JP2004161749A - Method for producing optically active, nitrogen-containing compound - Google Patents

Method for producing optically active, nitrogen-containing compound Download PDF

Info

Publication number
JP2004161749A
JP2004161749A JP2003338928A JP2003338928A JP2004161749A JP 2004161749 A JP2004161749 A JP 2004161749A JP 2003338928 A JP2003338928 A JP 2003338928A JP 2003338928 A JP2003338928 A JP 2003338928A JP 2004161749 A JP2004161749 A JP 2004161749A
Authority
JP
Japan
Prior art keywords
group
optically active
containing compound
nitrogen
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003338928A
Other languages
Japanese (ja)
Inventor
Masao Morimoto
正雄 森本
Haruyo Sato
治代 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Fine Chemicals Co Ltd
Original Assignee
Toray Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Fine Chemicals Co Ltd filed Critical Toray Fine Chemicals Co Ltd
Priority to JP2003338928A priority Critical patent/JP2004161749A/en
Publication of JP2004161749A publication Critical patent/JP2004161749A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for recovering an optically active, nitrogen-containing compound from the salt of an optically active nitrogen-containing compound with optically active tartaric acid obtained by an optical resolution by using the optically active tartaric acid as a resolving agent. <P>SOLUTION: This optically active nitrogen-containing compound is produced simply and in a high yield by decomposing the salt of the optically active nitrogen-containing compound with optically active tartaric acid obtained by the optical resolution by using the optically active tartaric acid as a resolving agent by using an alkaline earth metal hydroxide represented by calcium hydroxide, preferably by 1.0-1.5 fold molar amount and removing the optically active tartaric acid as a hardly dissolvable salt. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、光学活性含窒素化合物と光学活性酒石酸の塩を解塩して光学活性含窒素化合物を製造する方法に関する。   The present invention relates to a method for producing an optically active nitrogen-containing compound by desalting a salt of an optically active nitrogen-containing compound and an optically active tartaric acid.

光学活性含窒素化合物は、種々の医薬中間体、農薬中間体などとして有用な化合物であるが、化学的に合成された含窒素化合物はラセミ体であり、光学活性体を得るには光学分割などの手法を駆使する必要がある。そこで有用な分割剤の一つは光学活性酒石酸であり、光学活性酒石酸を分割剤に用いた光学分割により得られた光学活性含窒素化合物は光学活性酒石酸と塩を生成していることが知られている。この塩から光学活性含窒素化合物を回収する方法は、アルカリ性水溶液中で有機溶媒により抽出する方法が公知である。具体的には、ジアステレオマー塩に高濃度、大過剰の水酸化ナトリウム水溶液を加えてジエチルエーテルやベンゼンなどの有機溶媒で抽出する方法(非特許文献1)やジアステレオマー塩に高濃度、大過剰の水酸化ナトリウム水溶液を加えて分液したアミン層を分離し、アミン層の水分を水酸化ナトリウムなどで除去する操作を繰り返した後、蒸留する方法(非特許文献2)が報告されている。以上のように、公知技術で用いられる塩基は、いずれも水酸化ナトリウムもしくは水酸化カリウムなどのアルカリ金属の水酸化物である。   Optically active nitrogen-containing compounds are useful as various pharmaceutical intermediates, agricultural chemical intermediates, etc., but chemically synthesized nitrogen-containing compounds are racemic, and in order to obtain optically active compounds, optical resolution is required. It is necessary to make full use of the method. One of the useful resolving agents is optically active tartaric acid, and it is known that the optically active nitrogen-containing compound obtained by optical resolution using optically active tartaric acid forms a salt with optically active tartaric acid. ing. As a method of recovering the optically active nitrogen-containing compound from this salt, a method of extracting with an organic solvent in an alkaline aqueous solution is known. Specifically, a method of adding a high-concentration, large excess aqueous sodium hydroxide solution to a diastereomer salt and extracting the mixture with an organic solvent such as diethyl ether or benzene (Non-Patent Document 1), A method has been reported in which a large excess sodium hydroxide aqueous solution is added to separate the separated amine layer, and the operation of removing water from the amine layer with sodium hydroxide or the like is repeated, followed by distillation (Non-Patent Document 2). I have. As described above, any of the bases used in the known technique is a hydroxide of an alkali metal such as sodium hydroxide or potassium hydroxide.

光学活性酒石酸を用いて光学分割を行った後に、光学活性含窒素化合物を回収した公知文献記載の方法として、光学活性2−メチルピペラジンの製造方法が知られている。すなわち、(±)−2−メチルピペラジンと光学活性酒石酸を反応させて2−メチルピペラジン・モノ酒石酸塩を、2種のジアステレオマー塩として生成させ、それらの混合溶媒に対する溶解度差を利用して光学分割する方法である。こうして得た光学活性酒石酸との塩から光学活性2−メチルピペラジンを回収する方法としては、水酸化ナトリウムや水酸化カリウムが一般的に用いられる。例えば、特許文献1および特許文献2では、水酸化ナトリウムを用いて(+)−2−メチルピペラジンを回収しているが、晶析工程から解塩工程までの通算の収率が57%と記載されているのみであり、解塩工程における収率に関する記載は見られない。また、でも、水酸化ナトリウムにより解塩を行った例が見られるが、ジアステレオマー塩に対して水酸化ナトリウム、水酸化カリウムを4倍モル程度用いると良いとの記載があるだけで、実施例中に解塩工程における収率に関する記載はない。さらに、特許文献4では、ジアステレオマー塩に対して2.6倍モルの水酸化ナトリウムを用いて解塩を行い、減圧蒸留して(R)−2−メチルピペラジンを得ている。解塩工程から蒸留工程までの通算の収率が71.0%であり、仮に蒸留収率を90%と仮定した場合でも、解塩工程の収率は78.8%と満足できるものではない。   A method for producing optically active 2-methylpiperazine is known as a method described in a known literature in which an optically active nitrogen-containing compound is recovered after performing optical resolution using optically active tartaric acid. That is, (±) -2-methylpiperazine is reacted with optically active tartaric acid to produce 2-methylpiperazine monotartrate as two diastereomeric salts, and utilizing the difference in solubility in a mixed solvent thereof. This is a method of optical division. As a method for recovering optically active 2-methylpiperazine from the salt with optically active tartaric acid thus obtained, sodium hydroxide or potassium hydroxide is generally used. For example, in Patent Literature 1 and Patent Literature 2, (+)-2-methylpiperazine is recovered using sodium hydroxide, but the total yield from the crystallization step to the salt-removing step is described as 57%. No mention is made of the yield in the desalination step. In some cases, salting with sodium hydroxide was performed, but it was stated that sodium hydroxide and potassium hydroxide should be used in an amount about 4 times the molar amount of the diastereomer salt. There is no description in the examples regarding the yield in the desalination step. Further, in Patent Document 4, salt is decomposed using 2.6 times the molar amount of sodium hydroxide with respect to the diastereomer salt, and distilled under reduced pressure to obtain (R) -2-methylpiperazine. The total yield from the salting step to the distillation step is 71.0%, and even if the distillation yield is assumed to be 90%, the yield in the salting step is not satisfactory at 78.8%. .

一方、特許文献5では、水酸化カリウムを用いて解塩を行った例が報告されており、その使用量はジアステレオマー塩に対して0.89〜14.4モル倍と幅広く実施しているが、解塩工程の収率が71〜75%と低いものであった。   On the other hand, Patent Literature 5 reports an example of performing salt-decomposition using potassium hydroxide. The amount of the salt used is 0.89 to 14.4 times by mole based on the diastereomer salt. However, the yield in the desalting step was as low as 71 to 75%.

また、光学活性2−メチルピペラジン・光学活性酒石酸の塩以外から光学活性含窒素化合物を単離する方法に関する公知例としては、光学活性アミンと光学活性カルボン酸もしくは光学活性スルホン酸からなるジアステレオマー塩を、6〜50重量%の水を含むアルコール溶液とアルカリ金属の水酸化物の存在下に接触せしめ、アルコール層から遊離アミンを単離する方法が知られている(特許文献6)。この特許の実施例から、光学活性2−メチルピペラジンとN−ベンゼンスルホニル−L−アスパラギン酸の塩または3−ヒドロキシピロリジンとp−トルエンスルホニル−L−フェニルアラニンの塩から水分率7重量%のアルコール溶媒中で水酸化ナトリウムを加えて光学活性含窒素化合物を97%以上の高い回収率で回収している。しかし、この方法では、分割剤のN−ベンゼンスルホニル−L−アスパラギン酸、またはp−トルエンスルホニル−L−フェニルアラニンをナトリウム塩として回収するため、解塩をアルコール溶媒中で実施するのが不可欠である。   Known examples of the method for isolating an optically active nitrogen-containing compound from a salt other than an optically active 2-methylpiperazine / optically active tartaric acid include diastereomers comprising an optically active amine and an optically active carboxylic acid or an optically active sulfonic acid. A method is known in which a salt is brought into contact with an alcohol solution containing 6 to 50% by weight of water in the presence of an alkali metal hydroxide to isolate a free amine from the alcohol layer (Patent Document 6). According to the examples of this patent, an alcohol solvent having a water content of 7% by weight was prepared from a salt of optically active 2-methylpiperazine and N-benzenesulfonyl-L-aspartic acid or a salt of 3-hydroxypyrrolidine and p-toluenesulfonyl-L-phenylalanine. The optically active nitrogen-containing compound is recovered at a high recovery rate of 97% or more by adding sodium hydroxide therein. However, in this method, since the resolving agent N-benzenesulfonyl-L-aspartic acid or p-toluenesulfonyl-L-phenylalanine is recovered as a sodium salt, it is essential to carry out the salt dissolution in an alcohol solvent. .

さらに、特許文献7では、光学活性アミンと光学活性酒石酸塩の結晶に対して5〜40重量%の水を共存させたアルコール溶液中で無機アルカリを接触させて、光学活性酒石酸を無機アルカリ塩として回収する方法が報告されている。この方法の実施例によれば、光学活性ジアミノシクロヘキサンと光学活性酒石酸の塩、光学活性1,2−ジアミノプロパンと光学活性酒石酸の塩、および光学活性1−フェニルエチルアミンと光学活性酒石酸の塩を、水分率が4〜14重量%のアルコール溶媒中において、水酸化ナトリウムあるいは水酸化カリウムにより解塩して、98%以上の高い回収率で光学活性含窒素化合物を回収している。この方法も、光学活性酒石酸をナトリウム塩あるいはカリウム塩として回収するため解塩をアルコール溶媒中で実施することが不可欠である。   Further, in Patent Document 7, an inorganic alkali is brought into contact with an optically active amine and an optically active tartrate salt in an alcohol solution in which 5 to 40% by weight of water coexists with the crystal, thereby converting the optically active tartaric acid into an inorganic alkali salt. Methods of recovery have been reported. According to an embodiment of this method, an optically active diaminocyclohexane and an optically active tartaric acid salt, an optically active 1,2-diaminopropane and an optically active tartaric acid salt, and an optically active 1-phenylethylamine and an optically active tartaric acid salt, In an alcohol solvent having a water content of 4 to 14% by weight, salt is decomposed with sodium hydroxide or potassium hydroxide to recover an optically active nitrogen-containing compound at a high recovery of 98% or more. Also in this method, it is indispensable to carry out the salt removal in an alcohol solvent in order to recover the optically active tartaric acid as a sodium salt or a potassium salt.

しかし、アルコール溶媒で実施する場合、経済的および環境的観点から、溶媒の回収が不可欠となり、また、リサイクルを繰り返した場合に不純物が副生する等の問題が懸念される。   However, in the case of using an alcohol solvent, recovery of the solvent is indispensable from an economical and environmental point of view, and there are concerns about problems such as the generation of impurities as a by-product when recycling is repeated.

したがって、公知の技術では、水酸化ナトリウムや水酸化カリウム等に代表されるアルカリ金属の水酸化物を用いて、光学活性酒石酸との塩から光学活性含窒素化合物の回収を実施した場合、水単独溶媒を用いた解塩工程における光学活性含窒素化合物の回収率は、いずれも80%未満であり、工業的に実施するのが困難であるのが実状である。
特開平3−279375号公報 特許3032547号公報 特開平1−149775号公報 特開2002−80459号公報 特開2001−131157号公報 特許3312459号公報 特許3312454号公報 ジャーナル・オブ・アメリカン・ケミカル・ソサイエテイ,81,290(1959) カナデイアン・ジャーナル・オブ・ケミストリー,54,2639,(19 76)
Therefore, in a known technique, when an optically active nitrogen-containing compound is recovered from a salt with optically active tartaric acid using an alkali metal hydroxide represented by sodium hydroxide or potassium hydroxide, water alone is used. The recovery rate of the optically active nitrogen-containing compound in the desalting step using a solvent is less than 80% in all cases, and it is actually difficult to carry out the method industrially.
JP-A-3-279375 Japanese Patent No. 3032547 JP-A-1-149775 JP 2002-80459 A JP 2001-131157 A Japanese Patent No. 312449 Japanese Patent No. 312454 Journal of American Chemical Society, 81, 290 (1959) Canadian Journal of Chemistry, 54, 2639, (1976)

そこで、光学分割で取得した光学活性含窒素化合物と光学活性酒石酸の塩から、高収率で光学活性含窒素化合物を回収する方法の創出が強く望まれていた。   Therefore, creation of a method for recovering an optically active nitrogen-containing compound in high yield from a salt of an optically active nitrogen-containing compound and an optically active tartaric acid obtained by optical resolution has been strongly desired.

本発明者等は、光学活性含窒素化合物と光学活性酒石酸の塩を解塩することにより回収して成る光学活性含窒素化合物の製造方法について、鋭意検討を重ね本発明を完成させた。すなわち、本発明は、光学活性含窒素化合物と光学活性酒石酸の塩を解塩して光学活性含窒素化合物を回収する際に、含水溶媒中でアルカリ土類金属の塩を用いることを特徴とする光学活性含窒素化合物の製造方法である。   The present inventors have conducted intensive studies on a method for producing an optically active nitrogen-containing compound obtained by desolving a salt of an optically active nitrogen-containing compound and an optically active tartaric acid, and completed the present invention. That is, the present invention is characterized in that, when the optically active nitrogen-containing compound and the salt of the optically active tartaric acid are salted to recover the optically active nitrogen-containing compound, a salt of an alkaline earth metal is used in the aqueous solvent. This is a method for producing an optically active nitrogen-containing compound.

本発明によれば、光学活性含窒素化合物と光学活性酒石酸の塩から、光学活性含窒素化合物を高収率で回収することができる。   According to the present invention, an optically active nitrogen-containing compound can be recovered in a high yield from a salt of the optically active nitrogen-containing compound and the optically active tartaric acid.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本反応の具体的な方法を例示する。   The specific method of this reaction will be exemplified.

本発明で用いる光学活性含窒素化合物と光学活性酒石酸の塩の合成は、一般的に、(±)−含窒素化合物と光学活性酒石酸を溶媒中で溶解または混合して生成させた、2種のジアステレオマー塩の溶解度差を利用して難溶性塩を結晶として濾別することで取得できる。詳細な方法は、公知文献記載の通りである(特開2002−80459号公報、特開2001−131157号公報、特許3032547号公報)。   The synthesis of the salt of the optically active nitrogen-containing compound and the optically active tartaric acid used in the present invention is generally carried out by dissolving or mixing the (±) -nitrogen-containing compound and the optically active tartaric acid in a solvent, and forming two types. The compound can be obtained by filtering a poorly soluble salt as a crystal using the difference in solubility between diastereomeric salts. The detailed method is as described in the known literature (JP-A-2002-80459, JP-A-2001-131157, and JP-A-3032547).

光学活性含窒素化合物と光学活性酒石酸の塩の合成に用いる(±)−含窒素化合物は、環を構成する原子の1個または2個が窒素原子である環状化合物が好ましく、より好ましくは、含窒素化合物の環員数が4〜7であり、さらに好ましくは、一般式(1)   The (±) -nitrogen-containing compound used in the synthesis of the salt of the optically active nitrogen-containing compound and the optically active tartaric acid is preferably a cyclic compound in which one or two of the atoms constituting the ring are nitrogen atoms, more preferably The number of ring members of the nitrogen compound is 4 to 7, and more preferably, the general formula (1)

Figure 2004161749
(式中、Rは、i)炭素数1〜4のアルキル基、ii)炭素数1〜4のアルコキシ基、iii)フェニル基、iv)アラルキル基、v)ハロゲン基、iv)カルボキシル基、v)カルバモイル基、vi)アルキル基の炭素数が1〜4のN−アルキルカルバモイル基、vii)水酸基、viii)アミノ基、メチルアミノ基、ジメチルアミノ基などのN−アルキルアミノ基を示し、式中、Xは、i)水素原子、ii)炭素数1〜4のアルキル基、iii)フェニル基、iv)アラルキル基、v)アシル基、vi)アルキルオキシカルボニル基、vii)アリールオキシカルボニル基を示す。さらに、nは3〜6の整数であり、且つ、mは1≦m≦nを満たす整数を示す。ただし、mが2以上の場合、複数存在するRが同一であっても、また異なっていてもよい。)で表される含窒素環状化合物、または一般式(2)
Figure 2004161749
Wherein R is i) an alkyl group having 1 to 4 carbon atoms, ii) an alkoxy group having 1 to 4 carbon atoms, iii) a phenyl group, iv) an aralkyl group, v) a halogen group, iv) a carboxyl group, v A) a carbamoyl group, vi) an N-alkylcarbamoyl group having 1 to 4 carbon atoms in the alkyl group, vii) a hydroxyl group, viii) an N-alkylamino group such as an amino group, a methylamino group or a dimethylamino group. And X represent i) a hydrogen atom, ii) an alkyl group having 1 to 4 carbon atoms, iii) a phenyl group, iv) an aralkyl group, v) an acyl group, vi) an alkyloxycarbonyl group, and vii) an aryloxycarbonyl group. . Further, n is an integer of 3 to 6, and m is an integer satisfying 1 ≦ m ≦ n. However, when m is 2 or more, a plurality of Rs may be the same or different. Or a nitrogen-containing cyclic compound represented by the general formula (2)

Figure 2004161749
(式中、Rは、i)炭素数1〜4のアルキル基、ii)炭素数1〜4のアルコキシ基、iii)フェニル基、iv)アラルキル基、v)ハロゲン基、iv)カルボキシル基、v)カルバモイル基、vi)アルキル基の炭素数が1〜4のN−アルキルカルバモイル基、vii)水酸基、viii)アミノ基を示し、式中、XおよびYは、i)水素原子、ii)炭素数1〜4のアルキル基、iii)フェニル基、iv)アラルキル基、v)アシル基、vi)アルキルオキシカルボニル基、vii)アリールオキシカルボニル基を示す。さらに、p、qは0≦p,q≦5および3≦p+q≦5を同時に満たす整数であり、式中、rは1≦r≦p+qを満たす整数である。ただし、rが2以上の場合、複数存在するRが同一であっても、また異なっていてもよい。)で表される含窒素環状化合物である。
Figure 2004161749
Wherein R is i) an alkyl group having 1 to 4 carbon atoms, ii) an alkoxy group having 1 to 4 carbon atoms, iii) a phenyl group, iv) an aralkyl group, v) a halogen group, iv) a carboxyl group, v A) a carbamoyl group, vi) an N-alkylcarbamoyl group having 1 to 4 carbon atoms in an alkyl group, vii) a hydroxyl group, viii) an amino group, wherein X and Y are i) a hydrogen atom, ii) carbon number 1 to 4, an alkyl group, iii) a phenyl group, iv) an aralkyl group, v) an acyl group, vi) an alkyloxycarbonyl group, and vii) an aryloxycarbonyl group. Further, p and q are integers satisfying simultaneously 0 ≦ p, q ≦ 5 and 3 ≦ p + q ≦ 5, and in the formula, r is an integer satisfying 1 ≦ r ≦ p + q. However, when r is 2 or more, a plurality of Rs may be the same or different. )).

具体的には、Rが、水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、tert−ブチル基などのアルキル基、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、tert−ブトキシ基などのアルコキシ基、フェニル基、o−トルイル基、m−トルイル基、p−トルイル基、p−クロロフェニル基、p−メトキシフェニル基などのフェニル基、ベンジル基、p−クロロフェニルメチル基などのアラルキル基、フルオロ基、クロロ基、ブロモ基、ヨード基などのハロゲン基、カルボキシル基、カルバモイル基、N−メチルカルバモイル基、N−tert−ブトキシカルバモイル基などのN−アルキルカルバモイル基、水酸基、アミノ基、メチルアミノ基、ジメチルアミノ基などのN−アルキル置換アミノ基であり、特に好ましくは、水素原子、アルキル基、アラルキル基、水酸基、アミノ基である。一方、X、Yは、水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、tert−ブチル基などのアルキル基、フェニル基、o−トルイル基、m−トルイル基、p−トルイル基、p−クロロフェニル基、p−メトキシフェニル基などのフェニル基、ベンジル基、p−クロロフェニルメチル基などのアラルキル基、アセチル基、プロピオニル基、ブタノイル基、ベンゾイル基などのアシル基、メトキシカルボニル基、エロキシカルボニル基、n−プロポキシカルボニル基、tert−ブトキシカルボニル、ビニルオキシカルボニル基、アリルオキシカルボニル基などのアルキルオキシカルボニル基、フェノキシカルボニル基、ベンジルオキシカルボニル基などのアリールオキシカルボニル基であり、特に好ましくは、水素原子、メチル基、ベンジル基、アセチル基、tert−ブトキシカルボニル基、ベンジルオキシカルボニル基などである。   Specifically, R is a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an alkyl group such as a tert-butyl group, a methoxy group, an ethoxy group, an n-propoxy group, Alkoxy groups such as isopropoxy group, n-butoxy group and tert-butoxy group, phenyl groups such as phenyl group, o-toluyl group, m-toluyl group, p-toluyl group, p-chlorophenyl group and p-methoxyphenyl group Aralkyl groups such as benzyl group, p-chlorophenylmethyl group, halogen groups such as fluoro group, chloro group, bromo group, iodo group, carboxyl group, carbamoyl group, N-methylcarbamoyl group, N-tert-butoxycarbamoyl group, etc. N-alkylcarbamoyl group, hydroxyl group, amino group, methylamino group, dimethylamino group, etc. An N- alkyl-substituted amino group, particularly preferably a hydrogen atom, an alkyl group, an aralkyl group, a hydroxyl group, an amino group. On the other hand, X and Y represent a hydrogen atom, an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, a phenyl group, an o-toluyl group, and an m-toluyl group. Phenyl group such as p-toluyl group, p-chlorophenyl group, p-methoxyphenyl group, benzyl group, aralkyl group such as p-chlorophenylmethyl group, acetyl group, propionyl group, butanoyl group, acyl group such as benzoyl group, Alkyloxycarbonyl groups such as methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, tert-butoxycarbonyl, vinyloxycarbonyl group and allyloxycarbonyl group, and aryloxycarbonyl groups such as phenoxycarbonyl group and benzyloxycarbonyl group Is particularly preferred A hydrogen atom, a methyl group, a benzyl group, an acetyl group, tert- butoxycarbonyl group, and the like benzyloxycarbonyl group.

光学活性含窒素化合物は、液体、固体のいずれでもよく、固体は塊状のものから削り取ってペレット状にしたものまで各種の形状のものを用いることができる。また、光学活性酒石酸についても、天然品から合成品まで各種のものを用いることができ、D−酒石酸、L−酒石酸のいずれでも良い。 含窒素化合物として2−メチルピペラジンを用いた場合、D−酒石酸を用いて(±)−2−メチルピペラジンと光学活性モノ酒石酸の塩を形成させた場合、難溶性塩から(−)−2−メチルピペラジン、つまり(S)−2−メチルピペラジンとD−酒石酸との塩を得ることができる。一方、L−酒石酸を用いた場合は、同様にして(+)−2−メチルピペラジン、つまり(R)−2−メチルピペラジンとD−酒石酸との塩を得ることができる。   The optically active nitrogen-containing compound may be either a liquid or a solid, and the solid may be of various shapes, from a lump to a pellet that has been scraped. Various optically active tartaric acids, from natural products to synthetic products, can be used, and either D-tartaric acid or L-tartaric acid may be used. When 2-methylpiperazine is used as the nitrogen-containing compound, when D-tartaric acid is used to form a salt of (±) -2-methylpiperazine and an optically active monotartaric acid, (−)-2- Methyl piperazine, that is, a salt of (S) -2-methyl piperazine and D-tartaric acid can be obtained. On the other hand, when L-tartaric acid is used, (+)-2-methylpiperazine, that is, a salt of (R) -2-methylpiperazine and D-tartaric acid can be obtained in the same manner.

析出したジアステレオマー塩は濾過操作により、母液中のジアステレオマー塩と容易に分離することができる。   The precipitated diastereomer salt can be easily separated from the diastereomer salt in the mother liquor by a filtration operation.

従来公知の方法では、結晶として単離したジアステレオマー塩は、水溶性の塩基によって解塩した後、トルエン、ベンゼン等の有機溶媒により遊離した光学活性2−メチルピペラジンを抽出することで光学活性酒石酸から分離・回収することができる。ただし、この際、光学活性2−メチルピペラジンは水に易溶性であるため抽出により回収した場合、回収率が80%未満となる。   In a conventionally known method, a diastereomer salt isolated as a crystal is salted with a water-soluble base, and then optically active by extracting optically active 2-methylpiperazine released with an organic solvent such as toluene and benzene. It can be separated and recovered from tartaric acid. However, at this time, since the optically active 2-methylpiperazine is easily soluble in water, when it is recovered by extraction, the recovery rate is less than 80%.

本発明で用いるアルカリ土類金属の塩は、特に制限されないが、アルカリ土類金属の水酸化物、ハロゲン化物、硫酸塩などで代表される。具体的には、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムなどの水酸化物、塩化マグネシウム、塩化カルシウム、塩化ストロンチウム、塩化バリウムなどの塩化物、臭化マグネシウム、臭化カルシウム、臭化ストロンチウム、臭化バリウムなどの臭化物、硫酸マグネシウム、硫酸カルシウム、硫酸ストロンチウム、硫酸バリウムなどの硫酸塩、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウムなどの炭酸塩を挙げることができるが、好ましくは、水酸化物、塩化物、硫酸塩であり、特に好ましくは、水酸化物、硫酸塩であり、さらに好ましくは、水酸化物であり、特に好ましくは水酸化カルシウムである。水酸化カルシウムの形状に特に制限はなく、粉末状であっても、粒状であってもよく、また、水などのスラリー状のものを用いても良い。   The salt of the alkaline earth metal used in the present invention is not particularly limited, but is typified by hydroxide, halide, sulfate and the like of the alkaline earth metal. Specifically, hydroxides such as magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, magnesium chloride, calcium chloride, strontium chloride, chlorides such as barium chloride, magnesium bromide, calcium bromide, Strontium bromide, bromides such as barium bromide, magnesium sulfate, calcium sulfate, strontium sulfate, sulfates such as barium sulfate, magnesium carbonate, calcium carbonate, strontium carbonate, carbonates such as barium carbonate can be mentioned, preferably. Are hydroxides, chlorides and sulfates, particularly preferably hydroxides and sulfates, more preferably hydroxides, and particularly preferably calcium hydroxide. The shape of the calcium hydroxide is not particularly limited, and may be in the form of powder or granules, or may be a slurry such as water.

用いるアルカリ土類金属の塩の量は、一般に、解塩する光学活性含窒素化合物と光学活性酒石酸の塩における光学活性酒石酸に対して0.5〜3.0モル倍であり、好ましくは0.8〜2.0モル倍であり、より好ましくは1.0〜1.5モル倍である。   The amount of the alkaline earth metal salt to be used is generally 0.5 to 3.0 mole times, preferably 0.1 mol, based on the optically active tartaric acid in the salt of the optically active nitrogen-containing compound and the optically active tartaric acid to be decomposed. The molar ratio is 8 to 2.0 times, more preferably 1.0 to 1.5 times.

次に、アルカリ土類金属の塩を添加する時期に特に制限はない。光学活性含窒素化合物と光学活性酒石酸の塩の水溶液に添加しても良く、また、水酸化カルシウムの水スラリー中に光学活性含窒素化合物と光学活性酒石酸の塩を添加しても良い。また、アルカリ土類金属の塩の添加は、通常、0〜90℃の範囲で行われるが、操作性、安全性の点で室温付近で実施するのがよい。   Next, there is no particular limitation on when to add the alkaline earth metal salt. The salt of the optically active nitrogen-containing compound and the salt of the optically active tartaric acid may be added to the aqueous solution, or the salt of the optically active nitrogen-containing compound and the optically active tartaric acid may be added to an aqueous slurry of calcium hydroxide. The addition of the salt of an alkaline earth metal is usually carried out at a temperature in the range of 0 to 90 ° C., but is preferably carried out at around room temperature in terms of operability and safety.

含窒素化合物が水に易溶性の場合、解塩は、通常、50重量%以上の水を含む溶媒中で実施することが必須であり、用いるの溶媒量は、光学活性含窒素化合物と光学活性酒石酸の塩に対して1〜10重量倍であり、好ましくは1〜7重量倍であり、より好ましくは2〜5重量倍である。溶媒の量が少なすぎると、解塩により発生する光学活性酒石酸のアルカリ土類金属塩のスラリー濃度が高すぎて攪拌不良となり、解塩が不十分となり危険があり、また、溶媒の量が多すぎると、光学活性含窒素化合物と光学活性酒石酸の塩の仕込量が減少するため生産効率の点で経済的に不利となる。   When the nitrogen-containing compound is easily soluble in water, it is usually essential to carry out the desalting in a solvent containing 50% by weight or more of water. It is 1 to 10 times by weight, preferably 1 to 7 times by weight, and more preferably 2 to 5 times by weight of tartaric acid salt. If the amount of the solvent is too small, the slurry concentration of the alkaline earth metal salt of the optically active tartaric acid generated by the salt removal becomes too high, resulting in poor stirring, and there is a danger that the salt removal becomes insufficient. If it is too much, the amount of the salt of the optically active nitrogen-containing compound and the optically active tartaric acid is reduced, which is economically disadvantageous in terms of production efficiency.

一方、含窒素化合物が水に難溶性の場合、解塩により遊離した光学活性含窒素化合物を有機溶媒を用いて有機溶媒層側に抽出することができる。有機溶媒の具体例として、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、エチルベンゼン、n−プロピルベンゼン、イソプロピルベンゼン、メシチレンなどの芳香族炭化水素類、n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、n−ノナン、n−デカンなどの脂肪族炭化水素類、1−ブタノール、2−ブタノール、イソブタノール、1−ペンタノール、2−ペンタノール、3−ペンタノール、イソペンタノールなどのアルコール、ジエチルエーテル、ジ−n−プロピルエーテル、ジイソプロピルエーテル、メチル−tert−ブチルエーテル、テトラヒドロフランなどのエーテル類、メチルエチルケトン、2−ペンタノン、3−ペンタノン、メチルイソブチルケトンなどのケトン類を挙げることができ、好ましくは、芳香族炭化水素類およびアルコール類である。この場合、抽出操作を繰り返すことで含窒素化合物の回収率を上げることができる。   On the other hand, when the nitrogen-containing compound is hardly soluble in water, the optically active nitrogen-containing compound released by the salt removal can be extracted to the organic solvent layer side using an organic solvent. Specific examples of the organic solvent include benzene, toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, n-propylbenzene, isopropylbenzene, aromatic hydrocarbons such as mesitylene, n-pentane, n-hexane, aliphatic hydrocarbons such as n-heptane, n-octane, n-nonane, n-decane, 1-butanol, 2-butanol, isobutanol, 1-pentanol, 2-pentanol, 3-pentanol, Examples include alcohols such as pentanol, ethers such as diethyl ether, di-n-propyl ether, diisopropyl ether, methyl-tert-butyl ether, and tetrahydrofuran, and ketones such as methyl ethyl ketone, 2-pentanone, 3-pentanone, and methyl isobutyl ketone. Can and good Details, aromatic hydrocarbons and alcohols. In this case, the recovery of the nitrogen-containing compound can be increased by repeating the extraction operation.

解塩は、通常、室温付近〜100℃の範囲で行われるが、好ましくは30〜100℃の範囲であり、より好ましくは50〜100℃の範囲である。温度が低すぎると、解塩が不十分となる危険がある。通常、解塩に要する時間は、1〜24時間であり、長時間ほど解塩収率が高くなるが、生産性の点で不利となるため、通常、1〜12時間の範囲で実施すると良い。   Desalting is usually performed in the range of around room temperature to 100 ° C, preferably in the range of 30 to 100 ° C, more preferably in the range of 50 to 100 ° C. If the temperature is too low, there is a risk that the salt solution will be insufficient. Usually, the time required for demineralization is from 1 to 24 hours, and the salting yield increases as the time increases, but it is disadvantageous in terms of productivity. .

本発明と従来技術の差を、水溶媒中、水酸化カルシウムを用いて解塩した場合を例に挙げて以下に明示する。   The difference between the present invention and the prior art will be clarified below by taking as an example a case where salt is dissolved using calcium hydroxide in an aqueous solvent.

本発明では、解塩工程の終了時には、下式に従って光学活性酒石酸を、難溶性の酒石酸カルシウムとして析出させ、光学活性含窒素化合物は母液中に存在する。
<本発明>
固体(光学活性含窒素化合物と光学活性酒石酸の塩)+固体(水酸化カルシウム)
→母液(光学活性含窒素化合物)+固体(光学活性酒石酸カルシウム)
一方、従来技術のように、水酸化ナトリウムや水酸化カリウムで解塩した場合には、光学活性酒石酸はナトリウム塩またはカリウム塩として溶液中に存在する点が本発明と大きく異なる。
<従来技術>
固体(光学活性含窒素化合物と光学活性酒石酸の塩)+(水酸化ナトリウム水溶液)
→溶液(光学活性含窒素化合物)+溶液(光学活性酒石酸ナトリウム)
以上のように、本発明は、光学活性酒石酸を難溶性塩として系外に除去できるため、光学活性含窒素化合物および光学活性酒石酸の回収が容易であり、工業的に非常に有意義である。
In the present invention, at the end of the desalting step, optically active tartaric acid is precipitated as sparingly soluble calcium tartrate according to the following formula, and the optically active nitrogen-containing compound is present in the mother liquor.
<The present invention>
Solid (optically active nitrogen-containing compound and salt of optically active tartaric acid) + solid (calcium hydroxide)
→ Mother liquor (optically active nitrogen-containing compound) + solid (optically active calcium tartrate)
On the other hand, when salting is carried out with sodium hydroxide or potassium hydroxide as in the prior art, optically active tartaric acid is greatly different from the present invention in that it exists in a solution as a sodium salt or a potassium salt.
<Conventional technology>
Solid (salt of optically active nitrogen-containing compound and optically active tartaric acid) + (aqueous sodium hydroxide solution)
→ Solution (optically active nitrogen-containing compound) + solution (optically active sodium tartrate)
As described above, according to the present invention, optically active tartaric acid can be removed out of the system as a hardly soluble salt, so that the optically active nitrogen-containing compound and the optically active tartaric acid can be easily recovered, which is industrially very significant.

ここで、本発明の科学的根拠となる酒石酸金属塩の水に対する溶解度を示す。   Here, the solubility of metal tartaric acid salt in water, which is the scientific basis of the present invention, is shown.

アルカリ土類金属の水酸化物を用いて解塩した場合に得られる酒石酸のアルカリ土類金属塩の溶解度は、酒石酸マグネシウム1.22%(26℃)、酒石酸カルシウム0.029%(25℃)、酒石酸ストロンチウム0.18%(25℃)、酒石酸バリウム0.028%(21℃)と、いずれも難溶性塩である。   The solubility of the alkaline earth metal salt of tartaric acid obtained when salting is performed using a hydroxide of an alkaline earth metal is 1.22% of magnesium tartrate (26 ° C.) and 0.029% of calcium tartrate (25 ° C.) , Strontium tartrate 0.18% (25 ° C) and barium tartrate 0.028% (21 ° C), both of which are hardly soluble salts.

一方、アルカリ金属の水酸化物を用いて解塩した場合に得られる酒石酸のアルカリ金属塩の溶解度は、酒石酸ナトリウム30%(24℃)、酒石酸カリウム40%(15.6℃)と、易溶性塩である。   On the other hand, the solubility of the alkali metal salt of tartaric acid obtained when salting is performed using an alkali metal hydroxide has a solubility of 30% for sodium tartrate (24 ° C.) and 40% for potassium tartrate (15.6 ° C.). Salt.

したがって、アルカリ金属の水酸化物を用いた場合に発生する酒石酸のアルカリ金属塩は水に溶解するため、光学活性含窒素化合物と分離することは、水を50重量%以上含む溶媒中では事実上不可能である。   Therefore, the alkali metal salt of tartaric acid, which is generated when an alkali metal hydroxide is used, is dissolved in water. Therefore, separation from the optically active nitrogen-containing compound is substantially impossible in a solvent containing 50% by weight or more of water. Impossible.

一方、本発明のアルカリ土類金属の塩を用いた場合、光学活性含窒素化合物との分離が容易であることが分かる。   On the other hand, when the alkaline earth metal salt of the present invention is used, it can be seen that separation from the optically active nitrogen-containing compound is easy.

本発明によれば、光学活性含窒素化合物と光学活性酒石酸の塩を、水を50重量%以上含む溶媒中において、アルカリ金属の塩を用いて解塩することにより、光学活性含窒素化合物を簡便、且つ高収率で回収することができる。   ADVANTAGE OF THE INVENTION According to this invention, the optically active nitrogen-containing compound and the salt of optically active tartaric acid are salt-decomposed using the alkali metal salt in the solvent containing 50 weight% or more of water, and an optically active nitrogen-containing compound is easily obtained. And can be recovered in high yield.

以下に、実施例により本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.

光学活性2−メチルピペラジンを例に挙げて以下に説明する。   The optically active 2-methylpiperazine is described below as an example.

解塩時に得られる母液中の光学活性2−メチルピペラジンの定量は、ガスクロマトグラフィー(GC)を用いた内標法によって実施した。分析条件は以下の通りである。   The quantitative determination of the optically active 2-methylpiperazine in the mother liquor obtained at the time of the salt dissolution was carried out by an internal standard method using gas chromatography (GC). The analysis conditions are as follows.

機種 島津GC−14B
カラム NEUTRABOND-1 0.25mmφ×60m
He流量 50ml/min
COL温度 70℃(10min.)→(+20℃/min)→270℃(10min.)
INJ温度 230℃
DET温度 230℃
DET FID
注入量 0.1μl
内標 トリグライム
保持時間 2−メチルピペラジン 10.2min.
トリグライム 17.3min.
光学活性2−メチルピペラジンの光学純度の測定は、液体クロマトグラフィー(HPLC)により行い、R−体ピークとS−体ピークの面積比から算出した。S体が選択的に生成する場合は、次式にしたがって算出される。
Model Shimadzu GC-14B
Column NEUTRABOND-1 0.25mmφ × 60m
He flow rate 50ml / min
COL temperature 70 ℃ (10min.) → (+ 20 ℃ / min) → 270 ℃ (10min.)
INJ temperature 230 ℃
DET temperature 230 ° C
DET FID
Injection volume 0.1 μl
Inner target triglyme
Retention time 2-Methylpiperazine 10.2min.
Triglyme 17.3 min.
The optical purity of the optically active 2-methylpiperazine was measured by liquid chromatography (HPLC), and was calculated from the area ratio between the R-form peak and the S-form peak. When the S body is selectively generated, it is calculated according to the following equation.

光学純度(%ee.)=(S体ピークの面積値−R体ピークの面積値)
/(S体ピークの面積値+R体ピークの面積値)×100
分析条件は以下の通りである。
Optical purity (% ee.) = (S-form peak area-R-form peak area)
/ (Area value of S-form peak + area value of R-form peak) x 100
The analysis conditions are as follows.

機種 島津LC−10Vp
カラム Mightysil RP18GP,4.6mm×15cm(関東化学)
移動相 0.03%アンモニア水(酢酸でpH4.7に調製)/アセトニトリル
=467/33(v/v)
流量 1.0ml/min
温度 40℃
検出器 UV(243nm)
分析用サンプル調製法について説明する。光学活性2−メチルピペラジンと光学活性酒石酸の塩の場合、10mlサンプル瓶に光学活性2−メチルピペラジン・光学活性酒石酸塩の結晶0.3gをとり、1N水酸化ナトリウム溶液3mlを加えて溶解させる。そこにクロロホルム3mlを加え、攪拌後に下層を50mlメスフラスコに採取し、アセトニトリルを用いて標線まで希釈する。その内の0.3mlを5mlサンプル瓶に採取し、0.8%O,0’−p−ジトルオイル−L−酒石酸無水物溶液を加えて、50℃の温浴中で1時間静置する。最後に2%リン酸水1mlを加え、10分間静置する。解塩後、母液中の光学活性2−ピペラジンの光学純度の場合、まず母液を濃縮し、濁り出したらクロロホルムで2回抽出する。その後は、光学活性2−メチルピペラジンと光学活性酒石酸の塩の場合と同様に処理する。
Model Shimadzu LC-10Vp
Column Mightysil RP18GP, 4.6 mm x 15 cm (Kanto Chemical)
Mobile phase 0.03% aqueous ammonia (adjusted to pH 4.7 with acetic acid) / acetonitrile
= 467/33 (v / v)
Flow rate 1.0ml / min
Temperature 40 ℃
Detector UV (243nm)
A method for preparing a sample for analysis will be described. In the case of a salt of optically active 2-methylpiperazine and optically active tartaric acid, 0.3 g of the crystal of optically active 2-methylpiperazine / optically active tartaric acid is taken in a 10-ml sample bottle, and dissolved by adding 3 ml of 1N sodium hydroxide solution. 3 ml of chloroform is added thereto, and after stirring, the lower layer is collected in a 50 ml volumetric flask, and diluted to the marked line with acetonitrile. 0.3 ml of the solution is collected in a 5 ml sample bottle, 0.8% O, 0'-p-ditoluoyl-L-tartaric anhydride solution is added, and the mixture is allowed to stand in a 50 ° C warm bath for 1 hour. Finally, 1 ml of 2% phosphoric acid aqueous solution is added, and the mixture is allowed to stand for 10 minutes. After desalting, in the case of the optical purity of optically active 2-piperazine in the mother liquor, the mother liquor is first concentrated, and when it becomes cloudy, extracted twice with chloroform. Thereafter, the treatment is carried out in the same manner as in the case of the salt of optically active 2-methylpiperazine and optically active tartaric acid.

[実施例1]
温度計、コンデンサーおよび攪拌機の付いた200ml四つ口フラスコに、水75gを仕込み、さらに予め乾燥した(S)−2−メチルピペラジン・D−酒石酸塩25.1g(=0.100モル,2−メチルピペラジンの光学純度=99.5%ee.)と純度95%水酸化カルシウム7.8g(=0.100モル)を添加した。そのスラリーを70〜80℃まで昇温し、3時間攪拌後、室温まで冷却した。次に、未溶解塩を濾別して母液を取得した。
[Example 1]
75 g of water was charged into a 200 ml four-necked flask equipped with a thermometer, a condenser and a stirrer, and 25.1 g of (S) -2-methylpiperazine.D-tartrate was dried in advance (= 0.100 mol, 2-0.1 g). The optical purity of methylpiperazine = 99.5% ee.) And 7.8 g (= 0.100 mol) of 95% pure calcium hydroxide were added. The slurry was heated to 70 to 80 ° C., stirred for 3 hours, and then cooled to room temperature. Next, undissolved salts were filtered off to obtain a mother liquor.

母液中のGC分析結果から、母液中には光学活性2−メチルピペラジン9.2g(=0.0918モル)が存在していることが分かった(収率91.8%)。また、HPLC分析結果から、(S)−2−メチルピペラジンの光学純度は、99.5%ee.であった。   From the result of GC analysis in the mother liquor, it was found that 9.2 g (= 0.0918 mol) of optically active 2-methylpiperazine was present in the mother liquor (yield 91.8%). From the result of HPLC analysis, the optical purity of (S) -2-methylpiperazine was 99.5% ee. Met.

[実施例2]
温度計、コンデンサーおよび攪拌機の付いた200ml四つ口フラスコに、水75gを仕込み、さらに予め乾燥した(S)−2−メチルピペラジン・D−酒石酸塩25.1g(=0.100モル,2−メチルピペラジンの光学純度=99.3%ee.)と純度95%水酸化カルシウム9.4g(=0.121モル)を添加した。そのスラリーを70〜80℃まで昇温し、3時間攪拌後、室温まで冷却した。次に、未溶解塩を濾別して母液を取得した。
[Example 2]
75 g of water was charged into a 200 ml four-necked flask equipped with a thermometer, a condenser and a stirrer, and 25.1 g of (S) -2-methylpiperazine.D-tartrate was dried in advance (= 0.100 mol, 2-0.1 g). The optical purity of methyl piperazine = 99.3% ee.) And 9.4 g (= 0.121 mol) of 95% pure calcium hydroxide were added. The slurry was heated to 70 to 80 ° C., stirred for 3 hours, and then cooled to room temperature. Next, undissolved salts were filtered off to obtain a mother liquor.

母液中のGC分析結果から、母液中には光学活性2−メチルピペラジン9.3g(=0.0928モル)が存在していることが分かった(収率92.8%)。また、HPLC分析結果から、(S)−2−メチルピペラジンの光学純度は、99.3%ee.であった。   From the result of the GC analysis in the mother liquor, it was found that 9.3 g (= 0.0928 mol) of optically active 2-methylpiperazine was present in the mother liquor (yield 92.8%). From the results of HPLC analysis, the optical purity of (S) -2-methylpiperazine was 99.3% ee. Met.

[実施例3]
温度計、コンデンサーおよび攪拌機の付いた1L四つ口フラスコに、水300gを仕込み、さらに予め乾燥した(S)−2−メチルピペラジン・D−酒石酸塩98.3g(=0.391モル,2−メチルピペラジンの光学純度=99.4%ee.)と純度95%水酸化カルシウム39.6g(=0.508モル)を添加した。そのスラリーを80〜82℃まで昇温し、3時間攪拌後、室温まで冷却した。次に、未溶解塩を濾別して母液を取得した。
[Example 3]
300 g of water was charged into a 1 L four-necked flask equipped with a thermometer, a condenser, and a stirrer, and 98.3 g (= 0.391 mol, 2-91 mol) of (S) -2-methylpiperazine.D-tartrate previously dried. The optical purity of methyl piperazine = 99.4% ee.) And 39.6 g (= 0.508 mol) of 95% pure calcium hydroxide were added. The slurry was heated to 80 to 82 ° C., stirred for 3 hours, and then cooled to room temperature. Next, undissolved salts were filtered off to obtain a mother liquor.

母液中のGC分析結果から、母液中には光学活性2−メチルピペラジン39.1g(=0.390モル)が存在していることが分かった(収率99.8%)。また、HPLC分析結果から、(S)−2−メチルピペラジンの光学純度は、99.4%ee.であった。   From the result of GC analysis in the mother liquor, it was found that 39.1 g (= 0.390 mol) of optically active 2-methylpiperazine was present in the mother liquor (yield 99.8%). From the results of HPLC analysis, the optical purity of (S) -2-methylpiperazine was 99.4% ee. Met.

[比較例]
温度計、コンデンサーおよび攪拌機の付いた100ml四つ口フラスコに、水50gを仕込み、さらに予め乾燥した(S)−2−メチルピペラジン・D−酒石酸塩25.1g(=0.100モル,2−メチルピペラジンの光学純度=99.4%ee.)を加え溶解させた。ここに、48重量%水酸化ナトリウム水溶液10.8g(=0.130モル)を30〜40℃で加え、1時間攪拌した。そこに、トルエン50mlを加え、遊離した(S)−2−メチルピペラジンを抽出した。
[Comparative example]
In a 100 ml four-necked flask equipped with a thermometer, a condenser and a stirrer, 50 g of water was charged, and 25.1 g of (S) -2-methylpiperazine.D-tartrate salt dried in advance (= 0.100 mol, 2-0.1 g) (The optical purity of methylpiperazine = 99.4% ee.) Was added and dissolved. To this, 10.8 g (= 0.130 mol) of a 48% by weight aqueous sodium hydroxide solution was added at 30 to 40 ° C., followed by stirring for 1 hour. Thereto, 50 ml of toluene was added, and the released (S) -2-methylpiperazine was extracted.

抽出液中のGC分析結果から、抽出液には光学活性2−メチルピペラジン7.8g(=0.0779モル)が存在していることが分かった(収率77.9%)。また、HPLC分析結果から、(S)−2−メチルピペラジンの光学純度は、99.4%ee.であった。   From the result of GC analysis of the extract, it was found that 7.8 g (= 0.0779 mol) of optically active 2-methylpiperazine was present in the extract (yield: 77.9%). From the results of HPLC analysis, the optical purity of (S) -2-methylpiperazine was 99.4% ee. Met.

本発明は、光学活性含窒素化合物と光学活性酒石酸の塩から光学活性含窒素化合物を回収するのに応用されるが、その応用範囲が、これらに限られるものではない。   INDUSTRIAL APPLICABILITY The present invention is applied to recover an optically active nitrogen-containing compound from a salt of an optically active nitrogen-containing compound and an optically active tartaric acid, but the application range is not limited thereto.

Claims (11)

光学活性含窒素化合物と光学活性酒石酸からなる水溶性の塩を解塩する際に、50重量%以上の水を含む溶媒中において、アルカリ土類金属の塩を用いることを特徴とする光学活性含窒素化合物の製造方法。 When desolvating a water-soluble salt comprising an optically active nitrogen-containing compound and an optically active tartaric acid, a salt of an alkaline earth metal is used in a solvent containing 50% by weight or more of water. A method for producing a nitrogen compound. 光学活性含窒素化合物が環状化合物であり、かつ、環を構成する原子の1個または2個が窒素原子であることを特徴とする請求項1記載の光学活性含窒素化合物の製造方法。 2. The method for producing an optically active nitrogen-containing compound according to claim 1, wherein the optically active nitrogen-containing compound is a cyclic compound, and one or two of the atoms constituting the ring are nitrogen atoms. 光学活性含窒素化合物の環員数が、4〜7であることを特徴とする請求項2記載の光学活性含窒素化合物の製造方法。 3. The method for producing an optically active nitrogen-containing compound according to claim 2, wherein the number of ring members of the optically active nitrogen-containing compound is 4 to 7. 光学活性含窒素化合物が、一般式(1)
Figure 2004161749
(式中、Rは、i)炭素数1〜4のアルキル基、ii)炭素数1〜4のアルコキシ基、iii)フェニル基、iv)アラルキル基、v)ハロゲン基、iv)カルボキシル基、v)カルバモイル基、vi)アルキル基の炭素数が1〜4のN−アルキルカルバモイル基、vii)水酸基、viii)アミノ基、ix)アルキル基の炭素数が1〜4のN−アルキルアミノ基を示し、式中、Xは、i)水素原子、ii)炭素数1〜4のアルキル基、iii)フェニル基、iv)アラルキル基、v)アシル基、vi)アルキルオキシカルボニル基、vii)アリールオキシカルボニル基を示す。さらに、nは3〜6の整数であり、且つ、mは1≦m≦nを満たす整数を示す。ただし、mが2以上の場合、複数存在するRが同一であっても、また異なっていてもよい。)で表されることを特徴とする請求項1〜3のいずれか1項記載の光学活性含窒素化合物の製造方法。
The optically active nitrogen-containing compound has the general formula (1)
Figure 2004161749
Wherein R is i) an alkyl group having 1 to 4 carbon atoms, ii) an alkoxy group having 1 to 4 carbon atoms, iii) a phenyl group, iv) an aralkyl group, v) a halogen group, iv) a carboxyl group, v A) a carbamoyl group, vi) an N-alkylcarbamoyl group having 1 to 4 carbon atoms in an alkyl group, vii) a hydroxyl group, viii) an amino group, and ix) an N-alkylamino group having 1 to 4 carbon atoms in the alkyl group. Wherein X is i) a hydrogen atom, ii) an alkyl group having 1 to 4 carbon atoms, iii) a phenyl group, iv) an aralkyl group, v) an acyl group, vi) an alkyloxycarbonyl group, vii) an aryloxycarbonyl. Represents a group. Further, n is an integer of 3 to 6, and m is an integer satisfying 1 ≦ m ≦ n. However, when m is 2 or more, a plurality of Rs may be the same or different. The method for producing an optically active nitrogen-containing compound according to any one of claims 1 to 3, characterized in that:
光学活性含窒素化合物が、一般式(2)
Figure 2004161749
(式中、Rは、i)炭素数1〜4のアルキル基、ii)炭素数1〜4のアルコキシ基、iii)フェニル基、iv)アラルキル基、v)ハロゲン基、iv)カルボキシル基、v)カルバモイル基、vi)アルキル基の炭素数が1〜4のN−アルキルカルバモイル基、vii)水酸基、viii)アミノ基、ix)アルキル基の炭素数が1〜4のN−アルキルアミノ基を示し、式中、XおよびYは、i)水素原子、ii)炭素数1〜4のアルキル基、iii)フェニル基、iv)アラルキル基、v)アシル基、vi)アルキルオキシカルボニル基、vii)アリールオキシカルボニル基を示す。さらに、p、qは0≦p,q≦5および3≦p+q≦5を同時に満たす整数であり、式中、rは1≦r≦p+qを満たす整数である。ただし、rが2以上の場合、複数存在するRが同一であっても、また異なっていてもよい。)で表されることを特徴とする請求項1〜3のいずれか1項記載の光学活性含窒素化合物の製造方法。
The optically active nitrogen-containing compound has the general formula (2)
Figure 2004161749
Wherein R is i) an alkyl group having 1 to 4 carbon atoms, ii) an alkoxy group having 1 to 4 carbon atoms, iii) a phenyl group, iv) an aralkyl group, v) a halogen group, iv) a carboxyl group, v A) a carbamoyl group, vi) an N-alkylcarbamoyl group having 1 to 4 carbon atoms in an alkyl group, vii) a hydroxyl group, viii) an amino group, and ix) an N-alkylamino group having 1 to 4 carbon atoms in the alkyl group. Wherein X and Y are i) hydrogen atom, ii) alkyl group having 1 to 4 carbon atoms, iii) phenyl group, iv) aralkyl group, v) acyl group, vi) alkyloxycarbonyl group, vii) aryl Indicates an oxycarbonyl group. Further, p and q are integers satisfying simultaneously 0 ≦ p, q ≦ 5 and 3 ≦ p + q ≦ 5, and in the formula, r is an integer satisfying 1 ≦ r ≦ p + q. However, when r is 2 or more, a plurality of Rs may be the same or different. The method for producing an optically active nitrogen-containing compound according to any one of claims 1 to 3, characterized in that:
一般式(2)におけるXおよびYが共に水素原子であり、かつp=q=2、r=1であることを特徴とする請求項5記載の光学活性含窒素化合物の製造方法。 The method for producing an optically active nitrogen-containing compound according to claim 5, wherein X and Y in the general formula (2) are both hydrogen atoms, and p = q = 2 and r = 1. 一般式(2)におけるRがメチル基であることを特徴とする請求項5または6記載の光学活性含窒素化合物の製造方法。 7. The method for producing an optically active nitrogen-containing compound according to claim 5, wherein R in the general formula (2) is a methyl group. 溶媒が、80重量%以上の水を含んでいることを特徴とする請求項1〜7のいずれか1項記載の光学活性含窒素化合物の製造方法。 The method for producing an optically active nitrogen-containing compound according to any one of claims 1 to 7, wherein the solvent contains 80% by weight or more of water. アルカリ土類金属の塩が、アルカリ土類金属の水酸化物、ハロゲン化物、硫酸塩、炭酸塩のいずれかであることを特徴とする請求項1〜8のいずれか1項記載の光学活性含窒素化合物の製造方法。 The optically active compound according to any one of claims 1 to 8, wherein the alkaline earth metal salt is any one of a hydroxide, a halide, a sulfate, and a carbonate of the alkaline earth metal. A method for producing a nitrogen compound. アルカリ土類金属の水酸化物が、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムのいずれかであることを特徴とする請求項1〜9のいずれか1項記載の光学活性含窒素化合物の製造方法。 The optically active compound according to any one of claims 1 to 9, wherein the alkaline earth metal hydroxide is any one of magnesium hydroxide, calcium hydroxide, strontium hydroxide, and barium hydroxide. A method for producing a nitrogen compound. アルカリ土類金属の水酸化物の使用量が、光学活性酒石酸に対して1.0〜1.5モル倍であることを特徴とする請求項1〜10のいずれか1項記載の光学活性含窒素化合物の製造方法。 The optically active substance according to any one of claims 1 to 10, wherein the amount of the alkaline earth metal hydroxide used is 1.0 to 1.5 times the molar amount of the optically active tartaric acid. A method for producing a nitrogen compound.
JP2003338928A 2002-10-24 2003-09-30 Method for producing optically active, nitrogen-containing compound Pending JP2004161749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003338928A JP2004161749A (en) 2002-10-24 2003-09-30 Method for producing optically active, nitrogen-containing compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002310132 2002-10-24
JP2003338928A JP2004161749A (en) 2002-10-24 2003-09-30 Method for producing optically active, nitrogen-containing compound

Publications (1)

Publication Number Publication Date
JP2004161749A true JP2004161749A (en) 2004-06-10

Family

ID=32828127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003338928A Pending JP2004161749A (en) 2002-10-24 2003-09-30 Method for producing optically active, nitrogen-containing compound

Country Status (1)

Country Link
JP (1) JP2004161749A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211174A (en) * 2004-11-05 2012-11-01 Boehringer Ingelheim Internatl Gmbh Method for production of chiral 8-(3-amino-piperidin-1-yl)-xanthine
US8846695B2 (en) 2009-01-07 2014-09-30 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients with inadequate glycemic control despite metformin therapy comprising a DPP-IV inhibitor
US8853156B2 (en) 2008-08-06 2014-10-07 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients inappropriate for metformin therapy
US8865729B2 (en) 2008-12-23 2014-10-21 Boehringer Ingelheim International Gmbh Salt forms of a xanthine compound
US8883800B2 (en) 2011-07-15 2014-11-11 Boehringer Ingelheim International Gmbh Substituted quinazolines, the preparation thereof and the use thereof in pharmaceutical compositions
US9034883B2 (en) 2010-11-15 2015-05-19 Boehringer Ingelheim International Gmbh Vasoprotective and cardioprotective antidiabetic therapy
US9108964B2 (en) 2002-08-21 2015-08-18 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US9149478B2 (en) 2010-06-24 2015-10-06 Boehringer Ingelheim International Gmbh Diabetes therapy
US9155705B2 (en) 2008-04-03 2015-10-13 Boehringer Ingelheim International Gmbh DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation
US9173859B2 (en) 2006-05-04 2015-11-03 Boehringer Ingelheim International Gmbh Uses of DPP IV inhibitors
US9186392B2 (en) 2010-05-05 2015-11-17 Boehringer Ingelheim International Gmbh Combination therapy
WO2016021524A1 (en) * 2014-08-08 2016-02-11 東レ・ファインケミカル株式会社 Method for producing optically active 2-methylpiperazine
US9266888B2 (en) 2006-05-04 2016-02-23 Boehringer Ingelheim International Gmbh Polymorphs
US9457029B2 (en) 2009-11-27 2016-10-04 Boehringer Ingelheim International Gmbh Treatment of genotyped diabetic patients with DPP-IV inhibitors such as linagliptin
US9486526B2 (en) 2008-08-06 2016-11-08 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients inappropriate for metformin therapy
US9526730B2 (en) 2012-05-14 2016-12-27 Boehringer Ingelheim International Gmbh Use of a DPP-4 inhibitor in podocytes related disorders and/or nephrotic syndrome
US9526728B2 (en) 2014-02-28 2016-12-27 Boehringer Ingelheim International Gmbh Medical use of a DPP-4 inhibitor
US9555001B2 (en) 2012-03-07 2017-01-31 Boehringer Ingelheim International Gmbh Pharmaceutical composition and uses thereof
US9713618B2 (en) 2012-05-24 2017-07-25 Boehringer Ingelheim International Gmbh Method for modifying food intake and regulating food preference with a DPP-4 inhibitor
US10155000B2 (en) 2016-06-10 2018-12-18 Boehringer Ingelheim International Gmbh Medical use of pharmaceutical combination or composition
US11033552B2 (en) 2006-05-04 2021-06-15 Boehringer Ingelheim International Gmbh DPP IV inhibitor formulations
US11911388B2 (en) 2008-10-16 2024-02-27 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients with insufficient glycemic control despite therapy with an oral or non-oral antidiabetic drug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50111005A (en) * 1974-02-18 1975-09-01
JPH03279375A (en) * 1990-03-28 1991-12-10 Kyorin Pharmaceut Co Ltd Resolution of optically active 2-methylpiperazine
JPH07188124A (en) * 1993-12-28 1995-07-25 Toray Ind Inc Separation of optically active amine
JP2001131157A (en) * 1999-11-05 2001-05-15 Nisshin Flour Milling Co Ltd Method for producing optically active 2-methylpiperazine
JP2002080459A (en) * 2000-08-31 2002-03-19 Daiwa Kasei Kogyo Kk Method for producing optically resoluble substance of 2-methylpiperazine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50111005A (en) * 1974-02-18 1975-09-01
JPH03279375A (en) * 1990-03-28 1991-12-10 Kyorin Pharmaceut Co Ltd Resolution of optically active 2-methylpiperazine
JPH07188124A (en) * 1993-12-28 1995-07-25 Toray Ind Inc Separation of optically active amine
JP2001131157A (en) * 1999-11-05 2001-05-15 Nisshin Flour Milling Co Ltd Method for producing optically active 2-methylpiperazine
JP2002080459A (en) * 2000-08-31 2002-03-19 Daiwa Kasei Kogyo Kk Method for producing optically resoluble substance of 2-methylpiperazine

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9108964B2 (en) 2002-08-21 2015-08-18 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US10023574B2 (en) 2002-08-21 2018-07-17 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US9556175B2 (en) 2002-08-21 2017-01-31 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and thier use as pharmaceutical compositions
US10202383B2 (en) 2002-08-21 2019-02-12 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US9321791B2 (en) 2002-08-21 2016-04-26 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US9499546B2 (en) 2004-11-05 2016-11-22 Boehringer Ingelheim International Gmbh Process for the preparation of chiral 8-(3-aminopiperidin-1-yl)-xanthines
US9751855B2 (en) 2004-11-05 2017-09-05 Boehringer Ingelheim International Gmbh Process for the preparation of chiral 8-(3-aminopiperidin-1-yl)-xanthines
JP2012211174A (en) * 2004-11-05 2012-11-01 Boehringer Ingelheim Internatl Gmbh Method for production of chiral 8-(3-amino-piperidin-1-yl)-xanthine
US8883805B2 (en) 2004-11-05 2014-11-11 Boehringer Ingelheim International Gmbh Process for the preparation of chiral 8-(3-aminopiperidin-1-yl)-xanthines
US10301313B2 (en) 2006-05-04 2019-05-28 Boehringer Ingelheim International Gmbh Polymorphs
US11033552B2 (en) 2006-05-04 2021-06-15 Boehringer Ingelheim International Gmbh DPP IV inhibitor formulations
US10080754B2 (en) 2006-05-04 2018-09-25 Boehringer Ingelheim International Gmbh Uses of DPP IV inhibitors
US11291668B2 (en) 2006-05-04 2022-04-05 Boehringer Ingelheim International Gmbh Uses of DPP IV inhibitors
US11919903B2 (en) 2006-05-04 2024-03-05 Boehringer Ingelheim International Gmbh Polymorphs
US9815837B2 (en) 2006-05-04 2017-11-14 Boehringer Ingelheim International Gmbh Polymorphs
US11084819B2 (en) 2006-05-04 2021-08-10 Boehringer Ingelheim International Gmbh Polymorphs
US9493462B2 (en) 2006-05-04 2016-11-15 Boehringer Ingelheim International Gmbh Polymorphs
US9173859B2 (en) 2006-05-04 2015-11-03 Boehringer Ingelheim International Gmbh Uses of DPP IV inhibitors
US9266888B2 (en) 2006-05-04 2016-02-23 Boehringer Ingelheim International Gmbh Polymorphs
US9155705B2 (en) 2008-04-03 2015-10-13 Boehringer Ingelheim International Gmbh DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation
US10022379B2 (en) 2008-04-03 2018-07-17 Boehringer Ingelheim International Gmbh DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation
US9415016B2 (en) 2008-04-03 2016-08-16 Boehringer Ingelheim International Gmbh DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation
US10973827B2 (en) 2008-04-03 2021-04-13 Boehringer Ingelheim International Gmbh DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation
US10034877B2 (en) 2008-08-06 2018-07-31 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients inappropriate for metformin therapy
US9486526B2 (en) 2008-08-06 2016-11-08 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients inappropriate for metformin therapy
US8853156B2 (en) 2008-08-06 2014-10-07 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients inappropriate for metformin therapy
US11911388B2 (en) 2008-10-16 2024-02-27 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients with insufficient glycemic control despite therapy with an oral or non-oral antidiabetic drug
US8865729B2 (en) 2008-12-23 2014-10-21 Boehringer Ingelheim International Gmbh Salt forms of a xanthine compound
US9212183B2 (en) 2008-12-23 2015-12-15 Boehringer Ingelheim International Gmbh Salt forms of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine
US8846695B2 (en) 2009-01-07 2014-09-30 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients with inadequate glycemic control despite metformin therapy comprising a DPP-IV inhibitor
US10092571B2 (en) 2009-11-27 2018-10-09 Boehringer Ingelheim International Gmbh Treatment of genotyped diabetic patients with DPP-IV inhibitors such as linagliptin
US9457029B2 (en) 2009-11-27 2016-10-04 Boehringer Ingelheim International Gmbh Treatment of genotyped diabetic patients with DPP-IV inhibitors such as linagliptin
US9186392B2 (en) 2010-05-05 2015-11-17 Boehringer Ingelheim International Gmbh Combination therapy
US10004747B2 (en) 2010-05-05 2018-06-26 Boehringer Ingelheim International Gmbh Combination therapy
US9603851B2 (en) 2010-05-05 2017-03-28 Boehringer Ingelheim International Gmbh Combination therapy
US9149478B2 (en) 2010-06-24 2015-10-06 Boehringer Ingelheim International Gmbh Diabetes therapy
US9034883B2 (en) 2010-11-15 2015-05-19 Boehringer Ingelheim International Gmbh Vasoprotective and cardioprotective antidiabetic therapy
US11911387B2 (en) 2010-11-15 2024-02-27 Boehringer Ingelheim International Gmbh Vasoprotective and cardioprotective antidiabetic therapy
US9199998B2 (en) 2011-07-15 2015-12-01 Boehringer Ingelheim Internatioal Gmbh Substituted quinazolines, the preparation thereof and the use thereof in pharmaceutical compositions
US8883800B2 (en) 2011-07-15 2014-11-11 Boehringer Ingelheim International Gmbh Substituted quinazolines, the preparation thereof and the use thereof in pharmaceutical compositions
US8962636B2 (en) 2011-07-15 2015-02-24 Boehringer Ingelheim International Gmbh Substituted quinazolines, the preparation thereof and the use thereof in pharmaceutical compositions
US9555001B2 (en) 2012-03-07 2017-01-31 Boehringer Ingelheim International Gmbh Pharmaceutical composition and uses thereof
US10195203B2 (en) 2012-05-14 2019-02-05 Boehringr Ingelheim International GmbH Use of a DPP-4 inhibitor in podocytes related disorders and/or nephrotic syndrome
US9526730B2 (en) 2012-05-14 2016-12-27 Boehringer Ingelheim International Gmbh Use of a DPP-4 inhibitor in podocytes related disorders and/or nephrotic syndrome
US9713618B2 (en) 2012-05-24 2017-07-25 Boehringer Ingelheim International Gmbh Method for modifying food intake and regulating food preference with a DPP-4 inhibitor
US9526728B2 (en) 2014-02-28 2016-12-27 Boehringer Ingelheim International Gmbh Medical use of a DPP-4 inhibitor
WO2016021524A1 (en) * 2014-08-08 2016-02-11 東レ・ファインケミカル株式会社 Method for producing optically active 2-methylpiperazine
JP2016037495A (en) * 2014-08-08 2016-03-22 東レ・ファインケミカル株式会社 Method for producing optically active 2-methylpiperazine
CN105992760A (en) * 2014-08-08 2016-10-05 东丽精细化工株式会社 Method for producing optically active 2-methylpiperazine
KR20170039071A (en) 2014-08-08 2017-04-10 도오레 화인케미칼 가부시키가이샤 Method for producing optically active 2-methylpiperazine
US9994530B2 (en) 2014-08-08 2018-06-12 Toray Fine Chemicals Co., Ltd. Method of producing optically active 2-methylpiperazine
US10155000B2 (en) 2016-06-10 2018-12-18 Boehringer Ingelheim International Gmbh Medical use of pharmaceutical combination or composition

Similar Documents

Publication Publication Date Title
JP2004161749A (en) Method for producing optically active, nitrogen-containing compound
EP0828702B1 (en) Process for resolving chiral acids with 1-aminoindan-2-ols
CN111233829A (en) Preparation method of nicotine with optical activity
US20120016157A1 (en) Method for obtaining optically pure amino acids
US4699999A (en) Method of preparing pure carboxylic acids
KR101561828B1 (en) - Process for the racemization of -amino acids
JP5122871B2 (en) Process for producing optically active N-benzyloxycarbonylamino acid and diastereomeric salt
JP3888402B2 (en) Process for producing optically active N-carbobenzoxy-tert-leucine
JP2002114737A (en) METHOD FOR PRODUCING OPTICALLY ACTIVE o-CHLOROMANDELIC ACID
JP4529115B2 (en) Process for producing arylmethylpiperazine derivatives
US6921832B2 (en) Optically active fluorine-containing compounds and processes for their production
JP4752285B2 (en) Efficient optical resolution of trifluorolactic acid
JP4035856B2 (en) Method for producing high optical purity optically active amino acid ester
JPH1129544A (en) Production of n-alkoxycarbonylated, n-alkenyloxycarbonylated or n-arylalkoxycarbonylated amino acids
JP4529116B2 (en) Method for producing high-purity tritylpiperazine derivative
JP2953553B2 (en) Method for producing N-alkoxycarbonyl amino acid ester
JP4129765B2 (en) Method for producing racemic aminopentanenitrile
JPH10101629A (en) Production of optically active butyric acid derivative
JP3603151B2 (en) Method for producing carboxylic acids or derivatives thereof
JPH08183779A (en) Production of optically active piperazine derivative and intermediate for production
WO2002022543A1 (en) Process for preparing optically active carboxylic acid derivative
JP2005075754A (en) Method for optical resolution of trans-1,2-bis(3,5-dimethylphenyl)-1,2-ethanediamine
JP2005145842A (en) Cysteine compound salt crystal and its manufacturing method
WO2003074464A1 (en) Process for production of optically active carboxylic acid
CN110835319A (en) Synthesis method of benazepril intermediate and benazepril hydrochloride

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060822

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100303

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608