WO2017137014A1 - 对压气能生产系统及生产方法 - Google Patents

对压气能生产系统及生产方法 Download PDF

Info

Publication number
WO2017137014A1
WO2017137014A1 PCT/CN2017/073461 CN2017073461W WO2017137014A1 WO 2017137014 A1 WO2017137014 A1 WO 2017137014A1 CN 2017073461 W CN2017073461 W CN 2017073461W WO 2017137014 A1 WO2017137014 A1 WO 2017137014A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
blades
compressed air
energy production
movable blade
Prior art date
Application number
PCT/CN2017/073461
Other languages
English (en)
French (fr)
Inventor
陈威伦
陈泰伦
李慧勤
陈迪夫
Original Assignee
北京艾派可科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京艾派可科技有限公司 filed Critical 北京艾派可科技有限公司
Priority to EP17749905.0A priority Critical patent/EP3415714A4/en
Priority to CN201780011299.2A priority patent/CN108779673A/zh
Publication of WO2017137014A1 publication Critical patent/WO2017137014A1/zh
Priority to US16/103,696 priority patent/US20180363463A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B23/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01B23/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/007Underground or underwater storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B29/00Machines or engines with pertinent characteristics other than those provided for in preceding main groups
    • F01B29/08Reciprocating-piston machines or engines not otherwise provided for
    • F01B29/10Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1805Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem
    • F03B13/181Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for limited rotation
    • F03B13/1815Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for limited rotation with an up-and-down movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • F03B17/063Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having no movement relative to the rotor during its rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/008Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with water energy converters, e.g. a water turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/17Combinations of wind motors with apparatus storing energy storing energy in pressurised fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/28Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/025Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/12Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/028Controlling a pressure difference
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/04Control of fluid pressure without auxiliary power
    • G05D16/10Control of fluid pressure without auxiliary power the sensing element being a piston or plunger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/02Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors
    • F03D1/025Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors coaxially arranged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/708Photoelectric means, i.e. photovoltaic or solar cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/302Segmented or sectional blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/024Installations or systems with accumulators used as a supplementary power source, e.g. to store energy in idle periods to balance pump load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0166Shape complex divided in several chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0134Two or more vessels characterised by the presence of fluid connection between vessels
    • F17C2205/0138Two or more vessels characterised by the presence of fluid connection between vessels bundled in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0149Vessel mounted inside another one
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/031Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/038Subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/038Subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • F17C2250/0434Pressure difference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/016Preventing slosh
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/042Reducing risk of explosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0118Offshore
    • F17C2270/0121Platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0142Applications for fluid transport or storage placed underground
    • F17C2270/0144Type of cavity
    • F17C2270/0147Type of cavity by burying vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0581Power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the invention relates to a gas energy production system and a production method, in particular to a gas pressure energy production system and a production method applied in the field of gas energy production.
  • Another object of the present invention is to provide a method for producing a gas pressure energy by collecting energy in a natural environment and converting it into mechanical energy to achieve the purpose of producing gas pressure energy.
  • the present invention provides a gas pressure energy production system, wherein the gas pressure energy production system comprises:
  • a pressurized gas energy storage device having a high pressure storage gas and a low pressure storage gas, wherein the high pressure storage gas is filled with a first gas, and the low pressure storage gas is filled with a second gas;
  • a pneumatic machine connected to the low pressure storage gas and the high pressure storage gas, respectively, wherein the air press is configured to transfer a second gas in the low pressure storage gas into the high pressure storage gas, the high pressure storage gas Forming a pressure difference with the low pressure storage gas to form a pair of compressed gas energy in the pair of pressurized gas energy storage devices;
  • a power unit connected to a rotating shaft of the air press, wherein the power unit is configured to drive a rotation of the rotating shaft of the air press.
  • the present invention also provides a method for producing a gas pressure energy, providing a high pressure storage gas filled with a first gas and a low pressure storage gas filled with a second gas, and transferring the second gas in the low pressure storage gas to the high pressure storage Inside the gas A pressure difference between the low pressure storage gas and the high pressure storage gas is formed to reflect the pressure of the compressed gas.
  • the invention has the beneficial effects of collecting the wind energy, wave energy or ocean current energy in the natural environment by the power device (wind turbine, surface floater, vertical turbine and air hovering helicopter) And after converting it into mechanical energy by a pneumatic machine, it is stored in the compressed gas energy storage device in the form of compressed air energy.
  • the power device wind turbine, surface floater, vertical turbine and air hovering helicopter
  • Figure 1 is a schematic view showing the structure of a gas pressure energy production system of the present invention.
  • FIG. 2 is a schematic view showing the structure of an alternative embodiment of a pressurized gas energy storage device of the present invention.
  • FIG 3 is a schematic view showing the structure of an alternative embodiment of a power unit (i.e., a wind turbine) of the present invention.
  • a power unit i.e., a wind turbine
  • FIG. 4 is a schematic view showing the structure of an alternative embodiment of a blade of a wind turbine of the present invention.
  • Figure 5 is a schematic view showing the structure of another alternative embodiment of the blade of the wind turbine of the present invention.
  • Fig. 6 is a side elevational view showing the upper and lower wind wheels of the wind turbine of the present invention.
  • Figure 7 is a side elevational view of the blade of the wind turbine of the present invention.
  • Fig. 8 is a side elevational view showing the rotating state of the blade of the wind turbine of the present invention.
  • Figure 9 is a top plan view of another alternative embodiment of a power plant (i.e., a surface floater) of the present invention.
  • Figure 10 is a schematic view showing the structure of a driving sleeve and a driving spindle of the present invention in a state of use.
  • Figure 11 is a schematic view showing the structure of another driving state of the driving sleeve and the driving spindle of the present invention.
  • Figure 12 is a schematic view showing the structure of the driving sleeve in combination with the floating member of the present invention.
  • Figure 13 is a schematic view showing the structure of still another alternative embodiment of the power unit (i.e., vertical water turbine) of the present invention.
  • the power unit i.e., vertical water turbine
  • Figure 14 is a schematic view showing the structure of an alternative embodiment of the sub-blade of the present invention.
  • Figure 15 is a schematic view showing the structure of another alternative embodiment of the sub-blade of the present invention.
  • Figure 16 is a top plan view of the first movable blade and the second movable blade of the present invention.
  • Figure 17 is a schematic view showing the structure of still another alternative embodiment of the power unit (i.e., the air hover helicopter) of the present invention.
  • the power unit i.e., the air hover helicopter
  • Figure 18 is a block diagram showing an alternative embodiment of an air hovering helicopter of the present invention.
  • Figure 19 is a schematic view showing the combined structure of a wind turbine, a surface floater and a vertical turbine of the present invention.
  • the present invention provides a pair of compressed air energy production system including a pair of compressed air energy storage device 1, a pneumatic device 2 and a power device 3, wherein: the compressed gas energy storage device 1 has a high pressure storage gas 11 and a low pressure. a storage gas 12, the high-pressure storage gas 11 is filled with a first gas, and the low-pressure storage gas 12 is filled with a second gas; the air press 2 is connected to the low-pressure storage gas 12 and the high-pressure storage gas 11, respectively.
  • the air press 2 is configured to transfer a second gas in the low-pressure storage gas 12 into the high-pressure storage gas 11, and a pressure difference between the high-pressure storage gas 11 and the low-pressure storage gas 12 is formed.
  • a high pressure difference between the high pressure storage gas 11 and the low pressure storage gas 12 is formed, and a pressure difference between the compressed air energy is formed, and a pair of compressed air energy is formed in the compressed gas energy storage device 1; the power device 3 and the air pressure
  • the rotating shaft 21 of the machine 2 is connected, and the power unit 3 is used to drive the rotating shaft 21 of the air press 2 to rotate.
  • the pair of compressed air energy storage devices 1 is composed of a pair of respective closed cylinders, one cylinder (that is, the high pressure storage gas 11) is filled with the first gas, and the other cylinder (ie, the low pressure) The storage gas 12) is filled with a second gas.
  • the pair of compressed air energy storage devices 1 includes an inner body 13 and an outer body 14 sleeved outside the inner body 13, and the inner body 13 is filled with a first gas.
  • the cavity 15 formed between the outer body 14 and the inner body 13 is filled with a second gas.
  • the inner body 13 is a high pressure storage gas 11, and the cavity 15 is a low pressure storage.
  • the inner body 13 at this time is a high pressure storage gas 11, wherein the first gas is a high pressure gas, and the cavity 15 is a low pressure storage gas 12, wherein the second The gas is a low-pressure gas; when the pair of pressurized gas energy storage device 1 is under water or underground, since the underwater or underground pressure environment is high pressure, the inner body 13 at this time is a low-pressure storage gas 12, and the second gas is a low-pressure gas.
  • the cavity 15 is a high-pressure storage gas 11, wherein the first gas is arranged as a high-pressure gas, which is beneficial for reducing the stress on the wall of the outer body 14 and offsetting the contraction pressure of the outer body 14.
  • the pressure of the high pressure gas is stronger than the pressure of the low pressure gas, that is, the pressure of the first gas is stronger than the pressure of the second gas; wherein the pressure of the first gas may be 0.1 MPa to 100 MPa, the second gas The pressure can be from 100 Pa to 30 MPa.
  • the first gas and the second gas may be selected from a mixture of air, or nitrogen gas, or helium gas or other gases; wherein the mixture of the other gases may be, for example, a mixture of nitrogen gas and helium gas.
  • the air press 2 can use a compressor known in the prior art to transfer the second gas in the low pressure storage gas 12 into the high pressure storage gas 11 by means of a compressor.
  • the specific structure of the machine and The working principle will not be described here.
  • the air press 2 can realize the storage of mechanical energy in the form of compressed air energy in the pressurized gas energy storage device 1.
  • the power unit 3 can be a wind turbine 31 that is coupled to the rotating shaft 21 of the air press 2.
  • the wind turbine 31 is used to drive the rotation of the rotating shaft 21 of the air press 2, thereby starting the operation of the air press 2, and achieving the purpose of transferring the second gas in the low-pressure storage gas 12 into the high-pressure storage gas 11.
  • the wind turbine 31 can collect wind energy in a natural environment, for example, wind power on land, water or air, and convert the wind energy into mechanical energy to act on the rotating shaft 21 of the air press 2.
  • the wind turbine 31 includes a horizontal wind collecting tower 311, and two sides of the horizontal wind collecting tower 311 are respectively provided with an upper wind wheel 312 and a lower wind wheel 313, and the lower end of the horizontal wind collecting tower 311 is provided with a pair.
  • the air pressure energy storage device 1 is located between the horizontal wind collection tower 311 and the pair of compressed air energy storage devices 1, and the upper wind speed wheel 312 and the lower wind speed wheel 313 are drivingly coupled to the rotating shaft 21 of the air press 2, respectively.
  • the horizontal wind collection tower 311 By leveling the horizontal wind tower 311 on the land; or on the floating object floating on the water surface; or by fixing the support column on the land, the horizontal wind collection tower 311 is connected above the support column to make the horizontal wind collection
  • the tower 311 can be located in the high ground of the land and utilizes the upper wind wheel 312 and the lower wind wheel 313 to achieve the purpose of collecting wind energy in a natural environment.
  • the horizontal wind tower 311 does not need to be provided with communication electronics, power electronics, and motor facilities. Therefore, the construction cost and maintenance cost of the horizontal wind tower 311 are more economical, and the system equipment is more durable.
  • the horizontal wind tower 311 is actually The air-body structure, the compressed air energy storage device 1 and the air press 2 are both located in the cylinder cavity at the lower end of the horizontal wind collecting tower 311.
  • the hollow body structure enables the horizontal wind collecting tower 311 to be on a rocking plane, which is particularly suitable for floating on water, Deep sea, low-speed moving places, and air energy collection in the air; further, due to the inherent hollow buoyancy characteristics of the horizontal wind tower 311, it does not need to be fixedly supported on the bottom of the water, which can significantly reduce the underwater construction of the horizontal wind tower 311 The cost, environmental protection costs and operation and maintenance costs reduce the impact on the underwater ecology.
  • the distance between the downwind wind wheel 313 and the horizontal wind collecting tower 311 is greater than the distance between the upwind wind wheel 312 and the horizontal wind collecting tower 311.
  • the advantage of this arrangement is that the wind torque force of the downwind rotor 313 can be greater than the wind torque force of the upwind rotor 312, so that the horizontal wind tower 311 can obtain the ability of automatic wind or yaw, wherein The wind torque force is the wind force received by the downwind rotor 313 or the upwind rotor 312 multiplied by the distance between the respective wind turbines to the horizontal wind tower 311.
  • both the upwind rotor 312 and the downwind rotor 313 comprise a plurality of blades 314.
  • the upper wind wheel 312 and the lower wind wheel 313 respectively have two blades 314, and the two blades 314 rotate along the center 315 thereof (that is, the upper wind wheel shaft described later).
  • 3121 or lower wind wheel shaft 3131) are arranged diametrically oppositely; of course, in another possible embodiment, as shown in FIG. 5, the upwind wheel 312 and the downwind wheel 313 may also have three blades 314, three blades 314, respectively.
  • the upper wind wheel 312 and the lower wind wheel 313 may also have four blades 314 or a larger number of blades 314, which are not limited herein.
  • each of the blades 314 includes a plurality of sub-blades connected in series from the inside to the outside, and the plurality of sub-blades are coupled to a blade shaft 3147 for
  • the blade 314 is coupled to an upper wind wheel shaft 3121 or a lower wind wheel shaft 3131, which is designed as a segmented structure, which saves the manufacturing, transportation and maintenance costs of the blade; in another possible embodiment, the blade 314 can also The integral molding is connected to the blade shaft 3147, which is not limited herein.
  • the first sub-blade 3141, the second sub-blade 3142, and the third sub-blade 3143 are sequentially connected from the inner edge of the blade 314 to the outer edge of the blade 314;
  • the number of sub-blades on each blade 314 can also be selected according to actual needs.
  • each blade 314 is provided with two sub-blades, or four sub-blades, or a larger number of sub-blades. No restrictions.
  • the length of the sub-blade located at the outer edge of the blade 314 is greater than the length of the sub-blade located at the inner edge of the blade 314; the thickness of the sub-blade located at the outer edge of the blade 314 is smaller than the located at the blade 314 The thickness of the sub-blades at the inner edge.
  • the blade segment facilitates segmentation maintenance as needed, rather than having to be repaired as a whole; on the other hand, the segmented blades are of different sizes to facilitate the overall mechanical load of the blade 314, ie the blade load Timing, by thinning and narrowing the sub-blades located at the outer edge of the blade 314, the overall length of the blade 314 can be extended, thereby obtaining a larger swept area.
  • each blade 314 is provided with three sub-blades as an example, and the length of the sub-blade located at the outer edge of the blade 314, that is, the length L3 of the third sub-blade 3143, is located at the inner edge of the blade 314.
  • the length of the blade that is, the length L1 of the first sub-blade 3141, that is, the length L3 is greater than the length L1; in addition, the thickness of the sub-blade located at the outer edge of the blade 314, that is, the thickness of the third sub-blade 3143 H3, the thickness of the sub-blades located at the inner edge of the blade 314, that is, the thickness H1 of the first sub-blade 3141, that is, the thickness H3 is smaller than the thickness H1.
  • the length L3 of the third sub-blade 3143 is greater than the length L2 of the second sub-blade 3142, and the length L2 of the second sub-blade 3142 is greater than the length L1 of the first sub-blade 3141; the third sub-blade The thickness H3 of 3143 is smaller than the thickness H2 of the second sub-blade 3142, and the thickness H2 of the second sub-blade 3142 is smaller than the thickness H1 of the first sub-blade 3141.
  • the total length of the blades 314 i.e., the sum of the length L1, the length L2, and the length L3 is 0.3 m to 50 m.
  • the upwind rotor 312 is drivingly coupled to the rotating shaft 21 of the air press 2 via the upper wind shaft 3121, and the lower wind wheel 313 passes through the lower shaft 3131 and the shaft of the air press 2.
  • 21 drivingly connected a plurality of blades 314 of the upper wind wheel 312 are connected to the upper wind wheel shaft 3121, and a plurality of blades 314 of the lower wind wheel 313 It is connected to the lower rotor shaft 3131.
  • the bevel gear 211 is connected to the rotating shaft 21 of the air press 2, and the bevel gear 211 is located in the horizontal wind collecting tower 311.
  • the upper wind wheel rotating shaft 3121 extends into the horizontal wind collecting tower 311 and is connected with the upper wind wheel bevel gear.
  • a plurality of blades 314 of the upper wind wheel 312 are connected to the other end of the upper wind wheel shaft 3121 through a respective blade shaft 3147
  • a lower wind wheel bevel gear 3132 is connected to one end of the lower wind wheel rotating shaft 3131 extending into the horizontal wind collecting tower 311.
  • the blade shaft 3147 of each of the plurality of blades 314 of the downwind rotor 313 is coupled to the other end of the lower rotor shaft 3131.
  • the upper wind turbine bevel gear 3122 and the lower wind turbine bevel gear 3132 are respectively drivingly coupled to the bevel gear 211.
  • the plurality of blades 314 of the upper wind wheel 312 and the plurality of blades 314 of the lower wind wheel 313 rotate, thereby driving the upper wind wheel shaft 3121 and the lower wind wheel shaft 3131 to rotate, so as to be connected to the air press 2
  • the bevel gear 211 on the rotating shaft 21 rotates under the joint action of the upper wind bevel gear 3122 and the lower wind bevel gear 3132, thereby achieving the purpose of rotating the rotating shaft 21 of the driving air press 2.
  • the rotation directions of the upper wind bevel gear 3122 and the lower wind bevel gear 3132 are opposite, that is, the rotation directions of the plurality of blades 314 of the upwind rotor 312 and the downwind
  • the wheel 313 is such that the rotation directions of the plurality of blades 314 are opposite, and the upwind rotor 312 and the downwind rotor 313 are in a counter-rotating state.
  • the advantage of such a design is that, on the one hand, the purpose of rotating the rotating shaft 21 of the air press 2 in one direction is achieved; on the other hand, the wind turbine 31, under the action of the wind, rotates the upwind wheel 312 and the downwind wheel in opposite directions.
  • the 313 can generate a counter-rotating torque with respect to the horizontal wind collecting tower 311. This pair of rotating moments is beneficial to increase the combined torque of the upper wind wheel shaft 3121 and the lower wind wheel shaft 3131, and eliminates the horizontal wind wheel 312 and the downwind wind wheel 313.
  • the asymmetrical force of the wind collecting tower 311 can not only improve the wind energy utilization rate under the unit swept area of the wind turbine 31, but also increase the wind energy collecting efficiency; at the same time, the horizontal pair generated by the upper wind wheel 312 and the lower wind wheel 313
  • the rotational moments are combined at the top of the horizontal plenum 311 into a single vertical downward torque, thereby propelling the activation of the air press 2, which facilitates the conversion of wind energy into mechanical energy.
  • FIG. 6 is a view from the left side of FIG. 3, when the upwind wheel 312 has two blades 314, and the downwind wheel 313 also has two blades 314, the upwind wheel 312
  • the two blades 314 are respectively disposed alternately with the two blades 314 of the downwind rotor 313, that is, orthogonally disposed at 90 degrees.
  • the advantage of this arrangement is that the upwind wheel 312 is shielded from the wind area of the downwind wheel 313 to a minimum.
  • each of the sub-blades 314 is composed of two rotatably coupled windward blades 3144 and paddles.
  • the corner blades 3145 are composed, wherein the two pitch blades 3145 of the adjacent two sub-blades of each blade 314 are connected to each other by a connecting member 3146, and the windward blades 3144 of each sub-blade of each blade 314 are connected to the respective blade shaft 3147. on.
  • each sub-blade into Two windward blades 3144 and pitch blades 3145 having a certain connection relationship with each other can conveniently adjust the windward angle of the individual sub-blades locally according to the wind condition of the wind field, and can locally remove the winds of the individual sub-blades during maintenance.
  • the blades 3144 and/or the pitch blades 3145 are replaced without replacing the entire rotor blades.
  • each of the blades 314 is provided with three sub-blades (the first sub-blade 3141, the second sub-blade 3142, and the third sub-blade 3143).
  • each of the blades 314 is used.
  • the cross-sectional shape of the blade is generally an obtuse triangle, and the obtuse angle of the obtuse triangle is a vertex to the bottom edge thereof, and the blade body on both sides of the vertical line is the windward blade 3144 and the blade angle blade 3145.
  • the windward blade 3144 and the blade angle blade 3145 are designed to be mutually rotatable at the obtuse angle apex of the obtuse triangle, for example, the windward blade 3144 and the blade angle blade 3145 can be mutually rotatably connected by a hinge; further, the windward blade 3144 and the blade angle blade
  • the elastic member 3148 is also connected between the 3145.
  • the elastic member 3148 can be a spring.
  • the elastic member 3148 is located at the bottom edge of the obtuse triangle and is used for elastically connecting the windward blade 3144 and the blade angle blade 3145.
  • the pitch blade 3145 can be rotated by 0° to 30° with respect to the windward blade 3144.
  • the area of the cross section of each of the sub-blades 314 is gradually reduced from the inner edge to the outer edge of the blade 314, for example, in this embodiment, the first The cross-sectional area of the sub-blades 3141 is greater than the cross-sectional area of the second sub-blades 3142, and the cross-sectional area of the second sub-blades 3142 is greater than the cross-sectional area of the third sub-blades 3143.
  • the advantage of this arrangement is that each sub-blade adopts an equal-section production process, which saves the manufacturing, transportation and maintenance costs of the blade, and can be distinguished from the existing blade molding while realizing the formation of the lift blade.
  • the upper wind wheel 312 and the lower wind wheel 313 are respectively provided with a plurality of adjusting blades 316, and the upwind wheel 312 is adjacent to each other.
  • An adjustment blade 316 is disposed between the blades 314 and between the adjacent blades 314 of the lower wind wheel 313.
  • a linkage 317 is connected between each adjustment blade 316 and a blade 314 adjacent thereto. The adjustment blades 316 can receive and sense the magnitude of the wind force acting on the horizontal plenum 311 and transfer this force through the linkage 317 to the horn blades 3145 of each blade 314.
  • each of the adjustment blades 316 is rotatably coupled to the blade shaft 3147, respectively.
  • the adjustment blade 316 is coupled to the pitch blade 3145 of the sub-blade located at the inner edge of the blade 314 by a linkage 317.
  • the adjustment paddle 316 transmits the received wind force through the linkage 317 to the paddle blade 3145 connected thereto, thereby causing the paddle blade 3145 to be forced, and the paddle blade 3145 is rotated about the windward blade 3144.
  • the invention rotates the pitch angle blades 3145 of the plurality of blades 314 by a plurality of adjusting blades 316 under the action of the wind of the natural environment, thereby automatically adjusting the wind wheel according to different wind speeds and winds.
  • the plurality of blades 314 of the 312 and the plurality of blades 314 of the downwind rotor 313 rotate around the rotational speeds of the upper wind shaft 3121 and the lower wind shaft 3131, thereby improving the self-starting ability of the wind turbine 31 at low wind speeds and the autonomous wind avoidance at high wind speeds. ability.
  • the power unit 3 is a surface floater 32 which is connected to the shaft 21 of the air press 2.
  • the surface floater 32 is used to drive the rotation of the rotating shaft 21 of the air press 2, thereby starting the operation of the air press 2, and achieving the purpose of transferring the second gas in the low-pressure storage gas 12 into the high-pressure storage gas 11.
  • the surface floater 32 collects wave energy in a natural environment, for example, wave energy on water or at sea, and converts the wave energy into mechanical energy acting on the rotating shaft 21 of the air press 2.
  • the surface floater 32 includes a plurality of floating mechanisms 321 , and the floating mechanisms 321 are connected by a connecting member 322 .
  • the connecting member 322 is made of plastic, rubber, plexiglass or
  • the flexible rod made of synthetic fiber has a certain hardness and combines certain soft characteristics to maintain a minimum relative distance between the floating mechanisms 321 .
  • the floating mechanism 321 has a fixing ring 3211 and a plurality of floating assemblies 3212 connected to the fixing ring 3211.
  • the present invention can realize the energy generated when the gas pressure energy production system is installed on the water or the sea by the floating mechanism 321 and receives and transmits the water waves up and down by the plurality of floating components 3212.
  • the floating assembly 3212 has a transmission main shaft 3213.
  • the transmission main shaft 3213 is rotatably connected with a plurality of floating members 3214.
  • the plurality of floating members 3214 on each of the transmission main shafts 3213 are along the transmission main shaft 3213.
  • the axial directions are staggered on both sides of the drive spindle 3213, so that the number of floating members 3214 provided on each of the drive spindles 3213 can be increased, and the wave energy can be collected to the utmost.
  • the rotating shaft 21 of the air press 2 is connected to the transmission main shaft 3213.
  • the pair of compressed air energy storage devices 1 are located below the transmission main shaft 3213, and the gas storage energy storage device 1 storing the gas is added to the surface of the compressed air energy production system or The ability to float on the sea.
  • the drive main shaft 3213 is sleeved with a plurality of driving sleeves 3215.
  • the floating member 3214 is connected to the driving sleeve 3215 through a connecting rod structure 323.
  • the inner peripheral wall of the driving sleeve 3215 A plurality of driving grooves 3216 are disposed in the circumferential direction, and a roller shaft 3217 is disposed in the driving groove 3216.
  • the drive sleeves 3215 are used to drive the drive shaft 3213 to rotate, thereby achieving the purpose of rotating the shaft 21 of the air press 2.
  • the driving groove 3216 is a wedge-shaped groove, that is, the driving groove 3216 is elongated in the axial direction of the driving sleeve 3215, and the driving groove 3216 has a cross-sectional shape of a wedge shape, and the wedge groove has a deep end.
  • the groove depth of the deep end 3218 is greater than the groove depth of the shallow end 3219;
  • the roller 3217 is generally cylindrical rod-shaped, the diameter of the roller 3217 is equivalent to the groove depth of the deep end 3218 of the wedge groove,
  • the drive sleeve 3215 does not have the ability to drive the drive spindle 3213; in the state where the roller 3217 is located at the shallow end 3219 of the wedge groove, each roller 3217 protrudes from the inner peripheral wall of the drive sleeve 3215.
  • the roller 3217 is in contact with a drive spindle 3213 that can drive the drive spindle 3213 to rotate.
  • the air press 2 can be started only when the drive main shaft 3213 rotates clockwise.
  • the roller 3217 is pushed toward the shallow end of the drive groove 3216. 3219, thereby achieving the purpose of driving the drive spindle 3213 to rotate clockwise; as shown in FIG. 11, when the drive sleeve 3215 is rotated counterclockwise, the roller 3217 is pushed toward the deep end 3218 of the drive slot 3216, and the roller 3217 is retracted.
  • the drive slot 3216 is separated from the drive spindle 3213. At this time, the drive sleeve 3215 cannot drive the drive spindle 3213 to rotate.
  • the driving spindle 3213 can be driven to rotate, and when the driving sleeve 3215 and the driving spindle 3213 rotate in opposite directions, the driving sleeve 3215 cannot drive the driving spindle 3213. Rotate.
  • the floating member 3214 when the floating member 3214 floats on the water surface or the sea surface, the floating member 3214 will be displaced up and down with the up and down surge of the ocean wave. At this time, the movement of the floating member 3214 is transmitted to the connecting rod structure 323.
  • the driving sleeve 3215 when the driving sleeve 3215 rotates in the opposite direction with respect to the driving main shaft 3213, the driving sleeve 3215 does not drive the driving main shaft 3213 to rotate, and when the driving sleeve 3215 rotates in the same direction with respect to the driving main shaft 3213, the driving sleeve 3215 can The drive transmission spindle 3213 rotates.
  • the floating member 3214 is a sphere having a cavity.
  • the floating member 3214 may also be a cylinder having a cavity, such as a pontoon structure, etc.
  • the floating member 3214 can be floated on the sea surface or the water surface as long as it can be placed at sea or on water.
  • the link structure 323 is a plurality of connecting rods connected between the floating member 3214 and the driving sleeve 3215.
  • the power unit 3 is a vertical turbine 33 that is coupled to the rotating shaft 21 of the air press 2.
  • the vertical turbine 33 is used to drive the rotation of the rotating shaft 21 of the air press 2, thereby starting the operation of the air press 2, and achieving the purpose of transferring the second gas in the low-pressure storage gas 12 into the high-pressure storage gas 11.
  • the vertical turbine 33 collects water flow energy in a natural environment, for example, ocean current energy under water or under sea, and converts the water flow energy into mechanical energy acting on the rotating shaft 21 of the air press 2.
  • the vertical turbine 33 is located underwater or under the sea, that is, the vertical turbine 33 is placed below the water surface or sea surface 334 and above the bottom 335 of the bottom or bottom of the sea.
  • the vertical turbine 33 has a water wheel shaft 331,
  • the compressed air energy storage device 1 is located above the water wheel shaft 331.
  • the air press 2 is located between the water wheel shaft 331 and the pair of compressed air energy storage device 1.
  • the water wheel shaft 331 is connected with a plurality of first movable pulp blades 332 along the circumferential direction thereof.
  • One of the first active blades 332 The end is rotatably connected to the water wheel shaft 331, for example, by a connecting ring sleeved on the water wheel shaft 331 and the water wheel shaft 331.
  • the other end of the first movable blade 332 is connected to the rotating shaft 21 of the air press 2.
  • the plurality of first movable blades 332 rotate around the water wheel shaft 331 to drive the rotating shaft 21 of the air press 2 to rotate to start the operation of the air press 2.
  • the vertical turbine 33 can be fixed to the bottom or bottom 335 of the bottom of the sea by a flexible cable 336 to limit the drift range of the vertical turbine 33; in addition, the water wheel shaft 331 of the vertical turbine 33 is actually an empty structure.
  • the compressed air energy storage device 1 and the air press 2 are both located in the cylindrical cavity at the upper end of the water wheel shaft 331.
  • the water wheel shaft 331 of the hollow body structure enables the vertical water turbine 33 to be suitable for collecting water flow in a floating, deep sea, low speed moving place; Moreover, due to the inherent hollow buoyancy characteristics of the water wheel shaft 331, it is not required to be fixedly supported on the ground of the water bottom, and only needs to be fixed by the flexible cable 336, thereby reducing the cost, environmental protection cost and operation and maintenance of the underwater engineering construction of the vertical water turbine 33. Cost, reducing the impact on the underwater ecology.
  • the water wheel shaft 331 is further connected with a plurality of second movable blades 333 along the circumferential direction thereof, and the second movable blade 333 rotates along the water wheel axis 331 along the rotation direction of the water wheel shaft 331 and the first movable blade 332.
  • one end of the second movable blade 333 is rotatably connected to the water wheel shaft 331, for example, connected to the water wheel shaft 331 by a connecting ring sleeved on the water wheel shaft 331, and the other end of the second movable blade 333 It is connected to the rotating shaft 21 of the other air press 2 connected to the water wheel shaft 331.
  • the vertical turbine 33 adopts a scheme in which a plurality of first movable blades 332 and a plurality of second movable blades 333 are mutually counter-rotating to cancel the axial torsion of the water wheel shaft 331 with each other, eliminating the vertical turbine 33 from being disposed above it.
  • the adverse effect on the gas-pressure energy storage device 1 is additionally achieved; in addition, the transfer of the second gas in the low-pressure storage gas 12 of the compressed gas energy storage device 1 to the high-pressure storage gas 11 can be more quickly achieved by the two air presses 2, thereby improving The working efficiency of the gas pressure energy production system.
  • the first movable blade 332 and the second movable blade 333 are each composed of a plurality of blades.
  • the first movable blade 332 and the second movable blade 333 of the vertical turbine 33 respectively adopt the structure of the segmented blade to reduce the manufacturing, installation and maintenance costs of the blade.
  • the first movable blade 332 and the second movable blade 333 in this embodiment are respectively composed of an upper sub-slurry 3321, a lateral sub-slurry 3322 and a lower sub-slurry 3323, wherein adjacent two sub-children
  • the angle ⁇ between the blades is 90°-180°, that is, the angle ⁇ between the upper sub-blade 3321 and the lateral sub-blade 3322 is 90°-180°, and the lateral sub-blade 3322 and the lower sub-pulp
  • the angle ⁇ between the leaves 3323 is 90° to 180°.
  • the first movable blade 332 and the second movable blade 333 are both arcuate shaped blades, that is, the first movable blade 332 and the second.
  • the movable blade 333 can also be integrally formed, and no limitation is imposed here.
  • the cross-sectional shapes of the first movable blade 332 and the second movable blade 333 are both Triangle or spindle shape to reduce the resistance of retrograde water flow.
  • the shape of the cross section of the first movable blade 332 and the second movable blade 333 is a triangle, the triangle is an obtuse triangle.
  • the outer diameter R1 of the first movable blade 332 is designed to be It is smaller than the outer diameter R2 of the second movable blade 333.
  • the short side direction is exactly opposite to the short side direction of the triangular cross section of the second movable blade 333, because the blade of this shape is undulating with the water wheel axis 331 under the action of the water flow, and the whole is naturally toward the obtuse triangle.
  • the short side direction moves to ensure that the direction of rotation of the second movable blade 333 is opposite to the direction of rotation of the first movable blade 332 under the action of ocean current energy.
  • the power unit 3 is an air hovering helicopter 34 that is coupled to the rotating shaft 21 of the air press 2.
  • the air hovering helicopter 34 is used to drive the rotation of the rotating shaft 21 of the air press 2, thereby starting the operation of the air press 2, and achieving the purpose of transferring the second gas in the low pressure storage gas 12 into the high pressure storage gas 11.
  • the air hovering helicopter 34 can collect wind energy in a natural environment, for example, wind on land, water or air, and convert the wind energy into mechanical energy acting on the rotating shaft 21 of the air press 2.
  • the air hovering helicopter 34 includes a vertical wind turbine 341 and a plurality of propeller blades 342 connected above the vertical wind turbine 341.
  • the vertical wind turbine 341 has a main shaft 3411 connected between the main shaft 3411 and the propeller blades 342.
  • the pair of compressed air energy storage device 1 is sleeved on a main shaft 3411.
  • the main shaft 3411 is connected with a plurality of first movable blades 343 along a circumferential direction thereof.
  • One end of the first movable blade 343 is rotatably connected to the main shaft 3411.
  • the connecting ring disposed on the main shaft 3411 is rotatably connected to the main shaft 3411, and the other end of the first movable blade 343 is connected to the rotating shaft 21 of the air press 2.
  • the plurality of first movable blades 343 rotate around the main shaft 3411, thereby rotating the rotating shaft 21 of the air press 2 to start the operation of the air press 2.
  • a plurality of second movable blades 344 are connected to the main shaft 3411 along the circumferential direction thereof, and the second movable blade 344 is along the rotation direction of the main shaft 3411 and the first movable blade 343.
  • one end of the second movable blade 344 is rotatably connected to the main shaft 3411, for example, by a connecting ring sleeved on the main shaft 3411, and the main shaft 3411 is rotatably connected, and the second movable blade 344 is further connected.
  • One end is connected to the rotating shaft 21 of the other air press 2 connected to the main shaft 3411.
  • the vertical wind turbine 341 adopts a scheme in which a plurality of first movable blades 343 and a plurality of second movable blades 344 are mutually counter-rotating to cancel the axial torsion of the main shaft 3411, eliminating the vertical wind turbine 341 thereon.
  • the adverse effects on the compressed gas energy storage device 1 and the plurality of propeller blades 342 are provided; in addition, the second gas in the low pressure storage gas 12 of the compressed air energy storage device 1 can be more quickly transferred by the two air presses 2 Moving into the high pressure storage gas 11 improves the efficiency of the production of the compressed gas energy production system.
  • the air hovering helicopter 34 is a single-rotor helicopter having a propeller wing 342.
  • the vertical wind turbine 341 can be connected above.
  • Two or more numbers of propeller blades 342 are not limited herein.
  • the propeller blade 342 is composed of a plurality of blades 3421 and an engine 3422 that drives a plurality of blades 3421.
  • a plurality of first movable blades 343 are connected to the main shaft 3411 of the air hovering helicopter 34.
  • the first movable blades 343, and the two first movable blades 343 are disposed diametrically opposite each other along the main shaft 3411; of course, in other embodiments, the first movable blades 343 may also be three, four or more. There are many restrictions and no restrictions here.
  • the air hover helicopter 34 is a twin-rotor helicopter having two propeller blades 342, each propeller wing 342 being comprised of a plurality of blades 3421 and an engine 3422 that drives a plurality of blades 3421.
  • the first main movable blade 343 and the plurality of second movable blades 344 are connected to the main shaft 3411 of the air hovering helicopter 34, wherein, in the embodiment, the first movable blade 343 and the second activity
  • the blades 344 are both two, and the two first movable blades 343 and the two second movable blades 344 are all disposed diametrically opposite each other along the main shaft 3411.
  • the air hovering helicopter 34 achieves the purpose of lifting the vertical wind turbine 342 into the air and hovering in the air through a plurality of propeller blades 342, and then, under the action of wind energy in a natural environment, the first movable blade 343 and/or the second The movable blade 344 rotates along the main shaft 3411, thereby rotating the rotating shaft 21 of the air press 2, thereby realizing the purpose of collecting wind energy and converting it into mechanical energy.
  • the first movable blade 332 and the second movable blade 333 are each composed of a plurality of blades.
  • the first movable blade 343 and the second movable blade 344 of the vertical wind turbine 341 respectively employ a structure of segmented sub-slurry to reduce the manufacturing, installation and maintenance costs of the blade.
  • the first movable blade 343 and the second movable blade 344 in the embodiment are respectively composed of an upper sub-slurry 3431, a lateral sub-slurry 3432 and a lower sub-slurry 3433, wherein adjacent two
  • the angle ⁇ between the sub-pulses is 90°-180°, that is, the angle ⁇ between the upper sub-blade 3431 and the lateral sub-blade 3432 is 90°-180°, and the lateral sub-blade 3432 and the lower sub-segment
  • the angle ⁇ between the blades 3433 is 90° to 180°.
  • the first movable blade 343 and the second movable blade 344 are both arc-shaped blades, that is, the first movable blade 343 and the first
  • the second movable blade 344 can also be integrally formed, and no limitation is imposed here.
  • the cross-sections of the first movable blade 343 and the second movable blade 344 are both triangular or spindle shaped to reduce the resistance of wind energy.
  • the shape of the cross section of the first movable blade 343 and the second movable blade 344 is a triangle, the triangle is an obtuse triangle.
  • the outer diameter R1 of the first movable blade 343 needs to be designed to be smaller than the outer diameter R2 of the second movable blade 344.
  • the lower end of the main shaft 3411 is also coupled to the ground frame 345 to allow the air hovering helicopter 34 to be cushioned when landing.
  • the wind turbine 31, the surface floater 32, and the water turbine 33 may be used in combination, specifically, the lower end column of the horizontal wind tower 311 of the wind turbine 31.
  • the body and the upper end cylinder of the water wheel shaft 331 of the water turbine 33 are commonly connected to the fixing ring 3211 of the surface floater 32, thereby achieving the purpose of collecting wind energy, wave energy and water flow energy.
  • a solar photovoltaic panel 35 may be connected to the lower end cylinder of the horizontal wind tower 311 of the wind turbine 31 to collect solar energy.
  • the present invention also provides a method for producing a gas pressure energy, comprising the steps of: providing a high pressure storage gas 11 filled with a first gas and a low pressure storage gas 12 filled with a second gas, and a second gas in the low pressure storage gas 12 The pressure is transferred to the high-pressure storage gas 11, and a pressure difference between the low-pressure storage gas 12 and the high-pressure storage gas 11 is formed to reflect the pressure of the compressed gas.
  • the method is implemented by using the above-mentioned gas pressure energy production system.
  • the specific structure, working principle and beneficial effects of the gas pressure energy production system are the same as those of the above embodiment, and are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Wind Motors (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

一种对压气能生产系统,包括:对压气能贮存装置(1),具有高压贮气体(11)和低压贮气体(12),高压贮气体(11)中填充有第一气体,低压贮气体(12)中填充有第二气体;气压机(2),分别与低压贮气体(12)和高压贮气体(11)相连,压气机(2)用于将低压贮气体(12)内的第二气体转移至高压贮气体(11)内,高压贮气体(11)与低压贮气体(12)之间形成对压气能差,对压气能贮存装置(1)内形成对压气能;动力装置(3),与气压机(2)的转轴(21)相连,动力装置(3)用于驱动气压机(2)的转轴(21)旋转。通过动力装置(3)收集自然环境下的能量,并转化为机械能,以实现生产对压气能的目的。还公开一种对压气能生产方法。

Description

对压气能生产系统及生产方法 技术领域
本发明有关于一种气能生产系统及生产方法,尤其有关于一种气体能源生产领域中应用的对压气能生产系统及生产方法。
背景技术
随着世界能源消耗的加快,传统能源储量的减少,拯救人类活动导致气候变化的全球行动,资源保护,能源独立,能源安全已成为当下人类文明发展的重大话题之一。可再生能源的开发和利用,日益得到各国政府和民间机构高度的重视和持续的努力。后工业文明时代的能源必须是真正意义上的清洁的、可持续的能源,其能源的获取过程中完全不会产生有害物质的排放。然而,现有的太阳能光伏发电的能源方法,风力发电的能源方法,在其设备的生产中会使用大量的有色金属、稀有矿物、以及带污染的化合物,因此不能成为终极意义上的清洁能源。
发明内容
本发明的目的是提供一种对压气能生产系统,通过动力装置收集自然环境下的能量,并转化为机械能,以实现生产对压气能的目的。
本发明的另一目的是提供一种对压气能生产方法,通过收集自然环境下的能量,并转化为机械能,以实现生产对压气能的目的。
本发明提供了一种对压气能生产系统,其中,所述对压气能生产系统包括:
对压气能贮存装置,其具有高压贮气体和低压贮气体,所述高压贮气体中填充有第一气体,所述低压贮气体中填充有第二气体;
气压机,其分别与所述低压贮气体和所述高压贮气体相连,所述气压机用于将所述低压贮气体内的第二气体转移至所述高压贮气体内,所述高压贮气体与所述低压贮气体之间形成对压气能差,在所述对压气能贮存装置内形成对压气能;
动力装置,其与所述气压机的转轴相连,所述动力装置用于驱动所述气压机的转轴旋转。
本发明还提供一种对压气能生产方法,提供填充有第一气体的高压贮气体和填充有第二气体的低压贮气体,将所述低压贮气体内的第二气体转移至所述高压贮气体内,在 所述低压贮气体与所述高压贮气体之间形成能体现对压气能的气压差。
本发明的有益效果是:本发明的对压气能生产系统及生产方法,通过动力装置(风轮机、水面漂浮机、垂直水轮机和空中悬停直升机)收集自然环境下的风能、波浪能或洋流能,并通过气压机将其转换为机械能后,以对压气能的形式储存在对压气能贮存装置内。
附图说明
下面结合附图对本发明的实施例作进一步描述:
图1为本发明的对压气能生产系统的结构示意图。
图2为本发明的对压气能贮存装置的可选实施例的结构示意图。
图3为本发明的动力装置(也即风轮机)的一可选实施例的结构示意图。
图4为本发明的风轮机的叶片的一可选实施例的结构示意图。
图5为本发明的风轮机的叶片的另一可选实施例的结构示意图。
图6为本发明的风轮机的上风风轮、下风风轮的侧视示意图。
图7为本发明的风轮机的叶片的侧视示意图。
图8为本发明的风轮机的调整桨叶带动浆角叶片转动状态的侧视示意图。
图9为本发明的动力装置(也即水面漂浮机)的另一可选实施例的俯视示意图。
图10为本发明的驱动套筒与传动主轴配合的一使用状态结构示意图。
图11为本发明的驱动套筒与传动主轴配合的另一使用状态结构示意图。
图12为本发明的驱动套筒与漂浮件结合的使用状态结构示意图。
图13为本发明的动力装置(也即垂直水轮机)的再一可选实施例的结构示意图。
图14为本发明的子桨叶的一可选实施例的结构示意图。
图15为本发明的子桨叶的另一可选实施例的结构示意图。
图16为本发明的第一活动桨叶与第二活动桨叶的俯视示意图。
图17为本发明的动力装置(也即空中悬停直升机)的再一可选实施例的结构示意图。
图18为本发明的空中悬停直升机的一可选实施例的结构示意图。
图19为本发明的风轮机、水面漂浮机和垂直水轮机组合结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整 地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明提供了一种对压气能生产系统,其包括对压气能贮存装置1、气压机2和动力装置3,其中:对压气能贮存装置1具有高压贮气体11和低压贮气体12,所述高压贮气体11中填充有第一气体,所述低压贮气体12中填充有第二气体;气压机2分别与所述低压贮气体12和所述高压贮气体11相连,所述气压机2用于将所述低压贮气体12内的第二气体转移至所述高压贮气体11内,所述高压贮气体11与所述低压贮气体12之间形成对压气能差,也即,所述高压贮气体11与所述低压贮气体12之间形成能体现对压气能的气压差,在所述对压气能贮存装置1内形成对压气能;动力装置3与所述气压机2的转轴21相连,所述动力装置3用于驱动所述气压机2的转轴21旋转。
具体是,在一可行实施例中,该对压气能贮存装置1由一对各自封闭的气缸组成,一个气缸(也即高压贮气体11)内填充有第一气体,另一气缸(也即低压贮气体12)内填充有第二气体。
在另一可行实施例中,如图2所示,该对压气能贮存装置1包括内体13和套设在内体13外的外体14,该内体13中填充有第一气体,该外体14与内体13之间形成的腔体15中填充有第二气体,在该实施例中,所述的内体13即为高压贮气体11,所述的腔体15即为低压贮气体12;或者,在另外的实施例中,所述的内体13为低压贮气体12,其内填充第二气体,所述的腔体15为高压贮气体11,其内填充第一气体。其中,当该对压气能贮存装置1位于地面上时,此时的内体13为高压贮气体11,其中的第一气体为高压气体,该腔体15为低压贮气体12,其中的第二气体为低压气体;当该对压气能贮存装置1位于水下或地下时,由于水下或地下压力环境为高压,此时的内体13为低压贮气体12,其中的第二气体为低压气体,该腔体15为高压贮气体11,其中的第一气体安排为高压气体,利于减轻外体14壁上的应力,抵消外体14的收缩压力。
在该实施例中,该高压气体的压强大于低压气体的压强,也即第一气体的压强大于第二气体的压强;其中,该第一气体的压强可为0.1MPa~100MPa,第二气体的压强可为100Pa~30MPa。进一步的,该第一气体和第二气体可选择空气、或氮气、或氦气、或其它气体的混合体;其中,该其它气体的混合体,例如可为氮气与氦气的混合体等。
在本发明的实施例中,该气压机2可采用现有技术中已知的压缩机,通过压缩机实现将低压贮气体12内的第二气体转移至高压贮气体11内的目的,该压缩机的具体结构和 工作原理在此不再赘述。该气压机2可实现将机械能以对压气能的形式储存在对压气能贮存装置1内。
在动力装置3的一可选实施例中,该动力装置3可为风轮机31,该风轮机31与所述气压机2的转轴21相连。该风轮机31用于驱动气压机2的转轴21旋转,从而启动气压机2工作,实现将低压贮气体12内的第二气体转移至高压贮气体11内的目的。该风轮机31可收集自然环境下的风能,例如,陆地、水面或空中的风力,并将该风能转化为机械能作用在气压机2的转轴21上。
如图3所示,该风轮机31包括水平集风塔311,该水平集风塔311的两侧分别设有上风风轮312和下风风轮313,该水平集风塔311的下端设有对压气能贮存装置1,该气压机2位于水平集风塔311与对压气能贮存装置1之间,该上风风轮312和下风风轮313分别与气压机2的转轴21驱动相连。通过将水平集风塔311固定在陆地上;或放置在漂浮于水面的漂浮物上;或通过在陆地上固定支撑柱,将水平集风塔311连接在支撑柱的上方,以使水平集风塔311能够位于陆地高空中,并利用上风风轮312和下风风轮313达到收集自然环境下的风能的目的。该水平集风塔311内无需设置通讯电子、电力电子、以及电机设施,因此水平集风塔311的建造成本、维护成本更加经济,系统设备更加耐用;另外,该水平集风塔311实际上为空体结构,对压气能贮存装置1和气压机2均位于水平集风塔311下端的柱体腔中,该空体结构能使水平集风塔311处于摇动的平面上,特别适合水上漂浮式、深海、低速移动场所、以及空中的风能收集;再有,由于水平集风塔311固有的空心浮力特性,使其无需固定支撑于水底的地面,能显著地降低水平集风塔311水下工程建设的成本、环保成本和运行维护成本,减少了对水底生态的影响。
在本发明的实施方式中,该下风风轮313与水平集风塔311之间的距离大于上风风轮312与水平集风塔311之间的距离。这样设置的好处是,可使下风风轮313的对风转矩力大于上风风轮312的对风转矩力,从而使水平集风塔311获得自动对风或偏航的能力,其中,对风转矩力即为下风风轮313或上风风轮312所受的风力乘以各自风轮至水平集风塔311之间的距离。
在本发明的实施方式中,该上风风轮312和下风风轮313均包括多个叶片314。具体的,如图4所示,在一可行实施例中,上风风轮312和下风风轮313分别具有两个叶片314,两个叶片314沿其旋转中心315(也即后述的上风轮转轴3121或下风轮转轴3131)径向相对设置;当然,在另一可行实施例中,如图5所示,上风风轮312和下风风轮313也可分别具有三个叶片314,三个叶片314沿旋转中心315的圆周方向等间隔设置;或者,在其 它的实施例中,上风风轮312和下风风轮313也可分别具有四个叶片314或者更多数量的叶片314,在此不作限制。
在本发明的实施方式中,在一可行实施例中,每一叶片314均包括由内向外依次相连的多个子叶片,多个子叶片连接在一叶片轴3147上,该叶片轴3147用于将各叶片314连接至后述的上风轮转轴3121或下风轮转轴3131上,该叶片314设计为分段结构,节省了叶片的制造、运输和维护成本;在另一可行实施例中,叶片314也可一体成型连接在叶片轴3147上,在此不作限制。
具体的,在叶片采用分段结构的设计方案中,从叶片314的内缘至叶片314的外缘依次连接有第一子叶片3141、第二子叶片3142和第三子叶片3143;当然,在其它的实施例中,每一叶片314上的子叶片的数量也可根据实际需要选择设置,例如每一叶片314设有两个子叶片,或四个子叶片,或更多数量的子叶片,在此不作限制。
进一步的,请配合参阅图4所示,位于叶片314外缘处的子叶片的长度大于位于叶片314内缘处的子叶片的长度;位于叶片314外缘处的子叶片的厚度小于位于叶片314内缘处的所述子叶片的厚度。这样设计的好处是,一方面,叶片分段利于按需要分段维修,而不是一定要整体维修;另一方面,分段叶片采用不同的尺寸利于叶片314整体的力学载荷,即桨叶载荷一定时,通过减薄减窄位于叶片314外缘处的子叶片,可以使得叶片314的整体长度延长,进而可以获得更大的扫风面积。
具体的,以本发明中每一叶片314设有三个子叶片为例,位于叶片314外缘处的子叶片的长度,也即为第三子叶片3143的长度L3,位于叶片314内缘处的子叶片的长度,也即为第一子叶片3141的长度L1,也就是说,长度L3大于长度L1;另外,位于叶片314外缘处的子叶片的厚度,也即为第三子叶片3143的厚度H3,位于叶片314内缘处的子叶片的厚度,也即为第一子叶片3141的厚度H1,也就是说,厚度H3小于厚度H1。在图4所示的实施例中,第三子叶片3143的长度L3大于第二子叶片3142的长度L2,第二子叶片3142的长度L2大于第一子叶片3141的长度L1;第三子叶片3143的厚度H3小于第二子叶片3142的厚度H2,第二子叶片3142的厚度H2小于第一子叶片3141的厚度H1。其中,在一可行实施例中,叶片314的总长度(也即长度L1、长度L2和长度L3的总和)为0.3m~50m。
在本发明的实施方式中,如图3所示,该上风风轮312通过上风轮转轴3121与气压机2的转轴21驱动相连,该下风风轮313通过下风轮转轴3131与气压机2的转轴21驱动相连,该上风风轮312的多个叶片314连接在上风轮转轴3121上,该下风风轮313的多个叶片314 连接在下风轮转轴3131上。
具体的,该气压机2的转轴21上连接有伞齿轮211,该伞齿轮211位于水平集风塔311内,该上风轮转轴3121伸入水平集风塔311内的一端连接有上风轮伞齿轮3122,上风风轮312的多个叶片314通过各自的叶片轴3147连接在上风轮转轴3121的另一端,该下风轮转轴3131伸入水平集风塔311内的一端连接有下风轮伞齿轮3132,下风风轮313的多个叶片314各自的叶片轴3147连接在下风轮转轴3131的另一端,该上风轮伞齿轮3122、下风轮伞齿轮3132分别与伞齿轮211传动连接。在自然环境中的风能作用下,上风风轮312的多个叶片314和下风风轮313的多个叶片314旋转,从而带动上风轮转轴3121、下风轮转轴3131旋转,以使连接在气压机2的转轴21上的伞齿轮211在上风轮伞齿轮3122、下风轮伞齿轮3132的共同作用下旋转,从而达到驱动气压机2的转轴21旋转的目的。
在本发明中,为使伞齿轮211朝一个方向旋转,上风轮伞齿轮3122、下风轮伞齿轮3132的旋转方向相反,也就是说,上风风轮312的多个叶片314的旋转方向和下风风轮313是多个叶片314的旋转方向是相反的,上风风轮312与下风风轮313为对旋的状态。这样设计的好处是:一方面,达到使气压机2的转轴21朝一个方向旋转的目的;另一方面,该风轮机31在风力的作用下,旋转方向相反的上风风轮312与下风风轮313相对水平集风塔311而言可产生对旋扭矩,这种对旋转矩有利于提升上风轮转轴3121和下风轮转轴3131的合成转矩,消除了上风风轮312、下风风轮313对水平集风塔311的不对称作用力,不但能提升风轮机31单位扫风面积下的风能利用率,而且能增加风能收集效率;同时,上风风轮312、下风风轮313各自所产生的水平对旋转矩,在水平集风塔311的顶部被合成为单一的垂直向下的转矩,由此推动气压机2的启动,有利于将风能转换为机械能。
在本发明的实施方式中,从图3的左侧或右侧看,沿上风轮转轴3121的圆周方向与下风轮转轴3131的圆周方向,该上风风轮312的多个叶片314与下风风轮313的多个叶片314交错设置。在本实施例中,图6所示为从图3的左侧观看的视图,当上风风轮312具有两个叶片314,且下风风轮313也具有两个叶片314时,上风风轮312的两个叶片314分别与下风风轮313的两个叶片314交错设置,即呈90度正交设置。这样设置的好处是,上风风轮312相对于下风风轮313的对风面积遮挡最小。
在本发明的实施方式中,如图7所示,在各叶片314由多个子叶片拼接的实施例中,各叶片314中的每一子叶片均由两个可转动相连的迎风叶片3144和桨角叶片3145组成,其中,各叶片314的相邻两子叶片的两桨角叶片3145之间通过连接件3146彼此相连,各叶片314的每一子叶片的迎风叶片3144连接在各自的叶片轴3147上。将各子叶片分割为 两个相互具有一定连接关系的迎风叶片3144和桨角叶片3145,可方便根据风场的风况,现场局部地调整个别子叶片的迎风角度,且维修中可实现局部地撤换个别子叶片的迎风叶片3144和/或桨角叶片3145,而不用更换整个风轮叶片。
具体的,以本发明中每一叶片314设有三个子叶片(第一子叶片3141、第二子叶片3142和第三子叶片3143)为例,在本实施例中,各叶片314的每一子叶片的横截面形状均大体呈钝角三角形,以该钝角三角形的钝角为顶点向其底边做一垂线,那么位于该垂线两侧的叶片本体即为迎风叶片3144和桨角叶片3145,该迎风叶片3144和桨角叶片3145在钝角三角形的钝角顶点处设计为可相互转动的结构,例如迎风叶片3144和桨角叶片3145可通过铰链相互转动连接;进一步的,该迎风叶片3144与桨角叶片3145之间还连接有弹性件3148,在本实施例中,该弹性件3148可为弹簧,该弹性件3148位于钝角三角形的底边处并用于弹性连接迎风叶片3144与桨角叶片3145,在一具体实施例中,该桨角叶片3145可相对迎风叶片3144旋转0°~30°。
请配合参阅图7和图8所示,从叶片314的内缘至外缘方向,各叶片314中的每一子叶片的横截面的面积逐渐减小,例如,在本实施例中,第一子叶片3141的横截面面积大于第二子叶片3142的横截面面积,第二子叶片3142的横截面面积大于第三子叶片3143的横截面面积。这样设置的好处是,每一子叶片采用等截面的生产工艺,节省了叶片的制造、运输和维护成本,而且在实现升力叶片成型的同时,可以与现有的叶片成型区别开来。
进一步的,在本发明的实施方式中,在一可行实施例中,该上风风轮312、下风风轮313上均设有多个调整浆叶316,该上风风轮312的两两相邻的叶片314之间、该下风风轮313的两两相邻的叶片314之间均设有一个调整浆叶316,各调整浆叶316和与其相邻的一个叶片314之间连接有联动件317。该些调整桨叶316可接收和感受作用于水平集风塔311的风力大小,并将这个作用力通过联动件317传递给各叶片314的浆角叶片3145。
具体的,各调整浆叶316分别可转动地连接在叶片轴3147上。该调整浆叶316通过联动件317连接在位于叶片314内缘处的子叶片的桨角叶片3145上。如图7和图8所示,当风力增大或转速升高时,调整浆叶316的受风面接受到的风力随之增大,其顺着风力方向发生的偏移增大,利用这个偏移的作用力,来调整叶片314的迎风角度。为达到此目的,首先,调整桨叶316将接收的风力通过联动件317传递给与之相连的浆角叶片3145,从而使得浆角叶片3145受力,该浆角叶片3145绕着迎风叶片3144转动一定的角度,从而实现对叶片314浆角的联动调整。本发明在自然环境的风力作用下,通过多个调整浆叶316带动多个叶片314的桨角叶片3145转动,从而实现根据不同风速、风力自动调整上风风轮 312的多个叶片314、下风风轮313的多个叶片314绕上风轮转轴3121、下风轮转轴3131的旋转速度,提升了风轮机31在低风速时的自我启动能力和强风速下的自主避风能力。
在动力装置3的另一可选实施例中,动力装置3为水面漂浮机32,该水面漂浮机32与气压机2的转轴21相连。该水面漂浮机32用于驱动气压机2的转轴21旋转,从而启动气压机2工作,实现将低压贮气体12内的第二气体转移至高压贮气体11内的目的。该水面漂浮机32可收集自然环境下的波浪能,例如,水上或海上的波浪能,并将该波浪能转化为机械能作用在气压机2的转轴21上。
如图9所示,该水面漂浮机32包括多个漂浮机构321,各漂浮机构321之间通过连接件322相接;在本实施例中,该连接件322为采用塑料、橡胶、有机玻璃或合成纤维制成的柔性杆,其本身具有一定的硬度并结合一定的柔软特性,使各漂浮机构321之间能保持最小的相对距离。该漂浮机构321具有固定环3211及连接在固定环3211上的多个漂浮组件3212。本发明通过该些漂浮机构321可实现将对压气能生产系统设置在水上或海上,并通过多个漂浮组件3212接收和传递水浪上下涌动时所产生的能量。
具体的,该漂浮组件3212具有传动主轴3213,该传动主轴3213上可转动地连接有多个漂浮件3214,在一可行实施例中,各传动主轴3213上的多个漂浮件3214沿传动主轴3213的轴向方向交错设置在传动主轴3213的两侧,这样可以增加每个传动主轴3213上设置漂浮件3214的数量,并且可以最大限度的收集海浪能。该气压机2的转轴21与传动主轴3213相连,该对压气能贮存装置1位于所述传动主轴3213的下方,储存有气体的对压气能贮存装置1增加了该对压气能生产系统在水面或海面上的漂浮能力。
请配合参阅如图10所示,该传动主轴3213上间隔套设有多个驱动套筒3215,该漂浮件3214通过连杆结构323连接在驱动套筒3215上,该驱动套筒3215的内周壁上沿圆周方向设有多个驱动槽3216,该驱动槽3216内设有滚轴3217。该些驱动套筒3215用于驱动传动主轴3213旋转,从而实现带动气压机2的转轴21旋转的目的。
在本发明中,该驱动槽3216为楔形槽,也即该驱动槽3216沿驱动套筒3215的轴向方向呈长条形,该驱动槽3216的横截面形状为楔形,该楔形槽具有深端3218和浅端3219,该深端3218的槽深大于浅端3219的槽深;该滚轴3217大体呈圆柱杆状,该滚轴3217的直径与楔形槽的深端3218的槽深相当,以使滚轴3217位于楔形槽的深端3218时,滚轴3217不会凸出于驱动套筒3215的内周壁,以使在滚轴3217位于楔形槽的深端3218的状态下,该滚轴3217与传动主轴3213分离,此时驱动套筒3215不具备驱动传动主轴3213的能力;在滚轴3217位于楔形槽的浅端3219的状态下,各滚轴3217凸出驱动套筒3215的内周壁, 该滚轴3217与传动主轴3213接触,该驱动套筒3215能驱动传动主轴3213旋转。
也就是说,假设传动主轴3213顺时针旋转时才能启动气压机2,此时,如图10所示,当驱动套筒3215为顺时针旋转时,滚轴3217被推向驱动槽3216的浅端3219,从而实现带动传动主轴3213顺时针转动的目的;如图11所示,当驱动套筒3215为逆时针旋转时,滚轴3217被推向驱动槽3216的深端3218,滚轴3217缩入驱动槽3216内而与传动主轴3213分离,此时驱动套筒3215不能带动传动主轴3213旋转。也即,当驱动套筒3215与传动主轴3213转动的方向一致时,才能驱动传动主轴3213旋转,而当驱动套筒3215与传动主轴3213转动的方向相反时,驱动套筒3215不能驱动传动主轴3213旋转。
请配合参阅图12所示,当漂浮件3214漂浮于水面或海面上时,漂浮件3214会随着海浪的上下涌动而上下位移,此时漂浮件3214的移动会通过连杆结构323传递给驱动套筒3215,当驱动套筒3215相对传动主轴3213反向旋转时,驱动套筒3215不会驱动传动主轴3213旋转,当驱动套筒3215相对传动主轴3213同向旋转时,驱动套筒3215能驱动传动主轴3213旋转。因此,当在传动主轴3213的轴向方向的两侧分别设置多个漂浮件3214时,随着海浪的上下涌动,不同的漂浮件3214会带动各自的驱动套筒3215产生不同的转动方向,而只有当驱动套筒的旋转方向与传动主轴3213的旋转方向一致时才能驱动传动主轴3213旋转,也就是说,相邻的两驱动套筒3215的各自的驱动槽3216的深端3218、浅端3219被配置为相反。
在本发明的实施例中,该漂浮件3214为具有空腔的球体,当然,在其它的实施例中,该漂浮件3214也可为具有空腔的柱体,例如浮筒结构等,在此不作限制,该漂浮件3214只要能实现将其放置在海上或水上能漂浮于海面或水面即可。进一步的,该连杆结构323为连接在漂浮件3214与驱动套筒3215之间的多个连接杆。
在动力装置3的再一可选实施例中,所述动力装置3为垂直水轮机33,该垂直水轮机33与气压机2的转轴21相连。该垂直水轮机33用于驱动气压机2的转轴21旋转,从而启动气压机2工作,实现将低压贮气体12内的第二气体转移至高压贮气体11内的目的。该垂直水轮机33可收集自然环境下的水流能,例如,水下或海下的洋流能,并将该水流能转化为机械能作用在气压机2的转轴21上。
如图13所示,该垂直水轮机33位于水下或海下,也即垂直水轮机33置于水面或海面334的下方并位于水底或海底的底部335的上方,该垂直水轮机33具有水轮轴331,对压气能贮存装置1位于水轮轴331的上方,气压机2位于水轮轴331与对压气能贮存装置1之间,水轮轴331上沿其圆周方向连接有多个第一活动浆叶332,该第一活动浆叶332的一 端与水轮轴331可转动地相连,例如可通过套设在水轮轴331上的连接环与水轮轴331实现转动相连,该第一活动浆叶332的另一端与气压机2的转轴21相连。在水下或海下的水流能的作用下,多个第一活动浆叶332绕水轮轴331旋转,从而带动气压机2的转轴21旋转,以启动气压机2工作。在本发明中,该垂直水轮机33可通过一柔性缆绳336固定至水底或海底的底部335,以限制垂直水轮机33的漂动范围;另外,该垂直水轮机33的水轮轴331实际上为空体结构,对压气能贮存装置1和气压机2均位于水轮轴331上端的柱体腔中,该空体结构的水轮轴331能使垂直水轮机33适于漂浮式、深海、低速移动场所的水流能收集;再有,由于水轮轴331固有的空心浮力特性,使其无需固定支撑于水底的地面,仅需通过柔性缆绳336固定即可,降低了垂直水轮机33水下工程建设的成本、环保成本和运行维护成本,减少了对水底生态的影响。
进一步的,该水轮轴331上沿其圆周方向还连接有多个第二活动浆叶333,第二活动浆叶333沿水轮轴331的旋转方向与第一活动浆叶332沿水轮轴331的旋转方向相反,该第二活动浆叶333的一端与水轮轴331可转动地相连,例如通过套设在水轮轴331上的连接环与水轮轴331实现转动相连,第二活动浆叶333的另一端与连接在水轮轴331上的另一气压机2的转轴21相连。该垂直水轮机33采用了多个第一活动浆叶332和多个第二活动浆叶333相互对旋的方案,以相互抵消对水轮轴331的轴向扭力,消除了垂直水轮机33对其上方设置的对压气能贮存装置1的不利影响;另外,通过两个气压机2可更加快速的实现将对压气能贮存装置1的低压贮气体12内的第二气体转移至高压贮气体11内,提高了对压气能生产系统的工作效率。
在本发明的实施方式中,在一可行实施例中,如图14所示,该第一活动浆叶332和第二活动浆叶333均由多片子浆叶拼接组成。垂直水轮机33的该第一活动浆叶332和第二活动浆叶333分别采用分段子浆叶的结构,以减少浆叶的制造、安装和维护成本。
具体的,本实施例中的第一活动浆叶332和第二活动浆叶333均由上子浆叶3321、侧子浆叶3322和下子浆叶3323依次相连组成,其中,相邻的两子浆叶之间的夹角θ为90°~180°,也即,上子浆叶3321与侧子浆叶3322之间的夹角θ为90°~180°,侧子浆叶3322与下子浆叶3323之间的夹角θ为90°~180°。
在另一可行实施例中,如图15所示,该第一活动浆叶332和第二活动浆叶333均为弧形形状的浆叶,也即,该第一活动浆叶332和第二活动浆叶333也可一体成型设计,在此不做限制。
在本发明的实施方式中,第一活动浆叶332和第二活动浆叶333的横截面的形状均为 三角形或纺锤形,以减少逆行水流的阻力。其中,当第一活动浆叶332和第二活动浆叶333的横截面的形状为三角形时,此三角形为钝角三角形。
在本发明中,由于第二活动浆叶333沿水轮轴331的旋转方向与第一活动浆叶332沿水轮轴331的旋转方向相反,因此,第一活动浆叶332的外径R1需设计为小于第二活动浆叶333的外径R2。请配合参阅图16所示,当第一活动桨叶332沿水轮轴331顺时针旋转时,第二活动桨叶333沿水轮轴331逆时针旋转,且第一活动桨叶332的三角形横截面的短边方向与第二活动桨叶333的三角形横截面的短边方向恰好相反,这是因为,这种造型的桨叶在水流的作用下,以水轮轴331为支点,整体自然向着钝角三角形的短边方向运动,以保证在洋流能的作用下,第二活动浆叶333的旋转方向与第一活动浆叶332的旋转方向相反。
在动力装置3的再一可选实施例中,该动力装置3为空中悬停直升机34,该空中悬停直升机34与气压机2的转轴21相连。该空中悬停直升机34用于驱动气压机2的转轴21旋转,从而启动气压机2工作,实现将低压贮气体12内的第二气体转移至高压贮气体11内的目的。该空中悬停直升机34可收集自然环境下的风能,例如,陆地、水面或空中的风力,并将该风能转化为机械能作用在气压机2的转轴21上。
该空中悬停直升机34包括垂直风轮机341及连接在垂直风轮机341上方的多个螺旋桨翼342,该垂直风轮机341具有主轴3411,该气压机2连接在主轴3411与螺旋桨翼342之间,该对压气能贮存装置1套设在主轴3411上,该主轴3411上沿其圆周方向连接有多个第一活动浆叶343,该第一活动浆叶343的一端与主轴3411可转动地相连,例如可通过套设在主轴3411上的连接环与主轴3411实现转动相连,该第一活动浆叶343的另一端与气压机2的转轴21相连。在空中的风能作用下,多个第一活动浆叶343绕主轴3411旋转,从而带动气压机2的转轴21旋转,以启动气压机2工作。
进一步的,请配合参阅图18所示,该主轴3411上沿其圆周方向还连接有多个第二活动浆叶344,第二活动浆叶344沿主轴3411的旋转方向与第一活动浆叶343沿主轴3411的旋转方向相反,第二活动浆叶344的一端与主轴3411可转动地相连,例如通过套设在主轴3411上的连接环与主轴3411实现转动相连,第二活动浆叶344的另一端与连接在主轴3411上的另一气压机2的转轴21相连。该垂直风轮机341采用了多个第一活动浆叶343和多个第二活动浆叶344相互对旋的方案,以相互抵消对主轴3411的轴向扭力,消除了垂直风轮机341对其上设置的对压气能贮存装置1以及多个螺旋桨翼342的不利影响;另外,通过两个气压机2可更加快速地将对压气能贮存装置1的低压贮气体12内的第二气体转 移至高压贮气体11内,提高了对压气能生产系统的工作效率。
具体的,如图17所示的实施例中,该空中悬停直升机34为单旋翼式直升机,其具有一个螺旋桨翼342,当然,在其它的实施例中,垂直风轮机341的上方可连接有两个或更多数量的螺旋桨翼342,在此不做限制。该螺旋桨翼342由多个叶片3421和驱动多个叶片3421旋转的发动机3422组成,该空中悬停直升机34的主轴3411上连接有多个第一活动桨叶343,在本实施例中,第一活动桨叶343为两个,两个第一活动桨叶343沿主轴3411径向相对设置;当然,在其它的实施例中,该第一活动桨叶343也可为三个、四个或更多数量,在此不作限制。在如图18所示的实施例中,该空中悬停直升机34为双旋翼式直升机,其具有两个螺旋桨翼342,各螺旋桨翼342由多个叶片3421和驱动多个叶片3421旋转的发动机3422组成,该空中悬停直升机34的主轴3411上连接有多个第一活动桨叶343和多个第二活动桨叶344,其中,在本实施例中,第一活动桨叶343和第二活动桨叶344均为两个,两个第一活动桨叶343、两个第二活动桨叶344均沿主轴3411径向相对设置。
该空中悬停直升机34通过多个螺旋桨翼342实现将垂直风轮机342上升至空中并悬停于空中的目的,然后在自然环境下的风能作用下,第一活动桨叶343和/或第二活动桨叶344会沿主轴3411旋转,从而带动气压机2的转轴21旋转,实现收集风能并将其转换为机械能的目的。
在本发明的实施方式中,在一可行实施例中,该第一活动浆叶332和第二活动浆叶333均由多片子浆叶拼接组成。垂直风轮机341的该第一活动浆叶343和第二活动浆叶344分别采用分段子浆叶的结构,以减少浆叶的制造、安装和维护成本。
具体的,本实施例中的该第一活动浆叶343和第二活动浆叶344均由上子浆叶3431、侧子浆叶3432和下子浆叶3433依次相连组成,其中,相邻的两子浆叶之间的夹角θ为90°~180°,也即,上子浆叶3431与侧子浆叶3432之间的夹角θ为90°~180°,侧子浆叶3432与下子浆叶3433之间的夹角θ为90°~180°。
在另一可行实施例中,配合参阅图15所示,该第一活动浆叶343和第二活动浆叶344均为弧形形状的浆叶,也即,该第一活动浆叶343和第二活动浆叶344也可一体成型设计,在此不做限制。
在本发明的实施方式中,第一活动浆叶343和第二活动浆叶344的横截面的形状均为三角形或纺锤形,以减少风能的阻力。其中,当第一活动浆叶343和第二活动浆叶344的横截面的形状为三角形时,此三角形为钝角三角形。
在本发明中,由于第二活动浆叶344沿主轴3411的旋转方向与第一活动浆叶343沿主 轴3411的旋转方向相反,因此,第一活动浆叶343的外径R1需设计为小于第二活动浆叶344的外径R2。请配合参阅图16所示,第一活动桨叶343沿主轴3411顺时针旋转时,第二活动桨叶344沿主轴3411逆时针旋转,且第一活动桨叶343的三角形横截面的短边方向与第二活动桨叶344的三角形横截面的短边方向恰好相反,这是因为,这种造型的桨叶在风力的作用下,以主轴3411为支点,整体自然向着钝角三角形的短边方向运动,从而能保证在风能的作用下,第二活动浆叶344的旋转方向与第一活动浆叶344的旋转方向相反。
在本发明的实施方式中,该主轴3411的下端还连接有着地架345,以使空中悬停直升机34在落地时得以缓冲。
在本发明的一实施方式中,如图19所示,也可将上述风轮机31、水面漂浮机32和水轮机33组合在一起使用,具体是将风轮机31的水平集风塔311的下端柱体、以及水轮机33的水轮轴331的上端柱体共同连接在水面漂浮机32的固定环3211上,从而达到收集风能、波浪能和水流能的目的。另外,在风轮机31的水平集风塔311的下端柱体上还可连接有太阳能光伏板35,以收集太阳能。
本发明还提供一种对压气能生产方法,其中包括如下步骤:提供填充有第一气体的高压贮气体11和填充有第二气体的低压贮气体12,将低压贮气体12内的第二气体转移至高压贮气体11内,该低压贮气体12与高压贮气体11之间形成能体现对压气能的气压差。
该方法是采用上述对压气能生产系统进行实施的,该对压气能生产系统的具体结构、工作原理和有益效果与上述实施方式相同,在此不再赘述。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (47)

  1. 一种对压气能生产系统,其中,所述对压气能生产系统包括:
    对压气能贮存装置,其具有高压贮气体和低压贮气体,所述高压贮气体中填充有第一气体,所述低压贮气体中填充有第二气体;
    气压机,其分别与所述低压贮气体和所述高压贮气体相连,所述气压机用于将所述低压贮气体内的第二气体转移至所述高压贮气体内,所述高压贮气体与所述低压贮气体之间形成对压气能差,在所述对压气能贮存装置内形成对压气能;
    动力装置,其与所述气压机的转轴相连,所述动力装置用于驱动所述气压机的转轴旋转。
  2. 如权利要求1所述的对压气能生产系统,其中,所述动力装置为依次相连的风轮机、水面漂浮机和垂直水轮机。
  3. 如权利要求1所述的对压气能生产系统,其中,所述动力装置为风轮机,所述风轮机与所述气压机的转轴相连。
  4. 如权利要求2或3所述的对压气能生产系统,其中,所述风轮机包括水平集风塔,所述水平集风塔的两侧分别设有上风风轮和下风风轮,所述水平集风塔的下端设有所述对压气能贮存装置,所述气压机位于所述水平集风塔与所述对压气能贮存装置之间,所述上风风轮和所述下风风轮分别与所述气压机的转轴驱动相连。
  5. 如权利要求4所述的对压气能生产系统,其中,所述下风风轮与所述水平集风塔之间的距离大于所述上风风轮与所述水平集风塔之间的距离。
  6. 如权利要求4或5所述的对压气能生产系统,其中,所述上风风轮和所述下风风轮均包括多个叶片。
  7. 如权利要求6所述的对压气能生产系统,其中,每一所述叶片均包括由内向外依次相连的多个子叶片,多个所述子叶片连接在一叶片轴上。
  8. 如权利要求7所述的对压气能生产系统,其中,位于所述叶片外缘处的所述子叶片的长度大于位于所述叶片内缘处的所述子叶片的长度;位于所述叶片外缘处的所述子叶片的厚度小于位于所述叶片内缘处的所述子叶片的厚度。
  9. 如权利要求7所述的对压气能生产系统,其中,所述上风风轮通过上风轮转轴与所述气压机的转轴驱动相连,所述下风风轮通过下风轮转轴与所述气压机的转轴驱动相连,所述上风风轮的多个叶片连接在所述上风轮转轴上,所述下风风轮的多个叶片连接在所述下风轮转轴上。
  10. 如权利要求9所述的对压气能生产系统,其中,所述气压机的转轴上连接有伞齿轮,所述伞齿轮位于所述水平集风塔内,所述上风轮转轴伸入所述水平集风塔内的一端连接有上风轮伞齿轮,所述下风轮转轴伸入所述水平集风塔内的一端连接有下风轮伞齿轮,所述上风轮伞齿轮、所述下风轮伞齿轮分别与所述伞齿轮传动连接。
  11. 如权利要求7所述的对压气能生产系统,其中,所述子叶片由两个可转动相连的迎风叶片和桨角叶片组成,每一所述叶片的各所述子叶片的各所述迎风叶片均连接在所述叶片轴上,每一所述叶片的相邻两所述子叶片的两所述桨角叶片彼此相连。
  12. 如权利要求11所述的对压气能生产系统,其中,所述迎风叶片与所述桨角叶片之间连接有弹性件。
  13. 如权利要求11所述的对压气能生产系统,其中,所述上风风轮、所述下风风轮上均设有多个调整浆叶,所述上风风轮的两两相邻的所述叶片之间、所述下风风轮的两两相邻的所述叶片之间均设有一个所述调整浆叶,各所述调整浆叶和与其相邻的一个所述叶片之间连接有联动件。
  14. 如权利要求13所述的对压气能生产系统,其中,各所述调整浆叶分别可轴向转动地连接在所述叶片轴上。
  15. 如权利要求14所述的对压气能生产系统,其中,所述调整浆叶通过所述联动件连接在位于所述叶片内缘处的所述子叶片的所述桨角叶片上。
  16. 如权利要求9所述的对压气能生产系统,其中,沿所述上风轮转轴的圆周方向与所述下风轮转轴的圆周方向,所述上风风轮的多个所述叶片与所述下风风轮的多个所述叶片交错设置。
  17. 如权利要求1所述的对压气能生产系统,其中,所述动力装置为水面漂浮机,所述水面漂浮机与所述气压机的转轴相连。
  18. 如权利要求2或17所述的对压气能生产系统,其中,所述水面漂浮机包括多个漂浮机构,各所述漂浮机构之间通过连接件相接;所述漂浮机构具有固定环及连接在所述固定环上的多个漂浮组件。
  19. 如权利要求18所述的对压气能生产系统,其中,所述漂浮组件具有传动主轴,所述传动主轴上可转动地连接有多个漂浮件,所述气压机的转轴与所述传动主轴相连,所述对压气能贮存装置位于所述传动主轴的下方。
  20. 如权利要求19所述的对压气能生产系统,其中,所述传动主轴上间隔套设有多个驱动套筒,所述漂浮件通过连杆结构连接在所述驱动套筒上,所述驱动套筒的内周壁 上沿圆周方向设有多个驱动槽,所述驱动槽内设有滚轴。
  21. 如权利要求20所述的对压气能生产系统,其中,所述驱动槽为楔形槽,所述楔形槽具有深端和浅端,所述深端的槽深大于所述浅端的槽深,在所述滚轴位于所述楔形槽的深端的状态下,所述滚轴与所述传动主轴分离;在所述滚轴位于所述楔形槽的浅端的状态下,所述滚轴与所述传动主轴接触,所述驱动套筒驱动所述传动主轴旋转。
  22. 如权利要求19所述的对压气能生产系统,其中,所述漂浮件为具有空腔的球体或柱体。
  23. 如权利要求20所述的对压气能生产系统,其中,所述连杆结构为连接在所述漂浮件与所述驱动套筒之间的多个连接杆。
  24. 如权利要求19所述的对压气能生产系统,其中,各所述传动主轴上的多个所述漂浮件沿所述传动主轴的轴向方向交错设置在所述传动主轴的两侧。
  25. 如权利要求1所述的对压气能生产系统,其中,所述动力装置为垂直水轮机,所述垂直水轮机与所述气压机的转轴相连。
  26. 如权利要求2或25所述的对压气能生产系统,其中,所述垂直水轮机具有水轮轴,所述对压气能贮存装置位于所述水轮轴的上方,所述气压机位于所述水轮轴与所述对压气能贮存装置之间,所述水轮轴上沿其圆周方向连接有多个第一活动浆叶,所述第一活动浆叶的一端与所述水轮轴可转动地相连,所述第一活动浆叶的另一端与所述气压机的转轴相连。
  27. 如权利要求26所述的对压气能生产系统,其中,所述水轮轴上沿其圆周方向还连接有多个第二活动浆叶,所述第二活动浆叶沿所述水轮轴的旋转方向与所述第一活动浆叶沿所述水轮轴的旋转方向相反,所述第二活动浆叶的一端与所述水轮轴可转动地相连,所述第二活动浆叶的另一端与连接在所述水轮轴上的另一气压机的转轴相连。
  28. 如权利要求27所述的对压气能生产系统,其中,所述第一活动浆叶和所述第二活动浆叶均由多个子浆叶拼接组成。
  29. 如权利要求28所述的对压气能生产系统,其中,所述第一活动浆叶和所述第二活动浆叶均包括依次相连的上活动浆叶、侧活动浆叶和下活动浆叶。
  30. 如权利要求29所述的对压气能生产系统,其中,所述上活动浆叶与所述侧活动浆叶之间的夹角为90°~180°;所述侧活动浆叶与所述下活动浆叶之间的夹角为90°~180°。
  31. 如权利要求27所述的对压气能生产系统,其中,所述第一活动浆叶的横截面的形状和所述第二活动浆叶的横截面的形状均为三角形或纺锤形。
  32. 如权利要求27所述的对压气能生产系统,其中,所述第一活动浆叶的外径小于所述第二活动浆叶的外径。
  33. 如权利要求27所述的对压气能生产系统,其中,所述第一活动浆叶和所述第二活动浆叶均为弧形形状的浆叶。
  34. 如权利要求1所述的对压气能生产系统,其中,所述动力装置为空中悬停直升机,所述空中悬停直升机与所述气压机的转轴相连。
  35. 如权利要求34所述的对压气能生产系统,其中,所述空中悬停直升机包括垂直风轮机及连接在所述垂直风轮机上方的多个螺旋桨翼,所述垂直风轮机具有主轴,所述气压机连接在所述主轴与所述螺旋桨翼之间,所述对压气能贮存装置套设在所述主轴上,所述主轴上沿其圆周方向连接有多个第一活动浆叶,所述第一活动浆叶的一端与所述主轴可转动地相连,所述第一活动浆叶的另一端与所述气压机的转轴相连。
  36. 如权利要求35所述的对压气能生产系统,其中,所述主轴上沿其圆周方向还连接有多个第二活动浆叶,所述第二活动浆叶沿所述主轴的旋转方向与所述第一活动浆叶沿所述主轴的旋转方向相反,所述第二活动浆叶的一端与所述主轴可转动地相连,所述第二活动浆叶的另一端与连接在所述主轴上的另一气压机的转轴相连。
  37. 如权利要求36所述的对压气能生产系统,其中,所述第一活动浆叶和所述第二活动浆叶均由多个子浆叶拼接组成。
  38. 如权利要求37所述的对压气能生产系统,其中,所述第一活动浆叶和所述第二活动浆叶均包括依次相连的上活动浆叶、侧活动浆叶和下活动浆叶。
  39. 如权利要求38所述的对压气能生产系统,其中,所述上活动浆叶与所述侧活动浆叶之间的夹角为90°~180°;所述侧活动浆叶与所述下活动浆叶之间的夹角为90°~180°。
  40. 如权利要求36所述的对压气能生产系统,其中,所述第一活动浆叶的横截面的形状和所述第二活动浆叶的横截面的形状均为三角形或纺锤形。
  41. 如权利要求36所述的对压气能生产系统,其中,所述第一活动浆叶的外径小于所述第二活动浆叶的外径。
  42. 如权利要求36所述的对压气能生产系统,其中,所述第一活动浆叶和所述第二活动浆叶均为弧形形状的浆叶。
  43. 如权利要求35所述的对压气能生产系统,其中,所述主轴的下端连接有着地架。
  44. 如权利要求1所述的对压气能生产系统,其中,所述对压气能贮存装置包括内体和套设在所述内体外的外体。
  45. 如权利要求44所述的对压气能生产系统,其中,所述内体为所述高压贮气体,所述外体与所述内体之间形成的腔体为所述低压贮气体;或所述内体为所述低压贮气体,所述外体与所述内体之间形成的腔体为所述高压贮气体。
  46. 如权利要求1所述的对压气能生产系统,其中,所述气压机为压缩机。
  47. 一种对压气能生产方法,其中,其包括如下步骤:提供填充有第一气体的高压贮气体和填充有第二气体的低压贮气体,将所述低压贮气体内的第二气体转移至所述高压贮气体内,在所述低压贮气体与所述高压贮气体之间形成能体现对压气能的气压差。
PCT/CN2017/073461 2016-02-14 2017-02-14 对压气能生产系统及生产方法 WO2017137014A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17749905.0A EP3415714A4 (en) 2016-02-14 2017-02-14 RELATIVE PRESSURE GAS POWER GENERATION SYSTEM AND MANUFACTURING METHOD
CN201780011299.2A CN108779673A (zh) 2016-02-14 2017-02-14 对压气能生产系统及生产方法
US16/103,696 US20180363463A1 (en) 2016-02-14 2018-08-14 Paired Air Pressure Energy Production System and Production Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610084601.4 2016-02-14
CN201610084601 2016-02-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/103,696 Continuation US20180363463A1 (en) 2016-02-14 2018-08-14 Paired Air Pressure Energy Production System and Production Method

Publications (1)

Publication Number Publication Date
WO2017137014A1 true WO2017137014A1 (zh) 2017-08-17

Family

ID=59562872

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2017/073461 WO2017137014A1 (zh) 2016-02-14 2017-02-14 对压气能生产系统及生产方法
PCT/CN2017/073460 WO2017137013A1 (zh) 2016-02-14 2017-02-14 对压气能贮存装置及检测方法、贮存系统、平衡侦测机构
PCT/CN2017/073459 WO2017137012A1 (zh) 2016-02-14 2017-02-14 对压气能动力系统及动力方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/073460 WO2017137013A1 (zh) 2016-02-14 2017-02-14 对压气能贮存装置及检测方法、贮存系统、平衡侦测机构
PCT/CN2017/073459 WO2017137012A1 (zh) 2016-02-14 2017-02-14 对压气能动力系统及动力方法

Country Status (4)

Country Link
US (3) US20180363463A1 (zh)
EP (3) EP3415714A4 (zh)
CN (3) CN108779674B (zh)
WO (3) WO2017137014A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110005491A (zh) * 2019-04-18 2019-07-12 东南大学 一种天然气压力能冷电联供系统
SE2100104A1 (en) * 2021-06-22 2022-12-23 Ameneh Masoumi Power motor
CN116599231B (zh) * 2023-05-18 2024-02-20 中国电建集团河北省电力勘测设计研究院有限公司 一种无储热罐的耦合有机朗肯循环的压缩空气储能系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206608A (en) * 1978-06-21 1980-06-10 Bell Thomas J Natural energy conversion, storage and electricity generation system
US4332277A (en) * 1980-09-03 1982-06-01 Hughes Undersea Coupling, Inc. Pipeline pigging plug
US20020060500A1 (en) * 2000-11-17 2002-05-23 Lafferty Patrick Alan Regenerative energy storage and conversion system
CN2641317Y (zh) * 2003-09-18 2004-09-15 李竞 往复式气体压缩装置
CN102089518A (zh) * 2007-12-14 2011-06-08 大卫·麦克康内尔 采用液压存储器的风能至电能的转换
CN202954920U (zh) * 2012-11-30 2013-05-29 向靖 海浪发电装置
CN204061031U (zh) * 2014-07-28 2014-12-31 张庆忠 可利用海水、河水和风力发电的多功能发电设备

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US658556A (en) * 1899-04-05 1900-09-25 William A Pitt Rotary engine or motor.
US3187766A (en) * 1961-04-21 1965-06-08 Pullman Inc Valving system for a vessel having a plurality of compartments
FR96253E (fr) * 1965-12-16 1972-06-16 Rodrigues Edouard Georges Dani Procédé de fabrication de réservoirs et reservoirs ainsi obtenus.
JPS5218402B2 (zh) * 1971-12-03 1977-05-21
US4462774A (en) * 1982-09-27 1984-07-31 William Hotine Rotary expander fluid pressure device
US4760701A (en) * 1984-03-06 1988-08-02 David Constant V External combustion rotary engine
CA2165290C (en) * 1993-06-17 2004-08-31 Giovanni Aquino Rotary positive displacement device
CN2575641Y (zh) * 2002-10-30 2003-09-24 中国船舶重工集团公司第七研究院第七一一研究所 压力压差同步指示表
US20040096327A1 (en) * 2002-11-14 2004-05-20 Kari Appa Method of increasing wind farm energy production
DE10308831B3 (de) * 2003-02-27 2004-09-09 Levitin, Lev, Prof. Dr., Brookline Rotationskolbenmaschine mit einem in einer ovalen Kammer geführten ovalen Rotationskolben
US7281513B1 (en) * 2006-02-24 2007-10-16 Webb David W Inverted Wankel
KR100792790B1 (ko) * 2006-08-21 2008-01-10 한국기계연구원 압축공기저장발전시스템 및 이를 이용한 발전방법
CN101458140A (zh) * 2009-01-08 2009-06-17 丁东胜 一种差压表
CN101775998A (zh) * 2009-01-09 2010-07-14 孙红社 空气发动机
CN101575986A (zh) * 2009-04-28 2009-11-11 王润湘 多级变容压差摇杆式空气动力发动机
TWM367581U (en) * 2009-06-19 2009-11-01 Jetpo Technology Inc Energy-saving wind-power oxygen-aerating apparatus
US8436489B2 (en) * 2009-06-29 2013-05-07 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
AU2012205442B2 (en) * 2011-01-14 2015-07-16 General Compression, Inc. Compressed gas storage and recovery system and method of operation systems
EP3173579B1 (en) * 2011-03-29 2019-05-08 LiquidPiston, Inc. Cycloid rotor engine
EP2720852B1 (en) * 2011-06-15 2017-11-29 DSM IP Assets B.V. Substrate-based additive fabrication process and apparatus
CN102305174B (zh) * 2011-07-04 2014-07-16 张向增 带扭角恒定横截面拉挤复合材料叶片及其拉挤成型方法
WO2013059522A1 (en) * 2011-10-18 2013-04-25 Lightsail Energy Inc Compressed gas energy storage system
WO2013064276A2 (de) * 2011-11-05 2013-05-10 Nasser Berg Energie Gmbh Einrichtungen und verfahren zur energiespeicherung
US8522538B2 (en) * 2011-11-11 2013-09-03 General Compression, Inc. Systems and methods for compressing and/or expanding a gas utilizing a bi-directional piston and hydraulic actuator
CN103174583B (zh) * 2011-12-20 2016-04-06 李泽宇 一种风轮
CA2778101A1 (en) * 2012-05-24 2013-11-24 Jean Pierre Hofman Power generation by pressure differential
GB2506652A (en) * 2012-10-05 2014-04-09 Casu Vasu As An energy storage system and a method of storing energy
AU2014230932B2 (en) * 2013-03-14 2018-05-10 Arranged Bvba Pressure vessel based tower structure
US9878725B2 (en) * 2013-03-15 2018-01-30 Rail Gas Technologies Locomotive natural gas storage and transfer system
US9030039B2 (en) * 2013-06-02 2015-05-12 Charles Martin Chavez Madson Wind turbine and compressed gas storage system for generating electrical power
CN103775288B (zh) * 2014-01-27 2017-02-15 华北水利水电大学 靠钢结构复合塔体提供稳定电源的风力发电系统
CN105299945B (zh) * 2014-08-01 2019-02-01 江洪泽 混合气体冷凝分离存质升压储能装置和方法及实用系统
CN104314761B (zh) * 2014-08-25 2017-02-22 丁健威 一种叶片收叠式风能机
FR3034813B1 (fr) * 2015-04-13 2019-06-28 IFP Energies Nouvelles Systeme et procede de stockage et de recuperation d'energie par air comprime avec chauffage a volume constant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206608A (en) * 1978-06-21 1980-06-10 Bell Thomas J Natural energy conversion, storage and electricity generation system
US4332277A (en) * 1980-09-03 1982-06-01 Hughes Undersea Coupling, Inc. Pipeline pigging plug
US20020060500A1 (en) * 2000-11-17 2002-05-23 Lafferty Patrick Alan Regenerative energy storage and conversion system
CN2641317Y (zh) * 2003-09-18 2004-09-15 李竞 往复式气体压缩装置
CN102089518A (zh) * 2007-12-14 2011-06-08 大卫·麦克康内尔 采用液压存储器的风能至电能的转换
CN202954920U (zh) * 2012-11-30 2013-05-29 向靖 海浪发电装置
CN204061031U (zh) * 2014-07-28 2014-12-31 张庆忠 可利用海水、河水和风力发电的多功能发电设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3415714A4 *

Also Published As

Publication number Publication date
EP3415713A4 (en) 2020-03-11
WO2017137012A1 (zh) 2017-08-17
CN108779672A (zh) 2018-11-09
CN108779672B (zh) 2020-12-25
WO2017137013A1 (zh) 2017-08-17
EP3415715B1 (en) 2022-08-31
US10883367B2 (en) 2021-01-05
US10738613B2 (en) 2020-08-11
EP3415715A4 (en) 2020-03-11
US20180355721A1 (en) 2018-12-13
EP3415715A1 (en) 2018-12-19
EP3415714A4 (en) 2020-03-04
US20180363463A1 (en) 2018-12-20
EP3415713A1 (en) 2018-12-19
US20180371908A1 (en) 2018-12-27
CN108779674B (zh) 2020-12-25
EP3415714A1 (en) 2018-12-19
CN108779674A (zh) 2018-11-09
CN108779673A (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
US8174135B1 (en) Marine energy hybrid
AU746011B2 (en) Extracting power from moving water
CN109737009B (zh) 基于海上浮式平台的风能—波浪能联合发电装置及发电方法
US20090096217A1 (en) Wind turbine with perimeter power takeoff
WO2017137014A1 (zh) 对压气能生产系统及生产方法
CN105649884A (zh) 海上风能与海洋潮流能联合发电平台
CN109236549A (zh) 一种高效波浪能发电装置
US20140077505A1 (en) Wind Turbine Apparatus
CN102943736A (zh) 双浮力体摆式双向透平波浪能发电装置
EP3715623A1 (en) Power device for increasing low flow rate
CN205605354U (zh) 波浪能发电装置
CN102828899A (zh) 横置垂直轴风能装置
CN103953495A (zh) 集流式自适应潮汐流发电装置
CN105275749B (zh) 一种立式摆动风力发电装置
ES2802239T3 (es) Turbina eólica canalizada
CN201262131Y (zh) 海流、风力两用发电机
CN102338020A (zh) 陀螺定向的海浪采能装置
CN110821744A (zh) 一种可伸缩浮式潮流能发电装置
US9546643B2 (en) Revolving overhead windmill
CN108891548B (zh) 一种自平衡海上交通工具
RU49584U1 (ru) Роторный ветродвигатель
CN202900531U (zh) 带叶片配重的垂直轴偏距式风力机
CN105156257B (zh) 横卧式垂直轴低速平水流发电装置
CN202250573U (zh) 陀螺定向的海浪采能装置
CN210371008U (zh) 水平运动海浪发电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17749905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017749905

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017749905

Country of ref document: EP

Effective date: 20180914