US20180363463A1 - Paired Air Pressure Energy Production System and Production Method - Google Patents

Paired Air Pressure Energy Production System and Production Method Download PDF

Info

Publication number
US20180363463A1
US20180363463A1 US16/103,696 US201816103696A US2018363463A1 US 20180363463 A1 US20180363463 A1 US 20180363463A1 US 201816103696 A US201816103696 A US 201816103696A US 2018363463 A1 US2018363463 A1 US 2018363463A1
Authority
US
United States
Prior art keywords
sub
blade
wind wheel
air pressure
pressure energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/103,696
Other languages
English (en)
Inventor
Weilun Chen
Tailun CHEN
Huiqin LI
Steve Jun Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20180363463A1 publication Critical patent/US20180363463A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B23/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01B23/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/007Underground or underwater storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B29/00Machines or engines with pertinent characteristics other than those provided for in preceding main groups
    • F01B29/08Reciprocating-piston machines or engines not otherwise provided for
    • F01B29/10Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1805Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem
    • F03B13/181Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for limited rotation
    • F03B13/1815Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for limited rotation with an up-and-down movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • F03B17/063Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having no movement relative to the rotor during its rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/008Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with water energy converters, e.g. a water turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/17Combinations of wind motors with apparatus storing energy storing energy in pressurised fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/28Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/025Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/12Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/028Controlling a pressure difference
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/04Control of fluid pressure without auxiliary power
    • G05D16/10Control of fluid pressure without auxiliary power the sensing element being a piston or plunger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/02Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors
    • F03D1/025Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors coaxially arranged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/708Photoelectric means, i.e. photovoltaic or solar cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/302Segmented or sectional blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/024Installations or systems with accumulators used as a supplementary power source, e.g. to store energy in idle periods to balance pump load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0166Shape complex divided in several chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0134Two or more vessels characterised by the presence of fluid connection between vessels
    • F17C2205/0138Two or more vessels characterised by the presence of fluid connection between vessels bundled in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0149Vessel mounted inside another one
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/031Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/038Subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/038Subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • F17C2250/0434Pressure difference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/016Preventing slosh
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/042Reducing risk of explosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0118Offshore
    • F17C2270/0121Platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0142Applications for fluid transport or storage placed underground
    • F17C2270/0144Type of cavity
    • F17C2270/0147Type of cavity by burying vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0581Power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the present invention relates to an air energy production system and a production method, and particularly, to a paired air pressure energy production system and a production method applied in the field of gas energy production.
  • the present invention is aimed at providing a paired air pressure energy production system, in which a power device collects energy in a natural environment and converts the energy into mechanical energy, so as to achieve the aim of producing paired air pressure energy.
  • Another aim of the present invention is to provide a paired air pressure energy production method, which collects the energy in a natural environment and converts the energy into mechanical energy, so as to achieve the aim of producing paired air pressure energy.
  • the present invention provides a paired air pressure energy production system, comprising:
  • a paired air pressure energy storage device comprising a high pressure air container and a low pressure air container, wherein the high pressure air container is filled with first gas, and the low pressure air container is filled with second gas;
  • a pneumatic compressor respectively connected with the high pressure air container and the lower pressure air container respectively, wherein the pneumatic compressor is used for transferring the second gas in the low pressure air container into the high pressure air container, paired air pressure energy difference is formed between the high pressure air container and the low pressure air container, and paired air pressure energy is formed in the paired air pressure energy storage device;
  • a power device connected with a rotating shaft of the pneumatic compressor and used for driving the rotating shaft of the pneumatic compressor to rotate.
  • the invention also provides a paired air pressure energy production method, comprising the steps of providing a high pressure air container filled with first gas and a low pressure air container filled with second gas, transferring the second gas in the low pressure air container into the high pressure air container, and forming air pressure difference capable of reflecting paired air pressure energy between the low pressure air container and the high pressure air container
  • the present invention has the following benefits: according to the paired air pressure energy production system and production method, wind energy, ocean wave energy or ocean current energy in natural environments are collected by a power device (a wind turbine, a water floating machine, a vertical water turbine and a hovering copter), are converted into mechanical energy by the pneumatic compressor, and then are stored in the paired air pressure energy storage device in the form of paired air pressure energy.
  • a power device a wind turbine, a water floating machine, a vertical water turbine and a hovering copter
  • FIG. 1 is a structural schematic diagram of the paired air pressure energy production system according to the present invention.
  • FIG. 2 is a structural schematic diagram of an optional embodiment of the paired air pressure energy storage device according to the present invention.
  • FIG. 3 is a structural schematic diagram of an optional embodiment of the power device (namely the wind turbine) according to the present invention.
  • FIG. 4 is a structural schematic diagram of an optional embodiment of vanes of the wind turbine according to the present invention.
  • FIG. 5 is a structural schematic diagram of another optional embodiment of the vanes of the wind turbine according to the present invention.
  • FIG. 6 is a side-view schematic diagram of a first wind wheel and a second wind wheel of the wind turbine according to the present invention.
  • FIG. 7 is a side-view schematic diagram of the vanes of the wind turbine according to the present invention.
  • FIG. 8 is a side-view schematic diagram of a state that adjusting blades of the wind turbine drive the blade angle vanes to rotate according to the present invention.
  • FIG. 9 is an overlook schematic diagram of another optional embodiment of a power device (that is the water floating machine) according to the present invention.
  • FIG. 10 is a structural schematic diagram of a use state with matching of driving sleeves and a driving main shaft according to the present invention.
  • FIG. 11 is a structural schematic diagram of another use state with matching of the driving sleeves and the driving main shaft according to the present invention.
  • FIG. 12 is a structural schematic diagram of a use state with combination of the driving sleeves and floating members according to the present invention.
  • FIG. 13 is a structural schematic diagram of further another optional embodiment of the power device (that is a vertical water turbine) according to the present invention.
  • FIG. 14 is a structural schematic diagram of an optional embodiment of sub-blades according to the present invention.
  • FIG. 15 is a structural schematic diagram of another optional embodiment of sub-blades according to the present invention.
  • FIG. 16 is an overlook schematic diagram of first movable blades and second movable blade according to the present invention.
  • FIG. 17 is a structural schematic diagram of yet another optional embodiment of the poser device (that is the hovering copter) according to the present invention.
  • FIG. 18 is a structural schematic diagram of an optional embodiment of the hovering copter according to the present invention.
  • FIG. 19 is a structural schematic diagram of a combined structure of the wind turbine, the water floating machine and the vertical water turbine according to the present invention.
  • the present invention provides a paired air pressure energy production system, which comprises a paired air pressure energy storage device 1 , a pneumatic compressor 2 and a power device 3 .
  • the paired air pressure energy storage device includes a high pressure air container 11 and a low pressure air container 12 , the high pressure air container 11 is filled with first gas, and the low pressure air container 12 is filled with second gas.
  • the pneumatic compressor 2 is connected with the low pressure air container 12 and the high pressure air container 12 respectively.
  • the pneumatic compressor 2 is used for transferring the second gas in the low pressure air container 12 into the high pressure air container 11 .
  • Air pressure difference is formed between the high pressure air container 11 and the low pressure air container 12 and the air pressure difference is the paired air pressure energy, that is, air pressure difference capable of reflecting paired air pressure energy is formed between the high pressure air container 11 and the low pressure air container 12 .
  • the paired air pressure energy is formed in the paired air pressure energy storage device 1 and the power device 3 is connected with a rotating shaft 21 of the pneumatic compressor 2 for driving the rotating shaft 21 of the pneumatic compressor 2 to rotate.
  • the high pressure air container 11 includes at least one sealed cylinder filled with high pressure gas
  • the low pressure air container 12 includes at least one sealed cylinder filled with low pressure gas.
  • the paired air pressure energy storage device 1 includes an inner body 13 and an outer body 14 sleeved on the outside of the inner body 13 .
  • the inner body 13 is filled with first gas
  • a chamber 15 formed between the outer body 14 and the inner body 13 is filled with second gas.
  • the inner body 13 is the high pressure air container 11
  • the chamber 15 is the low pressure air container 12 ; or, in other embodiments, the inner body 13 is the low pressure air container 12 with second gas filled therein, and the chamber 15 is the high pressure air container 11 with first gas filled therein.
  • the inner body 13 is the high pressure air container 11
  • the first gas therein is high pressure gas
  • the chamber 15 is the low pressure air container 12
  • the second gas therein is low pressure gas.
  • the inner body 13 is the low pressure air container 12
  • the second gas therein is the low pressure gas
  • the chamber 15 is the high pressure air container 11
  • the first gas therein is high pressure gas, and thus being favorable for alleviating stress on the wall of the outer body 14 and offsetting the retracting pressure of the outer body 14 .
  • the intensity of pressure of the high pressure gas is higher than that of the low pressure gas, that is, the intensity of pressure of the first gas is higher than that of the second gas.
  • the intensity of pressure of the first gas may be 0.1 MPa-100 MPa, and the intensity of pressure of the second gas may be 100 Pa-30 MPa.
  • the first gas and the second gas may be selected from air, or nitrogen, or helium, or mixture of other gases; and the mixture of the other gases, for example, may be a mixture of nitrogen and helium, etc.
  • a compressor known in the prior art may be adopted as the pneumatic compressor 2 , and an aim of transferring the second gas in the low pressure air container 12 into the high pressure air container 11 is achieved by the compressor, while the specific structure and working principle of the compressor will not be further described herein.
  • the pneumatic compressor 2 may realize an effect of storing mechanical energy in the paired air pressure energy storage device 1 in the form of paired air pressure energy.
  • the power device 3 may be a wind turbine 31 , and the wind turbine 31 is connected with the rotating shaft 21 of the pneumatic compressor 2 .
  • the wind turbine 31 is used for driving the rotating shaft 21 of the pneumatic compressor 2 to rotate, so as to start the pneumatic cylinder 2 to work, and thus achieving the aim of transferring the second gas in the low pressure air container 12 into the high pressure air container 11 .
  • the wind turbine 31 may collect wind energy in natural environment, for example, wind power on the land, on the water surface or in the air, and convert the wind energy into mechanical energy to be acted to the rotating shaft 21 of the pneumatic compressor 2 .
  • the wind turbine 31 comprises a horizontal wind tower 311 , a first wind wheel 312 and a second wind wheel 313 are respectively provided at two sides of the horizontal wind tower 311 .
  • the first wind wheel 312 is in an upwind position with respect to the second wind wheel.
  • the paired air pressure energy storage device 1 is provided at the lower end of the horizontal wind tower 311
  • the pneumatic compressor 2 is located between the horizontal wind tower 311 and the paired air pressure energy storage device 1
  • the first wind wheel 312 and the second wind wheel 313 are respectively in driven connection with the rotating shaft 21 of the pneumatic compressor 2 .
  • the horizontal wind tower 311 By fixing the horizontal wind tower 311 on land, or placing the horizontal wind tower 311 on a floating object floating on the water surface, or fixing support pillars on land, the horizontal wind tower 311 is connected above the support pillars, so that the horizontal wind tower 311 is located in the air above the land, and the aim of collecting wind energy in natural environment is achieved by using the first wind wheel 312 and the second wind wheel 313 .
  • Communication electronics, power electronics and motor facilities do not need to be provided in the horizontal wind tower 311 , and therefore, the construction cost of the horizontal wind tower 311 is low, the maintenance cost is more cost-effective, and system equipment is more durable.
  • the horizontal wind tower 311 is actually of a hollow structure
  • the paired air pressure energy storage device 1 and the pneumatic compressor 2 are both located in a cylinder chamber at the lower end of the horizontal wind tower 311
  • the hollow structure is capable of enabling the horizontal wind tower 311 to be located on a shaking plane, and thus being especially suitable for collecting wind energy in water floating type, deep sea and low-speed moving places and in the air.
  • the horizontal wind tower 311 does not need to be fixedly supported on the underwater ground, and therefore, the underwater engineering construction cost, environment protection cost and operation and maintenance cost of the horizontal wind tower 311 are remarkably lowered, and influence to underwater environment is reduced.
  • a distance between the second wind wheel 313 and the horizontal wind tower 311 is greater than a distance between the first wind wheel 312 and the horizontal wind tower 311 .
  • Such setting has the advantage that the wind aligning torque force of the second wind wheel 313 is stronger than that of the first wind wheel 312 , so that the horizontal wind tower 311 acquires a capability of automatically aligning to wind or yawing.
  • the wind aligning torque force is wind power born by the second wind wheel 313 or the first wind wheel 312 multiplied by a distance from respective wind wheels to the horizontal wind tower 311 .
  • the first wind wheel 312 and the second wind wheel 313 both comprise a plurality of vanes 314 .
  • the first wind wheel 312 and the second wind wheel 313 respectively includes two vanes 314 , and the two vanes 314 are oppositely and radially arranged along the rotating center 315 (that is, the aftermentioned first wind wheel rotating shaft 3121 or second wind wheel rotating shaft 3131 ).
  • the rotating center 315 that is, the aftermentioned first wind wheel rotating shaft 3121 or second wind wheel rotating shaft 3131 .
  • the first wind wheel 312 and the second wind wheel 313 also may respectively include three vanes 314 , and the three vanes 314 are arranged at equal intervals along the peripheral direction of the rotating center 315 ; or in other embodiments, the first wind wheel 312 and the second wind wheel 313 may also respectively comprise four vanes 314 or more vanes 314 , which is not limited herein.
  • each vane 314 comprises a plurality of sub-vanes which are sequentially connected from inside to outside.
  • the plurality of sub-vanes are connected to a vane shaft 3147
  • the vane shaft 3147 is used for connecting the vanes 314 to the aftermentioned first wind wheel rotating shaft 3121 or second wind wheel rotating shaft 3131
  • the vanes 314 are designed to be of a segmented structure, thus saving the manufacture, transportation and maintenance cost of the vanes; and in another feasible embodiment, the vanes 314 may also be integrally formed on the vane shaft 3147 , which is not limited here.
  • a first sub-vane 3141 , a second sub-vane 3142 and a third sub-vane 3143 are sequentially connected from the inner edge of the vane 314 to the outer edge of the vane 314 ; of course, in other embodiments, the quantity of the sub-vanes on each vane 314 may also be selected and set according to actual requirements, for example, each vane 314 comprises two sub-vanes, or four sub-vanes, or more sub-vanes, which is not limited here.
  • the length of the third sub-vane 3143 at the outer edge of the vane 314 is greater than that of the second sub-vane 3142 and the length of the first sub-blade 3141 at the inner edge of the vane 314 ; and the thickness of the third sub-vane 3143 at the outer edge of the vane 314 is smaller than the thickness of the second sub-vane 3142 and the first sub-blade 3141 at the inner edge of the vane 314 .
  • vane segmentation is favorable for segmented maintenance according to requirement, instead of overall maintenance; and on the other hand, vanes 314 of different sizes are adopted as the segmented vanes, which is favorable for the overall mechanical loading of the vane 314 , that is, when the load of a blade is constant, the overall length of the vane 314 may be extended by thinning and narrowing the third sub-vane 3143 at the outer edge of the vane 314 , so as to obtain a larger swept area.
  • each vane 314 comprises three sub-vanes an example
  • the length of the sub-vane at the outer edge of the vane 314 is the length L 3 of the third sub-vane 3143
  • the length of the sub-vane at the inner edge of the vane 314 is the length L 1 of the first sub-vane, that is the length L 3 is greater than the length L 1
  • the thickness of the sub-vane at the outer edge of the vane 314 is the thickness H 3 of the third sub-vane 3143
  • the thickness of the sub-vane at the inner edge of the vane 314 is the thickness H 1 of the first sub-vane 3141 , that is, the thickness H 3 is smaller than the thickness H 1 .
  • the length L 3 of the third sub-vane 3143 is greater than the length L 2 of the second sub-vane 3142 , and the length L 2 of the second sub-vane 3142 is greater than the length L 1 of the first sub-vane 3141 ; the thickness H 3 of the third sub-vane 3143 is smaller than the thickness H 2 of the second sub-vane 3142 , and the thickness H 2 of the second sub-vane 3142 is smaller than the thickness H 1 of the first sub-vane 3141 .
  • the total length (that is the sum of the length L 1 , the length L 2 and the length L 3 ) of the vane 314 is 0.3 m-50 m.
  • the first wind wheel 312 is in driven connection with the rotating shaft 21 of the pneumatic compressor 2 by the first wind wheel rotating shaft 3121
  • the second wind wheel 313 is in driven connection with the rotating shaft 21 of the pneumatic compressor 2 by the second wind wheel rotating shaft 3131
  • a plurality of vanes 314 of the first wind wheel 312 are connected to the first wind wheel rotating shaft 3121
  • a plurality of vanes 314 of the second wind wheel 313 are connected to the second wind wheel rotating shaft 3131 .
  • a bevel gear 211 is connected to the rotating shaft 21 of the pneumatic compressor 2 , the bevel gear 211 is located in the horizontal wind tower 311 , an upper first wind wheel bevel gear 3122 is connected to one end, stretching into the horizontal wind tower 311 , of the first wind wheel rotating shaft 3121 , a plurality of vanes 314 of the first wind wheel 312 are connected to the other end of the first wind wheel rotating shaft 3121 by respective vane shafts 3147 , a lower second wind wheel bevel gear 3132 is connected to one end, stretching into the horizontal wind tower 311 , of the second wind wheel rotating shaft 3131 , a plurality of vanes 314 of the second wind wheel 313 are connected to the other end of the second wind wheel rotating shaft 3131 by respective vane shafts 3147 , and the upper first wind wheel bevel gear 3122 and the lower second wind wheel bevel gear 3132 are respectively in driving connection with the bevel gear 211 .
  • a plurality of vanes 314 of the first wind wheel 312 and a plurality of vanes 314 of the second wind wheel 313 rotate to drive the first wind wheel rotating shaft 3121 and the lower second wind wheel bevel gear 3132 to rotate, so that the bevel gear 211 connected to the rotating shaft 21 of the pneumatic compressor 2 rotates under the combined action of the first wind wheel bevel gear 3122 wind wheel rotating shaft 3121 and the lower second wind wheel bevel gear 3132 , and the aim of driving the rotating shaft 21 of the pneumatic compressor 2 to rotate is achieved.
  • the rotating directions of the first wind wheel bevel gear 3122 wind wheel rotating shaft 3121 and the lower second wind wheel bevel gear 3132 are opposite, that is, the rotating direction of the plurality of vanes 314 on the first wind wheel 312 is opposite to the rotating direction of the plurality of vanes 314 on the second wind wheel 313 , and the first wind wheel 312 and the second wind wheel 313 are in a counter rotating state.
  • Such design has the following advantages: on one hand, the aim of making the rotating shaft 21 of the pneumatic compressor 2 rotate toward one direction is achieved; and on the other hand, when the wind turbine 31 is under the action of wind power, the first wind wheel 312 and the second wind wheel 313 with opposite rotating directions may generate counter rotating torque relative to the horizontal wind tower 311 , such counter rotating torque is favorable for promoting the synthesis torque of the first wind wheel rotating shaft 3121 and the lower second wind wheel bevel gear rotating shaft 31321 , and therefore, a symmetric acting force of the first wind wheel 312 and the second wind wheel 313 to the horizontal wind tower 311 is eliminated, not only may wind energy utilization rate of the wind turbine 31 in unit swept area be increased, but also wind energy collection efficiency is increased; meanwhile, horizontal counter rotating torques generated by the first wind wheel 312 and the second wind wheel 313 respectively are synthesized to be a single vertically downward torque at the top of the horizontal wind tower 311 , so as to promote the start of the pneumatic compressor 2 , and thus being favorable for converting wind
  • FIG. 6 is a view of the FIG.
  • the first wind wheel 312 comprises two vanes 314
  • the second wind wheel 313 also comprises two vanes 314
  • the two vanes 314 of the first wind wheel 312 are respectively arranged by staggering from the two vanes 314 of the second wind wheel 313 , that is, the vanes are arranged in an orthogonal way by forming an angle of 90 degrees.
  • Such setting has the advantage that wind aligning area shielding of the first wind wheel 312 is minimum relative to the second wind wheel 313 .
  • each vane 314 is formed by splicing a plurality of sub-vanes
  • each sub-vane in each vane 314 is formed by two rotatably connected vanes 3144 and a blade angle vane 3145 , wherein two blade angle vanes 3145 of two adjacent sub-vanes of each vane 314 are connected with each other by a first connecting member 3146 , and the vanes 3144 of each sub-vane of each vane 314 is connected to respective vane shaft 3147 .
  • Each sub-vane is segmented into two vanes 3144 with a certain connection relation mutually and a blade angle vane 3145 , so as to be convenient for locally adjusting the angle of individual sub-vanes in field according to the wind regime of a wind field, and in maintenance, the vanes 3144 and/or the blade angle vane 3145 of individual sub-vanes may be locally replaced, instead of replacing the whole vane of the wind wheel.
  • each vane 314 in the present invention comprises three sub-vanes (the first sub-vane 3141 , the second sub-vane 3142 and the third sub-vane 3143 ) as an example
  • the shape of cross section of each sub-vane of each vane 314 is approximately approximately an obtuse triangle, and by making a vertical line towards the bottom edge by taking the obtuse angle of the obtuse triangle as a top point, vane bodies located at two sides of the vertical line are the vanes 3144 and the blade angle vane 3145 , and the vanes 3144 and the blade angle vane 3145 are designed to be of mutually rotatable structures at the top point of the obtuse angle of the obtuse triangle, for example, the vanes 3144 and the blade angle vane 3145 may be mutually rotatably connected by a hinge; further, elastic members 3148 are connected between the vanes 3144 and the blade angle vanes 3145 , in the
  • the area of the cross section of each sub-vane in each vane 314 is gradually reduced, for example, in the present embodiment, the area of the cross section of the first sub-vane 3141 is greater than the area of the cross section of the second sub-vane 3142 , and the area of the cross section of the second sub-vane 3142 is greater than the area of the cross section of the third sub-vane 3143 .
  • Such setting has the advantages that a production process with equal uniform section is adopted for each sub-vane, and therefore, the manufacture, transportation and maintenance cost of the vanes is saved, and lift vane forming may be distinguished from exiting vane forming.
  • the first wind wheel 312 and the second wind wheel 313 respectively comprise a plurality of adjusting blades 316 , one adjusting blade 316 is provided between every two adjacent vanes 314 of the first wind wheel 312 and also between every two adjacent vanes 314 of the second wind wheel 313 , and a linkage member 317 is connected between each of the adjusting blades 316 and one vane 314 adjacent to the adjusting blade 316 .
  • These adjusting blades 316 may receive and sense wind power acting on the horizontal wind tower 311 , and transfer this acting force to the blade angle vane 3145 of each vane 314 by the linkage members 317 .
  • each adjusting blade 316 is rotatably connected to the vane shaft 3147 .
  • This adjusting blade 316 is connected to the blade angle vane 3145 of each the first sub-vane 3141 at the inner edge of the vane 314 by the linkage member 317 .
  • FIG. 7 and FIG. 8 when the wind power is increased or rotating speed is raised, wind power received by the face of the adjusting blade 316 is increased accordingly, offset of the adjusting blade 316 along the wind power direction is increased, and the angle of the vane 314 is adjusted by utilizing the offset acting force.
  • the adjusting blade 316 transfers the received wind power to the connected blade angle vane 3145 by the linkage member 317 , so that the blade angle vane 3145 is stressed, and the blade angle vane 3145 rotates by a certain angle around the vane 3144 , so as to realize linkage adjustment of the blade angle of the vane 314 .
  • the blade angle vanes 3145 of a plurality of vanes 314 are driven to rotate by a plurality of adjusting blades 316 , so as to automatically adjust the rotating speed of a plurality of vanes 314 on the first wind wheel 312 and a plurality of vanes 314 on the second wind wheel 313 around the first wind wheel rotating shaft 3121 and the second wind wheel rotating shaft 3131 , and therefore, the self-start capacity at low wind speed and the autonomous sheltering capacity at a strong wind speed of the wind turbine 31 are promoted.
  • the power device 3 is the water floating machine 32 , and the water floating machine 32 is connected with the rotating shaft 21 of the pneumatic compressor 2 .
  • the water floating machine 32 is used for driving the rotating shaft 21 of the pneumatic compressor 2 to rotate, so as to start the pneumatic compressor 2 to work, and achieve the aim of transferring the second gas in the low pressure air container 12 into the high pressure air container 11 .
  • the water floating machine 32 is capable of collecting ocean wave energy in the natural environment, for example, ocean wave energy on water or on the sea, and converting the ocean wave energy into mechanical energy to be acted to the rotating shaft 21 of the pneumatic compressor 2 .
  • the water floating machine 32 comprises a plurality of floating mechanisms 321 , and the floating mechanisms 321 are connected by second connecting members 322 ; in the present embodiment, the second connecting members 322 are flexible rods made by adopting plastic, rubber, organic glass or synthetic fiber, and have certain hardness themselves, and in combination with certain flexible characteristic, a minimum relative distance is kept among the floating mechanisms 321 .
  • Each floating mechanism 321 comprises a fixed ring and a plurality of floating components 3212 connected to the fixed ring.
  • the paired air pressure energy production system may be provided on water or on the sea, and energy generated by up and down surging of water waves is received and transferred by a plurality of floating components 3212 .
  • each floating component 3212 comprises a driving main shaft 3213 , a plurality of floating members 3214 are rotatably connected to the driving main shaft 3213 , and in a feasible embodiment, a plurality of floating members 3214 on each driving main shaft 3213 are provided at two sides of the driving main shaft 3213 in a staggered way along the axial direction of the driving main shaft 3213 , and therefore, the quantity of the floating members 3214 provided on each driving main shaft 3213 may be increased, and the ocean wave energy may be connected maximally.
  • the rotating shaft 21 of the pneumatic compressor 2 is connected connected with the driving main shaft 3213 , the paired air pressure energy storage device 1 is located below the driving main shaft 3213 , and the paired air pressure energy storage device 1 storing gas increases the floating capacity of the paired air pressure energy production system on a water surface or a sea surface.
  • a plurality of driving sleeves 3215 are sleeved on the driving main shaft 3213 at intervals, the floating members 3214 are connected to the driving sleeves 3215 by a link mechanism 323 , a plurality of driving grooves 3216 are formed in the inner peripheral walls of the driving sleeves 3215 along a peripheral direction, and rollers 3217 are provided in the driving grooves 3216 .
  • These driving sleeves 3215 are used for driving the driving main shaft 3213 to rotate, so as to achieve the aim of driving the rotating shaft 21 of the pneumatic compressor 2 to rotate.
  • the driving grooves 3216 are wedge grooves, the driving groove 3216 are in stripe shape along the axial direction of the driving sleeves 3215 , the shape of the cross sections of the driving grooves is wedge, each of the wedge grooves comprises a deep end 3218 and a shallow end 3219 , the groove depth of the deep end 3218 is greater than the groove depth of the shallow end 3219 ;
  • the rollers 3217 are approximately in cylinder rod shape, and the diameter of the rollers 3217 is equivalent to the groove depth of the deep ends 3218 of the wedge-grooves, so that when the rollers 3217 are located at the deep ends of the wedge grooves, the rollers 3217 cannot protrude out of the inner peripheral walls of the driving sleeves 3215 , and therefore, in a state that the rollers 3217 are located at the deep ends 3218 of the wedge grooves, the rollers 3217 are separated from the driving main shaft 3213 , at the moment, the driving sleeves 3215 do not possess the capacity of driving the driving main shaft 3213 ; and in a
  • the pneumatic compressor 2 may be started only when the driving main shaft 3213 rotates clockwise, at the moment, as shown in FIG. 10 , when the driving sleeves 3215 rotate clockwise, the rollers 3217 are pushed to the shallow ends 3219 of the driving grooves 3216 , so as to achieve the aim of driving the driving main shaft 3213 to rotate clockwise; as shown in FIG. 11 , when the driving sleeves 3215 rotate anticlockwise, the rollers 3217 are pushed to the deep ends 3218 of the driving grooves 3216 , and the rollers 3217 retract into the driving grooves 3216 to be separated from the driving main shaft 3213 , at the moment, the driving sleeves 3215 cannot drive the driving main shaft 3213 to rotate.
  • the driving main shaft 3213 may be driven to rotate only when the rotating direction of the driving sleeves 3215 is consistent to that of the driving main shaft 3213 , while the driving sleeves 3215 cannot drive the driving main shaft 3213 to rotate when the rotating direction of the driving sleeves 3215 is opposite to that of the driving main shaft 3213 .
  • the floating members 3214 when the floating members 3214 float on the water surface or the sea surface, the floating members will drift up and down along with up and down surging of sea waves, at the moment, the movement of the floating members 3214 will be transferred to the driving sleeves 3215 by the link mechanism 323 ; when the driving sleeves 3215 rotate oppositely relative to the driving main shaft 3213 , the driving sleeve 3215 will not drive the driving main shaft 3213 to rotate; and when the driving sleeves 3215 rotate to the same direction relative to the driving main shaft 3213 , the driving sleeve 3215 is capable of driving the driving main shaft 3213 to rotate.
  • the floating members 3214 are spheres with cavities, of course, in other embodiments, the floating members 3214 may also be cylinders with cavities, for example, a buoy structure, etc., which is not limited here; the only requirement is that the floating members 3214 may be placed on the sea or on water to float on the sea surface or the water surface.
  • the link mechanism 323 is a plurality of connecting rods connected between the floating members 3214 and the driving sleeves 3215 .
  • the power device 3 is a vertical water turbine 33 , and the vertical water turbine 33 is connected with the rotating shaft 21 of the pneumatic compressor 2 .
  • the vertical water turbine 22 is used for driving the rotating shaft 21 of the pneumatic compressor 2 to rotate, so as to start the pneumatic compressor 2 to work, and achieve the aim of transferring the second gas in the low pressure air container 12 into the high pressure air container 11 .
  • the vertical water turbine 33 is capable of collecting water flow energy in the natural environment, for example, underwater or undersea ocean current energy, and converting the water flow energy into mechanical energy to be acted to the rotating shaft 21 of the pneumatic compressor 2 .
  • the vertical water turbine 33 is located underwater or undersea, that is the vertical water turbine 33 is placed under the water surface or the sea surface 334 and located above the bottom 335 of the water bottom or seabed, the vertical water turbine 33 comprises a water turbine shaft 331 , the paired air pressure energy storage device 1 is located above the water turbine shaft 331 , the pneumatic compressor 2 is located between the water turbine shaft 331 and the paired air pressure energy storage device 1 , a plurality of first movable blades 332 are connected to with the water turbine shaft 331 along the peripheral direction, one end of the first movable blades 332 is rotatably connected with the water turbine shaft 331 , for example, being rotatably connected with the water turbine shaft 331 by a connecting ring sleeved on the water turbine shaft 331 , and the other end of the first movable blade is connected with the rotating shaft 21 of the pneumatic compressor 2 .
  • the vertical water turbine 33 may be fixed to the bottom 335 of the water bottom or the seabed by a flexible cable 336 , so as to limit the floating scope of the vertical water turbine 33 ;
  • the water turbine shaft 331 of the vertical water turbine 33 is of a hollow structure actually, the paired air pressure energy storage device 1 and the pneumatic compressor 2 are both located in a cylinder chamber at the upper end of the water turbine shaft 331 , and the water turbine shaft 331 of the hollow structure may make the vertical water turbine 33 be suitable for collecting water flow energy in floating type, deep sea and low-speed moving places; furthermore, due to the inherent hollow buoyancy characteristic of the water turbine shaft 331 , the water turbine shaft 331 does not need to be fixedly supported on the underwater ground, and just needs to be fixed
  • a plurality of second movable blades 333 are also connected to the water turbine shaft 331 along the peripheral direction, the rotating directions of the second movable blades 333 along the water turbine shaft 331 are opposite to the rotating directions of the first movable blades 332 along the water turbine shaft 331 , one end of the second movable blade 333 is rotatably connected with the water turbine shaft 331 , for example, being rotatably connected with the water turbine shaft 331 by the connecting ring sleeved on the water turbine shaft 331 , and the other end of the second movable blade 333 is connected with the rotating shaft 21 of another pneumatic compressor 2 connected to the water turbine shaft 331 .
  • a scheme of reciprocal rotation of a plurality of first movable blades 332 and a plurality of second movable blades 333 is adopted, so as to mutually offset axial torsion to the water turbine shaft 331 , and therefore, adverse effect of the vertical water turbine 33 on the paired air pressure energy storage device 1 arranged above is eliminated.
  • the second gas in the low pressure air container 12 of the paired air pressure energy storage device 1 is more rapidly transferred into the high pressure air container 11 , and therefore, the working efficiency of the paired air pressure energy production system is increased.
  • the first movable blades 332 and the second movable blades 333 are all formed by splicing a plurality of sub-blades.
  • the first movable blades 332 and the second movable blades 333 of the vertical water turbine 33 respectively adopt a structure of segmented sub-blades, so as to lower the manufacture, installation and maintenance cost of the blades.
  • the first movable blades 332 and the second movable blades 333 in the present embodiment are respectively formed by sequentially connecting connecting a first sub-blade 3321 , a second sub-blade 3322 and a third sub-blade 3323 , the first sub-blade 3321 is located above the third sub-blade 3323 , the second sub-blade 3322 is located between the first sub-blade 3321 and the third sub-blade 3323 .
  • An included angle ⁇ between two adjacent sub-blades is 90°-180°, that is, an included angle ⁇ between the upper first sub-blade 3321 and the side second sub-blade 3322 is 90°-180°, and an included angle ⁇ between the side second sub-blade 3322 and the lower third sub-blade 3323 is 90°-180°.
  • the first movable blades 332 and the second movable blades 333 are all arc-shaped blades, that is the first movable blades 332 and the second movable blades 333 may also be integrally formed and designed, which is not limited here.
  • the shapes of cross sections of the first movable blades 332 and the second movable blades 333 are all triangular or fusiform, so as to reduce the resistance of retrogressive water flow.
  • this triangle is an obtuse triangle.
  • the outer diameter R 1 of the first movable blades 332 rotating around the water turbine shaft 331 needs to be designed to be smaller than the outer diameter R 2 of the second movable blades 333 rotating around the water turbine shaft 331 . Please refer to FIG.
  • the power device is a hovering copter 34 , and the hovering copter 34 is connected with the rotating shaft 21 of the pneumatic compressor 2 .
  • the hovering copter 34 is used for driving the rotating shaft 21 of the pneumatic compressor 2 to rotate, so as to start the pneumatic compressor 2 to work, and achieve the aim of transferring the second gas in the low pressure air container 12 into the high pressure air container 11 .
  • the hovering copter 34 is capable of collecting wind energy in the natural environment, for example, wind power on the land, on the water surface or in the air, and converting the wind energy into mechanical energy to be acted to the rotating shaft 21 of the pneumatic compressor 2 .
  • the hovering copter 34 comprises a vertical wind turbine 341 and a plurality of propeller wings 342 connected to the upper side of the vertical wind turbine 341 , the vertical wind turbine 341 comprises a main shaft 3411 , the pneumatic compressor 2 is connected between the main shaft 3411 and the propeller wings 342 , the paired air pressure energy storage device 1 is sleeved on the main shaft 3411 , a plurality of third movable blades 343 are connected to the main shaft 3411 along the peripheral direction, one end of the third movable blades 343 are rotatably connected with the main shaft 3411 , for example being rotatably connected with the mains haft 3411 by a connecting ring sleeved on the main shaft 3411 , and the other end of the third movable blade 343 are connected with the rotating shaft 21 of the pneumatic compressor 2 . Under the action of wind energy in the air, a plurality of third movable blades 343 rotate around the main shaft 3411 , so as to drive the rotating
  • a plurality of fourth movable blades 344 are also connected to the main shaft 3411 along the peripheral direction, the rotating direction of the fourth movable blades 344 along the main shaft 3411 are opposite to the rotating direction of the third movable blades 343 along the main shaft 3411 , one end of the fourth movable blades 344 are rotatably connected with the main shaft 3411 , for example being rotatably connected with the main shaft 3411 by a connecting ring sleeved on the main shaft 3411 , and the other end of the fourth movable blade 344 is connected with the rotating shaft 21 of another pneumatic compressor 2 connected to the main shaft 3411 .
  • a scheme of reciprocal rotation of a plurality of third movable blades 343 and a plurality of fourth movable blades 344 is adopted, so as to mutually offset axial torsion to the main shaft 3411 , and therefore, adverse effect of the vertical water turbine 341 on the paired air pressure energy storage device 1 arranged thereon and a plurality of propeller wings 342 is eliminated; in addition, by adopting two pneumatic compressors 2 , the second gas in the low pressure air container 12 of the paired air pressure energy storage device 1 is more rapidly transferred into the high pressure air container 11 , and therefore, the working efficiency of the paired air pressure energy production system is increased.
  • the hovering copter 34 is a single rotary wing type copter, and comprises one propeller wing 342 , of course, in other embodiments, two or more propeller wings 342 may be connected above the vertical wind turbine 341 , which is not limited here.
  • Each of the propeller wings 342 is formed by a plurality of fourth vanes 3421 and an engine 3422 driving the plurality of fourth vanes 3421 to rotate, a plurality of third movable blades 343 are connected to the main shaft 3411 of the hovering copter 34 , and in the present embodiment, two third movable blades 343 are provided, and the two third movable blades 343 are oppositely arranged along the radial direction of the main shaft 3411 ; of course, in other embodiment, three, four or more third movable blades 343 may be provided, which is not limited here. In the embodiment as shown in FIG.
  • the hovering copter 34 is a double rotary wing type copter, and comprises two propeller wings 342 , each of the propeller wings 2 is formed by a plurality of fourth vanes 3421 and an engine 3422 driving the plurality of fourth vanes 3421 to rotate, a plurality of third movable blades 343 and a plurality of fourth movable blades 344 are connected to the main shaft 3411 of the hovering copter 34 , and in the present embodiment, two third movable blades 343 and two fourth movable blades 344 are provided, and the two third movable blades 343 and the two fourth movable blades 344 are oppositely arranged along the radial direction of the main shaft 3411 .
  • the aim of ascending the vertical wind turbine 341 to the air and hovering in the air is achieved by a plurality of propeller wings 342 , and then under the action of wind energy in the natural environment, the third movable blades 343 and/or the fourth movable blades 344 will rotate along the main shaft 3411 , so as to drive the rotating shaft 21 of the pneumatic compressor 2 to rotate, and achieve the aim of collecting wind energy and converting the wind energy into mechanical energy.
  • the third movable blade 343 and the fourth movable blade 344 are all formed by splicing a plurality of sub-blades.
  • the third movable blade 343 and the fourth movable blade 344 of the vertical water turbine 341 respectively adopt a structure of segmented sub-blades, so as to lower the manufacture, installation and maintenance cost of the blades.
  • the third movable blades 343 and the fourth movable blades 344 in the present embodiment are respectively formed by sequentially connecting an upper fourth sub-blade 3431 , a fifth sub-blade 3432 and a sixth sub-blade 3433 , the fourth sub-blade 3431 is located above the sixth sub-blade 3433 , the fifth sub-blade 3432 is located between the fourth sub-blade 3431 and the sixth sub-blade 3433 , wherein an included angle ⁇ between two adjacent sub-blades is 90°-180°, that is, an included angle ⁇ between the upper fourth sub-blade 3431 and the fifth sub-blade 3432 is 90°-180°, and an included angle ⁇ between the fifth sub-blade 3432 and the sixth sub-blade 3433 is 90°-180°.
  • the third movable blades 343 and the fourth movable blades 344 are all arc-shaped blades, that is the third movable blades 343 and the fourth movable blades 344 may also be integrally formed and designed, which is not limited here.
  • the shapes of cross-section of the third movable blades 343 and the fourth movable blades 344 are all triangular or fusiform, so as to reduce the resistance of retrogressive water flow.
  • this triangle is an obtuse triangle.
  • the outer diameter R 1 of the third movable blades 343 rotating around the main shaft 3411 needs to be smaller than the outer diameter R 2 of the fourth movable blades 344 rotating around the main shaft 3411 .
  • a landing frame 345 is connected to the lower end of the main shaft 3411 , so that the hovering helicopter 34 is buffered while landing.
  • the wind turbine 31 , the water floating machine 32 and the water turbine 33 may be combined together to use, specifically, a lower end cylinder of the horizontal wind tower 311 of the wind turbine 31 and an upper end cylinder of the water turbine shaft 331 of the water turbine 33 are jointly connected to the fixed ring 3211 of the water floating machine 32 , so as to achieve the aims of collecting wind energy, ocean wave energy and water flow energy.
  • a solar photovoltaic panel may also be connected to the lower end cylinder of the horizontal wind tower 311 of the wind turbine 31 , so as to collect solar energy.
  • the invention also provides a paired air pressure energy production method, comprising the steps of: providing a high pressure air container 11 filled with first gas and a low pressure air container 12 filled with second gas, transferring the second gas in the low pressure air container 12 into the high pressure air container 11 , and forming air pressure difference capable of reflecting paired air pressure energy between the low pressure air container 12 and the high pressure air container 11 .
  • the method is implemented by adopting the abovementioned paired air pressure energy production system, and the specific structure, working principle and beneficial effects of the paired air pressure energy production system are the same as the abovementioned implementation manners, and are not further described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Wind Motors (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Separation Of Gases By Adsorption (AREA)
US16/103,696 2016-02-14 2018-08-14 Paired Air Pressure Energy Production System and Production Method Abandoned US20180363463A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201610084601 2016-02-14
CN201610084601.4 2016-02-14
PCT/CN2017/073461 WO2017137014A1 (zh) 2016-02-14 2017-02-14 对压气能生产系统及生产方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073461 Continuation WO2017137014A1 (zh) 2016-02-14 2017-02-14 对压气能生产系统及生产方法

Publications (1)

Publication Number Publication Date
US20180363463A1 true US20180363463A1 (en) 2018-12-20

Family

ID=59562872

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/103,696 Abandoned US20180363463A1 (en) 2016-02-14 2018-08-14 Paired Air Pressure Energy Production System and Production Method
US16/103,731 Active 2037-03-29 US10738613B2 (en) 2016-02-14 2018-08-14 Paired air pressure energy power system and power method thereof
US16/103,660 Active 2037-11-18 US10883367B2 (en) 2016-02-14 2018-08-14 Paired air pressure energy storage device, inspection method and balance detection mechanism thereof

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/103,731 Active 2037-03-29 US10738613B2 (en) 2016-02-14 2018-08-14 Paired air pressure energy power system and power method thereof
US16/103,660 Active 2037-11-18 US10883367B2 (en) 2016-02-14 2018-08-14 Paired air pressure energy storage device, inspection method and balance detection mechanism thereof

Country Status (4)

Country Link
US (3) US20180363463A1 (de)
EP (3) EP3415713A4 (de)
CN (3) CN108779672B (de)
WO (3) WO2017137014A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110005491A (zh) * 2019-04-18 2019-07-12 东南大学 一种天然气压力能冷电联供系统
SE2100104A1 (en) * 2021-06-22 2022-12-23 Ameneh Masoumi Power motor
CN116599231B (zh) * 2023-05-18 2024-02-20 中国电建集团河北省电力勘测设计研究院有限公司 一种无储热罐的耦合有机朗肯循环的压缩空气储能系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100320626A1 (en) * 2009-06-19 2010-12-23 Jetpro Technology, Inc. Energy-saving and wind-powered aerator
US20120096845A1 (en) * 2011-11-11 2012-04-26 General Compression, Inc. Systems and methods for compressing and/or expanding a gas utilizing a bi-directional piston and hydraulic actuator
US20120174569A1 (en) * 2011-01-14 2012-07-12 General Compression, Inc. Compensated compressed gas storage systems
US20140353978A1 (en) * 2013-06-02 2014-12-04 Charles Martin Chavez Madson Wind turbine and compressed gas storage system for generating electrical power
US20140353878A1 (en) * 2011-06-15 2014-12-04 Dsm Ip Assets B.V. Substrate-based additive fabrication process and apparatus

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US658556A (en) * 1899-04-05 1900-09-25 William A Pitt Rotary engine or motor.
US3187766A (en) * 1961-04-21 1965-06-08 Pullman Inc Valving system for a vessel having a plurality of compartments
FR96253E (fr) * 1965-12-16 1972-06-16 Rodrigues Edouard Georges Dani Procédé de fabrication de réservoirs et reservoirs ainsi obtenus.
JPS5218402B2 (de) * 1971-12-03 1977-05-21
US4206608A (en) * 1978-06-21 1980-06-10 Bell Thomas J Natural energy conversion, storage and electricity generation system
US4332277A (en) * 1980-09-03 1982-06-01 Hughes Undersea Coupling, Inc. Pipeline pigging plug
US4462774A (en) * 1982-09-27 1984-07-31 William Hotine Rotary expander fluid pressure device
US4760701A (en) * 1984-03-06 1988-08-02 David Constant V External combustion rotary engine
WO1995000761A1 (en) * 1993-06-17 1995-01-05 Giovanni Aquino Rotary positive displacement device
US6748737B2 (en) * 2000-11-17 2004-06-15 Patrick Alan Lafferty Regenerative energy storage and conversion system
CN2575641Y (zh) * 2002-10-30 2003-09-24 中国船舶重工集团公司第七研究院第七一一研究所 压力压差同步指示表
US20040096327A1 (en) * 2002-11-14 2004-05-20 Kari Appa Method of increasing wind farm energy production
DE10308831B3 (de) * 2003-02-27 2004-09-09 Levitin, Lev, Prof. Dr., Brookline Rotationskolbenmaschine mit einem in einer ovalen Kammer geführten ovalen Rotationskolben
CN2641317Y (zh) * 2003-09-18 2004-09-15 李竞 往复式气体压缩装置
US7281513B1 (en) * 2006-02-24 2007-10-16 Webb David W Inverted Wankel
KR100792790B1 (ko) * 2006-08-21 2008-01-10 한국기계연구원 압축공기저장발전시스템 및 이를 이용한 발전방법
WO2009076757A2 (en) * 2007-12-14 2009-06-25 David Mcconnell Wind to electric energy conversion with hydraulic storage
CN101458140A (zh) * 2009-01-08 2009-06-17 丁东胜 一种差压表
CN101775998A (zh) * 2009-01-09 2010-07-14 孙红社 空气发动机
CN101575986A (zh) * 2009-04-28 2009-11-11 王润湘 多级变容压差摇杆式空气动力发动机
US8436489B2 (en) * 2009-06-29 2013-05-07 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
RU2609027C2 (ru) * 2011-03-29 2017-01-30 Ликвидпистон, Инк. Циклоидный роторный двигатель (варианты)
CN102305174B (zh) * 2011-07-04 2014-07-16 张向增 带扭角恒定横截面拉挤复合材料叶片及其拉挤成型方法
EP2751391A4 (de) * 2011-10-18 2015-04-22 Lightsail Energy Inc Druckluftenergiespeichersystem
ES2713527T3 (es) * 2011-11-05 2019-05-22 Erneo Energiespeichersysteme Gmbh Dispositivos y procedimientos para el almacenamiento de energía
CN103174583B (zh) * 2011-12-20 2016-04-06 李泽宇 一种风轮
CA2778101A1 (en) * 2012-05-24 2013-11-24 Jean Pierre Hofman Power generation by pressure differential
GB2506652A (en) * 2012-10-05 2014-04-09 Casu Vasu As An energy storage system and a method of storing energy
CN202954920U (zh) * 2012-11-30 2013-05-29 向靖 海浪发电装置
WO2014139967A1 (en) * 2013-03-14 2014-09-18 Martin Eurlings Pressure vessel based tower structure
US9878725B2 (en) * 2013-03-15 2018-01-30 Rail Gas Technologies Locomotive natural gas storage and transfer system
CN103775288B (zh) * 2014-01-27 2017-02-15 华北水利水电大学 靠钢结构复合塔体提供稳定电源的风力发电系统
CN204061031U (zh) * 2014-07-28 2014-12-31 张庆忠 可利用海水、河水和风力发电的多功能发电设备
CN105299945B (zh) * 2014-08-01 2019-02-01 江洪泽 混合气体冷凝分离存质升压储能装置和方法及实用系统
CN104314761B (zh) * 2014-08-25 2017-02-22 丁健威 一种叶片收叠式风能机
FR3034813B1 (fr) * 2015-04-13 2019-06-28 IFP Energies Nouvelles Systeme et procede de stockage et de recuperation d'energie par air comprime avec chauffage a volume constant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100320626A1 (en) * 2009-06-19 2010-12-23 Jetpro Technology, Inc. Energy-saving and wind-powered aerator
US20120174569A1 (en) * 2011-01-14 2012-07-12 General Compression, Inc. Compensated compressed gas storage systems
US20140353878A1 (en) * 2011-06-15 2014-12-04 Dsm Ip Assets B.V. Substrate-based additive fabrication process and apparatus
US20120096845A1 (en) * 2011-11-11 2012-04-26 General Compression, Inc. Systems and methods for compressing and/or expanding a gas utilizing a bi-directional piston and hydraulic actuator
US20140353978A1 (en) * 2013-06-02 2014-12-04 Charles Martin Chavez Madson Wind turbine and compressed gas storage system for generating electrical power

Also Published As

Publication number Publication date
CN108779674B (zh) 2020-12-25
US20180355721A1 (en) 2018-12-13
EP3415715A1 (de) 2018-12-19
WO2017137012A1 (zh) 2017-08-17
EP3415713A4 (de) 2020-03-11
EP3415715A4 (de) 2020-03-11
CN108779672B (zh) 2020-12-25
EP3415715B1 (de) 2022-08-31
CN108779674A (zh) 2018-11-09
US10738613B2 (en) 2020-08-11
EP3415714A4 (de) 2020-03-04
EP3415713A1 (de) 2018-12-19
WO2017137014A1 (zh) 2017-08-17
EP3415714A1 (de) 2018-12-19
CN108779673A (zh) 2018-11-09
US20180371908A1 (en) 2018-12-27
CN108779672A (zh) 2018-11-09
US10883367B2 (en) 2021-01-05
WO2017137013A1 (zh) 2017-08-17

Similar Documents

Publication Publication Date Title
US20180363463A1 (en) Paired Air Pressure Energy Production System and Production Method
US8362631B2 (en) Marine energy hybrid
CN104040170B (zh) 浮体式流体力利用系统及使用该系统的风力推进船
CN1076688C (zh) 飞行体
AU746011B2 (en) Extracting power from moving water
JP2008063960A (ja) 洋上浮体式風水車流体抽出発電設備
CN107985582B (zh) 一种火星旋翼式无人机的共轴反桨双叶片旋翼系统
WO2013013534A1 (zh) 漂浮式水浪能量采集转换系统
CN107010192B (zh) 一种用于调整风帆角度的装置及调整方法
US9041240B2 (en) Wind turbine apparatus
WO2019101102A1 (zh) 一种低流速水力发电机
CN213511031U (zh) 一种漂浮式风筒发电机
CA2787223A1 (en) Wind turbine having wings mounted on pivot shafts
CN202107033U (zh) 软基上的螺旋滚筒推进器
CN104204512A (zh) 发电装置
CN105539840A (zh) 一种简化振翅机结构的方案
KR102142243B1 (ko) 돛 장치
WO2011031515A2 (en) Displacement drive
CN105156257B (zh) 横卧式垂直轴低速平水流发电装置
US9546643B2 (en) Revolving overhead windmill
CN109989872B (zh) 一种具有自动调节功能的洋流能发电装置
CN103266991A (zh) 风力发电机叶轮方向控制装置
CN206914607U (zh) 一种用于调整风帆角度的装置
CN208106639U (zh) 功率可调式波浪发电机
CN101349247B (zh) 风力圆周运动杠杆大功率发电装置

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION