and/or preventing metabolic diseases, especially type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), including in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45, or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59 or of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b); optionally in combination with one or more other active substances.
  • The present invention further relates to the medical use of a combination or a pharmaceutical composition comprising a certain DPP-4 inhibitor (preferably linagliptin) and metformin (particularly in the form of metformin hydrochloride), for treating and/or preventing chronic kidney disease (CKD) such as e.g. up to stage 3and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45, or even down to 30, such as of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59 or of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b); optionally in combination with one or more other active substances (such as e.g. antidiabetic and/or an angiotensin-converting enzyme (ACE) inhibitor or an angiotensin II receptor blocker (ARB)).
  • The present invention yet further relates to a certain DPP-4 inhibitor (preferably linagliptin) in combination with metformin (particularly in the form of metformin hydrochloride) (and optionally in combination with one or more other active agents) for use in therapy, prophylaxis, treatment or prevention of diabetic (preferably type 2 diabetes) patients (preferably for use in cardio- and/or renoprotective therapy preferably of type 2 diabetes in human patients),
  • including in patients (preferably type 2 diabetes patients) with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45, or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59 or of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b); optionally in combination with one or more other active substances.
  • Further, the present invention relates to a certain DPP-4 inhibitor (preferably linagliptin) for use in combination with metformin (particularly in the form of metformin hydrochloride), such as e.g. such as e.g. for treating type 2 diabetes and treating, decreasing, delaying the onset and/or delaying the progression of diabetic nephropathy, chronic kidney disease, albuminuria (e.g. micro- or macro-albuminuria), renal impairment, retinopathy, neuropathy, learning or memory or cognitive impairment or decline, neurodegenerative or cognitive disorders such as dementia, and/or macrovascular complications such as cardio- or cerebrovascular events such as stroke or myocardial infarction, in patients with type 2 diabetes and micro- or macroalbuminuria, with or without renal function impairment, such as patients with CKD (chronic kidney disease), particularly patients having CKD up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45, or even down to 30, such as patients with CKD of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59 or of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), optionally in combination with one or more other active substances.
  • The present invention relates to a DPP-4 inhibitor (preferably linagliptin) in combination with metformin (particularly in the form of metformin hydrochloride), for use in treating and/or preventing (including slowing the progression or delaying the onset) of metabolic diseases, particularly diabetes (especially type 2 diabetes mellitus) and/or conditions related thereto (e.g. diabetic complications, particularly diabetic chronic kidney disease); including in patients with (chronic) renal disease, renal dysfunction or renal impairment (impairment of renal function), particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59, or even of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), with or without residual albuminuria (micro- or macroalbuminuria), optionally in combination with one or more other active substances.
  • Accordingly, the present invention further relates to a DPP-4 inhibitor (preferably linagliptin, preferably in a daily dose of 5 mg, administered 5 mg once daily or 2.5 mg twice daily) for use in combination with metformin (particularly in the form of metformin hydrochloride) in treating and/or preventing (including slowing the progression or delaying the onset) of metabolic diseases, particularly diabetes (especially type 2 diabetes mellitus) and/or conditions related thereto (e.g. diabetic complications, such as one or more selected from diabetic chronic kidney disease, nephropathy, micro- or macroalbuminuria, renal impairment, retinopathy, neuropathy, learning or memory or cognitive impairment or decline, neurodegenerative or cognitive disorders such as dementia, and/or macrovascular complications such as cardio- or cerebrovascular events such as stroke and/or myocardial infarction); including in patients with (chronic) renal disease, renal dysfunction or renal impairment (impairment of renal function), particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59, or even of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), with or without residual albuminuria (micro- or macroalbuminuria), optionally in combination with one or more other active substances (such as selected from other antidiabetics and/or ACE inhibitors or ARBs),
  • particularly wherein the maximum daily dose of metformin (particularly in the form of metformin hydrochloride) administered to patients of mild-to-moderate stage (CKD stage 3a, such as having eGFR levels 45-59) is 2000 mg, and/or
  • particularly wherein the maximum daily dose of metformin (particularly in the form of metformin hydrochloride) administered to patients of moderate-to-severe stage (CKD stage 3b, such as having eGFR levels 30-44) is 1000 mg.
  • Also, the present invention relates to a pharmaceutical combination or composition comprising a DPP-4 inhibitor (preferably linagliptin), metformin (particularly in the form of metformin hydrochloride) and optionally one or more pharmaceutically acceptable auxiliaries, for use in treating and/or preventing (including slowing the progression or delaying the onset) of metabolic diseases, particularly diabetes (especially type 2 diabetes mellitus) and/or conditions related thereto (e.g. diabetic complications, particularly diabetic chronic kidney disease), including in patients with (chronic) renal disease, renal dysfunction or renal impairment (impairment of renal function), particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59, or of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), with or without residual albuminuria (micro- or macroalbuminuria); optionally in combination with one or more other active substances.
  • Also, the present invention relates to a combination therapy comprising using a DPP-4 inhibitor (preferably linagliptin) and metformin (particularly in the form of metformin hydrochloride) for treating and/or preventing (including slowing the progression or delaying the onset) of metabolic diseases, particularly diabetes (especially type 2 diabetes mellitus) and/or conditions related thereto (e.g. diabetic complications, particularly diabetic chronic kidney disease), including in patients with (chronic) renal disease, renal dysfunction or renal impairment (impairment of renal function), particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59, or of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), with or without residual albuminuria (micro- or macroalbuminuria); optionally in combination with one or more other active substances.
  • The present invention further relates to a certain DPP-4 inhibitor (preferably linagliptin) in combination with metformin (particularly in the form of metformin hydrochloride), and optionally in combination with one or more other active agents, for use in therapy or treatment of diabetes (preferably type 2 diabetes) in (human) patients in need thereof, preferably for use in cardio- and/or renoprotective therapy preferably of type 2 diabetes in human patients, such as e.g. including treating type 2 diabetes and/or preventing diabetic complications
  • such as decreasing, protecting against, delaying the onset, slowing progression and/or reducing the risk of (cardio)vascular and/or renal morbidity and/or mortality, such as e.g.
  • i) treating, preventing or delaying the progression of chronic kidney disease (diabetic nephropathy); and/or
  • ii) treating, decreasing, preventing, protecting against, delaying the progression, delaying the occurrence and/or reducing the risk of albuminuria (e.g. micro- or macro-albuminuria) and/or renal impairment; and/or
  • iii) preventing, protecting against, reducing the risk of and/or delaying the occurrence of a cardio- or cerebrovascular disease, complication or event selected from: cardiovascular (CV) death (including fatal stroke, fatal myocardial infarction and sudden death), non-fatal stroke, non-fatal myocardial infarction (MI) (silent MI may be excluded) and, optionally, hospitalisation for unstable angina pectoris; and/or
  • iv) preventing, protecting against, reducing the risk of, delaying the progression and/or delaying the occurrence of a renal microvascular disease, complication or event selected from: renal death, end-stage renal disease and loss in estimated glomerular filtration rate (e.g. eGFR ≥50% from baseline); and/or
  • v) decreasing, preventing, protecting against, delaying (e.g. occurrence or progression) and/or reducing the risk of (accelerated) cognitive decline or cognitive impairment or dementia;
  • including in patients (preferably type 2 diabetes patients) with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45, or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59 or of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b); optionally in combination with one or more other active substances; wherein such patients may be with or at-risk of further (major) (micro- and/or macro-)vascular diseases, complications or events, e.g. such patients may be at high vascular risk.
  • Other aspects of the present invention become apparent to the skilled person from the foregoing and following remarks (including the examples and claims).
  • DETAILED DESCRIPTION OF THE INVENTION
  • Within the scope of the present invention it has now been found that certain DPP-4 inhibitors as defined herein as well as combinations or pharmaceutical compositions of these DPP-4 inhibitors with metformin (particularly in the form of metformin hydrochloride) as well as their use have particularly useful properties or effects, which make them suitable for the purpose of this invention and/or for fulfilling one or more of the needs mentioned herein.
  • For example, combinations or pharmaceutical compositions of these DPP-4 inhibitors with metformin (particularly in the form of metformin hydrochloride) are useful for improving glycemic control and/or for treating and/or preventing (including slowing the progression or delaying the onset) of metabolic diseases, particularly diabetes (especially type 2 diabetes mellitus) and/or conditions related thereto (e.g. diabetic complications, particularly diabetic chronic kidney disease, or diabetic nephropathy, micro-or macroalbuminuria and/or renal impairment), such as in drug naïve type 2 diabetes patients and/or in patients with advanced or late stage type 2 diabetes, including patients with insufficient glycemic control despite a therapy with an oral and/or a non-oral antidiabetic or antihyperglycemic drug and/or with indication on insulin; including in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59, or even of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), with or without residual albuminuria, especially including in patients with (chronic) renal impairment of mild-to-moderate stage (CKD stage 3a) such as having estimated glomerular filtration rate [eGFR] 45-59 mL/minute/1.73 m2 or creatinine clearance [CrCI] 45-59 mL/min, optionally in combination with one or more other active substances.
  • For example, patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30 are amenable to the combination therapy according to the present invention comprising using linagliptin (in a total daily dose of 5 mg) in combination with metformin (e.g. up to maximum total daily dose of 1000 mg metformin hydrochloride (such as e.g. for CKD 3a patients) or 2000 mg metformin hydrochloride (such as e.g. for CKD 3b patients)), preferably using a tablet containing 2.5 mg linagliptin and 500 mg, 850 mg or 1000 mg metformin hydrochloride (in immediate release form) each administered twice daily, or using a tablet containing 5 mg linagliptin and 1000 mg metformin hydrochloride (in extended release form) administered once daily, or using a tablet containing 2.5 mg linagliptin and 750 mg or 1000 mg metformin hydrochloride (in extended release form) each administered as two tablets once daily.
  • In an embodiment, the maximum daily dose of metformin (particularly in the form of metformin hydrochloride) administered to patients of mild-to-moderate stage (CKD stage 3a, such as having eGFR levels 45-59) may be 2000 mg, which may be given as two divided doses, such as e.g. 1000 mg twice daily; (the starting dose may be at most half of the maximum dose).
  • In an embodiment, the maximum daily dose of metformin (particularly in the form of metformin hydrochloride) administered to patients of moderate-to-severe stage (CKD stage 3b, such as having eGFR levels 30-44) may be 1000 mg, which may be given as two divided doses, such as e.g. 500 mg twice daily; (the starting dose may be at most half of the maximum dose).
  • For patients with severe or very severe stage of renal impairment (CKD stage 4, such as having eGFR levels <30; or CKD stage 5, such as having eGFR levels <15, end-stage renal disease), metformin is contraindicated.
  • The combination therapy according to the present invention using linagliptin (in a total daily dose of 5 mg) in combination with metformin is also useful for patients in need of >1000 mg metformin daily (e.g. 850 mg or 1000 mg metformin hydrochloride BID) for sufficient glycemic control and having chronic kidney disease (CKD), such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 (or, in certain instances, even down to 30); preferably by using a tablet containing 2.5 mg linagliptin and 850 mg or 1000 mg metformin hydrochloride (in immediate release form) each administered twice daily, or using a tablet containing 2.5 mg linagliptin and 750 mg or 1000 mg metformin hydrochloride (in extended release form) each administered as two tablets once daily.
  • For further example, patients in need of >1000 mg metformin daily (e.g. 1000 mg metformin hydrochloride BID) for sufficient glycemic control but with dose limitation for metformin due to renal impairment (e.g. maximum total daily dose of 1000 mg metformin hydrochloride), such as having moderate renal impairment, e.g., in certain instances, patients with (chronic) renal impairment of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59 mL/minute/1.73 m2, or especially of moderate-to-severe stage (CKD stage 3b) such as having eGFR levels 30-44 mL/minute/1.73 m2, benefit from the combination therapy according to the present invention comprising using linagliptin (in a total daily dose of 5 mg) in combination with metformin (e.g. up to maximum total daily dose of 1000 mg metformin hydrochloride), preferably using a tablet containing 2.5 mg linagliptin and 500 mg metformin hydrochloride, administered twice daily.
  • Accordingly, patients with dose limitation for metformin due to renal impairment (e.g. maximum total daily dose of 2000 mg metformin hydrochloride), e.g. with (chronic) renal impairment of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59 mL/minute/1.73 m2, benefit from the combination therapy according to the present invention comprising using linagliptin (in a total daily dose of 5 mg) in combination with metformin (e.g. up to maximum total daily dose of 2000 mg metformin hydrochloride), preferably using a tablet containing 2.5 mg linagliptin and 1000 mg metformin hydrochloride, administered twice daily.
  • Accordingly, patients with dose limitation for metformin due to renal impairment (e.g. maximum total daily dose of 1000 mg metformin hydrochloride), e.g. with (chronic) renal impairment of moderate-to-severe stage (CKD stage 3b) such as having eGFR levels 30-44 mL/minute/1.73 m2, benefit from the combination therapy according to the present invention comprising using linagliptin (in a total daily dose of 5 mg) in combination with metformin (e.g. up to maximum total daily dose of 1000 mg metformin hydrochloride), preferably using a tablet containing 2.5 mg linagliptin and 500 mg metformin hydrochloride, administered twice daily.
  • In an embodiment, patients on linagliptin (in a total daily dose of 5 mg) in combination with metformin (up to maximum total daily dose of 2000 mg metformin hydrochloride), using a tablet containing 2.5 mg linagliptin and 850 mg, administered twice daily, or a tablet containing 2.5 mg linagliptin and 1000 mg metformin hydrochloride, administered twice daily, can maintain these treatments until they reach an eGFR of 45 mL/min/1.73 m2 (this would not be the case for patients using another major DPP-4 inhibitor (gliptin) other than linagliptin, requiring dose adjustment of the DPP-4 inhibitor component leading to change in the treatment scheme, except for linagliptin).
  • In a further embodiment, patients with an eGFR between 45 and 59 mL/min/1.73 m2 (CKD stage 3a) already on the maximum dose of metformin (e.g. maximum total daily dose of 2000 mg metformin hydrochloride) can use linagliptin (in a total daily dose of 5 mg) in combination with metformin (e.g. maximum total daily dose of 2000 mg metformin hydrochloride), preferably using a tablet containing 2.5 mg linagliptin and 1000 mg metformin hydrochloride, administered twice daily, when additional therapy is deemed necessary.
  • In a further embodiment, patients on linagliptin (in a total daily dose of 5 mg) in combination with metformin (e.g. up to maximum total daily dose of 1000 mg metformin hydrochloride), using a tablet containing 2.5 mg linagliptin and 500 mg, administered twice daily, can maintain these treatments until they reach an eGFR of 30 mL/min/1.73 m2 (this would not be the case for patients using another major DPP-4 inhibitor (gliptin) other than linagliptin, requiring dose adjustment of the DPP-4 inhibitor component leading to change in the treatment scheme, except for linagliptin).
  • In a further embodiment, patients with an eGFR between 30 and 44 mL/min/1.73 m2 (CKD stage 3b) already on the maximum dose of metformin (e.g. maximum total daily dose of 1000 mg metformin hydrochloride) can use linagliptin (in a total daily dose of 5 mg) in combination with metformin (e.g. maximum total daily dose of 1000 mg metformin hydrochloride), preferably using a tablet containing 2.5 mg linagliptin and 500 mg metformin hydrochloride, administered twice daily, when additional therapy is deemed necessary.
  • In a yet further embodiment, patients with an eGFR between 45 and 59 mL/min/1.73 m2 (CKD stage 3a) who are not receiving metformin can up-titrate to the maximum dose of metformin (e.g. up to maximum total daily dose of 2000 mg metformin hydrochloride) and can then start to use linagliptin (in a total daily dose of 5 mg) in combination with metformin (e.g. up to maximum total daily dose of 2000 mg metformin hydrochloride), preferably using a tablet containing 2.5 mg linagliptin and 850 mg or 1000 mg metformin hydrochloride, administered twice daily.
  • In a yet further embodiment, patients with an eGFR between 30 and 44 mL/min/1.73 m2 (CKD stage 3b) who are not receiving metformin can up-titrate to the maximum dose of metformin (e.g. up to maximum total daily dose of 1000 mg metformin hydrochloride) and can then start to use linagliptin (in a total daily dose of 5 mg) in combination with metformin (e.g. up to maximum total daily dose of 1000 mg metformin hydrochloride), preferably using a tablet containing 2.5 mg linagliptin and 500 mg metformin hydrochloride, administered twice daily.
  • In a still yet further embodiment, patients with an eGFR between 45 and 59 mL/min/1.73 m2 (CKD stage 3a) who are not receiving metformin can use linagliptin (in a total daily dose of 5 mg) in combination with metformin (e.g. up to maximum total daily dose of 2000 mg metformin hydrochloride), preferably using a tablet containing 2.5 mg linagliptin and 850 mg or 1000 mg metformin hydrochloride, administered twice daily, to start treatment.
  • In a still yet further embodiment, patients with an eGFR between 30 and 44 mL/min/1.73 m2 (CKD stage 3b) who are not receiving metformin can use linagliptin (in a total daily dose of 5 mg) in combination with metformin (e.g. up to maximum total daily dose of 1000 mg metformin hydrochloride), preferably using a tablet containing 2.5 mg linagliptin and 500 mg metformin hydrochloride, administered twice daily, to start treatment.
  • It has been found that 2.5 mg linagliptin/500 mg metformin hydrochloride BID combination therapy is at least as effective as 1000 mg metformin BID monotherapy, thereby offering an alternative for patients intolerant to such high dose of metformin or with dose limit for metformin due to renal impairment.
  • The combination therapy according to this invention using a DPP-4 inhibitor (particularly linagliptin) and metformin (e.g. 2.5 mg linagliptin/500 mg metformin hydrochloride BID) is more effective for patients with (chronic) renal impairment, such as of mild-to-moderate stage (CKD stage 3a) or even of moderate-to-severe stage (CKD stage 3b), than metformin alone.
  • Accordingly, a particular embodiment of the combination therapy according to the present invention for patients with (chronic) renal impairment (CKD) relates to 2.5 mg linagliptin/500 mg metformin hydrochloride BID.
  • A more particular embodiment of the combination therapy according to the present invention relates to 2.5 mg linagliptin/500 mg metformin hydrochloride administered twice daily to patients with (chronic) renal impairment of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b).
  • Further, the combination therapy according to this invention using a DPP-4 inhibitor (particularly linagliptin) and metformin (optionally in combination with one or more further active agents) has beneficial potential on cardio-renal morbidity and/or mortality (cardio-and/or renoprotection) in diabetic kidney disease patients as described herein (especially in type 2 diabetes patients with advanced CKD, such as e.g. having a renal prognosis of high risk or very high risk, and/or over long-term treatment).
  • For example, the combination therapy according to the present invention using a DPP-4 inhibitor (particularly linagliptin) and metformin (optionally in combination with one or more further active agents)
  • i) prevents, protects against, reduces the risk of and/or delays the occurrence of a cardio- or cerebrovascular disease, complication or event selected from: cardiovascular (CV) death (including fatal stroke, fatal myocardial infarction and sudden death), non-fatal stroke, non-fatal myocardial infarction (MI) (silent MI may be excluded) and, optionally, hospitalisation for unstable angina pectoris; and/or
  • ii) prevents, protects against, reduces the risk of, delays the progression and/or delays the occurrence of a renal microvascular disease, complication or event selected from: renal death, end-stage renal disease and loss in estimated glomerular filtration rate (e.g. eGFR ≥50% from baseline).
  • For further example, the combination therapy according to the present invention using a DPP-4 inhibitor (particularly linagliptin) and metformin (optionally in combination with one or more further active agents)
  • i) prevents, protects against, reduces the risk of, delays the progression and/or delays the occurrence of a renal microvascular disease, complication or event selected from: renal death, end-stage renal disease and loss in estimated glomerular filtration rate (e.g. eGFR ≥50% from baseline).
  • For yet further example, the combination therapy according to the present invention using a DPP-4 inhibitor (particularly linagliptin) and metformin (optionally in combination with one or more further active agents)
  • i) decreases, prevents, protects against, delays (e.g. occurrence or progression) and/or reduces the risk of (accelerated) cognitive decline or cognitive impairment or dementia.
  • For yet further example, the combination therapy according to the present invention using a DPP-4 inhibitor (particularly linagliptin) and metformin (optionally in combination with one or more further active agents)
  • i) treats, decreases, prevents, protects against, delays (e.g. occurrence or progression) and/or reduces the risk of diabetic nephropathy.
  • For yet further example, the combination therapy according to the present invention using a DPP-4 inhibitor (particularly linagliptin) and metformin (optionally in combination with one or more further active agents)
  • i) treats, decreases, prevents, protects against, delays (e.g. occurrence or progression) and/or reduces the risk of albuminuria (e.g. micro- or macroalbuminuria).
  • For yet further example, the combination therapy according to the present invention using a DPP-4 inhibitor (particularly linagliptin) and metformin (optionally in combination with one or more further active agents)
  • i) treats, decreases, prevents, protects against, delays (e.g. occurrence or progression) and/or reduces the risk of renal impairment.
  • Accordingly, a combination therapy according to the present invention using a DPP-4 inhibitor (particularly linagliptin) and metformin is particularly useful for treating and/or preventing (including delaying the onset or slowing the progression) of metabolic diseases, particularly diabetes (especially type 2 diabetes mellitus) and/or conditions related thereto (e.g. diabetic complications, particularly diabetic chronic kidney disease, or diabetic nephropathy, micro-or macroalbuminuria and/or renal impairment), in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59, or even of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), with or without albuminuria, especially including in patients with (chronic) renal impairment of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59;
  • optionally in combination with one or more other active substances, such as e.g. any of those mentioned herein,
  • such as e.g. optionally in combination with one or more other antidiabetics such as selected from a sulphonylurea, a thiazolidinedione (e.g. pioglitazone), a glinide, an alpha-glucosidase blocker, GLP-1 or a GLP-1 analogue, and insulin or an insulin analogue, and/or an angiotensin converting enzyme (ACE) inhibitor or an angiotensin receptor blocker (ARB).
  • Further, the combination therapy according to the present invention using a DPP-4 inhibitor (particularly linagliptin) and metformin is particularly useful for treating and/or preventing (including delaying the onset or slowing the progression) of renal microvascular disease, such as selected from (diabetic) chronic kidney disease (CKD), diabetic nephropathy, albuminuria (e.g. micro- or macro-albuminuria), renal impairment, renal death, end-stage renal disease and/or loss in estimated glomerular filtration rate (e.g. eGFR >=50% from baseline), in patients (particularly in type 2 diabetes patients) with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD, particularly advanced CKD), such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59, or even of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), with or without albuminuria, especially including in patients with (chronic) renal impairment of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59; optionally in combination with one or more other active substances, such as e.g. any of those mentioned herein,
  • such as e.g. optionally in combination with one or more other antidiabetics such as selected from a sulphonylurea, a thiazolidinedione (e.g. pioglitazone), a glinide, an alpha-glucosidase blocker, GLP-1 or a GLP-1 analogue, and insulin or an insulin analogue, and/or an angiotensin converting enzyme (ACE) inhibitor or an angiotensin receptor blocker (ARB); particularly over long-term treatment.
  • An embodiment of patients with (chronic) renal impairment (CKD) as described herein relates to type 2 diabetes patients having impaired renal function such as indicated herein with micro- or macroalbuminuria (e.g. urine albumin creatinine ratio (UACR) 30-3000 mg/g creatinine).
  • Another embodiment of patients with (chronic) renal impairment (CKD) as described herein relates to type 2 diabetes patients having impaired renal function such as indicated herein without micro- or macroalbuminuria (e.g. urine albumin creatinine ratio (UACR) 30-3000 mg/g creatinine).
  • A sub-embodiment of patients with (chronic) renal impairment (CKD) as described herein relates to type 2 diabetes patients having impaired renal function of moderate-to-severe stage (CKD 3b) with any albuminuria (e.g. urine albumin creatinine ratio (UACR) >=30 mg/g creatinine).
  • Another sub-embodiment of patients with (chronic) renal impairment (CKD) as described herein relates to type 2 diabetes patients having impaired renal function of up to mild-to-moderate stage (CKD 3a) with macro-album inuria (e.g. urine albumin creatinine ratio (UACR) >200 mg/g or >300 mg/g creatinine).
  • A further embodiment of patients with (chronic) renal impairment (CKD) as described herein relates to type 2 diabetes patients at early stages of prevalent renal microvascular complications, such as e.g. having microalbuminuria (e.g. 30-200 or 30-300 mg/g creatinine) and/or early impaired renal function (eGFR, and/or early CKD stage).
  • Another further embodiment of patients with (chronic) renal impairment (CKD) as described herein relates to type 2 diabetes patients at advanced stages of prevalent renal microvascular complications, such as e.g. having macroalbuminuria (e.g. >200 or >300 mg/g creatinine) and/or advanced impaired renal function (eGFR, and/or advanced CKD stage).
  • A further embodiment of patients with (chronic) renal impairment (CKD) as described herein relates to type 2 diabetes patients having micro- or macroalbuminuria; optionally with or without renal function impairment.
  • A yet further embodiment of patients with (chronic) renal impairment (CKD) as described herein relates to type 2 diabetes patients having microalbuminuria, with renal function impairment.
  • A yet further embodiment of patients with (chronic) renal impairment (CKD) as described herein relates to type 2 diabetes patients having macroalbuminuria, with renal function impairment.
  • A yet further embodiment of patients with (chronic) renal impairment (CKD) as described herein relates to type 2 diabetes patients having a renal prognosis of high risk or very high risk (such as defined by eGFR and albuminuria categories at baseline).
  • A further embodiment of patients with (chronic) renal impairment (CKD) as described herein relates to type 2 diabetes patients having impaired renal function such as indicated herein, with or without micro- or macroalbuminuria, and having a previous macrovascular disease (e.g. myocardial infarction, coronary artery disease, stroke, carotid artery disease or peripheral artery disease).
  • In a further embodiment, the patients as described herein are treated with a DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride) on top of or in add-on combination with one or more other (conventional) antidiabetics and/or an angiotensin converting enzyme (ACE) inhibitor or an angiotensin receptor blocker (ARB).
  • In a further embodiment, the patients as described herein may be with or at-risk of further (major) (micro- and/or macro-)vascular diseases, complications or events, such as e.g. such patients may be at high vascular risk.
  • For example, such patients at high vascular risk may have: both
  • albuminuria (e.g. micro- or macro-albuminuria) and previous macrovascular (e.g. cardio- or cerebrovascular) disease (such as e.g. myocardial infarction, coronary artery disease, (ischemic or haemorrhagic) stroke, carotid artery disease and/or peripheral artery disease),
  • and/or
  • either
  • (mild or moderate) renal impairment (e.g. CKD stage 1, 2 or 3, such as CKD stage 1, 2 (mild) or 3a (mild-moderate), preferably eGFR 45-75 mL/min/1.73 m2) with macro-albuminuria,
  • or
  • (moderate [or severe]) renal impairment (e.g. CKD stage 3 [or 4], such as CKD stage 3b (moderate-severe) [or 4 (severe), preferably eGFR 15-45 mL/min/1.73 m2]), with or without any albuminuria (such as e.g. with or without micro- or macro-albuminuria).
  • In more detail, such a patient at high vascular risk (e.g. at high risk of CV events) may be a patient (preferably diabetic, particularly type 2 diabetes patients) as follows:
  • with
  • albuminuria (such as e.g. urine albumin creatinine ratio (UACR) ≥30 mg/g creatinine or ≥30 mg/l (milligram albumin per liter of urine) or ≥30 μg/min (microgram albumin per minute) or ≥30 mg/24 h (milligram albumin per 24 hours)) and
  • previous macrovascular disease, such as e.g. defined as one or more of a) to f):
  • a) previous myocardial infarction,
  • b) advanced coronary artery disease,
  • c) high-risk single-vessel coronary artery disease,
  • d) previous ischemic or haemorrhagic stroke,
  • e) presence of carotid artery disease,
  • f) presence of peripheral artery disease,
  • and/or
  • with
  • impaired renal function (e.g. with or without CV co-morbidities), such as e.g. defined by:
      • impaired renal function (e.g. as defined by MDRD formula) with an eGFR [15 or] 30-45 mL/min/1.73 m2 with any urine albumin creatinine ratio (UACR), and/or
      • impaired renal function (e.g. as defined by MDRD formula) with an eGFR 45-75 mL/min/1.73 m2 with an urine albumin creatinine ratio (UACR) >200 mg/g creatinine or >200 mg/l (milligram albumin per liter of urine) or >200 μg/min (microgram albumin per minute) or >200 mg/24 h (milligram albumin per 24 hours).
  • The present invention relates to a combination or a pharmaceutical composition comprising a certain DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride) such as for simultaneous, separate or sequential use in the therapies or treatments described herein.
  • The present invention also relates to a fixed or free combination or pharmaceutical composition comprising, consisting essentially of or made of
  • a certain DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride) each as defined herein,
  • and optionally one or more pharmaceutically acceptable auxiliaries (such as e.g. including excipients, stabilizers, carriers or the like), for medical uses as described herein, such as e.g. for improving glycemic control and/or for use in treating and/or preventing (including slowing the progression and/or delaying the onset) of metabolic diseases, especially type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications, such as e.g. diabetic chronic kidney disease, diabetic nephropathy, micro-or macroalbuminuria, renal impairment, diabetic retinopathy and/or diabetic neuropathy, and/or a macrovascular complication), such as e.g.
  • either as first line therapy, i.e. in type 2 diabetes patients who have not previously treated with an antihyperglycemic agent (drug-naïve patients),
  • or as second or third line therapy, i.e. in type 2 diabetes patients with insufficient glycemic control despite therapy with one or two conventional antihyperglycemic agents selected from metformin, sulphonylureas, thiazolidinediones (e.g. pioglitazone), glinides, alpha-glucosidase blockers, GLP-1 or GLP-1 analogues, and insulin or insulin analogues;
  • including in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59, or even of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b);
  • optionally in combination with one or more other active substances, such as e.g. any of those mentioned herein,
  • such as e.g. optionally in combination with one conventional antihyperglycemic agent selected from sulphonylureas, thiazolidinediones (e.g. pioglitazone), glinides, alpha-glucosidase blockers, GLP-1 or GLP-1 analogues, and insulin or insulin analogues, and/or angiotensin converting enzyme (ACE) inhibitors or an angiotensin receptor blockers (ARBs).
  • The present invention also relates to medical uses as described herein of a pharmaceutical composition comprising a fixed dose combination formulation of a DPP-4 inhibitor and metformin (particularly in the form of metformin hydrochloride) and optionally one or more pharmaceutically acceptable auxiliaries.
  • In one embodiment, the present invention also relates to a fixed or free combination or pharmaceutical composition comprising or consisting essentially of a DPP-4 inhibitor (particularly linagliptin), metformin (particularly in the form of metformin hydrochloride) and optionally one or more pharmaceutically acceptable auxiliaries, for use in treating and/or preventing (including slowing the progression and/or delaying the onset) of metabolic diseases, especially type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), such as e.g.
  • either as first line therapy, i.e. in type 2 diabetes patients who have not previously treated with an antihyperglycemic agent (drug-naïve patients),
  • or as second or third line therapy, i.e. in type 2 diabetes patients with insufficient glycemic control despite therapy with one or two conventional antihyperglycemic agents selected from metformin, sulphonylureas, thiazolidinediones, glinides, alpha-glucosidase blockers, GLP-1 or GLP-1 analogues, and insulin or insulin analogues;
  • including in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59, or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b);
  • optionally in combination with one or more other active substances,
  • such as e.g. optionally in combination with one or more other antidiabetics such as selected from sulphonylureas, thiazolidinediones (e.g. pioglitazone), glinides, alpha-glucosidase blockers, GLP-1 or GLP-1 analogues, and insulin or insulin analogues, and/or an angiotensin converting enzyme (ACE) inhibitor or an angiotensin receptor blocker (ARB).
  • In a particular embodiment, the present invention relates to a combination or pharmaceutical composition comprising a DPP-4 inhibitor (particularly linagliptin), metformin (particularly in the form of metformin hydrochloride) and optionally one or more pharmaceutically acceptable auxiliaries, for use in treating and/or preventing (including slowing the progression and/or delaying the onset) of metabolic diseases, especially type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications, such as e.g. diabetic chronic kidney disease, diabetic nephropathy, micro-or macroalbuminuria, renal impairment, diabetic retinopathy and/or diabetic neuropathy, and/or a macrovascular complication such as a cardio- or cerebrovascular event), in type 2 diabetes patients with insufficient glycemic control despite mono-therapy with metformin;
  • wherein the patients have (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59, or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b).
  • In another particular embodiment, the present invention also relates to a combination or pharmaceutical composition comprising a DPP-4 inhibitor (particularly linagliptin), metformin (particularly in the form of metformin hydrochloride) and optionally one or more pharmaceutically acceptable auxiliaries, for use in combination with a sulphonylurea in treating and/or preventing (including slowing the progression and/or delaying the onset) of metabolic diseases, especially type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications, such as e.g. diabetic chronic kidney disease, diabetic nephropathy, micro-or macroalbuminuria, renal impairment, diabetic retinopathy and/or diabetic neuropathy, and/or a macrovascular complication such as a cardio- or cerebrovascular event), in type 2 diabetes patients with insufficient glycemic control despite dual combination therapy with metformin and a sulphonylurea;
  • wherein the patients have (chronic) renal disease, renal dysfunction or renal impairment, particularly patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59 or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b).
  • In another particular embodiment, the present invention also relates to a combination or pharmaceutical composition comprising a DPP-4 inhibitor (particularly linagliptin), metformin (particularly in the form of metformin hydrochloride) and optionally one or more pharmaceutically acceptable auxiliaries, for use in combination with a thiazolidinedione (e.g. pioglitazone) in treating and/or preventing (including slowing the progression and/or delaying the onset) of metabolic diseases, especially type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications, such as e.g. diabetic chronic kidney disease, diabetic nephropathy, micro-or macroalbuminuria, renal impairment, diabetic retinopathy and/or diabetic neuropathy, and/or a macrovascular complication such as a cardio- or cerebrovascular event), in type 2 diabetes patients with insufficient glycemic control despite dual combination therapy with metformin and a thiazolidinedione (e.g. pioglitazone); wherein the patients have (chronic) renal disease, renal dysfunction or renal impairment, particularly patients having chronic kidney disease (CKD) such as e.g.up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59 or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b).
  • In another particular embodiment, the present invention also relates to a combination or pharmaceutical composition comprising a DPP-4 inhibitor (particularly linagliptin), metformin (particularly in the form of metformin hydrochloride) and optionally one or more pharmaceutically acceptable auxiliaries, for use in combination with an insulin (e.g. basal insulin) in treating and/or preventing (including slowing the progression and/or delaying the onset) of metabolic diseases, especially type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications, such as e.g. diabetic chronic kidney disease, diabetic nephropathy, micro-or macroalbuminuria, renal impairment, diabetic retinopathy and/or diabetic neuropathy, and/or a macrovascular complication such as a cardio- or cerebrovascular event), in type 2 diabetes patients with insufficient glycemic control despite dual combination therapy with metformin and an insulin (e.g. basal insulin);
  • wherein the patients have (chronic) renal disease, renal dysfunction or renal impairment, particularly patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59 or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b).
  • In another particular embodiment, the present invention also relates to a combination or pharmaceutical composition comprising a DPP-4 inhibitor (particularly linagliptin), metformin (particularly in the form of metformin hydrochloride) and optionally one or more pharmaceutically acceptable auxiliaries, for use in treating and/or preventing (including slowing the progression and/or delaying the onset) of metabolic diseases, especially type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), in drug-naïve type 2 diabetes patients (e.g. as first line therapy), such as e.g. as early or initial combination therapy;
  • wherein the patients have (chronic) renal disease, renal dysfunction or renal impairment, particularly patients having chronic kidney disease (CKD) such as e.g.up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59 or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b).
  • The present invention further provides the use of a combination or pharmaceutical composition comprising a DPP-4 inhibitor (particularly linagliptin), metformin (particularly in the form of metformin hydrochloride) and optionally one or more pharmaceutically acceptable auxiliaries, for the manufacture of a medicament for treating and/or preventing metabolic diseases, particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), e.g. as first, second or third line therapy as described herein, including in the patients as described herein.
  • The present invention further relates to a pharmaceutical package comprising a pharmaceutical composition as defined herein and optionally instructions for its use, optionally in combination with one or more other active substances, in the treatment and/or prevention of metabolic diseases, particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), such as e.g. in drug-naïve patients or in patients with insufficient glycemic control despite therapy with one or two conventional antihyperglycemic agents selected from metformin, sulphonylureas, thiazolidinediones, glinides, alpha-glucosidase blockers, GLP-1 or GLP-1 analogues, and insulin or insulin analogues; preferably in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g.up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59, or even of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b).
  • The present invention further relates to a medicament for use in the treatment and/or prevention of metabolic diseases, particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), such as e.g. in drug-naïve patients or in patients with insufficient glycemic control despite therapy with one or two conventional antihyperglycemic agents selected from metformin, sulphonylureas, thiazolidinediones, glinides, alpha-glucosidase blockers, GLP-1 or GLP-1 analogues, and insulin or insulin analogues; preferably in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g.up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59, or even of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b); said medicament comprising a pharmaceutical composition comprising a DPP-4 inhibitor (particularly linagliptin), metformin (particularly in the form of metformin hydrochloride) and optionally one or more pharmaceutically acceptable auxiliaries; optionally in combination with one or more other active substances, such as e.g. any of those mentioned herein, such as e.g. for separate, sequential, simultaneous, concurrent or chronologically staggered use of the active ingredients.
  • The present invention further provides a method of treating and/or preventing metabolic diseases, particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), such as e.g. in drug-naïve patients (e.g. as first line therapy) or in patients with insufficient glycemic control despite therapy with one or two conventional antihyperglycemic agents selected from metformin, sulphonylureas, thiazolidinediones, glinides, alpha-glucosidase blockers, GLP-1 or GLP-1 analogues, and insulin or insulin analogues (e.g. as second or third line therapy); preferably in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59, or even of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b); said method comprising administering to a subject in need thereof (particularly a human patient) an effective amount of a pharmaceutically composition comprising a DPP-4 inhibitor (particularly linagliptin), metformin (particularly in the form of metformin hydrochloride) and optionally one or more pharmaceutically acceptable auxiliaries, optionally alone or in combination, such as e.g. separately, sequentially, simultaneously, concurrently or chronologically staggered, with an effective amount of one or more other active substances, such as e.g. any of those mentioned herein.
  • In a particular embodiment, the present invention provides a method of treating and/or preventing metabolic diseases, particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), in drug-naïve patients (e.g. as first line therapy); including in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59, or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b); said method comprising administering to a subject in need thereof (particularly a human patient) an effective amount of a pharmaceutically composition of a DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride) such as described herein.
  • In another particular embodiment, the present invention provides a method of treating and/or preventing metabolic diseases, particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), in patients with insufficient glycemic control despite mono-therapy with metformin (e.g. as second line therapy); including in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59, or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b); said method comprising administering to a subject in need thereof (particularly a human patient) an effective amount of a pharmaceutically composition of a DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride) such as described herein.
  • In another particular embodiment, the present invention provides a method of treating and/or preventing metabolic diseases, particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), in patients with insufficient glycemic control despite dual combination therapy with metformin and a thiazolidinedione (e.g. as third line therapy); including in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59, or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b); said method comprising administering to a subject in need thereof (particularly a human patient) an effective amount of a pharmaceutically composition of a DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride) such as described herein, and a thiazolidinedione.
  • In another particular embodiment, the present invention provides a method of treating and/or preventing metabolic diseases, particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), in patients with insufficient glycemic control despite dual combination therapy with metformin and a sulphonylurea (e.g. as third line therapy); including in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59, or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b); said method comprising administering to a subject in need thereof (particularly a human patient) an effective amount of a pharmaceutically composition of a DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride) such as described herein, and a sulphonylurea.
  • In a further embodiment, the present invention provides a method of treating and/or preventing metabolic diseases, particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), in patients with insufficient glycemic control despite dual combination therapy with metformin and insulin or insulin analog; including in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59, or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b); said method comprising administering to a subject in need thereof (particularly a human patient) an effective amount of a pharmaceutically composition of a DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride) such as described herein, and insulin or insulin analog.
  • In a further embodiment, the present invention provides a method of treating and/or preventing metabolic diseases, particularly type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), in patients treated with insulin or insulin analog; including in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) having eGFR levels 45-59, or even of moderate-to-severe stage having eGFR levels 30-44 (CKD stage 3b); said method comprising administering to a subject in need thereof (particularly a human patient) an effective amount of a pharmaceutically composition of a DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride) such as described herein, thereby replacing said insulin or insulin analog (i.e. switching from insulin therapy to a BI 1356 & metformin combination according to this invention).
  • Examples of metabolic disorders or diseases amenable by the therapy of this invention may include, without being limited to, type 1 diabetes, type 2 diabetes, diabetic complications (e.g. as described herein), impaired glucose tolerance (IGT), impaired fasting blood glucose (IFG), hyperglycemia, postprandial hyperglycemia, postabsorptive hyperglycemia, latent autoimmune diabetes in adults (LADA), overweight, obesity, dyslipidemia, hyperlipidemia, hypercholesterolemia, hypertriglyceridemia, hyperNEFA-emia, fasting or postprandial hyperlipidemia such as postprandial lipemia (e.g. postprandial hypertriglyceridemia), hypertension, atherosclerosis, endothelial dysfunction, osteoporosis, chronic systemic inflammation, non alcoholic fatty liver disease (NAFLD), retinopathy, neuropathy, nephropathy, polycystic ovarian syndrome, and/or metabolic syndrome.
  • The present invention further relates to a certain DPP-4 inhibitor (preferably linagliptin) in combination with metformin (particularly in the form of metformin hydrochloride), and optionally in combination with one or more other active agents, for use in at least one of the following methods:
      • preventing, slowing the progression of, delaying the onset of or treating a metabolic disorder or disease, such as e.g. type 1 diabetes mellitus, type 2 diabetes mellitus, impaired glucose tolerance (IGT), impaired fasting blood glucose (IFG), hyperglycemia, postprandial hyperglycemia, postabsorptive hyperglycemia, latent autoimmune diabetes in adults (LADA), overweight, obesity, dyslipidemia, hyperlipidemia, hypercholesterolemia, hypertriglyceridemia, hyperNEFA-emia, postprandial lipemia (e.g. postprandial hypertriglyceridemia), hypertension, atherosclerosis, endothelial dysfunction, osteoporosis, chronic systemic inflammation, non alcoholic fatty liver disease (NAFLD), retinopathy, neuropathy, nephropathy, polycystic ovarian syndrome, and/or metabolic syndrome;
      • improving and/or maintaining glycemic control and/or for reducing of fasting plasma glucose, of postprandial plasma glucose, of postabsorptive plasma glucose and/or of glycosylated hemoglobin HbA1c, or preventing, reducing the risk of, slowing the progression of, delaying the onset of or treating worsening or deterioration of glycemic control, need for insulin therapy or elevated HbA1c despite treatment;
      • preventing, slowing, delaying the onset of or reversing progression from pre-diabetes, impaired glucose tolerance (IGT), impaired fasting blood glucose (IFG), insulin resistance and/or from metabolic syndrome to type 2 diabetes mellitus;
      • preventing, reducing the risk of, slowing the progression of, delaying the onset of or treating of complications of diabetes mellitus such as micro- and macrovascular diseases, such as nephropathy, micro- or macroalbuminuria, proteinuria, retinopathy, cataracts, neuropathy, learning or memory or cognitive impairment or decline, neurodegenerative or cognitive disorders (e.g. dementia), cardio- or cerebrovascular diseases, tissue ischaemia, diabetic foot or ulcus, atherosclerosis, hypertension, endothelial dysfunction, myocardial infarction, acute coronary syndrome, unstable angina pectoris, stable angina pectoris, peripheral arterial occlusive disease, cardiomyopathy, heart failure, heart rhythm disorders, vascular restenosis, and/or stroke;
      • reducing body weight and/or body fat and/or liver fat and/or intra-myocellular fat or preventing an increase in body weight and/or body fat and/or liver fat and/or intra-myocellular fat or facilitating a reduction in body weight and/or body fat and/or liver fat and/or intra-myocellular fat;
      • preventing, slowing, delaying the onset of or treating the degeneration of pancreatic beta cells and/or the decline of the functionality of pancreatic beta cells and/or for improving, preserving and/or restoring the functionality of pancreatic beta cells and/or stimulating and/or restoring or protecting the functionality of pancreatic insulin secretion;
      • preventing, slowing, delaying the onset of or treating non alcoholic fatty liver disease (NAFLD) including hepatic steatosis, non-alcoholic steatohepatitis (NASH) and/or liver fibrosis (such as e.g. preventing, slowing the progression, delaying the onset of, attenuating, treating or reversing hepatic steatosis, (hepatic) inflammation and/or an abnormal accumulation of liver fat);
      • preventing, slowing the progression of, delaying the onset of or treating type 2 diabetes with failure to conventional antidiabetic mono- or combination therapy;
      • achieving a reduction in the dose of conventional antidiabetic medication (e.g. of a sulphonylurea or an insulin) required for adequate therapeutic effect;
      • reducing the risk for adverse effects associated with conventional antidiabetic medication (e.g. hypoglycemia or weight gain, such as associated with e.g. insulin or sulphonylurea medication); and/or
      • maintaining and/or improving the insulin sensitivity and/or for treating or preventing hyperinsulinemia and/or insulin resistance;
  • in a patient in need thereof (such as e.g. a patient as described herein),
  • particularly
  • in patients with (chronic) renal disease, renal dysfunction or renal impairment, particularly in patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45, or even down to 30, such as in patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59 or of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b.
  • Such therapy according to this invention (e.g. as described hereinabove or hereinbelow in further detail) may include treatment with such certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) over a lengthy period, such as described in more detail (duration of treatment) herein.
  • In certain embodiments, the therapy or prophylaxis according to the present invention (e.g. such as described hereinabove and hereinbelow) may include duration of treatment with a certain DPP-4 inhibitor, particularly linagliptin (preferably 5 mg per day, administered orally, in combination with metformin (and optionally in combination with one or more other active substances, e.g. such as those described herein) over a lengthy period (such as e.g. at least 1-6 years, >/=2 years, or 3-7 years such as 3-4 years, 3-5 years, 3-6 years, 4-5 years, 4-6 years, 5-6 years or 5-7 years, preferably at least 48 months, more preferably at least 3 years); such as e.g. to provide a long term effect or improvement on (cardio)vascular and/or renal (microvascular) safety, morbidity and/or mortality (e.g. including effect on cognitive impairment) according to the present invention; such as e.g. in patients (e.g. diabetic patients, especially type 2 diabetes patients) as described herein.
  • For example, the therapy or prophylaxis according to the present invention (e.g. such as described hereinabove and hereinbelow) may include duration of treatment with a certain DPP-4 inhibitor, particularly linagliptin (preferably 5 mg per day, administered orally), in combination with metformin (and optionally in combination with one or more other active substances, e.g. such as those described herein) over a lengthy period, preferably at least 48 months, more preferably at least 3 years (such as e.g. at least 3-4 years, or at least 5-6 years).
  • In the monitoring of the treatment of diabetes mellitus the HbA1c value, the product of a non-enzymatic glycation of the haemoglobin B chain, is of exceptional importance. As its formation depends essentially on the blood sugar level and the life time of the erythrocytes the HbA1c in the sense of a “blood sugar memory” reflects the average blood sugar level of the preceding 4-12 weeks. Diabetic patients whose HbA1c level has been well controlled over a long time by more intensive diabetes treatment (i.e. <6.5% of the total haemoglobin in the sample) are significantly better protected from diabetic microangiopathy. The available treatments for diabetes can give the diabetic an average improvement in their HbA1c level of the order of 1.0-1.5%. This reduction in the HbA1C level is not sufficient in all diabetics to bring them into the desired target range of <7.0%, preferably <6.5% and more preferably <6% HbA1c.
  • Within glycemic control, in addition to improvement of the HbA1c level, other recommended therapeutic goals for type 2 diabetes mellitus patients are improvement of fasting plasma glucose (FPG) and of postprandial plasma glucose (PPG) levels to normal or as near normal as possible. Recommended desired target ranges of preprandial (fasting) plasma glucose are 90-130 mg/dL (or 70-130 mg/dL) or <110 mg/dL, and of two-hour postprandial plasma glucose are <180 mg/dL or <140 mg/dL.
  • Within the meaning of this invention, inadequate or insufficient glycemic control means in particular a condition wherein patients show HbA1c values above 6.5%, in particular above 7.0%, even more preferably above 7.5%, especially above 8%. An embodiment of patients with inadequate or insufficient glycemic control include, without being limited to, patients having a HbA1c value from 6.5 to 10% (or, in another embodiment, from 7.5 to 10%; or, in another embodiment, from 7.5 to 11%, or, in another embodiment, from 6.5 to 8.5% or, in another embodiment, from 6.5 to 7.5%). A special sub-embodiment of inadequately controlled patients refers to patients with poor glycemic control including, without being limited, patients having a HbA1c value ≥9%.
  • In an embodiment, diabetes patients within the meaning of this invention may include patients who have not previously been treated with an antidiabetic drug (drug-naïve patients). Thus, in an embodiment, the therapies described herein may be used in naïve patients. In certain embodiments of the therapies of this invention, the DPP-4 inhibitor (preferably linagliptin) may be used alone or in combination with one or more other antidiabetics in such patients. In another embodiment, diabetes patients within the meaning of this invention may include patients pre-treated with conventional antidiabetic background medication, such as e.g. patients with advanced or late stage type 2 diabetes mellitus (including patients with failure to conventional antidiabetic therapy), such as e.g. patients with inadequate glycemic control on one, two or more conventional oral and/or non-oral antidiabetic drugs as defined herein, such as e.g. patients with insufficient glycemic control despite (mono-)therapy with metformin, a thiazolidinedione (particularly pioglitazone), a sulphonylurea, a glinide, GLP-1 or GLP-1 analogue, insulin or insulin analogue, or an α-glucosidase inhibitor, or despite dual combination therapy with metformin/sulphonylurea, metformin/thiazolidinedione (particularly pioglitazone), sulphonylurea/α-glucosidase inhibitor, pioglitazone/sulphonylurea, metformin/insulin, pioglitazone/insulin or sulphonylurea/insulin. Thus, in an embodiment, the therapies described herein may be used in patients experienced with therapy, e.g. with conventional oral and/or non-oral antidiabetic mono- or dual or triple combination medication as mentioned herein. In certain embodiments of the therapies of this invention, in such patients the DPP-4 inhibitor (preferably linagliptin) may be used on top of or added on the existing or ongoing conventional oral and/or non-oral antidiabetic mono- or dual or triple combination medication with which such patients are pre-treated or experienced.
  • For example, a diabetes patient (particularly type 2 diabetes patient, with insufficient glycemic control) of this invention may be treatment-naïve or pre-treated with one or more (e.g. one or two) conventional antidiabetic agents selected from metformin, thiazolidinediones (particularly pioglitazone), sulphonylureas, glinides, α-glucosidase inhibitors (e.g. acarbose, voglibose), and insulin or insulin analogues, such as e.g. pre-treated or experienced with:
  • metformin, α-glucosidase inhibitor, sulphonylurea or glinide monotherapy, or metformin plus α-glucosidase inhibitor, metformin plus sulphonylurea, metformin plus glinide, α-glucosidase inhibitor plus sulphonylurea, or α-glucosidase inhibitor plus glinide dual combination therapy.
  • In certain embodiments relating to such treatment-naïve patients, the DPP-4 inhibitor (preferably linagliptin) may be used as monotherapy, or as initial combination therapy such as e.g. with metformin, a thiazolidinedione (particularly pioglitazone), a sulphonylurea, a glinide, an α-glucosidase inhibitor (e.g. acarbose, voglibose), GLP-1 or GLP-1 analogue, or insulin or insulin analogue; preferably as monotherapy.
  • In certain embodiments relating to such patients pre-treated or experienced with one or two conventional antidiabetic agents, the DPP-4 inhibitor (preferably linagliptin) may be used as as add-on combination therapy, i.e. added to an existing or background therapy with the one or two conventional antidiabetics in patients with insufficient glycemic control despite therapy with the one or more conventional antidiabetic agents, such as e.g. as add-on therapy to one or more (e.g. one or two) conventional antidiabetics selected from metformin,
  • thiazolidinediones (particularly pioglitazone), sulphonylureas, glinides, α-glucosidase inhibitors (e.g. acarbose, voglibose), GLP-1 or GLP-1 analogues, and insulin or insulin analogues, such as e.g.:
  • as add-on therapy to metformin, to a α-glucosidase inhibitor, to a sulphonylurea or to a glinide;
  • or as add-on therapy to metformin plus α-glucosidase inhibitor, to metformin plus sulphonylurea, to metformin plus glinide, to α-glucosidase inhibitor plus sulphonylurea, or to α-glucosidase inhibitor plus glinide;
  • or as add-on therapy to an insulin, with or without metformin, a thiazolidinedione (particularly pioglitazone), a sulphonylurea, a glinide or an α-glucosidase inhibitor (e.g. acarbose, voglibose).
  • An embodiment of the patients which may be amenable to the therapies of this invention may include, without being limited, those diabetes patients for whom normal metformin therapy is less appropriate, such as e.g. those diabetes patients who need reduced dose metformin therapy due to reduced tolerability, intolerability or contraindication against metformin or due to impaired/reduced renal function (e.g. elderly patients, such as e.g. ≥60-65 years).
  • In a further embodiment, the patient described herein is a subject having diabetes (e.g. type 1 or type 2 diabetes or LADA, particularly type 2 diabetes).
  • In particular, the subject within this invention may be a human, e.g. human child, a human adolescent or, particularly, a human adult.
  • In further particular, the subject within this invention is a human type 2 diabetes patient.
  • In certain embodiments, the subject within this invention is a (human) type 2 diabetes patient in early diabetes stage or, particularly, in advanced diabetes stage. In an embodiment, the patient has long-standing type 2 diabetes (e.g. >10 years) and/or is treated with insulin.
  • In further certain embodiments, the subject within this invention is a (human) type 2 diabetes patient in early CKD stage or, particularly, in advanced CKD stage.
  • The enzyme DPP-4 (dipeptidyl peptidase IV) also known as CD26 is a serine protease known to lead to the cleavage of a dipeptide from the N-terminal end of a number of proteins having at their N-terminal end a prolin or alanin residue. Due to this property DPP-4 inhibitors interfere with the plasma level of bioactive peptides including the peptide GLP-1 and are considered to be promising drugs for the treatment of diabetes mellitus.
  • A particularly preferred DPP-4 inhibitor to be emphasized within the present invention is 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine, particularly the free base thereof (which is also known as linagliptin or BI 1356).
  • The DPP-4 inhibitor of this invention may be selected from the group consisting of linagliptin, sitagliptin, vildagliptin, alogliptin, saxagliptin, teneligliptin, anagliptin, gemigliptin and dutogliptin, or a pharmaceutically acceptable salt of one of the herein mentioned DPP-4 inhibitors, or a prodrug thereof.
  • DPP-4 is analogous to CD26 a T-cell antigene which plays a role in T-cell activation and immuno-modulation. Further, some substrates of DPP-4 (beyond incretins) may have potential cardio-renal effects.
  • Furthermore, linagliptin, a selective DPP-4 inhibitor may qualify for the instant purposes with certain anti-oxidative and/or anti-inflammatory features.
  • Linagliptin may further have a direct impact on the integrity of the endothelium and podocytes of the glomerula and the proximal tubular cells of the kidney as well as on endothelial function and linagliptin has a relatively high tissue distribution, including in the kidney.
  • Further, samples from human kidneys indicate that proteinuric human diseases (such as e.g. diabetic nephropathy or nephrotic syndrome) seem to be characterized by an upregulation of glomerular DPP-4.
  • Moreover, linigliptin may further qualify for the instant purposes by antidiabetic and anti-albuminuric effects/usability preferably in type 2 diabetes patients, with micro- or macroalbuminuria (e.g. 30-3000 mg/g creatinine), preferably on top of current standard treatment for diabetic nephropathy (e.g. ACE inhibitor or ARB).
  • It is further noteworthy that most major DPP-4 inhibitors (e.g. sitagliptin, saxagliptin, alogliptin and vildagliptin) require dose adjustment/reduction in the renally impaired (CKD) population. The DPP-4 inhibitor linagliptin, however, is unique in being secreted via the bile and does not require adjustment of dose with declining renal function.
  • Additionally, the DPP-4 inhibitor linagliptin can exert anti-fibrotic effects, such as on kidney fibrosis.
  • A special embodiment of the DPP-4 inhibitors of this invention refers to those orally administered DPP-4 inhibitors which are therapeutically efficacious at low dose levels, e.g. at dose levels <100 mg or <70 mg per patient per day, preferably <50 mg, more preferably <30 mg or <20 mg, even more preferably from 1 mg to 10 mg (if required, divided into 1 to 4 single doses, particularly 1 or 2 single doses, which may be of the same size), particularly from 1 mg to 5 mg (more particularly 5 mg), per patient per day, preferentially, administered orally once-daily, more preferentially, at any time of day, administered with or without food. Thus, for example, the therapeutic daily oral dose 5 mg BI 1356 can be given in a once daily dosing regimen (i.e. 5 mg BI 1356 once daily) or in a twice daily dosing regimen (i.e. 2.5 mg BI 1356 twice daily), at any time of day, with or without food.
  • The present invention further relates to a pharmaceutical composition or combination comprising or consisting essentially of a certain DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride), optionally in combination or alternation with one or more other therapeutic agents, each as described herein, such as e.g. for simultaneous, sequential or separate medical use in therapy or prophylaxis as described herein.
  • Within this invention it is to be understood that the combinations or combined uses according to this invention may envisage the simultaneous, sequential or separate administration of the active components.
  • In this context, “combination” or “combined” within the meaning of this invention may include, without being limited, fixed and non-fixed (e.g. free) forms (including kits, or other administration, application or dosage forms) and uses, such as e.g. the simultaneous, sequential or separate use of the components.
  • The combined administration or application of this invention may take place by administering the therapeutic components together, such as e.g. by administering them simultaneously in one single or in two separate formulations. Alternatively, the administration may take place by administering the therapeutic components sequentially, such as e.g. successively in two separate formulations.
  • For the combination therapy of this invention the therapeutic components may be administered separately (which implies that they are formulated separately) or formulated altogether (which implies that they are formulated in the same preparation). Hence, the administration of one element of the combination of the present invention may be prior to, concurrent to, or subsequent to the administration of the other element of the combination.
  • Unless otherwise noted, combination therapy may refer to first line, second line or third line therapy, or initial or add-on combination therapy or replacement therapy.
  • Unless otherwise noted, monotherapy may refer to first line therapy (e.g. therapy of patients with insufficient glycemic control by diet and exercise alone, such as e.g. drug-naive patients, typically patients early after diagnosis and/or who have not been previously treated with an antidiabetic agent, and/or patients ineligible for metformin therapy such as e.g. patients for whom metformin therapy is contraindicated, such as e.g. due to renal impairment, or inappropriate, such as e.g. due to intolerance).
  • Unless otherwise noted, add-on combination therapy may refer to second line or third line therapy (e.g. therapy of patients with insufficient glycemic control despite (diet and exercise plus) therapy with one or two conventional antidiabetic agents, typically patients who are pre-treated with one or two antidiabetic agents, such as e.g. patients with such existing antidiabetic background medication).
  • Unless otherwise noted, initial combination therapy may refer to first line therapy (e.g. therapy of patients with insufficient glycemic control by diet and exercise alone, such as e.g. drug-naive patients, typically patients early after diagnosis and/or who have not been previously treated with an antidiabetic agent).
  • A DPP-4 inhibitor according to the invention is preferably administered orally.
  • In one embodiment, pharmaceutical compositions or fixed dose combinations of a DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride) such as described herein include, without being limited to, such compositions which comprise immediate release metformin and the DPP-4 inhibitor (preferably as an immediate release component). In connection with such compositions, further reference is made for example to WO 2009/121945, the disclosure of which is incorporated herein. Particular reference is made to those tablet forms which are described in more detail in the example section of WO 2009/121945; the mono-layer tablet hereby being preferred.
  • In another embodiment, pharmaceutical compositions or fixed dose combinations of a DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride) such as described herein include, without being limited to, such compositions which comprise controlled or sustained (e.g. slow or extended) release metformin and the DPP-4 inhibitor (preferably as an immediate release component). Examples of such compositions include, without being limited, drug (DPP-4 inhibitor)-coated tablets (which may be optionally over-coated with a non-functional film-coat), e.g. compositions comprising i) an extended release core comprising metformin and one or more suitable excipients and ii) a (preferably immediate release) film-coating comprising DPP-4 inhibitor (e.g. such as film-coat layer). In connection with such compositions, further reference is made for example to WO 2012/120040, WO 2013/131967 and PCT/EP2015074030, the disclosures of which are incorporated herein. Particular reference is made to the tablet forms as described in more detail in the example section of PCT/EP2015074030. Examples of slow release may include, without being limited, a metformin composition (e.g. as tablet core) where metformin is released at a rate where the peak plasma levels of metformin are typically achieved about 8-22 h after administration.
  • In more detailed example, a pharmaceutical composition as mentioned herein comprises a certain DPP-4 inhibitor (particularly linagliptin) and metformin (particularly in the form of metformin hydrochloride), and optionally one or more pharmaceutically acceptable auxiliaries.
  • Pharmaceutically acceptable auxiliaries for the pharmaceutical compositions as described herein may comprise a stabilizer, such as e.g. arginine, particularly L-arginine.
  • Particularly, a pharmaceutical composition as described herein comprises linagliptin and metformin (particularly in the form of metformin hydrochloride), L-arginine (such as e.g. as inactive ingredient or as stabilizer), and optionally one or more further pharmaceutically acceptable auxiliaries or excipients.
  • Pharmaceutically acceptable auxiliaries or excipients mentioned herein may comprise optionally in addition to L-arginine other auxiliaries such as e.g. one or more fillers, one or more diluents, one or more binders, one or more lubricants, one or more release agents, one or more disintegrants, one or more breakdown agents, one or more flow agents, one or more coating agents, one or more plasticizers, one or more pigments, etc.
  • In an embodiment, a pharmaceutical composition as described herein comprises linagliptin (e.g. in an amount of 2.5 mg, such as for twice daily administration, or in an amount of 5 mg, such as for once daily administration) and metformin (particularly in the form of metformin hydrochloride; e.g. in an amount of 500, 750, 850 or 1000 mg; e.g. in immediate release formulation or in extended release formulation), L-arginine (particularly as stabilizer) and optionally one or more other auxiliaries.
  • In an embodiment, a pharmaceutical composition as described herein comprises linagliptin (e.g. in an amount of 2.5 mg, particularly in immediate release formulation such as for twice daily administration), metformin (particularly metformin hydrochloride, e.g. in an amount of 500, 850 or 1000 mg, particularly in immediate release formulation), L-arginine (particularly as stabilizer), a filler (e.g. maize starch), a binder (e.g. copovidone), and a lubricant (e.g. magnesium stearate) and optionally a flow agent (e.g. anhydrous colloidal silicon dioxide).
  • In another embodiment of the present invention the tablets mentioned herein include for example single-layer, double-layer or triple-layer tablets, coated core tablets, film-coated tablets, etc.
  • Typical dosage strengths of the dual fixed dose combination (tablet) of linagliptin/metformin IR (immediate release) are 2.5/500 mg, 2.5/850 mg and 2.5/1000 mg (linagliptin/metformin hydrochloride), which may be administered twice a day.
  • In a particular embodiment, for use in renally impaired patients according to the present invention, especially for use in patients with (chronic) renal impairment of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59 or of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), a particular dosage strength of linagliptin/metformin IR (immediate release) is 2.5/500 mg (linagliptin/metformin hydrochloride), administered twice daily.
  • Typical dosage strengths of the dual fixed dose combination (tablet) of linagliptin/metformin XR (extended release) are 5/1000 mg (linagliptin/metformin hydrochloride), which may be administered as one tablet once a day (preferably to be taken in the evening preferably with meal), or 2.5/750 and 2.5/1000 (linagliptin/metformin hydrochloride), which may be administered as two tablets once a day (preferably to be taken in the evening preferably with meal).
  • In a further embodiment, for use in renally impaired patients according to the present invention, especially for use in patients with (chronic) renal impairment of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59 or of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), a particular dosage strength of linagliptin/metformin XR (extended release) is 5/1000 mg (linagliptin/metformin hydrochloride), administered once daily.
  • In a particular embodiment, for use in renally impaired patients according to the present invention, especially for use in patients with (chronic) renal impairment of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59 or of moderate-to-severe stage such as having eGFR levels 30-44 (CKD stage 3b), the maximum daily dose may be 1000 mg metformin hydrochloride, preferably given as two divided doses, such as e.g. 500 mg BID.
  • Metformin is usually given in doses varying from about 500 mg to 2000 mg up to 2500 mg or 3000 mg per day using various dosing regimens from about 100 mg to 500 mg or 200 mg to 850 mg (1-3 times a day), or about 300 mg to 1000 mg once or twice a day, or delayed-release metformin in doses of about 100 mg to 1000 mg or preferably 500 mg to 1000 mg once or twice a day or about 500 mg to 2000 mg once a day. Particular dosage strengths may be 250, 500, 625, 750, 850 and 1000 mg of metformin hydrochloride.
  • As different metabolic functional disorders often occur simultaneously, it is quite often indicated to combine a number of different active principles with one another. Thus, depending on the functional disorders diagnosed, improved treatment outcomes may be obtained if a DPP-4 inhibitor or pharmaceutical combination or composition according to this invention is combined with active substances customary for the respective disorders, such as e.g. one or more active substances selected from among the other antidiabetic substances, especially active substances that lower the blood sugar level or the lipid level in the blood, raise the HDL level in the blood, lower blood pressure or are indicated in the treatment of atherosclerosis or obesity.
  • The DPP-4 inhibitors or pharmaceutical combinations or compositions mentioned herein—besides their use on their own—may also be used in conjunction with other active substances, by means of which improved treatment results can be obtained. Such a combined treatment may be given as a free combination of the substances or in the form of a fixed combination, for example in a tablet or capsule. Pharmaceutical formulations of the combination partner needed for this may either be obtained commercially as pharmaceutical compositions or may be formulated by the skilled man using conventional methods. The active substances which may be obtained commercially as pharmaceutical compositions are described in numerous places in the prior art, for example in the list of drugs that appears annually, the “Rote Liste ®” of the federal association of the pharmaceutical industry, or in the annually updated compilation of manufacturers' information on prescription drugs known as the “Physicians' Desk Reference”.
  • Examples of antidiabetic combination partners (such as beyond metformin) are sulphonylureas such as glibenclamide, tolbutamide, glimepiride, glipizide, gliquidon, glibornuride and gliclazide; nateglinide; repaglinide; mitiglinide; thiazolidinediones such as rosiglitazone and pioglitazone; PPAR gamma modulators such as metaglidases; PPAR-gamma agonists such as e.g. rivoglitazone, mitoglitazone, INT-131 and balaglitazone; PPAR-gamma antagonists; PPAR-gamma/alpha modulators such as tesaglitazar, muraglitazar, aleglitazar, indeglitazar and KRP297; PPAR-gamma/alpha/delta modulators such as e.g. lobeglitazone; AMPK-activators such as AICAR; acetyl-CoA carboxylase (ACC1 and ACC2) inhibitors; diacylglycerol-acetyltransferase (DGAT) inhibitors; pancreatic beta cell GCRP agonists such as GPR119 agonists (SMT3-receptor-agonists); 11β-HSD-inhibitors; FGF19 agonists or analogues; alpha-glucosidase blockers such as acarbose, voglibose and miglitol; alpha2-antagonists; insulin and insulin analogues such as human insulin, insulin lispro, insulin glusilin, r-DNA-insulinaspart, NPH insulin, insulin detemir, insulin degludec, insulin tregopil, insulin zinc suspension and insulin glargin; Gastric inhibitory Peptide (GIP); amylin and amylin analogues (e.g. pramlintide or davalintide); GLP-1 and GLP-1 analogues such as Exendin-4, e.g. exenatide, exenatide LAR, liraglutide, taspoglutide, lixisenatide (AVE-0010), LY-2428757 (a PEGylated version of GLP-1), dulaglutide (LY-2189265), semaglutide or albiglutide; SGLT2-inhibitors such as e.g. dapagliflozin, sergliflozin (KGT-1251), atigliflozin, canagliflozin, ipragliflozin, luseogliflozin or tofogliflozin; inhibitors of protein tyrosine-phosphatase (e.g. trodusquemine); inhibitors of glucose-6-phosphatase; fructose-1,6-bisphosphatase modulators; glycogen phosphorylase modulators; glucagon receptor antagonists; phosphoenolpyruvatecarboxykinase (PEPCK) inhibitors; pyruvate dehydrogenasekinase (PDK) inhibitors; inhibitors of tyrosine-kinases (50 mg to 600 mg) such as PDGF-receptor-kinase (cf. EP-A-564409, WO 98/35958, U.S. Pat. No. 5,093,330, WO 2004/005281, and WO 2006/041976) or of serine/threonine kinases; glucokinase/regulatory protein modulators incl. glucokinase activators; glycogen synthase kinase inhibitors; inhibitors of the SH2-domain-containing inositol 5-phosphatase type 2 (SHIP2); IKK inhibitors such as high-dose salicylate; JNK1 inhibitors; protein kinase C-theta inhibitors; beta 3 agonists such as ritobegron, YM 178, solabegron, talibegron, N-5984, GRC-1087, rafabegron, FMP825; aldosereductase inhibitors such as AS 3201, zenarestat, fidarestat, epalrestat, ranirestat, NZ-314, CP-744809, and CT-112; SGLT-1 or SGLT-2 inhibitors; KV 1.3 channel inhibitors; GPR40 modulators such as e.g. [(3S)-6-({2′,6′-dimethyl-4′-[3-(methylsulfonyl)propoxy]biphenyl-3-yl}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetic acid; SCD-1 inhibitors; CCR-2 antagonists; dopamine receptor agonists (bromocriptine mesylate [Cycloset]); 4-(3-(2,6-dimethylbenzyloxy)phenyl)-4-oxobutanoic acid; sirtuin stimulants; and other DPP IV inhibitors.
  • A dosage of pioglitazone is usually of about 1-10 mg, 15 mg, 30 mg, or 45 mg once a day.
  • Rosiglitazone is usually given in doses from 4 to 8 mg once (or divided twice) a day (typical dosage strengths are 2, 4 and 8 mg).
  • Glibenclamide (glyburide) is usually given in doses from 2.5-5 to 20 mg once (or divided twice) a day (typical dosage strengths are 1.25, 2.5 and 5 mg), or micronized glibenclamide in doses from 0.75-3 to 12 mg once (or divided twice) a day (typical dosage strengths are 1.5, 3, 4.5 and 6 mg).
  • Glipizide is usually given in doses from 2.5 to 10-20 mg once (up to 40 mg divided twice) a day (typical dosage strengths are 5 and 10 mg), or extended-release glipizide in doses from 5 to 10 mg (up to 20 mg) once a day (typical dosage strengths are 2.5, 5 and 10 mg).
  • Glimepiride is usually given in doses from 1-2 to 4 mg (up to 8 mg) once a day (typical dosage strengths are 1, 2 and 4 mg).
  • A dual combination of glibenclamide/metformin is usually given in doses from 1.25/250 once daily to 10/1000 mg twice daily (typical dosage strengths are 1.25/250, 2.5/500 and 5/500 mg).
  • A dual combination of glipizide/metformin is usually given in doses from 2.5/250 to 10/1000 mg twice daily (typical dosage strengths are 2.5/250, 2.5/500 and 5/500 mg).
  • A dual combination of glimepiride/metformin is usually given in doses from 1/250 to 4/1000 mg twice daily.
  • A dual combination of rosiglitazone/glimepiride is usually given in doses from 4/1 once or twice daily to 4/2 mg twice daily (typical dosage strengths are 4/1, 4/2, 4/4, 8/2 and 8/4 mg).
  • A dual combination of pioglitazone/glimepiride is usually given in doses from 30/2 to 30/4 mg once daily (typical dosage strengths are 30/4 and 45/4 mg).
  • A dual combination of rosiglitazone/metformin is usually given in doses from 1/500 to 4/1000 mg twice daily (typical dosage strengths are 1/500, 2/500, 4/500, 2/1000 and 4/1000 mg).
  • A dual combination of pioglitazone/metformin is usually given in doses from 15/500 once or twice daily to 15/850 mg thrice daily (typical dosage strengths are 15/500 and 15/850 mg).
  • The non-sulphonylurea insulin secretagogue nateglinide is usually given in doses from 60 to 120 mg with meals (up to 360 mg/day, typical dosage strengths are 60 and 120 mg); repaglinide is usually given in doses from 0.5 to 4 mg with meals (up to 16 mg/day, typical dosage strengths are 0.5, 1 and 2 mg). A dual combination of repaglinide/metformin is available in dosage strengths of 1/500 and 2/850 mg.
  • Acarbose is usually given in doses from 25 to 100 mg with meals (up to 300 mg/day, typical dosage strengths are 25, 50 and 100 mg). Miglitol is usually given in doses from 25 to 100 mg with meals (up to 300 mg/day, typical dosage strengths are 25, 50 and 100 mg).
  • Conventional antidiabetics and antihyperglycemics typically used in mono- or dual or triple (add-on or initial) combination therapy may include, without being limited to, metformin, sulphonylureas, thiazolidinediones, glinides, alpha-glucosidase blockers, GLP-1 and GLP-1 analogues, as well as insulin and insulin analogues, such as e.g. those agents indicated herein by way of example, including combinations thereof.
  • Examples of combination partners that lower the lipid level in the blood are HMG-CoA-reductase inhibitors such as simvastatin, atorvastatin, lovastatin, fluvastatin, pravastatin, pitavastatin and rosuvastatin; fibrates such as bezafibrate, fenofibrate, clofibrate, gemfibrozil, etofibrate and etofyllinclofibrate; nicotinic acid and the derivatives thereof such as acipimox; PPAR-alpha agonists; PPAR-delta agonists such as e.g. {4-[(R)-2-ethoxy-3-(4-trifluoromethyl-phenoxy)-propylsulfanyl]-2-methyl-phenoxy}-acetic acid; PPAR-alpha/delta agonists; inhibitors of acyl-coenzyme A:cholesterolacyltransferase (ACAT; EC 2.3.1.26) such as avasimibe; cholesterol resorption inhibitors such as ezetimib; substances that bind to bile acid, such as cholestyramine, colestipol and colesevelam; inhibitors of bile acid transport; HDL modulating active substances such as D4F, reverse D4F, LXR modulating active substances and FXR modulating active substances; CETP inhibitors such as torcetrapib, JTT-705 (dalcetrapib) or compound 12 from WO 2007/005572 (anacetrapib); LDL receptor modulators; MTP inhibitors (e.g. lomitapide); and ApoB100 antisense RNA.
  • A dosage of atorvastatin is usually from 1 mg to 40 mg or 10 mg to 80 mg once a day.
  • Examples of combination partners that lower blood pressure are beta-blockers such as atenolol, bisoprolol, celiprolol, metoprolol and carvedilol; diuretics such as hydrochlorothiazide, chlortalidon, xipamide, furosemide, piretanide, torasemide, spironolactone, eplerenone, amiloride and triamterene; calcium channel blockers such as amlodipine, nifedipine, nitrendipine, nisoldipine, nicardipine, felodipine, lacidipine, lercanipidine, manidipine, isradipine, nilvadipine, verapamil, gallopamil and diltiazem; ACE inhibitors such as ramipril, lisinopril, cilazapril, quinapril, captopril, enalapril, benazepril, perindopril, fosinopril and trandolapril; as well as angiotensin II receptor blockers (ARBs) such as telmisartan, candesartan, valsartan, losartan, irbesartan, olmesartan, azilsartan and eprosartan.
  • A dosage of telmisartan is usually from 20 mg to 320 mg or 40 mg to 160 mg per day.
  • Examples of combination partners which increase the HDL level in the blood are Cholesteryl Ester Transfer Protein (CETP) inhibitors; inhibitors of endothelial lipase; regulators of ABC1; LXRalpha antagonists; LXRbeta agonists; PPAR-delta agonists; LXRalpha/beta regulators, and substances that increase the expression and/or plasma concentration of apolipoprotein A-I.
  • Examples of combination partners for the treatment of obesity are sibutramine; tetrahydrolipstatin (orlistat); alizyme (cetilistat); dexfenfluramine; axokine; cannabinoid receptor 1 antagonists such as the CB1 antagonist rimonobant; MCH-1 receptor antagonists; MC4 receptor agonists; NPY5 as well as NPY2 antagonists (e.g. velneperit); beta3-AR agonists such as SB-418790 and AD-9677; 5HT2c receptor agonists such as APD 356 (lorcaserin); myostatin inhibitors; Acrp30 and adiponectin; steroyl CoA desaturase (SCD1) inhibitors; fatty acid synthase (FAS) inhibitors; CCK receptor agonists; Ghrelin receptor modulators; Pyy 3-36; orexin receptor antagonists; and tesofensine; as well as the dual combinations bupropion/naltrexone, bupropion/zonisamide, topiramate/phentermine and pramlintide/metreleptin.
  • Examples of combination partners for the treatment of atherosclerosis are phospholipase A2 inhibitors; inhibitors of tyrosine-kinases (50 mg to 600 mg) such as PDGF-receptor-kinase (cf. EP-A-564409, WO 98/35958, U.S. Pat. No. 5,093,330, WO 2004/005281, and WO 2006/041976); oxLDL antibodies and oxLDL vaccines; apoA-1 Milano; ASA; and VCAM-1 inhibitors.
  • Further, the certain DPP-4 inhibitor of this invention may be used in combination with a substrate of DPP-4 (particularly with an anti-inflammatory substrate of DPP-4), which may be other than GLP-1, for the purposes according to the present invention, such substrates of DPP-4 include, for example—without being limited to, one or more of the following: Incretins:
  • Glucagon-like peptide (GLP)-1
  • Glucose-dependent insulinotropic peptide (GIP)
  • Neuroactive:
  • Substance P
  • Neuropeptide Y (NPY)
  • Peptide YY
  • Energy homeostasis:
  • GLP-2
  • Prolactin
  • Pituitary adenylate cyclase activating peptide (PACAP)
  • Other hormones:
  • PACAP 27
  • Human chorionic gonadotrophin alpha chain
  • Growth hormone releasing factor (GHRF)
  • Luteinizing hormone alpha chain
  • Insulin-like growth factor (IGF-1)
  • CCL8/eotaxin
  • CCL22/macrophage-derived chemokine
  • CXCL9/interferon-gamma-induced monokine
  • Chemokines:
  • CXCL10/interferon-gamma-induced protein-10
  • CXCL11/interferon-inducible T cell a chemoattractant
  • CCL3L1/macrophage inflammatory protein 1alpha isoform
  • LD78beta
  • CXCL12/stromal-derived factor 1 alpha and beta
  • Other:
  • Enkephalins, gastrin-releasing peptide, vasostatin-1,
  • peptide histidine methionine, thyrotropin alpha
  • Further or in addition, the certain DPP-4 inhibitor of this invention may be used in combination with one or more active substances which are indicated in the treatment of nephropathy, such as selected from diuretics, ACE inhibitors and/or ARBs.
  • Further or in addition, the certain DPP-4 inhibitor of this invention may be used in combination with one or more active substances which are indicated in the treatment or prevention of cardiovascular diseases or events (e.g. major cardiovascular events).
  • Moreover, optionally in addition, the certain DPP-4 inhibitor of this invention may be used in combination with one or more antiplatelet agents, such as e.g. (low-dose) aspirin (acetylsalicylic acid), a selective COX-2 or nonselective COX-1/COX-2 inhibitor, or a ADP receptor inhibitor, such as a thienopyridine (e.g. clopidogrel or prasugrel), elinogrel or ticagrelor, or a thrombin receptor antagonist such as vorapaxar.
  • Yet moreover, optionally in addition, the certain DPP-4 inhibitor of this invention may be used in combination with one or more anticoagulant agents, such as e.g. heparin, a coumarin (such as warfarin or phenprocoumon), a pentasaccharide inhibitor of Factor Xa (e.g. fondaparinux), or a direct thrombin inhibitor (such as e.g. dabigatran), or a Faktor Xa inhibitor (such as e.g. rivaroxaban or apixaban or edoxaban or otamixaban).
  • Still yet moreover, optionally in addition, the certain DPP-4 inhibitor of this invention may be used in combination with one or more agents for the treatment of heart failure (such as e.g. those mentioned in WO 2007/128761).
  • The dosage of the active components in the combinations or compositions in accordance with the present invention may be varied, although the amount of the active ingredients shall be such that a suitable dosage form is obtained. Hence, the selected dosage and the selected dosage form shall depend on the desired therapeutic effect, the route of administration and the duration of the treatment. Dosage ranges for the combination may be from the maximal tolerated dose for the single agent to lower doses.
  • The present invention is not to be limited in scope by the specific embodiments described herein. Various modifications of the invention in addition to those described herein may become apparent to those skilled in the art from the present disclosure. Such modifications are intended to fall within the scope of the appended claims.
  • Further embodiments, features and advantages of the present invention may become apparent from the following examples. The following examples serve to illustrate, by way of example, the principles of the invention without restricting it.
  • All patent applications cited herein are hereby incorporated by reference in their entireties.
  • EXAMPLES
  • In order that this invention be more fully understood, the herein-given examples are set forth. Further embodiments, features or aspects of the present invention may become apparent from the examples. The examples serve to illustrate, by way of example, the principles of the invention without restricting it.
  • Treatment of Patients with Type 2 Diabetes Mellitus having Albuminuria:
  • A multicentre, double-blind, placebo-controlled clinical trial investigates glycaemic and renal effects of linagliptin in patients with type 2 diabetes, album inuria and estimated GFR ≥30 ml/min/1.73 m2 (with or without renal function impairment).
  • A total of 360 patients with type 2 diabetes (HbA1c 6.5-10%) and persistent albuminuria (urinary albumin-to-creatinine ratio [UACR] 30-3000 mg/gCr; i.e. micro- or macro-albuminuria) despite stable background (standard-of-care) of single renin-angiotensin system blockade (ARB or ACE inhibitor) are randomised to either linagliptin 5 mg (n=182) or placebo (n=178) for 24 weeks. Primary glycaemic and key secondary renal surrogate endpoints are HbA1c and UACR change from baseline over 24 weeks, respectively.
  • Overall mean (SD) baseline HbA1c and geometric mean (gMean) UACR are 7.8% (0.9) and 126 mg/gCr (microalbuminuria, 73.7%; macroalbuminuria, 20.3%), respectively. At week 24, the adjusted mean (SE) % change from baseline in HbA1c for linagliptin and placebo is—0.63 (0.06) and −0.03 (0.06), respectively; the placebo-adjusted mean HbA1c change from baseline is −0.60% (95% CI −0.78, −0.43; p<0.0001). The gMean for time-weighted average of % change (95% CI) from baseline in UACR over 24 weeks for linagliptin and placebo is −11.0% (−16.8, −4.7) and −5.1% (−11.4, 1.6), respectively; the placebo-adjusted gMean for time-weighted average of % change in UCAR from baseline is −6.0% (95% CI −15.0, 3.0; NS).
  • Exploratory analyses of the subgroup of patients treated with linagliptin on a background of metformin (as well as of those with moderate renal impairment CKD3, eGFR of 30-60 ml/min/1.73m2) in the above study show a numerically larger difference in the changes from baseline vs. placebo in urinary albumin to creatinine ratio (UACR) compared to patients without the combination with metformin (post hoc subgroup analysis of key secondary endpoint).
  • Alternatively, the renal effects can be evaluated by a scoring system (diabetic nephropathy score) for staging diabetic kidney disease such as generated from the profiles of a urinary biomarker panel composed of alpha2-HS-glycoprotein, alpha-1-antitrypsin and acid-1-glycoprotein.
  • Treatment of Patients with type 2 Diabetes Mellitus at High Cardiovascular and Renal Microvascular Risk:
  • The long term impact on cardiovascular and renal (microvascular) safety, morbidity and/or mortality and relevant efficacy parameters (e.g. HbA1c, fasting plasma glucose, treatment sustainability) of treatment with linagliptin in combination with metformin in a relevant population of patients with type 2 diabetes mellitus (such as e.g. at high vascular risk, at advanced stage of diabetic kidney disease) can be investigated as follows:
  • Type 2 diabetes patient with insufficient glycemic control (naïve or pre-treated with any antidiabetic background medication including metformin, excluding treatment with GLP-1 receptor agonists, DPP-4 inhibitors or SGLT-2 inhibitors if consecutive 7 days, e.g. having HbA1c 6.5-10%), and high risk of cardiovascular events, e.g. defined by: albuminuria (micro or macro) and previous macrovascular disease: e.g. defined according to
  • Condition I as indicated below;
  • and/or
  • impaired renal function: e.g. as defined according to Condition II as indicated below;
  • Condition I:
  • albuminuria (such as e.g. urine albumin creatinine ratio (UACR) ≥30 mg/g creatinine or ≥30 mg/l (milligram albumin per liter of urine) or ≥30 μg/min (microgram albumin per minute) or ≥30 mg/24 h (milligram albumin per 24 hours)) and
  • previous macrovascular disease, such as e.g. defined as one or more of a) to f):
  • a) previous myocardial infarction (e.g. >2 months),
  • b) advanced coronary artery disease, such as e.g. defined by any one of the following:
      • 50% narrowing of the luminal diameter in 2 or more major coronary arteries (e.g. LAD (Left Anterior Descending), CX (Circumflex) or RCA (Right Coronary Artery)) by coronary angiography or CT angiography,
      • left main stem coronary artery with 50% narrowing of the luminal diameter,
      • prior percutaneous or surgical revascularization of ≥2 major coronary arteries (e.g. ≥2 months),
      • combination of prior percutaneous or surgical revascularization, such as e.g. of 1 major coronary artery (e.g. ≥2 months) and ≥50% narrowing of the luminal diameter by coronary angiography or CT angiography of at least 1 additional major coronary artery,
  • c) high-risk single-vessel coronary artery disease, such as e.g. defined as the presence of ≥50% narrowing of the luminal diameter of one major coronary artery (e.g. by coronary angiography or CT angiography in patients not revascularised) and at least one of the following:
      • a positive non invasive stress test, such as e.g. confirmed by either:
      • a positive ECG exercise tolerance test in patients without left bundle branch block, Wolff-Parkinson-White syndrome, left ventricular hypertrophy with repolarization abnormality, or paced ventricular rhythm, atrial fibrillation in case of abnormal ST-T segments,
      • a positive stress echocardiogram showing induced regional systolic wall motion abnormalities,
      • a positive nuclear myocardial perfusion imaging stress test showing stress induced reversible perfusion abnormality,
      • patient discharged from hospital with a documented diagnosis of unstable angina pectoris (e.g. ≥2-12 months),
  • d) previous ischemic or haemorrhagic stroke (e.g. >3 months),
  • e) presence of carotid artery disease (e.g. symptomatic or not), such as e.g. documented by either:
      • imaging techniques with at least one lesion estimated to be ≥50% narrowing of the luminal diameter,
      • prior percutaneous or surgical carotid revascularization,
  • f) presence of peripheral artery disease, such as e.g. documented by either:
      • previous limb angioplasty, stenting or bypass surgery,
      • previous limb or foot amputation due to macrocirculatory insufficiency,
      • angiographic evidence of peripheral artery stenosis ≥50% narrowing of the luminal diameter in at least one limb (e.g. definition of peripheral artery: common iliac artery, internal iliac artery, external iliac artery, femoral artery, popliteal artery),
  • Condition II:
  • impaired renal function (e.g. with or without CV co-morbidities), such as e.g. defined by:
      • impaired renal function (e.g. as defined by MDRD formula) with an estimated glomerular filtration rate (eGFR) 15-45 mL/min/1.73 m2 with any urine albumin creatinine ratio (UACR), and/or
      • impaired renal function (e.g. as defined by MDRD formula) with an with an estimated glomerular filtration rate (eGFR) ≥45-75 mL/min/1.73 m2 with an urine albumin creatinine ratio (UACR) >200 mg/g creatinine or >200 mg/l (milligram albumin per liter of urine) or >200 μg/min (microgram albumin per minute) or >200 mg/24 h (milligram albumin per 24 hours);
  • are treated over a lengthy period (e.g. for 4-5 years, or preferably at least 48 months) with linagliptin (preferably 5 mg per day, administered orally) in combination with metformin (optionally in combination with one or more further active substances, e.g. such as those described herein) and compared with patients who have been treated with placebo (as add-on therapy on top of standard of care).
  • Evidence of the therapeutic success compared with patients who have been treated with placebo can be found in non-inferiority or superiority compared to placebo, e.g. in the (longer) time taken to first occurrence of cardio- or cerebrovascular events, e.g. time to first occurrence of any of the following components of the composite CV endpoint: cardiovascular death (including fatal stroke, fatal myocardial infarction and sudden death), non-fatal myocardial infarction (excluding silent myocardial infarction), non-fatal stroke, and (optional) hospitalisation e.g. for unstable angina pectoris; and/or
  • in the (longer) time taken to first occurrence of renal microvascular events, e.g. time to first occurrence of any of the following components of the composite renal endpoint: renal death, sustained end-stage renal disease, and sustained decrease of 50% or more in eGFR.
  • Further therapeutic success can be found in the (smaller) number of or in the (longer) time taken to first occurrence of any of: cardiovascular death, (non)-fatal myocardial infarction, silent MI, (non)-fatal stroke, hospitalisation for unstable angina pectoris, hospitalisation for coronary revascularization, hospitalisation for peripheral revascularization, hospitalisation for congestive heart failure, all cause mortality, renal death, sustained end-stage renal disease, loss in eGFR, new incidence of macroalbuminuria, progression in albuminuria, progression in CKD, need for anti-retinopathy therapy; or improvement in albuminuria, renal function, CKD; or improvement in cognitive function or prevention of/protection against accelerated cognitive decline.
  • Cognitive functions can be assessed by standardized tests as measure of cognitive functioning such as e.g. by using the Mini-Mental State Examination (MMSE), the Trail Making Test (TMT) and/or the Verbal Fluency Test (VFT).
  • Additional therapeutic success (compared to placebo) can be found in greater change from baseline in HbA1c and/or FPG.
  • Further additional therapeutic success can be found in greater proportion of patients on study treatment at study end maintain glycemic control (e.g. HbA1c </=7%).
  • Further additional therapeutic success can be found in greater proportion of patients on study treatment who at study end maintain glycemic control without need for additional antidiabetic medication (during treatment) to obtain HbA1c </=7%.
  • Further additional therapeutic success can be found in lower proportion of patients on study treatment initiated on insulin or treated with insulin or in lower dose of insulin dose used. Further additional therapeutic success can be found in lower change from baseline in body weight or greater proportion of patients with ≤2% weight gain or lower proportion of patients with ≥2% weight gain at study end.
  • Respective subgroup analysis may be made in this study for patients having chronic kidney disease (CKD) such as e.g. up to stage 3 and/or having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45, or down to 30, such as for patients with (chronic) renal impairment of moderate stage (CKD stage 3, eGFR 30-60), particularly of mild-to-moderate stage (CKD stage 3a) such as having eGFR levels 45-59 or of moderate-to-severe stage (CKD stage 3b) such as having eGFR levels 30-44; optionally with or without micro- or macroalbuminuria.
  • Over two thirds (71%) of the total participants of above study are categorized as having a renal prognosis of high risk (27.2%) or very high risk (43.5%) by eGFR and albuminuria categories at baseline:
  • Prognosis of CKD in study population by eGFR and albuminuria categories
  • High Risk:
  • UACR (mg/g) >300 and eGFR (ml/min/1.73 m2) >60, or
  • UACR (mg/g) 30-299 and eGFR (ml/min/1.73 m2) 45-59, or
  • UACR (mg/g) <30 and eGFR (ml/min/1.73 m2) 30-44;
  • Very High Risk:
  • UACR (mg/g) >300 and eGFR (ml/min/1.73 m2) 45-59 or 30-44 or <30, or
  • UACR (mg/g) 30-299 and eGFR (ml/min/1.73 m2) 30-44 or <30, or
  • UACR (mg/g) <30 and eGFR (ml/min/1.73 m2) <30.
  • Respective subgroup analysis may be also made in this study for patients having renal prognosis of high risk or very high risk as defined above.

Claims (10)

1. A method of using linagliptin, or a pharmaceutically acceptable salt thereof, in combination with metformin, and optionally one or more further active agents selected from the group consisting of insulin and a sulfonylurea to treat a type 2 diabetes patient having estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) levels down to 45 or down to 30.
2. The method of claim 1, wherein the type 2 diabetes patient has an estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) level down to 45.
3. The method of claim 1, wherein the type 2 diabetes patient has an estimated glomerular filtration rate (eGFR; mL/minute/1.73 m2) level down to 30.
4. The method of claim 2, wherein linagliptin and metformin are administered in a single pharmaceutical composition, such as e.g. in form of a single oral dosage form (e.g. tablet).
5. The method of claim 4, wherein the linagliptin is present in the composition in a dosage strength of 2.5 mg; or of 5 mg.
6. The method of claim 5, wherein the metformin is present in the composition in a dosage strength of 500 mg, 850 mg or 1000 mg in form of immediate release metformin; or 500 mg, 750 mg, 1000 mg, 1500 mg or 2000 mg in form of extended release metformin.
7. The method of claim 4, wherein the pharmaceutical composition comprises 2.5 mg linagliptin and 500 mg, 850 mg or 1000 mg metformin in immediate release form, and optionally one or more pharmaceutically auxiliaries
8. The method of claim 4, wherein
the pharmaceutical composition comprises 5 mg linagliptin and 1000 mg metformin in extended release form, and optionally one or more pharmaceutically auxiliaries, or
wherein
the pharmaceutical composition comprises 2.5 mg linagliptin and 750 mg or 1000 mg metformin in extended release form, and optionally one or more pharmaceutically auxiliaries.
9. The method of claim 1, wherein linagliptin is administered in a total oral daily dose of 5 mg.
10. The method of claim 2, wherein linagliptin is administered in a total oral daily dose of 5 mg, wherein the 5 mg daily dose is administered as 2.5 mg linagliptin twice daily or 5 mg linagliptin once daily.
US16/170,134 2016-06-10 2018-10-25 Medical use of pharmaceutical combination or composition Abandoned US20190060320A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/170,134 US20190060320A1 (en) 2016-06-10 2018-10-25 Medical use of pharmaceutical combination or composition
US16/788,608 US20200171038A1 (en) 2016-06-10 2020-02-12 Medical use of pharmaceutical combination or composition
US17/209,365 US20210205315A1 (en) 2016-06-10 2021-03-23 Medical use of pharmaceutical combination or composition
US18/230,693 US20230381188A1 (en) 2016-06-10 2023-08-07 Medical Use of Pharmaceutical Combination or Composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP16174075.8 2016-06-10
EP16174075 2016-06-10
EP17154248.3 2017-02-01
EP17154248 2017-02-01
US15/616,974 US10155000B2 (en) 2016-06-10 2017-06-08 Medical use of pharmaceutical combination or composition
US16/170,134 US20190060320A1 (en) 2016-06-10 2018-10-25 Medical use of pharmaceutical combination or composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/616,974 Continuation US10155000B2 (en) 2016-06-10 2017-06-08 Medical use of pharmaceutical combination or composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/788,608 Continuation US20200171038A1 (en) 2016-06-10 2020-02-12 Medical use of pharmaceutical combination or composition

Publications (1)

Publication Number Publication Date
US20190060320A1 true US20190060320A1 (en) 2019-02-28

Family

ID=59067646

Family Applications (5)

Application Number Title Priority Date Filing Date
US15/616,974 Active US10155000B2 (en) 2016-06-10 2017-06-08 Medical use of pharmaceutical combination or composition
US16/170,134 Abandoned US20190060320A1 (en) 2016-06-10 2018-10-25 Medical use of pharmaceutical combination or composition
US16/788,608 Abandoned US20200171038A1 (en) 2016-06-10 2020-02-12 Medical use of pharmaceutical combination or composition
US17/209,365 Abandoned US20210205315A1 (en) 2016-06-10 2021-03-23 Medical use of pharmaceutical combination or composition
US18/230,693 Pending US20230381188A1 (en) 2016-06-10 2023-08-07 Medical Use of Pharmaceutical Combination or Composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/616,974 Active US10155000B2 (en) 2016-06-10 2017-06-08 Medical use of pharmaceutical combination or composition

Family Applications After (3)

Application Number Title Priority Date Filing Date
US16/788,608 Abandoned US20200171038A1 (en) 2016-06-10 2020-02-12 Medical use of pharmaceutical combination or composition
US17/209,365 Abandoned US20210205315A1 (en) 2016-06-10 2021-03-23 Medical use of pharmaceutical combination or composition
US18/230,693 Pending US20230381188A1 (en) 2016-06-10 2023-08-07 Medical Use of Pharmaceutical Combination or Composition

Country Status (12)

Country Link
US (5) US10155000B2 (en)
EP (2) EP4233840A3 (en)
JP (2) JP2019517542A (en)
KR (1) KR102391564B1 (en)
CN (1) CN109310697A (en)
AU (2) AU2017276758A1 (en)
BR (1) BR112018072401A2 (en)
CA (1) CA3022202A1 (en)
CL (1) CL2018003361A1 (en)
MX (1) MX2018015089A (en)
PH (1) PH12018502593A1 (en)
WO (1) WO2017211979A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11026625B2 (en) 2017-08-08 2021-06-08 Fresenius Medical Care Holdings, Inc. Systems and methods for treating and estimating progression of chronic kidney disease

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7407955B2 (en) 2002-08-21 2008-08-05 Boehringer Ingelheim Pharma Gmbh & Co., Kg 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
EP1852108A1 (en) 2006-05-04 2007-11-07 Boehringer Ingelheim Pharma GmbH & Co.KG DPP IV inhibitor formulations
PE20110235A1 (en) 2006-05-04 2011-04-14 Boehringer Ingelheim Int PHARMACEUTICAL COMBINATIONS INCLUDING LINAGLIPTIN AND METMORPHINE
CA2810839A1 (en) 2006-05-04 2007-11-15 Boehringer Ingelheim International Gmbh A polymorphic form of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(r)-amino-piperidin-1-yl)-xanthine
PE20140960A1 (en) 2008-04-03 2014-08-15 Boehringer Ingelheim Int FORMULATIONS INVOLVING A DPP4 INHIBITOR
KR20200118243A (en) * 2008-08-06 2020-10-14 베링거 인겔하임 인터내셔날 게엠베하 Treatment for diabetes in patients inappropriate for metformin therapy
US20200155558A1 (en) 2018-11-20 2020-05-21 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients with insufficient glycemic control despite therapy with an oral antidiabetic drug
US9034883B2 (en) 2010-11-15 2015-05-19 Boehringer Ingelheim International Gmbh Vasoprotective and cardioprotective antidiabetic therapy
WO2013171167A1 (en) 2012-05-14 2013-11-21 Boehringer Ingelheim International Gmbh A xanthine derivative as dpp -4 inhibitor for use in the treatment of podocytes related disorders and/or nephrotic syndrome
MX2018015089A (en) 2016-06-10 2019-05-13 Boehringer Ingelheim Int Combinations of linagliptin and metformin.
KR20210035227A (en) * 2018-07-17 2021-03-31 베링거 인겔하임 인터내셔날 게엠베하 Heart and kidney safety antidiabetic therapy
CN115137785B (en) * 2022-07-21 2023-06-20 湖北省中医院 Membranous kidney prescription for treating idiopathic membranous nephropathy

Family Cites Families (453)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2056046A (en) 1933-05-19 1936-09-29 Rhone Poulenc Sa Manufacture of bases derived from benz-dioxane
US2375138A (en) 1942-05-01 1945-05-01 American Cyanamid Co Alkamine esters of aryloxymethyl benzoic acid
US2629736A (en) 1951-02-24 1953-02-24 Searle & Co Basically substituted n-alkyl derivatives of alpha, beta, beta-triarylpropionamides
US2730544A (en) 1952-07-23 1956-01-10 Sahyun Lab Alkylaminoalkyl esters of hydroxycyclohexylbenzoic acid
US2750387A (en) 1953-11-25 1956-06-12 Searle & Co Basically substituted derivatives of diarylaminobenzamides
DE1211359B (en) 1955-11-29 1966-02-24 Oreal Oxidant-free cold dye for human hair
US2928833A (en) 1959-03-03 1960-03-15 S E Massengill Company Theophylline derivatives
US3174901A (en) 1963-01-31 1965-03-23 Jan Marcel Didier Aron Samuel Process for the oral treatment of diabetes
US3454635A (en) 1965-07-27 1969-07-08 Hoechst Ag Benzenesulfonyl-ureas and process for their manufacture
DE1914999A1 (en) 1968-04-04 1969-11-06 Ciba Geigy New guanylhydrazones and processes for their preparation
ES385302A1 (en) 1970-10-22 1973-04-16 Miquel S A Lab Procedure for the obtaining of trisused derivatives of etilendiamine. (Machine-translation by Google Translate, not legally binding)
DE2205815A1 (en) 1972-02-08 1973-08-16 Hoechst Ag N-(oxazolin-2-yl)-piperazine - with antitussive activity
JPS5512435B2 (en) 1972-07-01 1980-04-02
US4005208A (en) 1975-05-16 1977-01-25 Smithkline Corporation N-Heterocyclic-9-xanthenylamines
US4061753A (en) 1976-02-06 1977-12-06 Interx Research Corporation Treating psoriasis with transient pro-drug forms of xanthine derivatives
NO154918C (en) 1977-08-27 1987-01-14 Bayer Ag ANALOGUE PROCEDURE FOR THE PREPARATION OF THERAPEUTIC ACTIVE DERIVATIVES OF 3,4,5-TRIHYDROXYPIPERIDINE.
DE2758025A1 (en) 1977-12-24 1979-07-12 Bayer Ag Tri:hydroxy-piperidine derivs. - useful as glucosidase inhibitors for treating diabetes etc. and as animal feed additives
DE2929596A1 (en) 1979-07-21 1981-02-05 Hoechst Ag METHOD FOR PRODUCING OXOALKYL XANTHINES
CY1306A (en) 1980-10-01 1985-12-06 Glaxo Group Ltd Aminoalkyl furan derivative
US4382091A (en) 1981-04-30 1983-05-03 Syntex (U.S.A.) Inc. Stabilization of 1-substituted imidazole derivatives in talc
FR2558162B1 (en) 1984-01-17 1986-04-25 Adir NOVEL XANTHINE DERIVATIVES, PROCESSES FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
FI79107C (en) 1984-06-25 1989-11-10 Orion Yhtymae Oy Process for the preparation of stable form of prazosin hydrochloride.
JPS6130567A (en) 1984-07-23 1986-02-12 Shiseido Co Ltd Method of stabilizing urea
JPS61124383A (en) 1984-11-16 1986-06-12 Unitika Ltd Stabilization of immobilized fibrinolytic enzyme
AR240698A1 (en) 1985-01-19 1990-09-28 Takeda Chemical Industries Ltd Process for the preparation of 5-(4-(2-(5-ethyl-2-pyridil)-ethoxy)benzyl)-2,4-thiazolodinedione and their salts
CA1242699A (en) 1985-02-01 1988-10-04 Bristol-Myers Company Cefbuperazone and derivatives thereof
US4741898A (en) 1985-04-01 1988-05-03 Fisher Scientific Company Stabilized stain composition
GB8515934D0 (en) 1985-06-24 1985-07-24 Janssen Pharmaceutica Nv (4-piperidinomethyl and-hetero)purines
US5258380A (en) 1985-06-24 1993-11-02 Janssen Pharmaceutica N.V. (4-piperidinylmethyl and -hetero)purines
EP0223403B1 (en) 1985-10-25 1993-08-04 Beecham Group Plc Piperidine derivative, its preparation, and its use as medicament
US5034225A (en) 1985-12-17 1991-07-23 Genentech Inc. Stabilized human tissue plasminogen activator compositions
US5433959A (en) 1986-02-13 1995-07-18 Takeda Chemical Industries, Ltd. Stabilized pharmaceutical composition
EP0237608B1 (en) 1986-03-21 1992-01-29 HEUMANN PHARMA GMBH &amp; CO Crystalline anhydrous sigma-form of 2-[4-(2-furoyl-(2-piperazin)-1-yl]-4-amino-6,7-dimethoxyquinazoline hydrochloride, and process for its preparation
WO1987006941A1 (en) 1986-05-05 1987-11-19 The General Hospital Corporation Insulinotropic hormone
US5120712A (en) 1986-05-05 1992-06-09 The General Hospital Corporation Insulinotropic hormone
AU619444B2 (en) 1986-06-02 1992-01-30 Nippon Chemiphar Co. Ltd. 2-(2-aminobenzylsulfinyl)- benzimidazole derivatives
US4968672A (en) 1987-01-02 1990-11-06 The United States Of America As Represented By The Department Of Health And Human Services Adenosine receptor prodrugs
US4743450A (en) 1987-02-24 1988-05-10 Warner-Lambert Company Stabilized compositions
US5093330A (en) 1987-06-15 1992-03-03 Ciba-Geigy Corporation Staurosporine derivatives substituted at methylamino nitrogen
JPS6440433A (en) 1987-08-05 1989-02-10 Green Cross Corp Aqueous liquid composition of thrombin
DE68920773T2 (en) 1988-05-19 1995-05-18 Chugai Pharmaceutical Co Ltd Quinolonecarboxylic acid derivatives.
US5329025A (en) 1988-09-21 1994-07-12 G. D. Searle & Co. 3-azido compound
DE3926119A1 (en) 1989-08-08 1991-02-14 Bayer Ag 3-AMINO-5-AMINOCARBONYL-1,2,4-TRIAZOLE DERIVATIVES
US5234897A (en) 1989-03-15 1993-08-10 Bayer Aktiengesellschaft Herbicidal 3-amino-5-aminocarbonyl-1,2,4-triazoles
GB8906792D0 (en) 1989-03-23 1989-05-10 Beecham Wuelfing Gmbh & Co Kg Treatment and compounds
DE3916430A1 (en) 1989-05-20 1990-11-22 Bayer Ag METHOD FOR PRODUCING 3-AMINO-5-AMINOCARBONYL-1,2,4-TRIAZOLE DERIVATIVES
US5332744A (en) 1989-05-30 1994-07-26 Merck & Co., Inc. Substituted imidazo-fused 6-membered heterocycles as angiotensin II antagonists
US5223499A (en) 1989-05-30 1993-06-29 Merck & Co., Inc. 6-amino substituted imidazo[4,5-bipyridines as angiotensin II antagonists
IL94390A (en) 1989-05-30 1996-03-31 Merck & Co Inc Di-substituted imidazo fused 6-membered nitrogen-containing heterocycles and pharmaceutical compositions containing them
FI94339C (en) 1989-07-21 1995-08-25 Warner Lambert Co Process for the preparation of pharmaceutically acceptable [R- (R *, R *)] - 2- (4-fluorophenyl) -, - dihydroxy-5- (1-methylethyl) -3-phenyl-4 - [(phenylamino) carbonyl] -1H- for the preparation of pyrrole-1-heptanoic acid and its pharmaceutically acceptable salts
HU208115B (en) 1989-10-03 1993-08-30 Biochemie Gmbh New process for producting pleuromutilin derivatives
FR2654935B1 (en) 1989-11-28 1994-07-01 Lvmh Rech USE OF XANTHINES, WHICH MAY BE INCORPORATED IN LIPOSOMES, TO PROMOTE PIGMENTATION OF THE SKIN OR HAIR.
DE19675036I2 (en) 1990-02-19 2004-10-21 Novartis Ag Acyl compounds.
KR930000861B1 (en) 1990-02-27 1993-02-08 한미약품공업 주식회사 Omeprazole rectal composition
ES2064887T3 (en) 1990-09-13 1995-02-01 Akzo Nobel Nv STABILIZED SOLID CHEMICAL COMPOSITIONS.
GB9020959D0 (en) 1990-09-26 1990-11-07 Beecham Group Plc Novel compounds
US5084460A (en) 1990-12-24 1992-01-28 A. H. Robins Company, Incorporated Methods of therapeutic treatment with N-(3-ouinuclidinyl)-2-hydroxybenzamides and thiobenzamides
US5602127A (en) 1991-02-06 1997-02-11 Karl Thomae Gmbh (Alkanesultam-1-yl)-benzimidazol-1-yl)-1yl)-methyl-biphenyls useful as angiotensin-II antagonists
US5594003A (en) 1991-02-06 1997-01-14 Dr. Karl Thomae Gmbh Tetrahydroimidazo[1,2-a]pyridin-2-yl-(benzimidazol-1-yl)-methyl-biphenyls useful as angiotensin-II antagonists
US5591762A (en) 1991-02-06 1997-01-07 Dr. Karl Thomae Gmbh Benzimidazoles useful as angiotensin-11 antagonists
GB9109862D0 (en) 1991-05-08 1991-07-03 Beecham Lab Sa Pharmaceutical formulations
DE4124150A1 (en) 1991-07-20 1993-01-21 Bayer Ag SUBSTITUTED TRIAZOLES
TW225528B (en) 1992-04-03 1994-06-21 Ciba Geigy Ag
US5300298A (en) 1992-05-06 1994-04-05 The Pennsylvania Research Corporation Methods of treating obesity with purine related compounds
GB9215633D0 (en) 1992-07-23 1992-09-09 Smithkline Beecham Plc Novel treatment
ATE165360T1 (en) 1992-07-31 1998-05-15 Shionogi & Co TRIAZOLYLTHIOMETHYLTHIOCEPHALOSPORINE HYDROCHLORIDE, ITS CRYSTALLINE HYDRATE AND ITS PREPARATION
TW252044B (en) 1992-08-10 1995-07-21 Boehringer Ingelheim Kg
DE4242459A1 (en) 1992-12-16 1994-06-23 Merck Patent Gmbh imidazopyridines
CA2118117A1 (en) 1993-02-18 1994-08-19 Shigeki Fujiwara Adenosine uptake inhibitor
JP3726291B2 (en) 1993-07-05 2005-12-14 三菱ウェルファーマ株式会社 Benzoxazine compound having stable crystal structure and process for producing the same
FR2707641B1 (en) 1993-07-16 1995-08-25 Fournier Ind & Sante Compounds of imidazol-5-carboxamide, their process for preparing their intermediates and their use in therapy.
DE4339868A1 (en) 1993-11-23 1995-05-24 Merck Patent Gmbh imidazopyridazines
DE4404183A1 (en) 1994-02-10 1995-08-17 Merck Patent Gmbh 4-amino-1-piperidylbenzoylguanidine
US5545745A (en) 1994-05-23 1996-08-13 Sepracor, Inc. Enantioselective preparation of optically pure albuterol
CO4410190A1 (en) 1994-09-19 1997-01-09 Lilly Co Eli 3- [4- (2-AMINOETOXI) -BENZOIL] -2-ARIL-6-HYDROXYBENZO [b] CRYSTALLINE THIOPHEN
PL319605A1 (en) 1994-10-12 1997-08-18 Euro Celtique Sa Novel benzoxazoles
GB9501178D0 (en) 1995-01-20 1995-03-08 Wellcome Found Guanine derivative
CA2218548A1 (en) 1995-05-19 1996-11-21 Chiroscience Limited Xanthines and their therapeutic use
JPH08333339A (en) 1995-06-08 1996-12-17 Fujisawa Pharmaceut Co Ltd Production of optically active piperidineacetic acid derivative
GB9523752D0 (en) 1995-11-21 1996-01-24 Pfizer Ltd Pharmaceutical formulations
DE19543478A1 (en) 1995-11-22 1997-05-28 Bayer Ag Crystalline hydrochloride of {(R) - (-) - 2N- [4- (1,1-dioxido-3-oxo-2,3-dihydrobenzisothiazol-2-yl) -buytl] aminomethyl} -chroman
FR2742751B1 (en) 1995-12-22 1998-01-30 Rhone Poulenc Rorer Sa NOVEL TAXOIDS, THEIR PREPARATION AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
ATE215068T1 (en) 1995-12-26 2002-04-15 Alteon Inc N-ACYLAMINOALKYLHYDRAZINECARBOXIMIDAMIDE
US5891855A (en) 1996-02-12 1999-04-06 The Scripps Research Institute Inhibitors of leaderless protein export
DE19616486C5 (en) 1996-04-25 2016-06-30 Royalty Pharma Collection Trust Method for lowering the blood glucose level in mammals
TW518219B (en) 1996-04-26 2003-01-21 Chugai Pharmaceutical Co Ltd Erythropoietin solution preparation
US5965555A (en) 1996-06-07 1999-10-12 Hoechst Aktiengesellschaft Xanthine compounds having terminally animated alkynol side chains
WO1997046526A1 (en) 1996-06-07 1997-12-11 Eisai Co., Ltd. Stable polymorphs of donepezil (1-benzyl-4-[(5,6-dimethoxy-1-indanon)-2-yl]methylpiperidine) hydrochloride and process for production
US5958951A (en) 1996-06-14 1999-09-28 Novo Nordiskials Modified form of the R(-)-N-(4,4-di(3-methylthien-2-yl)but-3-enyl)-nipecotic acid hydrochloride
US5753635A (en) 1996-08-16 1998-05-19 Berlex Laboratories, Inc. Purine derivatives and their use as anti-coagulants
TR199900639T2 (en) 1996-09-23 1999-06-21 Eli Lilly And Company Olanzapin dihydrate D.
EP0937056A1 (en) 1996-10-28 1999-08-25 Novo Nordisk A/S A process for the preparation of (-)-3,4-trans-diarylchromans
UA65549C2 (en) 1996-11-05 2004-04-15 Елі Ліллі Енд Компані Use of glucagon-like peptides such as glp-1, glp-1 analog, or glp-1 derivative in methods and compositions for reducing body weight
ES2237790T3 (en) 1996-11-12 2005-08-01 Novo Nordisk A/S USE OF GLP-1 PEPTIDES.
GB9623859D0 (en) 1996-11-15 1997-01-08 Chiroscience Ltd Novel compounds
WO1998028007A1 (en) 1996-12-24 1998-07-02 Biogen, Inc. Stable liquid interferon formulations
DE19705233A1 (en) 1997-02-12 1998-08-13 Froelich Juergen C Preparation of stable, orally administered arginine solutions
CO4950519A1 (en) 1997-02-13 2000-09-01 Novartis Ag PHTHALAZINES, PHARMACEUTICAL PREPARATIONS THAT UNDERSTAND THEM AND THE PROCESS FOR THEIR PREPARATION
US6011049A (en) 1997-02-19 2000-01-04 Warner-Lambert Company Combinations for diabetes
ZA982155B (en) 1997-03-13 1998-12-01 Hexal Ag Stabilization of acid sensitive benzimidazoles with amino acid/cyclodextrin combinations
US5972332A (en) 1997-04-16 1999-10-26 The Regents Of The University Of Michigan Wound treatment with keratinocytes on a solid support enclosed in a porous material
CO4750643A1 (en) 1997-06-13 1999-03-31 Lilly Co Eli STABLE FORMULATION OF INSULIN CONTAINING L-ARGININ AND PROTAMINE
US6174548B1 (en) 1998-08-28 2001-01-16 Andrx Pharmaceuticals, Inc. Omeprazole formulation
EE200000318A (en) 1997-12-05 2001-08-15 Astrazeneca Uk Limited Novel compounds
ID21411A (en) 1997-12-10 1999-06-10 Takeda Chemical Industries Ltd AGENTS TO TREAT GLUCOSE RESISTANCE THAT IS RISK OF HIGH DAMAGED
JPH11193270A (en) 1997-12-26 1999-07-21 Koei Chem Co Ltd Production of optically active 1-methyl-3-piperidinemethanol
WO1999035147A1 (en) 1998-01-05 1999-07-15 Eisai Co., Ltd. Purine derivatives and adenosine a2 receptor antagonists serving as preventives/remedies for diabetes
EP2433623A1 (en) 1998-02-02 2012-03-28 Trustees Of Tufts College Use of dipeptidylpeptidase inhibitors to regulate glucose metabolism
WO1999050248A1 (en) 1998-03-31 1999-10-07 Nissan Chemical Industries, Ltd. Pyridazinone hydrochloride compound and method for producing the same
CA2268621A1 (en) 1998-04-13 1999-10-13 Takeda Chemical Industries, Ltd. 2-pipirazinone-1-acetic acid derivative, production and use thereof
US6207207B1 (en) 1998-05-01 2001-03-27 Mars, Incorporated Coated confectionery having a crispy starch based center and method of preparation
DE19823831A1 (en) 1998-05-28 1999-12-02 Probiodrug Ges Fuer Arzneim New pharmaceutical use of isoleucyl thiazolidide and its salts
DE19828114A1 (en) 1998-06-24 2000-01-27 Probiodrug Ges Fuer Arzneim Produgs of unstable inhibitors of dipeptidyl peptidase IV
CO5150173A1 (en) 1998-12-10 2002-04-29 Novartis Ag COMPOUNDS N- (REPLACED GLYCLE) -2-DIPEPTIDYL-IV PEPTIDASE INHIBITING CYANOPIRROLIDINS (DPP-IV) WHICH ARE EFFECTIVE IN THE TREATMENT OF CONDITIONS MEDIATED BY DPP-IV INHIBITION
IT1312018B1 (en) 1999-03-19 2002-04-04 Fassi Aldo IMPROVED PROCEDURE FOR THE PRODUCTION OF NON HYGROSCOPICIDAL SALTS OF L (-) - CARNITINE.
US20040152659A1 (en) 1999-05-12 2004-08-05 Fujisawa Pharmaceutical Co. Ltd. Method for the treatment of parkinson's disease comprising administering an A1A2a receptor dual antagonist
AU4431000A (en) 1999-05-12 2000-12-05 Fujisawa Pharmaceutical Co., Ltd. Novel use
AU5294100A (en) 1999-05-27 2000-12-18 University Of Virginia Patent Foundation Method and compositions for treating the inflammatory response
ES2408784T3 (en) 1999-05-31 2013-06-21 Mitsubishi Chemical Corporation Lyophilized HGF preparations
JP4156807B2 (en) 1999-06-01 2008-09-24 エラン ファーマ インターナショナル,リミティド Small mill and its method
US6545002B1 (en) 1999-06-01 2003-04-08 University Of Virginia Patent Foundation Substituted 8-phenylxanthines useful as antagonists of A2B adenosine receptors
YU90901A (en) 1999-06-21 2004-07-15 Boehringer Ingelheim Pharma Gmbh. & Co.Kg. Bicyclic heterocycles, medicaments containing these compounds, their use and methods for the production thereof
US6448323B1 (en) 1999-07-09 2002-09-10 Bpsi Holdings, Inc. Film coatings and film coating compositions based on polyvinyl alcohol
ES2166270B1 (en) 1999-07-27 2003-04-01 Almirall Prodesfarma Sa DERIVATIVES OF 8-PHENYL-6,9-DIHIDRO- (1,2,4,) TRIAZOLO (3,4-I) PURIN-5-ONA.
US6515117B2 (en) 1999-10-12 2003-02-04 Bristol-Myers Squibb Company C-aryl glucoside SGLT2 inhibitors and method
US6586438B2 (en) 1999-11-03 2003-07-01 Bristol-Myers Squibb Co. Antidiabetic formulation and method
GB9928330D0 (en) 1999-11-30 2000-01-26 Ferring Bv Novel antidiabetic agents
NZ519231A (en) 1999-12-23 2004-05-28 Novartis Ag Use of nateglinide as an insulin secretion enhancer for treating impaired glucose metabolism
KR20020071931A (en) 2000-01-07 2002-09-13 트렌스폼 파마수티컬스 인코퍼레이티드 High-throughput formation, identification, and analysis of diverse solid-forms
US6362172B2 (en) 2000-01-20 2002-03-26 Bristol-Myers Squibb Company Water soluble prodrugs of azole compounds
ES2436610T3 (en) 2000-01-21 2014-01-03 Novartis Ag Combinations containing dipeptidylpeptidase-IV inhibitors and antidiabetic agents
JP4621326B2 (en) 2000-02-01 2011-01-26 エーザイ・アール・アンド・ディー・マネジメント株式会社 Teprenone stabilized composition
WO2001056993A2 (en) 2000-02-05 2001-08-09 Vertex Pharmaceuticals Incorporated Pyrazole compositions useful as inhibitors of erk
EP1295609A4 (en) 2000-02-24 2004-11-03 Takeda Chemical Industries Ltd Drugs containing combined active ingredients
EP1132389A1 (en) 2000-03-06 2001-09-12 Vernalis Research Limited New aza-indolyl derivatives for the treatment of obesity
US6395767B2 (en) 2000-03-10 2002-05-28 Bristol-Myers Squibb Company Cyclopropyl-fused pyrrolidine-based inhibitors of dipeptidyl peptidase IV and method
GB0006133D0 (en) 2000-03-14 2000-05-03 Smithkline Beecham Plc Novel pharmaceutical
JP2001278812A (en) 2000-03-27 2001-10-10 Kyoto Pharmaceutical Industries Ltd Disintegrant for tablet and tablet using the same
US6399101B1 (en) 2000-03-30 2002-06-04 Mova Pharmaceutical Corp. Stable thyroid hormone preparations and method of making same
MXPA02009485A (en) 2000-03-31 2003-03-10 Kirin Brewery Powdery preparation for transmucosal administration containing a polymeric form of drug and exhibiting improved storage stability.
CZ20023234A3 (en) 2000-03-31 2003-01-15 Probiodrug Ag Medicament against diabetes mellitus
JP2001292388A (en) 2000-04-05 2001-10-19 Sharp Corp Reproducing device
GB0008694D0 (en) 2000-04-07 2000-05-31 Novartis Ag Organic compounds
WO2001096301A1 (en) 2000-06-14 2001-12-20 Toray Industries, Inc. Processes for producing racemic piperidine derivative and for producing optically active piperidine derivative
US7078397B2 (en) 2000-06-19 2006-07-18 Smithkline Beecham Corporation Combinations of dipeptidyl peptidase IV inhibitors and other antidiabetic agents for the treatment of diabetes mellitus
GB0014969D0 (en) 2000-06-19 2000-08-09 Smithkline Beecham Plc Novel method of treatment
US6689353B1 (en) 2000-06-28 2004-02-10 Bayer Pharmaceuticals Corporation Stabilized interleukin 2
JP2004502690A (en) 2000-07-04 2004-01-29 ノボ ノルディスク アクティーゼルスカブ Heterocyclic compounds that are inhibitors of the enzyme DPP-IV
AU7775401A (en) 2000-08-10 2002-02-25 Welfide Corp Proline derivatives and use thereof as drugs
US6821978B2 (en) 2000-09-19 2004-11-23 Schering Corporation Xanthine phosphodiesterase V inhibitors
US20060034922A1 (en) 2000-11-03 2006-02-16 Andrx Labs, Llc Controlled release metformin compositions
CA2433090A1 (en) 2000-12-27 2002-07-04 Kyowa Hakko Kogyo Co., Ltd. Dipeptidyl peptidase iv inhibitor
FR2818906B1 (en) 2000-12-29 2004-04-02 Dospharma DRUG ASSOCIATION OF A BIGUANINE AND A CARRIER, FOR EXAMPLE OF METFORMIN AND ARGININE
FR2819254B1 (en) 2001-01-08 2003-04-18 Fournier Lab Sa NOVEL N- (PHENYLSULFONYL) GLYCINE COMPOUNDS, PROCESS FOR THEIR PREPARATION AND THEIR USE FOR OBTAINING PHARMACEUTICAL COMPOSITIONS
DE10117803A1 (en) 2001-04-10 2002-10-24 Boehringer Ingelheim Pharma New 8-substituted-xanthine derivatives, useful e.g. for treating diabetes and arthritis, act by inhibiting dipeptidylpeptidase-IV
DE10109021A1 (en) 2001-02-24 2002-09-05 Boehringer Ingelheim Pharma New 8-substituted-xanthine derivatives, useful e.g. for treating diabetes and arthritis, act by inhibiting dipeptidylpeptidase-IV
US7034039B2 (en) 2001-02-02 2006-04-25 Takeda Pharmaceutical Company Limited Fused heterocyclic compounds
US6610326B2 (en) 2001-02-16 2003-08-26 Andrx Corporation Divalproex sodium tablets
WO2002066015A1 (en) 2001-02-16 2002-08-29 Bristol-Myers Squibb Pharma Company Use of polyalkylamine polymers in controlled release devices
ATE353900T1 (en) 2001-02-24 2007-03-15 Boehringer Ingelheim Pharma XANTHINE DERIVATIVES, THEIR PRODUCTION AND THEIR USE AS MEDICINAL PRODUCTS
US6936590B2 (en) 2001-03-13 2005-08-30 Bristol Myers Squibb Company C-aryl glucoside SGLT2 inhibitors and method
US6693094B2 (en) 2001-03-22 2004-02-17 Chrono Rx Llc Biguanide and sulfonylurea formulations for the prevention and treatment of insulin resistance and type 2 diabetes mellitus
JP2002348279A (en) 2001-05-25 2002-12-04 Nippon Kayaku Co Ltd Production method for optically active pyridylketone derivatives and optically active pyridylketone derivatives
DE10130371A1 (en) 2001-06-23 2003-01-02 Boehringer Ingelheim Pharma New drug compositions based on anticholinergics, corticosteroids and betamimetics
GB0115517D0 (en) 2001-06-25 2001-08-15 Ferring Bv Novel antidiabetic agents
DE60221983T2 (en) 2001-06-27 2008-05-15 Smithkline Beecham Corp. FLUORPYRROLIDINES AS DIPEPTIDYL-PEPTIDASE INHIBITORS
DE60222667T2 (en) 2001-06-27 2008-07-17 Smithkline Beecham Corp. FLUORPYRROLIDINES AS DIPEPTIDYLPEPTIDASE INHIBITORS
ATE388951T1 (en) 2001-07-03 2008-03-15 Novo Nordisk As DPP-IV INHIBITING PURINE DERIVATIVES FOR THE TREATMENT OF DIABETES
US6869947B2 (en) 2001-07-03 2005-03-22 Novo Nordisk A/S Heterocyclic compounds that are inhibitors of the enzyme DPP-IV
UA74912C2 (en) 2001-07-06 2006-02-15 Merck & Co Inc Beta-aminotetrahydroimidazo-(1,2-a)-pyrazines and tetratriazolo-(4,3-a)-pyrazines as inhibitors of dipeptylpeptidase for the treatment or prevention of diabetes
MXPA04000224A (en) 2001-07-10 2005-07-25 4Sc Ag Novel compounds as anti-inflammatory, immunomodulatory and anti-proliferatory agents.
US7638522B2 (en) 2001-08-13 2009-12-29 Janssen Pharmaceutica N.V. Salt of 4-[[4-[[4-(2-cyanoethenyl)-2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino] benzonitrile
WO2003024965A2 (en) 2001-09-19 2003-03-27 Novo Nordisk A/S Heterocyclic compounds that are inhibitors of the enzyme dpp-iv
DE10294792D2 (en) 2001-10-15 2004-09-16 Hemoteq Gmbh Coating stents to prevent restenosis
DE10151296A1 (en) 2001-10-17 2003-04-30 Boehringer Ingelheim Pharma Keratinocytes useful as a biologically active substance in the treatment of wounds
US6723340B2 (en) 2001-10-25 2004-04-20 Depomed, Inc. Optimal polymer mixtures for gastric retentive tablets
US6861440B2 (en) 2001-10-26 2005-03-01 Hoffmann-La Roche Inc. DPP IV inhibitors
US20030083354A1 (en) 2001-10-26 2003-05-01 Pediamed Pharmaceuticals, Inc. Phenylephrine tannate and pyrilamine tannate salts in pharmaceutical compositions
CA2363053C (en) 2001-11-09 2011-01-25 Bernard Charles Sherman Clopidogrel bisulfate tablet formulation
WO2003053929A1 (en) 2001-12-21 2003-07-03 Toray Fine Chemicals Co., Ltd. Process for production of optically active cis-piperidine derivatives
US6727261B2 (en) 2001-12-27 2004-04-27 Hoffman-La Roche Inc. Pyrido[2,1-A]Isoquinoline derivatives
US20070197552A1 (en) 2002-01-11 2007-08-23 Novo Nordisk A/S Method and composition for treatment of diabetes, hypertension, chronic heart failure and fluid retentive states
ATE409466T1 (en) 2002-01-11 2008-10-15 Novo Nordisk As METHOD AND COMPOSITION FOR TREATING DIABETES, HYPERTENSION, CHRONIC HEART FAILURE AND CONDITIONS ASSOCIATED WITH FLUID RETENTION
CA2651604C (en) 2002-01-16 2013-04-09 Boehringer Ingelheim Pharma Gmbh & Co. Kg Method for preparation of substantially amorphous telmisartan
EP1333033A1 (en) 2002-01-30 2003-08-06 Boehringer Ingelheim Pharma GmbH & Co.KG FAP-activated anti-tumor compounds
RU2004123621A (en) 2002-02-01 2005-04-10 Пфайзер Продактс Инк. (Us) MEDICINAL FORMS WITH IMMEDIATE RELEASE CONTAINING SOLID DISPERSIONS OF MEDICINES
US7610153B2 (en) 2002-02-13 2009-10-27 Virginia Commonwealth University Multi-drug titration and evaluation
EP1476139B1 (en) 2002-02-21 2017-05-17 Valeant Pharmaceuticals Luxembourg S.à.r.l. Controlled release dosage forms
US7074798B2 (en) 2002-02-25 2006-07-11 Eisai Co., Ltd Xanthine derivative and DPPIV inhibitor
HUP0200849A2 (en) 2002-03-06 2004-08-30 Sanofi-Synthelabo N-aminoacetyl-pyrrolidine-2-carbonitrile derivatives, pharmaceutical compositions containing them and process for producing them
JP4298212B2 (en) 2002-03-29 2009-07-15 大日本印刷株式会社 Method for producing high melting point type epinastine hydrochloride
JP2003300977A (en) 2002-04-10 2003-10-21 Sumitomo Pharmaceut Co Ltd Xanthine derivative
US20050113577A1 (en) 2002-04-16 2005-05-26 Karki Shyam B. Solid forms of slats with tyrosine kinase activity
JP4424203B2 (en) 2002-04-26 2010-03-03 味の素株式会社 Diabetes prevention and treatment
AU2003231252A1 (en) 2002-05-09 2003-11-11 Enos Pharmaceuticals, Inc. Methods and compositions for the treatment and prevention of intermittent claudication or alzheimer's disease
GB0212412D0 (en) 2002-05-29 2002-07-10 Novartis Ag Combination of organic compounds
JP2005529934A (en) 2002-05-31 2005-10-06 シェーリング コーポレイション Process for preparing xanthine phosphodiesterase V inhibitor and precursors thereof
CA2485641C (en) 2002-06-06 2010-12-14 Eisai Co., Ltd. Novel condensed imidazole derivatives
FR2840897B1 (en) 2002-06-14 2004-09-10 Fournier Lab Sa NOVEL ARYLSULFONAMIDE DERIVATIVES AND THEIR USE IN THERAPEUTICS
US20040002615A1 (en) 2002-06-28 2004-01-01 Allen David Robert Preparation of chiral amino-nitriles
GB0215676D0 (en) 2002-07-05 2002-08-14 Novartis Ag Organic compounds
US20040023981A1 (en) 2002-07-24 2004-02-05 Yu Ren Salt forms with tyrosine kinase activity
AR040661A1 (en) 2002-07-26 2005-04-13 Theravance Inc CRYSTAL DICHLORHYDRATE OF N- {2 - [- ((R) -2-HYDROXI-2-PHENYLETHYLAMINE) PHENYL] ETIL} - (R) -2 HYDROXY-2- (3-FORMAMIDE-4-HYDROXYPHENYL) ETHYLAMINE, RECEIVER AGONIST BETA 2 ADRENERGIC
TW200404796A (en) 2002-08-19 2004-04-01 Ono Pharmaceutical Co Nitrogen-containing compound
US7407955B2 (en) 2002-08-21 2008-08-05 Boehringer Ingelheim Pharma Gmbh & Co., Kg 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
EA016166B1 (en) 2002-08-21 2012-02-28 Бёрингер Ингельхайм Фарма Гмбх & Ко. Кг 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
DE10238243A1 (en) 2002-08-21 2004-03-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg New 8-(3-amino-piperidin-1-yl)-xanthine derivatives are dipeptidylpeptidase-IV inhibitors useful for, e.g. treating diabetes mellitus, arthritis or obesity
DE10238470A1 (en) 2002-08-22 2004-03-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg New xanthine derivatives, their production and their use as medicines
US7569574B2 (en) 2002-08-22 2009-08-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg Purine derivatives, the preparation thereof and their use as pharmaceutical compositions
US7495005B2 (en) 2002-08-22 2009-02-24 Boehringer Ingelheim Pharma Gmbh & Co. Kg Xanthine derivatives, their preparation and their use in pharmaceutical compositions
DE10238477A1 (en) 2002-08-22 2004-03-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg New purine derivatives, their production and their use as medicines
DE10238723A1 (en) 2002-08-23 2004-03-11 Bayer Ag Phenyl substituted pyrazolyprimidines
DE10238724A1 (en) 2002-08-23 2004-03-04 Bayer Ag New 6-alkyl-1,5-dihydro-4H-pyrazolo-(3,4-d)-pyrimidin-4-ones useful as selective phosphodiesterase 9A inhibitors for improving attention, concentration, learning and/or memory performance
AU2003262059A1 (en) 2002-09-11 2004-04-30 Takeda Pharmaceutical Company Limited Sustained release preparation
MXPA05002899A (en) 2002-09-16 2005-05-27 Wyeth Corp Delayed release formulations for oral administration of a polypeptide therapeutic agent and methods of using same.
RU2328280C2 (en) 2002-09-26 2008-07-10 Эйсай Ар Энд Ди Менеджмент Ко., Лтд. Combinative medicinal agent
EP1558218A1 (en) 2002-10-08 2005-08-03 Ranbaxy Laboratories Limited Gabapentin tablets and methods for their preparation
WO2004033455A2 (en) 2002-10-08 2004-04-22 Novo Nordisk A/S Hemisuccinate salts of heterocyclic dpp-iv inhibitors
US20040122048A1 (en) 2002-10-11 2004-06-24 Wyeth Holdings Corporation Stabilized pharmaceutical composition containing basic excipients
US6861526B2 (en) 2002-10-16 2005-03-01 Pfizer Inc. Process for the preparation of (S,S)-cis-2-benzhydryl-3-benzylaminoquinuclidine
NZ538897A (en) 2002-10-18 2007-02-23 Merck & Co Inc Beta-amino heterocyclic dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
JP2004161749A (en) 2002-10-24 2004-06-10 Toray Fine Chemicals Co Ltd Method for producing optically active, nitrogen-containing compound
AU2003280680A1 (en) 2002-11-01 2004-06-18 Sumitomo Pharmaceuticals Co., Ltd. Xanthine compound
DE60310991T2 (en) 2002-11-07 2007-10-18 Merck & Co, Inc. PHENYL ALANOL DERIVATIVES AS AN INHIBITORS OF DIPEPTIDYL PEPTIDASE FOR THE TREATMENT OR PREVENTION OF DIABETES
US7482337B2 (en) 2002-11-08 2009-01-27 Boehringer Ingelheim Pharma Gmbh & Co. Kg Xanthine derivatives, the preparation thereof and their use as pharmaceutical compositions
DE10251927A1 (en) 2002-11-08 2004-05-19 Boehringer Ingelheim Pharma Gmbh & Co. Kg New 1,7,8-trisubstituted xanthine derivatives, are dipeptidylpeptidase-IV inhibitors useful e.g. for treating diabetes mellitus type I or II, arthritis or obesity
DE10254304A1 (en) 2002-11-21 2004-06-03 Boehringer Ingelheim Pharma Gmbh & Co. Kg New xanthine derivatives, their production and their use as medicines
UY28103A1 (en) 2002-12-03 2004-06-30 Boehringer Ingelheim Pharma NEW IMIDAZO-PIRIDINONAS REPLACED, ITS PREPARATION AND ITS EMPLOYMENT AS MEDICATIONS
US7109192B2 (en) 2002-12-03 2006-09-19 Boehringer Ingelheim Pharma Gmbh & Co Kg Substituted imidazo-pyridinones and imidazo-pyridazinones, the preparation thereof and their use as pharmaceutical compositions
CN100348189C (en) 2002-12-10 2007-11-14 诺瓦提斯公司 Combination of an dpp-iv inhibitor and a ppar-alpha compound
US20040152720A1 (en) 2002-12-20 2004-08-05 Boehringer Ingelheim Pharma Gmbh & Co. Kg Powdered medicaments containing a tiotropium salt and salmeterol xinafoate
DE10351663A1 (en) 2002-12-20 2004-07-01 Boehringer Ingelheim Pharma Gmbh & Co. Kg Stable, accurately dosable inhalable powder medicament for treating asthma or chronic obstructive pulmonary disease, containing tiotropium, specific form of salmeterol xinafoate and auxiliary
JP2006515882A (en) 2003-01-08 2006-06-08 カイロン コーポレイション Stabilized aqueous compositions containing tissue factor pathway inhibitor (TFPI) or tissue factor pathway inhibitor variants
GEP20084540B (en) 2003-01-14 2008-11-25 Arena Pharm Inc 1,2,3-trisubstituted aryl and heteroaryl derivatives as modulators of metabolism and the prpphylaxis and treatment of disorders related thereto such as diabetes and hyperglycemia
DE10335027A1 (en) 2003-07-31 2005-02-17 Boehringer Ingelheim Pharma Gmbh & Co. Kg Use of telmisartan and simvastatin for treatment or prophylaxis of cardiovascular, cardiopulmonary and renal diseases e.g. hypertension combined with hyperlipidemia or atherosclerosis
PE20040950A1 (en) 2003-02-14 2005-01-01 Theravance Inc BIPHENYL DERIVATIVES AS AGONISTS OF ß2-ADRENERGIC RECEPTORS AND AS ANTAGONISTS OF MUSCARINAL RECEPTORS
JP2004250336A (en) 2003-02-18 2004-09-09 Kao Corp Method for producing coated tablet and sugar-coated tablet
US7135575B2 (en) 2003-03-03 2006-11-14 Array Biopharma, Inc. P38 inhibitors and methods of use thereof
US7442387B2 (en) 2003-03-06 2008-10-28 Astellas Pharma Inc. Pharmaceutical composition for controlled release of active substances and manufacturing method thereof
AU2004220053A1 (en) 2003-03-12 2004-09-23 Arizona Board Of Regents On Behalf Of The University Of Arizona Weak base salts
US20060159746A1 (en) 2003-03-18 2006-07-20 Troup John P Compositions comprising fatty acids and amino acids
SI1615646T2 (en) 2003-04-08 2022-11-30 Progenics Pharmaceuticals, Inc. Pharmaceutical formulations containing methylnaltrexone
US20040220186A1 (en) 2003-04-30 2004-11-04 Pfizer Inc. PDE9 inhibitors for treating type 2 diabetes,metabolic syndrome, and cardiovascular disease
WO2004096806A1 (en) 2003-04-30 2004-11-11 Sumitomo Pharmaceuticals Co. Ltd. Fused imidazole derivative
TW200510277A (en) 2003-05-27 2005-03-16 Theravance Inc Crystalline form of β2-adrenergic receptor agonist
AU2003902828A0 (en) 2003-06-05 2003-06-26 Fujisawa Pharmaceutical Co., Ltd. Dpp-iv inhibitor
US7566707B2 (en) 2003-06-18 2009-07-28 Boehringer Ingelheim International Gmbh Imidazopyridazinone and imidazopyridone derivatives, the preparation thereof and their use as pharmaceutical compositions
DE10327439A1 (en) 2003-06-18 2005-01-05 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel imidazopyridazinone and imidazopyridone derivatives, their production and their use as pharmaceuticals
EP1638970B1 (en) 2003-06-20 2010-11-24 F. Hoffmann-La Roche AG Pyrid (2, 1-a) - isoquinoline derivatives as dpp-iv inhibitors
CN101090901B (en) 2003-06-20 2010-12-15 霍夫曼-拉罗奇有限公司 Hexahydropyridoisoqinolines as DPP-IV inhibitors
JO2625B1 (en) 2003-06-24 2011-11-01 ميرك شارب اند دوم كوربوريشن Phosphoric acid salt of a dipeptidyl peptidase-IV inhibitor
AR045047A1 (en) 2003-07-11 2005-10-12 Arena Pharm Inc ARILO AND HETEROARILO DERIVATIVES TRISUSTITUIDOS AS MODULATORS OF METABOLISM AND PROFILAXIS AND TREATMENT OF DISORDERS RELATED TO THEMSELVES
KR20060056944A (en) 2003-07-14 2006-05-25 아레나 파마슈티칼스, 인크. Fused-aryl and heteroaryl derivatives as modulators of metabolism and the prophylaxis and treatment of disorders related thereto
US20050027012A1 (en) 2003-07-16 2005-02-03 Boehringer Ingelheim International Gmbh Tablets containing ambroxol
EP1558220B1 (en) 2003-07-24 2010-02-10 Wockhardt Limited Oral compositions for treatment of diabetes
CA2534649A1 (en) 2003-08-01 2005-02-10 Genelabs Technologies, Inc. Bicyclic imidazol derivatives against flaviviridae
US6995183B2 (en) 2003-08-01 2006-02-07 Bristol Myers Squibb Company Adamantylglycine-based inhibitors of dipeptidyl peptidase IV and methods
KR20120104619A (en) 2003-08-14 2012-09-21 노보 노르디스크 헬스 케어 악티엔게젤샤프트 Liquid, aqueous pharmaceutical composition of factor vii polypeptides
CN102349927A (en) 2003-08-29 2012-02-15 Hdac默克研究有限责任公司 Combination methods of treating cancer
EP1699777B1 (en) 2003-09-08 2012-12-12 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
CA2540741A1 (en) 2003-10-03 2005-04-14 Takeda Pharmaceutical Company Limited Agent for treating diabetes
US7284625B2 (en) 2003-10-22 2007-10-23 Kirk Jones Quick connect assembly for ATV implements
BR0304443B1 (en) 2003-10-28 2012-08-21 process for obtaining high thio2 and low radionuclide titanium concentrates from mechanical anatase concentrates.
WO2005049022A2 (en) 2003-11-17 2005-06-02 Novartis Ag Use of dipeptidyl peptidase iv inhibitors
DE10355304A1 (en) 2003-11-27 2005-06-23 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel 8- (piperazin-1-yl) and 8 - ([1,4] diazepan-1-yl) xanthines, their preparation and their use as pharmaceuticals
JPWO2005053695A1 (en) 2003-12-04 2007-12-06 エーザイ・アール・アンド・ディー・マネジメント株式会社 Agents for preventing or treating multiple sclerosis
DE10359098A1 (en) 2003-12-17 2005-07-28 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel 2- (piperazin-1-yl) and 2 - ([1,4] diazepan-1-yl) imidazo [4,5-d] pyridazin-4-ones, their preparation and their use as pharmaceuticals
US7217711B2 (en) 2003-12-17 2007-05-15 Boehringer Ingelheim International Gmbh Piperazin-1-yl and 2-([1,4]diazepan-1-yl)-imidazo[4,5-d]-pyridazin-4-ones, the preparation thereof and their use as pharmaceutical compositions
DK1723136T3 (en) 2003-12-18 2011-06-27 Tibotec Pharm Ltd Piperidinamino benzimidazole derivative as inhibitors of respiratory syncytial virus replication
DE10360835A1 (en) 2003-12-23 2005-07-21 Boehringer Ingelheim Pharma Gmbh & Co. Kg New bicyclic imidazole derivatives are dipeptidylpeptidase-IV inhibitors useful to treat e.g. arthritis, obesity, allograft transplantation and calcitonin-induced osteoporosis
WO2005061489A1 (en) 2003-12-24 2005-07-07 Prosidion Limited Heterocyclic derivatives as gpcr receptor agonists
CA2552988A1 (en) 2004-01-21 2005-08-04 Janssen Pharmaceutica Nv Mitratapide oral solution
SE0400234D0 (en) 2004-02-06 2004-02-06 Active Biotech Ab New compounds, methods for their preparation and use thereof
WO2005085246A1 (en) 2004-02-18 2005-09-15 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthine, the production thereof and the use in the form of a dpp inhibitor
US7501426B2 (en) 2004-02-18 2009-03-10 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, their preparation and their use as pharmaceutical compositions
DE102004019540A1 (en) 2004-04-22 2005-11-10 Boehringer Ingelheim Pharma Gmbh & Co. Kg Composition, useful for treatment of e.g. inflammatory and obstructive respiratory complaint, sinus rhythm in heart in atrioventricular block and circulatory shock, comprises 6-hydroxy-4H-benzo1,4oxazin-3-one derivatives and other actives
DE102004009039A1 (en) 2004-02-23 2005-09-08 Boehringer Ingelheim Pharma Gmbh & Co. Kg 8- [3-Amino-piperidin-1-yl] xanthines, their preparation and use as pharmaceuticals
EP1593671A1 (en) 2004-03-05 2005-11-09 Graffinity Pharmaceuticals AG DPP-IV inhibitors
US7393847B2 (en) 2004-03-13 2008-07-01 Boehringer Ingleheim International Gmbh Imidazopyridazinediones, their preparation and their use as pharmaceutical compositions
NZ549716A (en) 2004-03-15 2010-04-30 Takeda Pharmaceutical Pyrimidin-dione derivatives as dipeptidyl peptidase inhibitors
WO2005092877A1 (en) 2004-03-16 2005-10-06 Boehringer Ingelheim International Gmbh Glucopyranosyl-substituted benzol derivatives, drugs containing said compounds, the use thereof and method for the production thereof
EP1577306A1 (en) 2004-03-17 2005-09-21 Boehringer Ingelheim Pharma GmbH & Co.KG novel benzoxazinone derivatives as slow-acting betamimetics and use thereof in treatment of respiratory tract diseases
EP1740589A1 (en) 2004-04-10 2007-01-10 Boehringer Ingelheim International GmbH Novel 2-amino-imidazo[4,5-d]pyridazin-4-ones and 2-amino-imidazo[4,5-c]pyridin-4-ones, production and use thereof as medicaments
US7179809B2 (en) 2004-04-10 2007-02-20 Boehringer Ingelheim International Gmbh 2-Amino-imidazo[4,5-d]pyridazin-4-ones, their preparation and their use as pharmaceutical compositions
US20050239778A1 (en) 2004-04-22 2005-10-27 Boehringer Ingelheim International Gmbh Novel medicament combinations for the treatment of respiratory diseases
US20050244502A1 (en) 2004-04-28 2005-11-03 Mathias Neil R Composition for enhancing absorption of a drug and method
CN101822658A (en) 2004-05-03 2010-09-08 奥加生物药业(I.P.3)有限公司 Cysteamine is used for the treatment of hypercholesterolemia and diabetic complication
US7439370B2 (en) 2004-05-10 2008-10-21 Boehringer Ingelheim International Gmbh Imidazole derivatives, their preparation and their use as intermediates for the preparation of pharmaceutical compositions and pesticides
AP2320A (en) 2004-05-12 2011-11-07 Pfizer Procucts Inc Proline derivatives and their use as dipeptidyl peptidase IV inhibitors.
DE102004024454A1 (en) 2004-05-14 2005-12-08 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel enantiomerically pure beta agonists, process for their preparation and their use as pharmaceuticals
PE20060315A1 (en) 2004-05-24 2006-05-15 Irm Llc THIAZOLE COMPOUNDS AS PPAR MODULATORS
TWI415635B (en) 2004-05-28 2013-11-21 必治妥施貴寶公司 Coated tablet formulation and method
UA93349C2 (en) 2004-06-01 2011-02-10 Эйрэс Трейдинг C.A. Method of stabilizing interferon monomeric protein
US7935723B2 (en) 2004-06-04 2011-05-03 Novartis Pharma Ag Use of organic compounds
WO2005120576A2 (en) 2004-06-09 2005-12-22 Yasoo Health Composition and method for improving pancreatic islet cell survival
DE102004030502A1 (en) 2004-06-24 2006-01-12 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel imidazoles and triazoles, their preparation and use as medicines
CA2511269A1 (en) 2004-07-07 2006-01-07 F. Hoffmann-La Roche Ag Multimarker panel based on p1gf for diabetes type 1 and 2
CA2573209A1 (en) 2004-07-14 2006-01-19 Novartis Ag Combination of dpp-iv inhibitors and compounds modulating 5-ht3 and/or 5-ht4 receptors
JP2006045156A (en) 2004-08-06 2006-02-16 Sumitomo Pharmaceut Co Ltd Condensed pyrazole derivative
TW200613275A (en) 2004-08-24 2006-05-01 Recordati Ireland Ltd Lercanidipine salts
WO2006022428A1 (en) 2004-08-26 2006-03-02 Takeda Pharmaceutical Company Limited Remedy for diabetes
DE102004043944A1 (en) 2004-09-11 2006-03-30 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel 8- (3-amino-piperidin-1-yl) -7- (but-2-ynyl) -xanthines, their preparation and their use as pharmaceuticals
DE102004044221A1 (en) 2004-09-14 2006-03-16 Boehringer Ingelheim Pharma Gmbh & Co. Kg New 3-methyl-7-butynyl xanthines, their preparation and their use as pharmaceuticals
CN1759834B (en) 2004-09-17 2010-06-23 中国医学科学院医药生物技术研究所 Application of berberine or associated with Simvastatin in preparing product for preventing or curing disease or symptom related to blood fat
AU2005289881A1 (en) 2004-09-23 2006-04-06 Amgen Inc. Substituted sulfonamidopropionamides and methods of use
KR20070099527A (en) 2004-10-08 2007-10-09 노파르티스 아게 Combination of organic compounds
EA013463B1 (en) 2004-10-12 2010-04-30 ГЛЕНМАРК ФАРМАСЬЮТИКАЛС Эс.Эй. Novel dipeptidyl peptidase iv inhibitors, pharmaceutical compositions containing them, process for their preparation and method for the treatment using thereof
RU2007119320A (en) 2004-10-25 2008-11-27 Новартис АГ (CH) COMBINATION OF DPP-IV INHIBITOR, PPAR ANTI-DIABETIC AGENT, AND METFORMIN
DE102005013967A1 (en) 2004-11-05 2006-10-05 Boehringer Ingelheim Pharma Gmbh & Co. Kg New imidazole or pyrimidine derivatives are bradykinin B1 antagonists used for treating e.g. pain, stroke, peptic ulcers and other inflammatory disorders
DE102004054054A1 (en) 2004-11-05 2006-05-11 Boehringer Ingelheim Pharma Gmbh & Co. Kg Process for preparing chiral 8- (3-amino-piperidin-1-yl) -xanthines
JP2006137678A (en) 2004-11-10 2006-06-01 Shionogi & Co Ltd Interleukin-2 composition
KR20070090206A (en) 2004-12-24 2007-09-05 다이닛본 스미토모 세이야꾸 가부시끼가이샤 Bicyclic pyrrole derivatives
KR100760430B1 (en) 2004-12-31 2007-10-04 한미약품 주식회사 Controlled release complex formulation for oral administration of medicine for diabetes and method for the preparation thereof
DOP2006000008A (en) 2005-01-10 2006-08-31 Arena Pharm Inc COMBINED THERAPY FOR THE TREATMENT OF DIABETES AND RELATED AFFECTIONS AND FOR THE TREATMENT OF AFFECTIONS THAT IMPROVE THROUGH AN INCREASE IN THE BLOOD CONCENTRATION OF GLP-1
MY148521A (en) 2005-01-10 2013-04-30 Arena Pharm Inc Substituted pyridinyl and pyrimidinyl derivatives as modulators of metabolism and the treatment of disorders related thereto
GT200600008A (en) 2005-01-18 2006-08-09 FORMULATION OF DIRECT COMPRESSION AND PROCESS
EP1874339A1 (en) 2005-04-21 2008-01-09 Gastrotech Pharma A/S Pharmaceutical preparations of a glp-1 molecule and an anti-emetic drug
US7553861B2 (en) 2005-04-22 2009-06-30 Alantos Pharmaceuticals Holding, Inc. Dipeptidyl peptidase-IV inhibitors
UA91546C2 (en) 2005-05-03 2010-08-10 Бьорінгер Інгельхайм Інтернаціональ Гмбх Crystalline form of 1-chloro-4-(я-d-glucopyranos-1-yl)-2-[4-((s)-tetrahydrofuran-3-yloxy)-benzyl]-benzene, a method for its preparation and the use thereof for preparing medicaments
TW200716557A (en) 2005-05-25 2007-05-01 Wyeth Corp Methods of synthesizing substituted 3-cyanoquinolines and intermediates thereof
GT200600218A (en) 2005-06-10 2007-03-28 FORMULATION AND PROCESS OF DIRECT COMPRESSION
JP5301987B2 (en) 2005-06-20 2013-09-25 デコード・ジェネティクス・イーエイチエフ Genetic variants in the TCF7L2 gene as a diagnostic marker for risk of type 2 diabetes
EP2985022B1 (en) 2005-07-01 2018-09-12 Merck Sharp & Dohme Corp. Process for synthesizing a cetp inhibitor
WO2007007173A2 (en) 2005-07-08 2007-01-18 Pfizer Limited Human anti-madcam antibodies
UY29694A1 (en) 2005-07-28 2007-02-28 Boehringer Ingelheim Int METHODS TO PREVENT AND TREAT METABOLIC AND NEW DISORDERS DERIVED FROM PIRAZOL-O-GLUCOSIDO
DE102005035891A1 (en) 2005-07-30 2007-02-08 Boehringer Ingelheim Pharma Gmbh & Co. Kg 8- (3-amino-piperidin-1-yl) -xanthines, their preparation and their use as pharmaceuticals
WO2007017423A2 (en) 2005-08-11 2007-02-15 F. Hoffmann-La Roche Ag Pharmaceutical composition comprising a dpp-iv inhibitor
EP1760076A1 (en) 2005-09-02 2007-03-07 Ferring B.V. FAP Inhibitors
CN102940638B (en) 2005-09-14 2015-03-04 武田药品工业株式会社 Dipeptidyl peptidase inhibitors for treating diabetic
PE20070522A1 (en) 2005-09-14 2007-07-11 Takeda Pharmaceutical 2- [6- (3-AMINO-PIPERIDIN-1-IL) -3-METHYL-2,4-DIOXO-3,4-DIHYDRO-2H-PYRIMIDIN-1-ILMETHYL] -4-FLUORO-BENZONITRILE AS INHIBITOR OF DIPEPTIDIL PEPTIDASE AND PHARMACEUTICAL COMPOSITIONS CONTAINING IT
CA2619093A1 (en) 2005-09-16 2007-03-29 Arena Pharmaceuticals, Inc. Modulators of metabolism and the treatment of disorders related thereto
JP5072848B2 (en) 2005-09-20 2012-11-14 ノバルティス アーゲー Use of a DPP-IV inhibitor to reduce hypoglycemic events
EP1945190A1 (en) 2005-09-22 2008-07-23 Swissco Devcelopment AG Effervescent metformin composition and tablets and granules made therefrom
JOP20180109A1 (en) 2005-09-29 2019-01-30 Novartis Ag New Formulation
JP2009513633A (en) 2005-10-25 2009-04-02 メルク エンド カムパニー インコーポレーテッド Combination of dipeptidyl peptidase-4 inhibitor and antihypertensive agent for the treatment of diabetes and hypertension
EP1943301A4 (en) 2005-11-04 2010-01-13 Ls Corp Synthesis of mdh-polymer hybrid particles
WO2007078726A2 (en) 2005-12-16 2007-07-12 Merck & Co., Inc. Pharmaceutical compositions of combinations of dipeptidyl peptidase-4 inhibitors with metformin
GB0526291D0 (en) 2005-12-23 2006-02-01 Prosidion Ltd Therapeutic method
CN101384594A (en) 2005-12-23 2009-03-11 诺瓦提斯公司 Condensed heterocyclic compounds useful as dpp-iv inhibitors
WO2007120936A2 (en) 2006-01-06 2007-10-25 Novartis Ag Use.of vildagliptin for the treatment of diabetes
CA2635838A1 (en) 2006-02-15 2007-08-23 Boehringer Ingelheim International Gmbh Glucopyranosyl-substituted benzonitrile derivatives, pharmaceutical compositions containing such compounds, their use and process for their manufacture
WO2007099345A1 (en) 2006-03-02 2007-09-07 Betagenon Ab Medical use of bmp-2 and/ or bmp-4
PE20071221A1 (en) 2006-04-11 2007-12-14 Arena Pharm Inc GPR119 RECEPTOR AGONISTS IN METHODS TO INCREASE BONE MASS AND TO TREAT OSTEOPOROSIS AND OTHER CONDITIONS CHARACTERIZED BY LOW BONE MASS, AND COMBINED THERAPY RELATED TO THESE AGONISTS
US8455435B2 (en) 2006-04-19 2013-06-04 Ludwig-Maximilians-Universitat Munchen Remedies for ischemia
EP1852108A1 (en) 2006-05-04 2007-11-07 Boehringer Ingelheim Pharma GmbH & Co.KG DPP IV inhibitor formulations
CA2810839A1 (en) 2006-05-04 2007-11-15 Boehringer Ingelheim International Gmbh A polymorphic form of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(r)-amino-piperidin-1-yl)-xanthine
PE20110235A1 (en) 2006-05-04 2011-04-14 Boehringer Ingelheim Int PHARMACEUTICAL COMBINATIONS INCLUDING LINAGLIPTIN AND METMORPHINE
KR20070111099A (en) 2006-05-16 2007-11-21 영진약품공업주식회사 Novel crystalline form of sitagliptin hydrochloride
PL2020996T3 (en) 2006-05-16 2012-04-30 Gilead Sciences Inc Method and compositions for treating hematological malignancies
WO2007137107A2 (en) 2006-05-19 2007-11-29 Abbott Laboratories Inhibitors of diacylglycerol o-acyltransferase type 1 enzyme
KR100858848B1 (en) 2006-05-23 2008-09-17 한올제약주식회사 Pharmaceutical compositions and formulations of Metformin extended release tablets
WO2007149797A2 (en) 2006-06-19 2007-12-27 Novartis Ag Use of organic compounds
WO2007148185A2 (en) 2006-06-21 2007-12-27 Pfizer Products Inc. Substituted 3 -amino- pyrrolidino-4 -lactams as dpp inhibitors
AT503443B1 (en) 2006-06-23 2007-10-15 Leopold Franzens Uni Innsbruck Preparation of an ice surface, useful for ice rink, and ice sports cars and trains, comprises freezing water in which an inorganic substance e.g. ammonia, alkali hydroxide, hydrogen halide, nitric acid and sulfuric acid, is added
TW200811140A (en) 2006-07-06 2008-03-01 Arena Pharm Inc Modulators of metabolism and the treatment of disorders related thereto
TW200811147A (en) 2006-07-06 2008-03-01 Arena Pharm Inc Modulators of metabolism and the treatment of disorders related thereto
EP2057160A1 (en) 2006-08-08 2009-05-13 Boehringer Ingelheim International GmbH Pyrrolo [3, 2 -d]pyrimidines as dpp-iv inhibitors for the treatment of diabetes mellitus
US8039441B2 (en) 2006-08-15 2011-10-18 Boehringer Ingelheim International Gmbh Glucopyranosyl-substituted cyclopropylbenzene derivatives, pharmaceutical compositions containing such compounds, their use as SGLT inhibitors and process for their manufacture
US20100227809A1 (en) 2006-08-17 2010-09-09 Wellstat Therapeutics Corporation Combination treatment for metabolic disorders
DE102006042586B4 (en) 2006-09-11 2014-01-16 Betanie B.V. International Trading Process for the microparticulate loading of high polymer carbohydrates with hydrophobic active fluids
US7956201B2 (en) 2006-11-06 2011-06-07 Hoffman-La Roche Inc. Process for the preparation of (S)-4-fluoromethyl-dihydro-furan-2-one
US7879806B2 (en) 2006-11-06 2011-02-01 Boehringer Ingelheim International Gmbh Glucopyranosyl-substituted benzyl-benzonitrile derivates, medicaments containing such compounds, their use and process for their manufacture
KR101463724B1 (en) 2006-11-09 2014-11-21 베링거 인겔하임 인터내셔날 게엠베하 Combination therapy with SGLT-2 inhibitors and their pharmaceutial compositions
CA2671749C (en) 2006-12-06 2013-07-09 Smithkline Beecham Corporation Bicyclic compounds and uses as antidiabetics
ES2319596B1 (en) 2006-12-22 2010-02-08 Laboratorios Almirall S.A. NEW DERIVATIVES OF THE AMINO-NICOTINIC AND AMINO-ISONICOTINIC ACIDS.
US7638541B2 (en) 2006-12-28 2009-12-29 Metabolex Inc. 5-ethyl-2-{4-[4-(4-tetrazol-1-yl-phenoxymethyl)-thiazol-2-yl]-piperidin-1-yl}-pyrimidine
AR064736A1 (en) 2007-01-04 2009-04-22 Prosidion Ltd GPCR AGONISTS
CL2008000133A1 (en) 2007-01-19 2008-05-23 Boehringer Ingelheim Int PHARMACEUTICAL COMPOSITION THAT INCLUDES A COMPOUND DERIVED FROM PIRAZOL-O-GLUCOSIDE COMBINED WITH AT LEAST A SECOND THERAPEUTIC AGENT; AND USE OF THE COMPOSITION FOR THE TREATMENT OF MELLITUS DIABETES, CATARATS, NEUROPATHY, MYOCARDIAL INFARTS, AND
CA2677193C (en) 2007-02-01 2015-06-30 Takeda Pharmaceutical Company Limited Tablet preparation without causing a tableting trouble
UA95828C2 (en) 2007-02-01 2011-09-12 Такеда Фармасьютикал Компани Лимитед Solid preparation comprising alogliptin and pioglitazone
ATE508108T1 (en) 2007-02-06 2011-05-15 Chelsea Therapeutics Inc NEW COMPOUNDS, METHOD FOR THEIR PRODUCTION AND THEIR USE
JP2010521492A (en) 2007-03-15 2010-06-24 ネクティド,インク. Anti-diabetic combination comprising sustained release biguanide composition and immediate dipeptidyl peptidase IV inhibitor composition
KR20120030570A (en) 2007-04-03 2012-03-28 미쓰비시 타나베 파마 코퍼레이션 Combined use of dipeptidyl peptidase iv inhibitor compound and sweetener
JP5756289B2 (en) 2007-04-16 2015-07-29 スミス アンド ネフュー インコーポレーテッドSmith & Nephew,Inc. Electric surgical system
PE20090696A1 (en) 2007-04-20 2009-06-20 Bristol Myers Squibb Co CRYSTALLINE FORMS OF SAXAGLIPTIN AND PROCESSES FOR PREPARING THEM
JP2010526145A (en) 2007-05-04 2010-07-29 ブリストル−マイヤーズ スクイブ カンパニー [6,6] and [6,7] -bicyclic GPR119G protein-coupled receptor agonists
US8440172B2 (en) 2007-07-09 2013-05-14 Symrise Ag Stable soluble salts of phenylbenzimidazole sulfonic acid at PHS at or below 7.0
NZ583346A (en) 2007-07-19 2012-02-24 Takeda Pharmaceutical Solid preparation comprising alogliptin and metformin hydrochloride
CL2008002427A1 (en) 2007-08-16 2009-09-11 Boehringer Ingelheim Int Pharmaceutical composition comprising 1-chloro-4- (bd-glucopyranos-1-yl) -2- [4 - ((s) -tetrahydrofuran-3-yloxy) benzyl] -benzene combined with 1 - [(4-methylquinazolin- 2-yl) methyl] -3-methyl-7- (2-butyn-1-yl) -8- (3- (r) -aminopiperidin-1-yl) xanthine; and its use to treat type 2 diabetes mellitus.
PE20090603A1 (en) 2007-08-16 2009-06-11 Boehringer Ingelheim Int PHARMACEUTICAL COMPOSITION INCLUDING A SGLT2 INHIBITOR AND A DPP IV INHIBITOR
UY31290A1 (en) 2007-08-16 2009-03-31 PHARMACEUTICAL COMPOSITION THAT INCLUDES A DERIVATIVE OF PIRAZOL-O-GLUCOSIDO
PE20090597A1 (en) 2007-08-16 2009-06-06 Boehringer Ingelheim Int PHARMACEUTICAL COMPOSITION INCLUDING A DERIVATIVE OF PIRAZOL-O-GLUCOSIDE
ES2733348T3 (en) 2007-08-17 2019-11-28 Boehringer Ingelheim Int Purine derivatives for use in the treatment of diseases related to FAP
US8338450B2 (en) 2007-09-21 2012-12-25 Lupin Limited Compounds as dipeptidyl peptidase IV (DPP IV) inhibitors
US8937042B2 (en) 2007-11-16 2015-01-20 Novo Nordisk A/S Pharmaceutical compositions comprising GLP-1 peptides or extendin-4 and a basal insulin peptide
CN101234105A (en) 2008-01-09 2008-08-06 北京润德康医药技术有限公司 Pharmaceutical composition containing diabetosan and vildagliptin and preparation thereof
US20090186086A1 (en) 2008-01-17 2009-07-23 Par Pharmaceutical, Inc. Solid multilayer oral dosage forms
CL2008003653A1 (en) 2008-01-17 2010-03-05 Mitsubishi Tanabe Pharma Corp Use of a glucopyranosyl-derived sglt inhibitor and a selected dppiv inhibitor to treat diabetes; and pharmaceutical composition.
TW200936136A (en) 2008-01-28 2009-09-01 Sanofi Aventis Tetrahydroquinoxaline urea derivatives, their preparation and their therapeutic application
CA2713361A1 (en) 2008-02-05 2009-08-13 Merck Sharp & Dohme Corp. Pharmaceutical compositions of a combination of metformin and a dipeptidyl peptidase-iv inhibitor
CN101959406A (en) 2008-03-04 2011-01-26 默沙东公司 Pharmaceutical compositions of a combination of metformin and a dipeptidyl peptidase-IV inhibitor
NZ588011A (en) 2008-03-05 2012-06-29 Takeda Pharmaceutical Heterocyclic compounds having glucagon antagonistic action useful for treating diabetes
US8551524B2 (en) 2008-03-14 2013-10-08 Iycus, Llc Anti-diabetic combinations
CA2719507C (en) 2008-03-31 2018-03-27 Metabolex, Inc. Oxymethylene aryl compounds and uses thereof
PE20140960A1 (en) 2008-04-03 2014-08-15 Boehringer Ingelheim Int FORMULATIONS INVOLVING A DPP4 INHIBITOR
PE20100156A1 (en) 2008-06-03 2010-02-23 Boehringer Ingelheim Int NAFLD TREATMENT
UY32030A (en) 2008-08-06 2010-03-26 Boehringer Ingelheim Int "TREATMENT FOR DIABETES IN INAPPROPRIATE PATIENTS FOR THERAPY WITH METFORMIN"
CN103816158A (en) 2008-08-15 2014-05-28 勃林格殷格翰国际有限公司 Purin derivatives for use in the treatment of fab-related diseases
JP2010053576A (en) 2008-08-27 2010-03-11 Sumitomo Forestry Co Ltd Mat for paving
US8513264B2 (en) 2008-09-10 2013-08-20 Boehringer Ingelheim International Gmbh Combination therapy for the treatment of diabetes and related conditions
UY32177A (en) * 2008-10-16 2010-05-31 Boehringer Ingelheim Int TREATMENT OF DIABETES IN PATIENTS WITH INSUFFICIENT GLUCEMIC CONTROL TO WEIGHT THERAPY WITH DRUG, ORAL OR NOT, ANTIDIABÉTICO
WO2010045656A2 (en) 2008-10-17 2010-04-22 Nectid, Inc. Novel sglt2 inhibitor dosage forms
MX2011006713A (en) 2008-12-23 2011-07-13 Boehringer Ingelheim Int Salt forms of organic compound.
TW201036975A (en) 2009-01-07 2010-10-16 Boehringer Ingelheim Int Treatment for diabetes in patients with inadequate glycemic control despite metformin therapy
TWI466672B (en) 2009-01-29 2015-01-01 Boehringer Ingelheim Int Treatment for diabetes in paediatric patients
UY32427A (en) 2009-02-13 2010-09-30 Boheringer Ingelheim Internat Gmbh PHARMACEUTICAL COMPOSITION, PHARMACEUTICAL FORM, PROCEDURE FOR PREPARATION, METHODS OF TREATMENT AND USES OF THE SAME
BRPI1013639A2 (en) 2009-02-13 2016-04-19 Boehringer Ingelheim Int antidiabetic medicines
GEP20135962B (en) 2009-02-13 2013-11-11 Boehringer Ingelheim Int Pharmaceutical composition comprising sglt2 inhibitor, dpp-iv inhibitor, and optionally further antidiabetic agent; and usage thereof
TW201031661A (en) 2009-02-17 2010-09-01 Targacept Inc Fused benzazepines as neuronal nicotinic acetylcholine receptor ligands
JP2012520868A (en) 2009-03-20 2012-09-10 ファイザー・インク 3-Oxa-7-azabicyclo [3.3.1] nonane
US8815292B2 (en) 2009-04-27 2014-08-26 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
WO2010140111A1 (en) 2009-06-02 2010-12-09 Ranbaxy Laboratories Limited Pharmaceutical compositions containing a combination of an antihistamine and a decongestant
US20120059011A1 (en) 2009-06-15 2012-03-08 Nicholas Birringer Pharmaceutical compositions of combinations of dipeptidyl peptidase-4 inhibitors with pioglitazone
CA2768656C (en) 2009-07-21 2016-10-04 Keryx Biopharmaceuticals, Inc. Ferric citrate dosage forms
US10610489B2 (en) 2009-10-02 2020-04-07 Boehringer Ingelheim International Gmbh Pharmaceutical composition, pharmaceutical dosage form, process for their preparation, methods for treating and uses thereof
EP2482812B1 (en) 2009-10-02 2023-01-11 Boehringer Ingelheim International GmbH Pharmaceutical compositions comprising bi-1356 and metformin
JP5446716B2 (en) 2009-10-21 2014-03-19 大正製薬株式会社 Method for producing tablets containing arginine and carnitine
KR20120107080A (en) 2009-11-27 2012-09-28 베링거 인겔하임 인터내셔날 게엠베하 Treatment of genotyped diabetic patients with dpp-iv inhibitors such as linagliptin
JP2010070576A (en) 2009-12-28 2010-04-02 Sato Pharmaceutical Co Ltd Rapidly soluble tablet
TWI562775B (en) 2010-03-02 2016-12-21 Lexicon Pharmaceuticals Inc Methods of using inhibitors of sodium-glucose cotransporters 1 and 2
EP2547339A1 (en) 2010-03-18 2013-01-23 Boehringer Ingelheim International GmbH Combination of a gpr119 agonist and the dpp-iv inhibitor linagliptin for use in the treatment of diabetes and related conditions
CA2795105A1 (en) 2010-05-05 2011-11-10 Peter Schneider Pharmaceutical formulations comprising pioglitazone and linagliptin
JP6034781B2 (en) 2010-05-05 2016-11-30 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Combination therapy
ES2577930T3 (en) 2010-06-09 2016-07-19 Poxel Triazine derivatives to delay the onset of type 1 diabetes
EP2585052A4 (en) 2010-06-22 2014-10-01 Twi Pharmaceuticals Inc Controlled release compositions with reduced food effect
AU2011268940B2 (en) 2010-06-24 2015-05-21 Boehringer Ingelheim International Gmbh Diabetes therapy
US20130224296A1 (en) 2010-09-03 2013-08-29 Bristol-Myers Squibb Company Drug Formulations Using Water Soluble Antioxidants
AU2016202261B2 (en) * 2010-11-15 2017-11-30 Boehringer Ingelheim International Gmbh Vasoprotective and cardioprotective antidiabetic therapy
US9034883B2 (en) 2010-11-15 2015-05-19 Boehringer Ingelheim International Gmbh Vasoprotective and cardioprotective antidiabetic therapy
WO2012088682A1 (en) 2010-12-29 2012-07-05 Shanghai Fochon Pharmaceutical Co Ltd. 2-(3-aminopiperidin-1-yl)-[1,2,4]triazolo[1,5-c]pyrimidine-5,7(3h,6h)-dione derivates as dipeptidyl peptidase iv(dpp-iv) inhibitors
EP2670397B1 (en) 2011-02-01 2020-05-13 Bristol-Myers Squibb Company Pharmaceutical formulations including an amine compound
UY33937A (en) 2011-03-07 2012-09-28 Boehringer Ingelheim Int PHARMACEUTICAL COMPOSITIONS CONTAINING DPP-4 AND / OR SGLT-2 AND METFORMIN INHIBITORS
CA2835332C (en) 2011-05-10 2019-03-26 Sandoz Ag Polymorph of linagliptin benzoate
NZ618698A (en) 2011-07-15 2015-08-28 Boehringer Ingelheim Int Substituted quinazolines, the preparation thereof and the use thereof in pharmaceutical compositions
US20130172244A1 (en) 2011-12-29 2013-07-04 Thomas Klein Subcutaneous therapeutic use of dpp-4 inhibitor
MX353496B (en) 2012-01-04 2018-01-16 Procter & Gamble Active containing fibrous structures with multiple regions.
US9555001B2 (en) 2012-03-07 2017-01-31 Boehringer Ingelheim International Gmbh Pharmaceutical composition and uses thereof
WO2013171167A1 (en) 2012-05-14 2013-11-21 Boehringer Ingelheim International Gmbh A xanthine derivative as dpp -4 inhibitor for use in the treatment of podocytes related disorders and/or nephrotic syndrome
EP2849754B1 (en) 2012-05-14 2022-09-14 Boehringer Ingelheim International GmbH Linagliptin, a xanthine derivative as dpp-4 inhibitor, for use in the treatment of sirs and/or sepsis
EP2854812A1 (en) 2012-05-24 2015-04-08 Boehringer Ingelheim International GmbH A xanthine derivative as dpp -4 inhibitor for use in the treatment of autoimmune diabetes, particularly lada
WO2013174767A1 (en) 2012-05-24 2013-11-28 Boehringer Ingelheim International Gmbh A xanthine derivative as dpp -4 inhibitor for use in modifying food intake and regulating food preference
EP2854824A1 (en) 2012-05-25 2015-04-08 Boehringer Ingelheim International GmbH Use of keratinocytes as a biologically active substance in the treatment of wounds, such as diabetic wounds, optionally in combination with a dpp-4 inhibitor
WO2013179307A2 (en) 2012-05-29 2013-12-05 Mylan Laboratories Limited Stabilized pharmaceutical compositions of saxagliptin
JP2015533133A (en) 2012-10-09 2015-11-19 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of moisture-control disintegrants in tablet manufacture
EP2908806A1 (en) 2012-10-09 2015-08-26 Boehringer Ingelheim International GmbH Use of selectively moisture-adjusted tabletting material in the production of mechanically stable tablets which contain at least one hydrate-forming active substance and/or adjuvant relevant to the mechanical stability of the tablets, particularly arginine-containing tablets
US9050302B2 (en) 2013-03-01 2015-06-09 Jazz Pharmaceuticals Ireland Limited Method of administration of gamma hydroxybutyrate with monocarboxylate transporters
US20140274889A1 (en) * 2013-03-15 2014-09-18 Boehringer Ingelheim International Gmbh Cardio- and renoprotective antidiabetic therapy
PL2986304T3 (en) * 2013-04-18 2022-05-02 Boehringer Ingelheim International Gmbh Pharmaceutical composition, methods for treating and uses thereof
EP2996724A1 (en) 2013-05-17 2016-03-23 Boehringer Ingelheim International GmbH Combination of a dpp-4 inhibitor and an alpha-glucosidase inhibitor
WO2014198906A1 (en) 2013-06-14 2014-12-18 Boehringer Ingelheim International Gmbh Dpp-4 inhibitors for treating diabetes and its complications
US9526728B2 (en) 2014-02-28 2016-12-27 Boehringer Ingelheim International Gmbh Medical use of a DPP-4 inhibitor
WO2016059219A1 (en) * 2014-10-17 2016-04-21 Boehringer Ingelheim International Gmbh Pharmaceutical composition and uses thereof
MX2018015089A (en) 2016-06-10 2019-05-13 Boehringer Ingelheim Int Combinations of linagliptin and metformin.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11026625B2 (en) 2017-08-08 2021-06-08 Fresenius Medical Care Holdings, Inc. Systems and methods for treating and estimating progression of chronic kidney disease

Also Published As

Publication number Publication date
US20170354660A1 (en) 2017-12-14
EP3468562A1 (en) 2019-04-17
BR112018072401A2 (en) 2019-02-19
US10155000B2 (en) 2018-12-18
US20200171038A1 (en) 2020-06-04
AU2023201872A1 (en) 2023-05-04
KR102391564B1 (en) 2022-04-29
AU2017276758A1 (en) 2018-11-08
CL2018003361A1 (en) 2019-03-22
PH12018502593A1 (en) 2019-10-14
JP2019517542A (en) 2019-06-24
JP2022093381A (en) 2022-06-23
WO2017211979A1 (en) 2017-12-14
MX2018015089A (en) 2019-05-13
US20210205315A1 (en) 2021-07-08
KR20190017936A (en) 2019-02-20
CN109310697A (en) 2019-02-05
EP4233840A2 (en) 2023-08-30
CA3022202A1 (en) 2017-12-14
US20230381188A1 (en) 2023-11-30
EP4233840A3 (en) 2023-10-18

Similar Documents

Publication Publication Date Title
US10155000B2 (en) Medical use of pharmaceutical combination or composition
US20240033270A1 (en) Cardio- and renoprotective antidiabetic therapy
AU2011331247B2 (en) Vasoprotective and cardioprotective antidiabetic therapy
US20140371243A1 (en) Medical use of a dpp-4 inhibitor
US20210299129A1 (en) Cardiosafe Antidiabetic Therapy
NZ747331A (en) Combinations of linagliptin and metformin
AU2016202261A1 (en) Vasoprotective and cardioprotective antidiabetic therapy
NZ710249B2 (en) Use of linagliptin in cardio- and renoprotective antidiabetic therapy

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:URBAN AIRSHIP, INC.;REEL/FRAME:049627/0826

Effective date: 20170526

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: WITHDRAW FROM ISSUE AWAITING ACTION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

AS Assignment

Owner name: URBAN AIRSHIP, INC., OREGON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:052300/0425

Effective date: 20200401

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE