US20180353400A1 - Nail color coating system - Google Patents

Nail color coating system Download PDF

Info

Publication number
US20180353400A1
US20180353400A1 US16/007,177 US201816007177A US2018353400A1 US 20180353400 A1 US20180353400 A1 US 20180353400A1 US 201816007177 A US201816007177 A US 201816007177A US 2018353400 A1 US2018353400 A1 US 2018353400A1
Authority
US
United States
Prior art keywords
group
ingredient
nail polish
composition according
polish composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/007,177
Other languages
English (en)
Inventor
Wouter Ijdo
Yanhui Chen
Prashant Deshmukh
Rajni Gupta
James A. Heck
Wayne HOYTE
Maurice GRAY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elementis Specialties Inc
Original Assignee
Elementis Specialties Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elementis Specialties Inc filed Critical Elementis Specialties Inc
Priority to US16/007,177 priority Critical patent/US20180353400A1/en
Publication of US20180353400A1 publication Critical patent/US20180353400A1/en
Assigned to ELEMENTIS SPECIALTIES, INC. reassignment ELEMENTIS SPECIALTIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, YANHUI, GUPTA, RAJNI, GRAY, MAURICE, IJDO, WOUTER, DESHMUKH, PRASHANT, HECK, JAMES A, HOYTE, Wayne
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • A61K8/416Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/494Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4986Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with sulfur as the only hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/85Polyesters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q3/00Manicure or pedicure preparations
    • A61Q3/02Nail coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/20Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups
    • C08G63/21Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups in the presence of unsaturated monocarboxylic acids or unsaturated monohydric alcohols or reactive derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/109Esters; Ether-esters of carbonic acid, e.g. R-O-C(=O)-O-R
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/95Involves in-situ formation or cross-linking of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the invention provides for a crosslinkable composition for use in nail coating compositions containing dyes, inorganic pigments or lakes.
  • the coatings industry continues to develop new chemistries as performance requirements for decorative and functional coatings evolve.
  • Drivers for change are varied and these can include: regulatory controls to reduce VOC emissions, concerns about toxic hazards of coating raw materials, a desire for cost reduction, commitments to sustainability, and a need for increased product effectiveness.
  • UV nail gel coatings have gained rapid popularity with fashion conscious individuals who apply nail polish to fingernails or toenails to decorate and protect nail plates. UV nail gels can produce coatings that exhibit phenomenal chip resistance and durability when properly applied and cured in comparison to those nail coatings derived from traditional solvent based nail lacquers. The performance difference particularly becomes apparent when the coating is applied on human finger nails and tested for durability. UV nail gel coatings can easily last for two weeks or more and still look like new whereas conventional nail polishes are easily scratched and will chip or peel from the natural nail in one to five days. UV nail gels are typically based on acrylates that cure quickly into dense, crosslinked thermoset coatings within half a minute or so. This is an advantage as the coating becomes almost immediately resistant to denting and scratching.
  • Michael addition reaction involves the nucleophilic addition of a Michael donor, such as a carbanion or another nucleophile to a Michael acceptor, such as an ⁇ , ⁇ -unsaturated carbonyl.
  • a Michael donor such as a carbanion or another nucleophile
  • a Michael acceptor such as an ⁇ , ⁇ -unsaturated carbonyl.
  • the base catalyzed addition of activated methylene moieties to electron deficient C ⁇ C double bonds are known in coatings applications.
  • suitable materials that can provide activated methylene or methine groups are generally disclosed in U.S. Pat. No.
  • 4,871,822 which resins contain a methylene and/or monosubstituted methylene group in the alpha-position to two activating groups such as, for example, carbonyl, cyano, sulfoxide and/or nitro groups.
  • Preferred are resins containing a methylene group in the alpha-position to two carbonyl groups, such as malonate and/or acetoacetate group-containing materials, malonates being most preferred.
  • the ⁇ , ⁇ -unsaturated carbonyl typically is an acrylate material and representative materials have been disclosed in U.S. Pat. No. 4,602,061.
  • the Michael reaction is fast, can be carried out at ambient temperatures and gives a chemically stable crosslinking bond without forming any reaction by-product.
  • a typical crosslinkable coating composition comprises a resin ingredient A (Michael donor), a resin ingredient B (Michael acceptor) and a base to start and catalyze the Michael addition reaction.
  • the base catalyst should be strong enough to abstract, i.e. activate a proton from resin ingredient A to form the Michael donor carbanion species. Since the Michael addition cure chemistry can be very fast, the coating formulator is challenged to control the speed of the reaction to achieve an acceptable balance of pot life, open time, tack free time and cure time. Pot life is defined as the amount of time during which the viscosity of a mixed reactive system doubles.
  • Working life or working time informs the user how much time they have to work with a reactive two-part system before it reaches such a high state of viscosity, or other condition, that it cannot be properly worked with to produce an acceptable application result.
  • Gel time is the amount of time it takes for a mixed, reactive resin system to gel or become so highly viscous that it has lost fluidity.
  • the open time of a coating is a practical measure of how much time it takes for a drying or curing coating to reach a stage where it can no longer be touched by brush or roller when applying additional coating material without leaving an indication that the drying or curing coating and newly applied coating did not quite flow together. These indications normally take the form of brush or roller marks and sometimes a noticeable difference in sheen levels.
  • the tack free time is the amount of time it takes for a curing or drying coating to be no longer sticky to the touch, i.e. the time for a system to become hard to the touch, with no tackiness.
  • Cure time is the amount of time it takes for a coating system to reach full final properties.
  • the Michael reaction starts the very moment when coating resin ingredients A and B are mixed together with a suitable base. Since it is a fast reaction, the material in a mixing pot starts to crosslink and the fluid viscosity starts to rise. This limits the pot life, working time and general use as a coating.
  • a dormant initiator that is essentially passive while coating material remains in a mixing vessel but that activates the Michael addition reaction upon film formation allows for longer pot life and working time, yet would show good open time, tack free time and cure time.
  • the application of dormant initiator technology can provide the formulator with tools to control the speed of the reaction in order to achieve desirable cure characteristics.
  • U.S. Pat. No. 8,962,725 describes a blocked base catalyst for Michael addition, which is based on substituted carbonate salts.
  • Preferred Michael donor resins are based on malonate and Michael acceptor resins are acrylates.
  • the substituted carbonates can bear substituents, but these should not substantially interfere with the crosslinking reaction between malonate and acrylate.
  • the carbonate salts release carbon dioxide and a strong base upon activation by means of film formation.
  • the base is either hydroxide or alkoxide.
  • the carbonate requires presence of a certain amount of water in the coating formulation for the blocking of the base to become effective. All disclosed blocked carbonate examples utilize methanol and/or water.
  • malonate esters are known to be susceptible to base hydrolysis, particularly when water is present. Hence, the water necessary to block the carbonate base can thus degrade malonate oligomers or polymers at the same time, which in turn can lead to altered coatings performance.
  • the hydrolysis product furthermore can result in undesirable destruction of base catalyst by means of formation of malonate salt; a reaction which is cloaked as longer pot life and gel time. Presence of water can also be quite problematic in certain coatings applications. Wood grain raising is a significant problem when water is present in wood coatings; water penetrates into wood, which causes swelling and lifting of fibers and this leaves a rough surface. Water also can cause flash rust, i.e. appearance of rust spots on a metal surface during drying of newly applied paint that contains water. Longer term rust formation in terms of corrosion may also be a problem when dealing with formulations that contain water.
  • the present invention provides for a nail polish composition containing a crosslinkable coating composition
  • a crosslinkable coating composition comprising: ingredient A that has at least two protons that can be activated to form a Michael carbanion donor; ingredient B that functions as a Michael acceptor having at least two ethylenically unsaturated functionalities each activated by an electron-withdrawing group; and a carbonate initiator of Formula (1)
  • R 7 is selected from hydrogen, a linear or branched substituted or unsubstituted alkyl group having 1 to 22 carbon atoms; 1 to 8 carbon atoms; 1 to 3 carbon atoms; and A n+ is a cationic species or polymer and n is an integer equal or greater than 1 with the proviso that A n+ is not an acidic hydrogen; at least one colorant independently selected from the group consisting of (i) a dye; (ii) an inorganic pigment; or an (iii) a lake; and optionally further comprising ammonium carbamate (H 2 NR 8 R 9 +—OC ⁇ ONR 8 R 9 ), wherein R 8 R 9 are each independently selected from hydrogen, a linear or branched substituted or unsubstituted alkyl group having 1 to 22 carbon atoms; 1 to 8 carbon atoms; 1 to 3 carbon atoms.
  • the present invention provides a nail polish composition wherein a dye is selected from the group consisting of D&C Red 21, D&C Red No. 22, D&C Red No. 28, D&C Red No. 30, D&C Red No. 33, D&C Red No. 40, D&C Black No. 2, D&C Yellow No. 5, D&C Green No. 5, Annatto and Caramel.
  • a dye is selected from the group consisting of D&C Red 21, D&C Red No. 22, D&C Red No. 28, D&C Red No. 30, D&C Red No. 33, D&C Red No. 40, D&C Black No. 2, D&C Yellow No. 5, D&C Green No. 5, Annatto and Caramel.
  • the inorganic pigment is selected from the group consisting of red iron oxide; yellow iron oxide; titanium dioxide; brown iron oxide; chromium oxide green; iron blue (ferric ferrocyanide blue); ultramarine blue; ultramarine violet; ultramarine pink; black iron oxide; bismuth oxychloride; aluminum powder; manganese violet; mica; bronze powder; copper powder; guanine and combinations thereof.
  • the lake is a D&C lake.
  • the present invention provides a nail polish composition wherein ingredient A is selected from the group consisting of compounds, oligomers or polymers.
  • ingredient A is independently selected from a malonate group containing compound, a malonate group containing oligomer, a malonate group containing polymer, an acetoacetate group containing compound, an acetoacetate group containing oligomer, an acetoacetate group containing polymer or combinations thereof.
  • the malonate group containing compound, malonate group containing oligomer, malonate group containing polymer, an acetoacetate group containing compound, acetoacetate group containing oligomer, or acetoacetate group containing polymer are each selected from the group consisting of: polyurethanes, polyesters, polyacrylates, epoxy polymers, polyamides, polyesteramides or polyvinyl polymers, wherein such compounds, oligomers or polymers have a malonate group or acetoacetate group located in a main chain of such compound or oligomer or polymer or a side chain of such compound or oligomer or polymer.
  • the present invention provides a nail polish composition wherein wherein ingredient B is selected from the group consisting of acrylates, fumarates, maleates and combinations thereof.
  • the acrylate is independently selected from the group consisting of hexanediol diacrylate, trimethylol propane triacrylate, pentaerythritol triacrylate, di-trimethylolpropane tetraacrylate bis(2-hydroxyethyl acrylate), trimethylhexyl dicarbamate, bis(2-hydroxyethyl acrylate) 1,3,3-trimethylcyclohexyl dicarbamate, bis(2-hydroxyethyl acrylate) methylene dicyclohexyl dicarbamate and combinations thereof.
  • the present invention provides a nail polish composition wherein ingredient B is independently selected from the group consisting of polyesters, polyurethanes, polyethers and/or alkyd resins each containing at least two pendant ethylenically unsaturated groups each activated by an electron-withdrawing group.
  • the invention disclosed here is a crosslinkable composition
  • a resin ingredient A Moichael donor
  • a resin ingredient B Moichael acceptor
  • a carbonate initiator ingredient C The invention generally is useful as a decorative and/or functional coating, and the invention particularly is useful as a coating for human finger nails or toe nails.
  • Resin Ingredient A (Michael Donor):
  • Resin ingredients A are compounds, oligomers or polymers that contain functional groups that have reactive protons that can be activated to produce a carbanion Michael donor.
  • the functional group can be a methylene or methine group and resins have been described in U.S. Pat. No. 4,602,061 and U.S. Pat. No. 8,962,725 for example.
  • resin ingredients A are those derived from malonic acid or malonate esters, i.e. malonate.
  • Oligomeric or polymeric malonate compounds include polyurethanes, polyesters, polyacrylates, epoxy resins, polyamides, polyesteramides or polyvinyl resins each containing malonate groups, either in the main chain or the side chain or in both.
  • polyurethanes having malonate groups may be obtained, for instance, by bringing a polyisocyanate into reaction with a hydroxyl group containing ester or polyester of a polyol and malonic acid/malonates, by esterification or transesterification of a hydroxyfunctional polyurethane with malonic acid and/or a dialkyl malonate.
  • polyisocyanates include hexamethylenediisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, toluene diisocyanate and addition products of a polyol with a diisocyanate, such as that of trimethylolpropane to hexamethylene diisocyanate.
  • the polyisocyanate is selected from isophorone diisocyanate and trimethyhexamethylene diisocyanate. In another embodiment, the polyisocyanate is isophorone diisocyanate.
  • hydroxyfunctional polyurethanes include the addition products of a polyisocyanate, such as the foregoing polyisocyanates, with di- or polyvalent hydroxy compounds, including diethyleneglycol, neopentyl glycol, dimethylol cyclohexane, trimethylolpropane, 1,3-propandiol, 1,4-butanediol, 1,6-hexanediol and polyether polyols, polyester polyols or polyacrylate polyols.
  • the di- or polyvalent hydroxy compounds include diethyleneglycol, 1,3-propanediol, 1,4-butanediol and 1,6-hexanediol. In other embodiments, the di- or polyvalent hydroxy compounds include diethyleneglycol and 1,6-hexanediol.
  • malonic polyesters may be obtained, for instance, by polycondensation of malonic acid, an alkylmalonic acid, such as ethylmalonic acid, a mono- or dialkyl ester of such a carboxylic acid, or the reaction product of a malonic ester and an alkylacrylate or methacrylate, optionally mixed with other di- or polycarboxylic with one or more dihydroxy and/or polyhydroxy compounds, in combination or not with mono hydroxy compounds and/or carboxyl compounds.
  • an alkylmalonic acid such as ethylmalonic acid
  • a mono- or dialkyl ester of such a carboxylic acid such as a carboxylic acid
  • reaction product of a malonic ester and an alkylacrylate or methacrylate optionally mixed with other di- or polycarboxylic with one or more dihydroxy and/or polyhydroxy compounds, in combination or not with mono hydroxy compounds and/or carboxyl compounds.
  • polyhydroxy compounds include compounds containing 2-6 hydroxyl group and 2-20 carbon atoms, such as ethylene glycol, diethyleneglycol, propylene glycol, trimethylol ethane, trimethylolpropane, glycerol, pentaerythritol, 1,4-butanediol, 1,6-hexanediol, cyclohexanedimethanol, 1,12-dodecanediol and sorbitol.
  • the polyhydroxyl compounds include diethylene glycol, propylene glycol, 1,4-butanediol and 1,6-hexanediol.
  • the polyhydroxyl compounds include propylene glycol and 1,6-hexanediol.
  • the polyhydroxy may be a primary alcohol and in certain other embodiments, the polyhydroxy may be a secondary alcohol.
  • Examples of polyols with secondary alcohol groups are 2,3-butanediol, 2,4-pentanediol and 2,5-hexanediol and the like.
  • malonate group-containing polymers also may be prepared by transesterification of an excess of dialkyl malonate with a hydroxy functional polymer, such as a vinyl alcohol-styrene copolymer. In this way, polymers with malonate groups in the side chains are formed. After the reaction, the excess of dialkyl malonate may optionally be removed under reduced pressure or be used as reactive solvent.
  • a hydroxy functional polymer such as a vinyl alcohol-styrene copolymer.
  • malonate group or acetoacetate group containing polymers may also be obtained from reaction with malonate or acetoacetonate with polyols, such as those polyols that are commercially sold for reaction with isocyanates to form polyurethane coatings.
  • malonic epoxy esters may be prepared by esterifying an epoxy polymer with malonic acid or a malonic monoester, or by transesterifying with a dialkylmalonate, optionally in the presence of one or more other carboxylic acids or derivatives thereof.
  • polyamides having malonate groups may be obtained in the same manner as polyesters, at least part of the hydroxy compound(s) being replaced with a mono- or polyvalent primary and/or secondary amine, such as cyclohexylamine, ethylene diamine, isophorone diamine, hexamethylene diamine, or diethylene triamine.
  • a mono- or polyvalent primary and/or secondary amine such as cyclohexylamine, ethylene diamine, isophorone diamine, hexamethylene diamine, or diethylene triamine.
  • such polyamide compounds can be obtained when 12-hydroxystearic acid is reacted with a diamine such as ethylenediamine.
  • a diamine such as ethylenediamine.
  • Such polyamides have secondary alcohol groups, which can be esterified with malonic acid or malonate in a second reaction step.
  • other diamines may also be used in the reaction with 12-hydroxystearic acid, for example: xylylenediamine, butylenediamine, hexamethylenediamine, dodecamethylenediamine, and even dimer amine, which is derived from dimer acid.
  • Polyamines may also be used, but in a right stoichiometric ratio as to avoid gelling of the polyamide in the reactor.
  • Lesquerolic acid may also be used in reactions with polyamines to yield polyamides bearing secondary alcohol groups, which can be used in reactions with malonate to form malonate containing compounds. Reactions that yield malonamides are much less desirable.
  • the above mentioned malonate resins may be blended together to achieve optimized coatings properties.
  • Such blends can be mixtures of malonate modified polyurethanes, polyesters, polyacrylates, epoxy resins, polyamides, polyesteramides and the like, but mixtures can also be prepared by blending various malonate modified polyesters together.
  • various malonate modified polyurethanes can be mixed together, or various malonate modified polyacrylates, or malonate modified epoxy resins, or various malonate modified polyamides, malonate modified polyesteramides.
  • malonate resins are malonate group containing oligomeric esters, polyesters, polyurethanes, or epoxy esters having 1-100, or 2-20 malonate groups per molecule.
  • the malonate resins should have a number average molecular weight in the range of from 250 to 10,000 and an acid number not higher than 5, or not higher than 2.
  • Use may optionally be made of malonate compounds in which the malonic acid structural unit is cyclized by formaldehyde, acetaldehyde, acetone or cyclohexanone.
  • molecular weight control may be achieved by the use of end capping agents, typically monofunctional alcohol, monocarboxylic acid or esters.
  • malonate compounds may be end capped with one or more of 1-hexanol, 1-octanol, 1-dodecanol, hexanoic acid or its ester, octanoic acid or its esters, dodecanoic acid or its esters, diethyleneglycol monoethyl ether, trimethylhexanol, and t-butyl acetoacetate, ethyl acetoacetate.
  • the malonate is end capped with 1-octanol, diethyleneglycol monoethyl ether, trimethylhexanol, t-butyl acetoacetate and ethyl acetoacetate.
  • the malonate is end capped t-butyl acetoacetate, ethyl acetoacetate and combinations thereof.
  • Monomeric malonates may optionally be used as reactive diluents, but certain performance requirements may necessitate removal of monomeric malonates from resin ingredient A.
  • resin ingredients A include oligomeric and/or polymeric acetoacetate group-containing resins.
  • acetoacetate group-containing resins are acetoacetic esters as disclosed in U.S. Pat. No. 2,759,913, diacetoacetate resins as disclosed in U.S. Pat. No. 4,217,396 and acetoacetate group-containing oligomeric and polymeric resins as disclosed in U.S. Pat. No. 4,408,018.
  • acetoacetate group-containing oligomeric and polymeric resins can be obtained, for example, from polyalcohols and/or hydroxy-functional polyether, polyester, polyacrylate, vinyl and epoxy oligomers and polymers by reaction with diketene or transesterication with an alkyl acetoacetate. Such resins may also be obtained by copolymerization of an acetoacetate functional (meth)acrylic monomer with other vinyl- and/or acrylic-functional monomers.
  • the acetoacetate group-containing resins for use with the present invention are the acetoacetate group-containing oligomers and polymers containing at least 1, or 2-10, acetoacetate groups.
  • such acetoacetate group containing resins should have Mn in the range of from about 100 to about 5000 g/mol, and an acid number of about 2 or less. Resins containing both malonate and acetoacetate groups in the same molecule may also be used.
  • the above mentioned malonate group containing resins and acetoacetate group-containing resins may also be blended to optimize coatings properties as desired, often determined by the intended end application.
  • Structural changes at the acidic site of malonate or acetoacetate can alter the acidity of these materials and derivatives thereof.
  • pKa measurements in DMSO show that diethyl methylmalonate (MeCH(CO 2 Et) 2 ) has a pKa of 18.7 and diethyl ethylmalonate (EtCH(CO 2 Et) 2 ) has a pKa of 19.1 whereas diethyl malonate (CH 2 (CO 2 Et) 2 ) has a pKa of 16.4.
  • Resin ingredient A may contain such substituted moieties and therewith show changes in gel time, open time, cure time and the like.
  • resin ingredient A may be a polyester derived from a polyol, diethyl malonate and diethyl ethylmalonate.
  • Resin Ingredient B (Michael Acceptor):
  • Resin ingredients B generally can be materials with ethylenically unsaturated moieties in which the carbon-carbon double bond is activated by an electron-withdrawing group, e.g. a carbonyl group in the alpha-position.
  • resin ingredients B are described in: U.S. Pat. No. 2,759,913, U.S. Pat. No. 4,871,822, U.S. Pat. No. 4,602,061, U.S. Pat. No. 4,408,018, U.S. Pat. No. 4,217,396 and U.S. Pat. No. 8,962,725.
  • resin ingredients B include acrylates, fumarates and maleates.
  • resin ingredients B are the acrylic esters of chemicals containing 2-6 hydroxyl groups and 2-20 carbon atoms. These esters may optionally contain hydroxyl groups.
  • examples of such acrylic esters include hexanediol diacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, di-trimethylolpropane tetraacrylate.
  • acrylic esters include trimethylolpropane triacrylate, di-trimethylolproane tetraacrylate, dipentaerythritol hexaacrylate, pentaerythritol ethoxylated (EO) n tetraacrylate, trimethylolpropane ethoxylated(EO) n triacrylate and combinations thereof.
  • acrylamides may be used as a resin ingredient B.
  • resin ingredients B are polyesters based upon maleic, fumaric and/or itaconic acid (and maleic and itaconic anhydride), and chemicals with di- or polyvalent hydroxyl groups, optionally including materials with a monovalent hydroxyl and/or carboxyl functionality.
  • resin ingredients B are resins such as polyesters, polyurethanes, polyethers and/or alkyd resins each containing at least two pendant ethylenically unsaturated groups each activated by an electron-withdrawing group.
  • resins such as polyesters, polyurethanes, polyethers and/or alkyd resins each containing at least two pendant ethylenically unsaturated groups each activated by an electron-withdrawing group.
  • resins such as polyesters, polyurethanes, polyethers and/or alkyd resins each containing at least two pendant ethylenically unsaturated groups each activated by an electron-withdrawing group.
  • urethane acrylates obtained by reaction of a polyisocyanate with an hydroxyl group-containing acrylic ester, e.g., an hydroxyalkyl ester of acrylic acid or a resins prepared by esterification of a polyhydroxyl material with acrylic acid
  • polyurethane acrylate resins may be prepared by reaction of hydroxyalkyl acrylate with polyisocyanate.
  • Such polyurethane acrylate resins independently include bis(2-hydroxyethyl acrylate) trimethylhexyl dicarbamate [2-hydroxyethyl acrylate trimethylhexamethylene diisocyanate (TMDI) adduct], bis(2-hydroxyethyl acrylate) 1,3,3-trimethylcyclohexyl dicarbamate [2-hydroxyethyl acrylate 1,3,3-trimethylcyclohexyl diisocyanate/isophorone diisocyanate (IPDI) adduct], bis(2-hydroxyethyl acrylate) hexyl dicarbamate [2-hydroxyethyl acrylate hexamethylene diisocyanate (HDI) adduct], bis(2-hydroxyethyl acrylate) methylene dicyclohexyl dicarbamate [2-hydroxye
  • resin ingredients B have unsaturated acryloyl functional groups.
  • resin ingredient B is independently selected from the group consisting of polyesters, polyurethanes, polyethers and/or alkyd resins each containing at least one pendant acryloyl functional group.
  • the acid value of the activated unsaturated group-containing material is sufficiently low to not substantially impair the Michael addition reaction, for example less than about 2, and further for example less than 1 mg KOH/g.
  • the number of reactive unsaturated group ranges from 2 to 20
  • the equivalent molecular weight EQW: average molecular weight per reactive functional group
  • the number average molecular weight Mn ranges from 100 to 5000.
  • the reactive part of resin ingredients A and B can also be combined in one A-B type molecule.
  • both the methylene and/or methine features as well as the ⁇ , ⁇ -unsaturated carbonyl are present in the same molecule, be it a monomer, oligomer or polymer. Mixtures of such A-B type molecules with ingredient A and B are also useful.
  • resin ingredient A and resin ingredient B may be combined with the various embodiments of a dormant carbonate initiator ingredient C, described below, to arrive at the inventions described herein.
  • resin ingredient A is a polyester malonate composition and resin ingredient B is a polyester acrylate.
  • resin ingredient A is a polyurethane malonate composition and resin ingredient B is a polyester acrylate.
  • resin ingredient A is a polyurethane malonate composition and resin ingredient B is a polyester acrylate.
  • resin ingredient A is a polyurethane malonate composition and resin ingredient B is a polyurethane acrylate.
  • resin ingredient A is a polyester malonate having acetoacetate end groups and resin ingredient B is a polyester acrylate.
  • resin ingredient A is a polyester malonate having acetoacetate end groups and resin ingredient B is a polyurethane acrylate.
  • resin ingredient A is a polyester malonate having acetoacetate end groups and resin ingredient B is a mixture of polyester acrylate and polyurethane acrylate.
  • the number of reactive protons for resin ingredients A, and the number of ⁇ , ⁇ -unsaturated carbonyl moieties on resin ingredient B can be utilized to express desirable ratios and ranges for resin ingredients A and B.
  • the mole ratio of reactive protons of ingredient A that can be activated with subsequent carbanion formation relative to the activated unsaturated groups on ingredient B is in the range between 10/1 and 0.1/1, or between 4/1 and 0.25/1, or between 3.3/1 and 0.67/1.
  • the optimal amount strongly depends also on the number of reactive groups present on ingredients A and/or B.
  • the amount of dormant carbonate initiator used expressed as mole ratio of protons that can be abstracted to form an activated Michael donor species (e.g. the methylene group of malonate can provide two protons for reactions, while a methine group can provide one proton to form an activated species) relative to initiator, ranges from about 1000/1 to 1/1, or from 250/1 to 10/1, or from 125/1 to 20/1 but the optimal amount to be used depends also on the amount of solvent present, reactivity of various acidic protons present on resin ingredients A and/or B.
  • an activated Michael donor species e.g. the methylene group of malonate can provide two protons for reactions, while a methine group can provide one proton to form an activated species
  • Ingredient C may be a carbonate initiator having a structure as shown in Formula 1:
  • R 7 can be independently selected and is hydrogen or a linear or branched alkyl group with 1 to 22 carbon atoms; 1 to 8 carbon atoms; or 1 to 3 carbon atoms. In some such embodiments, R 7 is an unsubstituted alkyl group. In other such embodiments, R 7 is a substituted alkyl group including hydroxyl substituted alkyl groups. In some embodiments, R 7 is independently selected from a methyl group, an ethyl group, a propyl group, or a butyl group.
  • a n+ is a cationic material and n is an integer equal or greater than 1; A +n is not an acidic hydrogen.
  • a n+ can be a monovalent cation, such as an alkali metal, earth alkali metal or another monovalent metal cation, a quaternary ammonium or a phosphonium compound.
  • a n+ can also be a multivalent metal cation, or a compound bearing more than one quaternary ammonium or phosphonium groups, or can be a cationic polymer.
  • a n+ is a monovalent quaternary ammonium compound where n is 1.
  • a n+ cannot have acidic protons that can protonate the carbanion Michael donor derived from resin ingredient A.
  • a n+ of formula 1 is a monovalent quaternary ammonium compound and as shown in formula 2.
  • quaternary ammonium compounds are derived from tertiary amines and quaternized with a methyl or benzyl group.
  • tetra alkyl ammonium compounds also can be used.
  • R3, R4 and R5 are independently selected and are linear or branched alkyl chains having from 1 to 22 carbon atoms; or 1 to 8 carbon atoms.
  • R6 is selected from a methyl or a benzyl group or an alkyl group having from 2 to 6 carbon atoms.
  • Such quaternary ammonium compounds are commercially available as salts and the anion typically is chloride, bromide, methyl sulfate, or hydroxide. Quaternary ammonium compounds with methylcarbonate or ethylcarbonate anions are also available.
  • Examples of A n+ of formula 1 include dim ethyl diethylammonium, dimethyldipropylammonium, triethylmethylammonium, tripropylmethylammonium, tributylmethylammonium, tripentylmethylammonium, trihexylmethylammonium tetraethylammonium, tetrapropylammonium, tetrabutyl ammonium, tetrapentylammonium, tetrahexylammonium, benzyltrimethylammonium, benzyltriethylammonium, benzyltripropylammonium, benzyltributylammonium, benzyltripentyammonium, and benzyltrihexylammonium.
  • the crosslinkable composition of this invention preferably contains some solvent.
  • the coating formulator may choose to use an alcohol, or a combination of alcohols as solvent for a variety of reasons. Other solvents like ethylacetate or butylacetate may also be used, potentially in combination with alcohol solvents. Ethanol is a preferred solvent. Isopropyl alcohol also is a preferred solvent. Methanol is not preferred as a solvent because of health and safety risks, and is particularly not preferred and cannot be used when the crosslinkable composition is used as a coating for finger nails and toe nails. Other oxygenated, polar solvents such as ester or ketones for instance, are also suitable and can be used, potentially in combination with alcohol. Other organic solvents may also be used.
  • water may be added to the composition. further comprising water concentration selected from the group consisting of less than 10 wt. %, less than 5 wt. %; less than 1 wt. %; less than 0.1 wt. %; less than 0.01 wt. % water.
  • the crosslinkable composition of this invention may also be formulated without solvent in some cases.
  • the crosslinkable coating contains typically at least 5 wt % of solvent, preferably between 5% and 45%, more preferable between 5% and 35%, but preferable not more than 60% because of VOC restrictions.
  • the organic solvent is independently selected from the group consisting of an alcohol, ester, ether, glycol ether, ketone, aromatic and combinations thereof.
  • the alcohol is independently selected from the group consisting of methanol, ethanol, iso-propanol, butanol, iso-butanol, t-butanol and combinations thereof.
  • the crosslinkable composition useful as a coating can be formulated as a one component, a two component system or a three component system.
  • initiator ingredient C is added to a mixture of ingredients A and B just prior to use; ingredient D may optionally be added to the initiator ingredient C or the mixture of ingredients A and B.
  • ingredients A and C are mixed, and ingredient B is added prior to use ingredient; D may optionally be added to the mixture of ingredient A and initiator ingredient C or ingredient B.
  • ingredient A is added to a mixture of ingredients B and C prior to use; ingredient D may optionally be added to ingredient A or the mixture of ingredient B and initiator C.
  • pot life, working time and gel time can be adjusted by selection of the initiator structure, the amount used in the crosslinkable composition, presence of additional ammonium carbamate and to a certain extent the amount of solvent and/or water.
  • a gel time of hours, and even days can be readily achieved, and gel times of weeks are possible.
  • the dormant initiator allows for an opportunity to formulate a three component paint system.
  • ingredients A, B, C and D are mixed together, optionally with other ingredients to formulate a paint, which is then canned and stored until use.
  • a one component system can be enhanced by means of using excess carbon dioxide gas over the crosslinkable composition as to further improve pot life and gel time.
  • a paint composition formulated according to the invention may have a protective atmosphere of carbon dioxide over the paint volume; and in yet another embodiment, a container containing the crosslinkable composition may even be pressurized with carbon dioxide.
  • a one component system containing ingredients A, B and C are in a container filled to capacity with essentially no space remaining for other solids, liquid or gaseous ingredients and optionally containing ammonium carbamate.
  • additional ammonium carbamate may further enhance stability in such one component coating formulations.
  • the present invention provides for the crosslinkable coating composition wherein ingredient A, ingredient B and the carbonate initiator are contained in a container having two or more chambers, which are separated from one another.
  • ingredient A and ingredient B are contained in separate chambers to inhibit any reaction.
  • the carbonate initiator is contained in the chamber having ingredient A, and optionally containing CO 2 and/or ammonium carbamate.
  • the carbonate initiator is contained in the chamber having ingredient B, and optionally containing CO 2 and/or ammonium carbamate.
  • the present invention provides for the crosslinkable coating composition such that ingredient A and ingredient B are contained in the same chamber and the carbonate initiator is contained in a separate chamber to inhibit any reaction and said separate chamber optionally containing CO 2 and/or ammonium carbamate.
  • Malonate esters are known to be susceptible to base hydrolysis, particularly when water is present. Water potentially can lead to undesirable destruction of initiator by means of formation of malonate salt and it can degrade malonate oligomers or polymers, which in turn can lead to altered coatings performance. Transesterification reactions also can occur with malonate esters and alcohol solvent. These reactions potentially can be limiting to the formulation of an acceptable working life, as a coatings formulator seeks to increase pot life and gel time for a crosslinkable composition formulated either as a one or two component system. However, primary alcohols such as methanol and ethanol are much more active in transesterification reactions than secondary alcohols such as isopropanol, while tertiary alcohols are generally least active.
  • malonate polyester resins are derived from malonic acid, or a dialkylmalonate such as diethylmalonate, and polyols bearing secondary alcohol groups; such as 2,3-butanediol, 2,4-pentanediol and 2,5-hexanediol and the like.
  • the combination of such polyester resins and non-primary alcohol solvents, such as isopropanol or butanol, is particularly useful in achieving desirable resistance towards transesterification reactions.
  • resin ingredient A comprises malonate moieties that have been esterified with polyols bearing secondary alcohol groups and where secondary alcohol is present as solvent in the crosslinkable composition of this invention.
  • tertiary alcohols are used as solvent or solvents as used that do not participate in transesterification reactions.
  • Other resins may also be formulated using such stabilizing approaches towards resin breakdown and such approaches are well known to one skilled in the art and need not be further described here.
  • the number of reactive protons for ingredients A, and the number of ⁇ , ⁇ -unsaturated carbonyl moieties on resin ingredient B can be utilized to express desirable ratio's and ranges for ingredients A and B.
  • the mole ratio of reactive protons of ingredient A that can be activated with subsequent carbanion formation relative to the activated unsaturated groups on ingredient B is in the range between 10/1 and 0.1/1, preferably between 4/1 and 0.25/1, and more preferably 3.3/1 and 0.67/1.
  • the optimal amount strongly depends also on the number of such active functionalities present on ingredients A and/or B. Although good tack free time may be obtained over a wide ratio range, coatings properties, such as hardness for instance may show a smaller preference range.
  • the crosslinkable composition of this invention comprising ingredients A, B and C may optionally contain an additional ingredient D, which once activated, can react with the Michael acceptor.
  • Ingredient D has one or more reactive protons that are more reactive, i.e. more acidic than those of ingredient A (the pKa of ingredient D is lower than that of ingredient A).
  • the reactive protons of ingredient D are present at a fraction based on the reactive protons of ingredient A. The fraction ranges from 0 to 0.5, more preferably from 0 to 0.35, even more preferable between 0 and 0.15.
  • ingredient D examples include; succinimide, isatine, ethosuximide, phthalimide, 4-nitro-2-methylimidazole, 5,5-dimethylhydantioin, phenol, 1,2,4-triazole, ethylacetoacetate, 1,2,3-triazole, ethyl cyanoacetate, benzotriazole, acetylacetone, benzenesulfonamide, 1,3-cyclohexanedione, nitromethane, nitroethane, 2-nitropropane, diethylmalonate, 1,2,3-triazole-4,5-dicarboxylic acid ethyl ester, 1,2,4-triazole-3-carboxylic acid ethyl ester, 3-Amino-1,2,4-triazole, 1H-1,2,3-triazole-5-carboxylic acid ethyl ester, 1H-[1,2,3]triazole-4-carbaldehyde,
  • ingredient D may be incorporated into resin ingredient A.
  • substituted succinimides including hydroxyl group containing succinimide derivatives, 3-hydroxy-2,5-pyrrolidinedione and 3-(hydroxymethyl)-2,5-pyrrolidinedione, or carboxylic acid group containing succinimide derivative, 2,5-dioxo-3-pyrrolidinecarboxylic acid can undergo condensation reactions with either acid/ester groups or hydroxyl groups at the end of resin A polymer chain, where the succinimide moiety will be incorporated into the polymer backbone as end cap.
  • the amount of carbonate initiator used expressed as mole ratio of protons that can be abstracted to form an activated Michael donor species (e.g. the methylene group of malonate can provide two protons for reactions, while a methine group can provide one proton to form an activated species) relative to initiator, ranges from about 1000/1 to 1/1, more preferably from 250/1 to 10/1, even more preferable from 125/1 to 20/1 but the optimal amount to be used depends also on the amount of solvent present, reactivity of various acidic protons present on ingredient A and, if present, ingredient D, on pigments or dyes present in the system, on the number of active functionalities present on ingredients A and/or B and the like. Hence, the optimal amount needs to be determined experimentally to arrive at preferred curing characteristics.
  • the crosslinkable coating composition of this invention can comprise one or more pigments, dyes, effect pigments, phosphorescent pigments, flakes and fillers. Metal flake effect pigments may also be used in the crosslinkable coating composition of this invention and this is an advantage over UV curable nail gel coatings as the UV cure process is hindered by such pigments and these metal flakes are therefore typically not used in such long lasting nail coatings.
  • the cross-linkable coating composition of this invention can comprise other Michael addition reactive and non-reactive resins or polymers, for instance to facilitate adhesion, and/or aid in coating removal. Such removal aids may be solvent-dissolvable compounds, resins, oligomers or polymers, which are dispersed in the polymerized structure and can be easily dissolved by a solvent to facilitate solvent absorption and migration during removal of the coating.
  • the crosslinkable coating compositions of this invention may contain one or more of FD&C or D&C dyes, pigments and/or lakes. Lakes are colorants where one or more of the FD&C or D&C dyes are adsorbed on a substratum, such as alumina, blanc fixe, gloss white, clay, titanium dioxide, zinc oxide, talc, rosin, aluminum benzoate or calcium carbonate.
  • the D&C dye is independently selected from D&C Red 21, D&C Red No. 22, D&C Red No. 28, D&C Red No. 30, D&C Red No. 40, D&C Red No. 33, D&C Black No. 2, D&C Yellow No. 5, D&C Green No.
  • the inorganic pigment is selected from the group consisting of red iron oxide; yellow iron oxide; titanium dioxide; brown iron oxide; chromium oxide green; iron blue (ferric ferrocyanide blue); ultramarine blue; ultramarine violet; ultramarine pink; black iron oxide; bismuth oxychloride; aluminum powder; manganese violet; mica; bronze powder; copper powder; guanine and combinations thereof.
  • the formulation may optionally comprise resins, such as, but not limited to nitrocellulose, polyvinylbutyral, tosylamide formaldehyde and/or tosylamide expoxy resins.
  • the crosslinkable coating compositions may comprise a cellulose acetate alkylate selected from the group consisting of cellulose acetate butyrate, cellulose acetate propionate, and mixtures thereof.
  • Such resins may act as film formers, adhesion promoters, and aids to removal. These resins may also qualify as solvent-dissolvable resins.
  • the cross-linkable coating composition of this invention can comprise additives such as wetting agents, defoamers, rheological control agents, ultraviolet (UV) light stabilizers, dispersing agents, flow and leveling agents, optical brighteners, gloss additives, radical inhibitors, radical initiators, adhesions promotors, gloss additives, radical inhibitors, radical initiators, plasticizers and combinations thereof.
  • additives such as wetting agents, defoamers, rheological control agents, ultraviolet (UV) light stabilizers, dispersing agents, flow and leveling agents, optical brighteners, gloss additives, radical inhibitors, radical initiators, adhesions promotors, gloss additives, radical inhibitors, radical initiators, plasticizers and combinations thereof.
  • additives such as wetting agents, defoamers, rheological control agents, ultraviolet (UV) light stabilizers, dispersing agents, flow and leveling agents, optical brighteners, gloss additives, radical inhibitors, radical initiators, adhesions promotors, gloss additives, radical
  • the crosslinkable composition of this invention formulated as a nail polish may be packaged in a single unit package good for one time use.
  • Such single serve units contain enough coating material to decorate all finger and toe nails.
  • a single use package may contain a nail polish formulated as a one component system where all ingredients are mixed in one chamber, potentially with extra ammonium carbamate and carbon dioxide to push back on the dormant carbonate initiator in one chamber filled to capacity with essentially no space remaining for other solid, liquid or gaseous ingredients.
  • the single unit package may contain more than one chambers when the nail polish system is formulated as a multi component system, e.g.
  • Material may be dispensed multiple times provided the time between uses does not exceed the working life of the nail polish in a mixing chamber or if the working life is to be exceeded, the mixing nozzle is removed and the package capped and stored until future use when a new mixing nozzle will be used.
  • Many packaging solutions are available from packaging providers and these are well known to one skilled in the art.
  • the cross-linkable coating composition of this invention is particularly useful to decorate finger and toe nails, and can be applied as a three coat nail polish system, with a base coat applied directly on top of the base nail surface, followed by a color coat and finished with a glossy top coat.
  • the nail polish system is formulated as a two coat system, where a color coat is applied directly on the bare nail surface, and finished with a glossy top coat, but in yet another approach, and base coat is applied to the nail surface to provide adhesion for a glossy color coat.
  • Another particularly useful approach to decorate nails is where the cross-linkable coating composition of this invention is used as a single coat system, which has good adhesion to the nail surface, color and gloss all in a one coat system. It is understood that multiple coats can be applied over a same coat for any of these one, two or three coat systems.
  • Tack free time was evaluated by lightly pressing a gloved index finger periodically onto the coating. The time when visible marks in the film are no longer left by the pressed finger, was then recorded as the tack free time.
  • Gel time was taken as the amount of time it takes for a mixed, reactive resin system to gel or become so highly viscous that it has lost fluidity.
  • the various ingredients were charged into a 4 ml vial and closed with headspace volume as constant as possible to allow for comparison and the sample was kept at room temperature and tilted at regular time intervals to determine whether the material still flows. If no flow is observed during tiling, the vial was held upside down and if no further flow occurs the materials is gelled.
  • Fineness of Grind was evaluated with a Hegman Gauge according to the ASTM D1210 test method.
  • TBA OH in solution was mixed with diethyl carbonate (DEtC) in a 1:5 molar ratio respectively and stirred for 1 hour at room temperature using magnetic stirrer.
  • DEtC diethyl carbonate
  • the final clear initiator solution was analyzed by means of titration and NMR.
  • clear solutions were obtained in 1-propanol and 2-propanol.
  • a solution made using the TBA OH base in methanol resulted in white precipitate which is removed by centrifuge followed by filtration using 0.45 ⁇ syringe filter. Transesterification reaction products were observed in the NMR for all cases where the carbonate alkyl group was different from the solvent, e.g. ethanol formation was observed when DEtC was added to TBA OH in isopropanol and isopropyl groups associated with carbonates were also observed.
  • a 500 ml reactor was charged with 149.8 g of Polyethylene glycol (PEG 300), 100 g of diethyl malonate (DEM), 32.5 g of 1-octanol and 4-5 drops of titanium (IV) butoxide.
  • the reactor was equipped with a Dean-Stark apparatus, mechanical stirrer, nitrogen flow and heating equipment. The mixture was heated to about 180° C. with stirring under nitrogen atmosphere. During an eight-hour reaction time, about 70 ml of ethanol was collected. The final product was a lightly yellow colored liquid with less than 0.15 wt. % of residual DEM as determined by gas chromatography (GC). Gel permeation chromatography (GPC) analysis showed Mw/Mn (PDI) of 4191/2818 (1.49) in gram/mole and a malonate methylene equivalent molecular weight of 360 g/mole.
  • GC gas chromatography
  • FD&C and D&C dyes commonly used in nail enamel formulations were evaluated in Michael addition based crosslinkable compositions. Such colorants may also be used in other coating application industries such as automotive and industrial paints, architectural paints, plastics, adhesives and others.
  • Concentrated dispersions of dye in Malonate resin from example 2 were prepared first. Said dispersions were then used to formulate simple nail enamel color coat formulations. All nail enamel color coats were formulated to contain dye concentrations at 3% dye loading by weight. Finally, nail enamel coatings of controlled thickness are prepared to evaluate certain applications and color properties. The following is an example how a dye dispersion and color nail enamel coat is prepared and serves as general preparative example:
  • Nail enamel coatings typically are about 1.0-1.5 mil thick, sometimes up to 2 mil thick per coating layer when applied by brush on finger- and/or toe nails although even thicker coatings are applied by consumers that are less experienced.
  • the uncolored nail coating used as a reference film exhibits slight surface wrinkling without any dye present.
  • the amount of surface wrinkling is inherent in the resin/formula combination used for this evaluation. Any worsening of this surface wrinkling is considered less desirable.
  • Tributylmethylammonium chloride (TBMA Cl) (10 g) was dissolved in ethanol (8.7 g) and mixed with a 20 wt. % solution of potassium ethoxide in ethanol (17.8 g) in 1:1 molar ratio. Anhydrous ethanol was used. The mixture was allowed to mix under agitation for 30 min, and was then centrifuged at 5000 rpm for 15 min to remove potassium chloride precipitate. The concentration of tributylmethylammonium ethoxide was determined potentiometrically by titrating it against 0.1 N HCl solution. Dry carbon dioxide gas was passed through the tributylmethylammonium ethoxide solution with stirring for 1 hour as to obtain the desired initiator.
  • the tributylmethylammonium ethylcarbonate (TBMA EC) solution in ethanol is light yellow in color and is characterized by means of acid and base titrations (potentiometric and with indicator) and NMR.
  • TBMA IPC tributylmethylammonium isopropylcarbonate
  • a 3 L reactor was charged with 700.0 g of diethyl malonate, 619.8 g of 1,6-hexanediol (HDO) and 227.5 g of ethyl acetoacetate (EAA).
  • the reactor was equipped with a Dean-Stark apparatus, overhead mechanical stirrer, nitrogen flow and heating equipment. The mixture was heated to about 120° C. with stirring under nitrogen and then 0.62 g of phosphoric acid was added. Temperature was then increased to 145° C. and ethanol started to distill at this temperature. Temperature was then stepwise increased to 180° C. and continued until ethanol distillation stopped. In total, 588 ml of ethanol was collected. The reaction was then cooled to 120° C. and vacuum was applied for 4 hours while driving molecular weight. The final product is clear with less than 0.1% of residual monomer.
  • GPC analysis showed Mw/Mn (PD) of 4143/1792 (2.31) in g/mole.
  • a 5 L reactor was charged with 2075.0 g (8.12 moles) of diethyl malonate (DEM), 1182.9 g (9.74 moles) of 1,3-propanediol (PD) and 674.4 g (3.25 moles) of ethyl acetoacetate (EAA).
  • DEM diethyl malonate
  • PD 1,3-propanediol
  • EAA ethyl acetoacetate
  • the reactor was equipped with a Dean-Stark apparatus, overhead mechanical stirrer, nitrogen flow and heating equipment. The mixture was heated to about 120° C. with stirring under nitrogen and then 1.57 g of phosphoric acid was added. Temperature was then increased to 145° C. and ethanol started to distill at this temperature. Temperature was then stepwise increased to 180° C. and continued until ethanol distillation stopped. In total, 1396 g of ethanol was collected.
  • the TBMA EC solution of Example 4 was tested as an initiator catalyst.
  • 2.0 g of the malonate resin II of Example 5 was mixed with 2.68 g of DTMPTA, 0.4 g of BA and 0.80 g of the TBMA EC solution was added.
  • the complete formulation was mixed well prior to observing gel time and applying a 3 mil test film on a polycarbonate substrate to test coating curing behavior.
  • the ambient relative humidity was low at 15%, while the temperature was 21° C.
  • the absolute humidity was 2.8 [g/m 3 ].
  • a similar test was carried out with the TBMA IPC catalyst using 0.90 g of the TBMA IPC solution to keep molar amounts of catalyst constant versus the resin. Data in Table 3 shows that a notably shorter gel time for the isopropanol based catalyst was observed in comparison to the ethanol based catalyst.
  • DMADMC dimethylammonium dimethylcarbamate
  • a basic nail color formulation was prepared and evaluated per the general procedures as outlined in example 3, however, malonate resin II of example 5 was used to prepare a D&C Red 7 dye dispersion.
  • the final overall formulation contained 0.167 g D&C Red 7 dye, 0.948 g resin II of example 5, 0.632 g resin III of example 6, 0.837 g ethanol and 2.449 g DTMPTA. 1.1604 g of TBMA EC catalyst solution of example 4 was used to cure the formulation.
  • Another such formulation was prepared except that 4 wt % water (relative to the total weight of the formulation) was added to this second formulation. All formulations were mixed well and then a 3 mil test film was applied on a polycarbonate substrate to test the curing behavior and coating final color. The relative humidity and temperature was kept constant as the films cured and the absolute humidity was 9.4 [g/m 3 ]. Data in Table 5 shows that significant and undesirable color change occurs as water is added to the formulation.
  • D&C Red No. 17 and D&C Red No. 36 are incompatible with the nail polish chemistry as significant color changes are observed during the curing process at both humidity levels.
  • D&C Red No. 7 and D&C Red No. 33 show observable and undesirable color changes during cure at higher humidity levels.
  • D&C Red No. 6 does show a measurable color difference for the cured films but the color change during cure is less apparent.
  • the other dyes show minor color differences when the cured films are compared but no visible color change during the cure is observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Paints Or Removers (AREA)
  • Cosmetics (AREA)
US16/007,177 2017-06-13 2018-06-13 Nail color coating system Abandoned US20180353400A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/007,177 US20180353400A1 (en) 2017-06-13 2018-06-13 Nail color coating system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762518791P 2017-06-13 2017-06-13
US16/007,177 US20180353400A1 (en) 2017-06-13 2018-06-13 Nail color coating system

Publications (1)

Publication Number Publication Date
US20180353400A1 true US20180353400A1 (en) 2018-12-13

Family

ID=64562140

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/007,177 Abandoned US20180353400A1 (en) 2017-06-13 2018-06-13 Nail color coating system
US16/007,225 Active US10894886B2 (en) 2017-06-13 2018-06-13 Coating system
US17/128,322 Abandoned US20210108088A1 (en) 2017-06-13 2020-12-21 Coating system

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/007,225 Active US10894886B2 (en) 2017-06-13 2018-06-13 Coating system
US17/128,322 Abandoned US20210108088A1 (en) 2017-06-13 2020-12-21 Coating system

Country Status (9)

Country Link
US (3) US20180353400A1 (es)
EP (1) EP3638417B1 (es)
JP (1) JP2020523452A (es)
KR (1) KR20200018582A (es)
CN (1) CN110958913B (es)
BR (1) BR112019024811A2 (es)
CA (1) CA3065564A1 (es)
MX (1) MX2019014529A (es)
WO (2) WO2018231922A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200172743A1 (en) * 2017-08-16 2020-06-04 Covestro Deutschland Ag Acid indicator system
WO2020224523A1 (zh) * 2019-05-07 2020-11-12 广东华润涂料有限公司 涂料组合物以及由其制成的木制品
CN113181965A (zh) * 2021-04-23 2021-07-30 山西师范大学 一种纳米纤维素负载氯氧铋复合光催化剂的制备方法及其应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3712190A1 (en) 2019-03-18 2020-09-23 ALLNEX AUSTRIA GmbH Binder for an aqueous coating composition
EP3689986A1 (en) 2019-02-01 2020-08-05 ALLNEX AUSTRIA GmbH Binder for aqueous coating compositions
JP7486501B2 (ja) 2019-02-01 2024-05-17 オールネックス オーストリア ゲーエムベーハー 水性コーティング組成物のためのバインダー
EP3702423A1 (en) * 2019-02-26 2020-09-02 Allnex Netherlands B.V. A coating system for rma crosslinkable coating compositions
CN110105799B (zh) 2019-05-07 2021-10-01 广东华润涂料有限公司 木器用涂料组合物以及由其制成的木制品
KR20200133288A (ko) 2019-05-16 2020-11-27 삼성디스플레이 주식회사 고분자 수지, 이를 포함하는 윈도우 모듈, 및 이를 포함하는 표시 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4602061A (en) * 1984-03-29 1986-07-22 Akzo N.V. Liquid, 2-component coating composition curable at ambient temperature comprising a malonate compound and an unsaturated carbonyl compound, and the Michael addition product thereof
US20130053505A1 (en) * 2010-04-07 2013-02-28 Nuplex Resins B.V. Crosslinkable composition crosslinkable with a latent base catalyst
US20140341824A1 (en) * 2013-05-17 2014-11-20 Mycone Dental Supply Co., Inc. Nail polish composition and method of making a nail polish

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2759913A (en) 1952-05-20 1956-08-21 Hercules Powder Co Ltd Copolymers of compounds containing activated ethylene double bonds with active hydrogen compounds
US3981984A (en) * 1968-04-01 1976-09-21 Colorcon Incorporated Color film coating of tablets and the like
US4217396A (en) 1979-05-10 1980-08-12 Armstrong Cork Company Acrylate-acetoacetate polymers useful as protective agents for floor coverings
US4408018A (en) 1982-10-29 1983-10-04 Rohm And Haas Company Acetoacetate functionalized polymers and monomers useful for crosslinking formulations
US4897435A (en) * 1984-02-17 1990-01-30 American Cyanamid Company Water based hydroxyalkyl carbamate-containing resins and method of making the same
CA1262594A (en) * 1984-02-17 1989-10-31 Girish Girdhar Parekh Hydroxyalkylcarbamate-containing self-cross-linking polymers
ATE46178T1 (de) 1984-04-04 1989-09-15 Hoechst Ag Umsetzungsprodukt von olefinisch ungesaettigten verbindungen mit wasserstoffaktiven verbindungen, verfahren zu dessen herstellung und darauf basierende 2-komponentenlacke.
DE3523206A1 (de) * 1985-06-28 1987-01-02 Bayer Ag Verfahren zur herstellung von poly(diorganosiloxanen) mit alkoxyendgruppen
US5945489A (en) * 1997-09-19 1999-08-31 Ashland, Inc. Liquid oligomers containing unsaturation
CA2249705C (en) * 1997-11-12 2006-09-12 Basf Corporation High solids thermosetting compositions with dual cure mechanism
US5945499A (en) * 1997-11-12 1999-08-31 Basf Corporation High solids thermosetting compositions with dual cure mechanism
US6624241B2 (en) * 1999-05-21 2003-09-23 Basf Corporation Waterborne coating compositions containing materials dispersed with water-soluble carbamate materials
JP2004511537A (ja) * 2000-10-20 2004-04-15 ユ セ ベ ソシエテ アノニム 化合物、組成物及びプロセス
JP5073155B2 (ja) 2002-04-19 2012-11-14 チバ ホールディング インコーポレーテッド プラズマにより誘導される被覆の硬化
US20040171721A1 (en) * 2002-12-16 2004-09-02 Esemplare Pascal E. Stabilizing polyalkylene carbonate resins
US20070066777A1 (en) 2004-09-03 2007-03-22 Bzowej Eugene I Methods for producing crosslinkable oligomers
DE102005006030A1 (de) * 2005-02-09 2006-08-10 Basf Ag Hyperverzweigte Polymere als Demulgatoren zum Spalten von Rohölemulsionen
KR100853170B1 (ko) * 2006-04-29 2008-08-20 주식회사 잉크테크 고광택 알루미늄휠의 제조방법
GB0822674D0 (en) 2008-12-12 2009-01-21 Nuplex Resins Bv A crosslinkable polymer binder
WO2011115338A1 (ko) * 2010-03-16 2011-09-22 한양대학교 산학협력단 중합된 메조겐을 함유하는 배향 조절막을 구비하는 액정 표시 장치 및 그 제조 방법
WO2011121085A1 (en) 2010-03-31 2011-10-06 Nuplex Resins B.V. Waterborne hybrid polymer dispersion
JP5401395B2 (ja) 2010-04-22 2014-01-29 株式会社ニフコ フィルター装置
EP2436710A1 (en) * 2010-09-30 2012-04-04 Cytec Technology Corp. Mixtures of crosslinking agents
KR102131463B1 (ko) 2011-10-07 2020-07-08 알넥스 네덜란드 비. 브이. 가교성 조성물
CN104039869B (zh) * 2011-10-07 2016-04-27 树脂核动力工业有限公司 含潜在碱催化剂的可交联组合物及潜在的碱催化剂组合物
KR102068850B1 (ko) 2011-10-07 2020-01-21 알넥스 네덜란드 비. 브이. 진정 마이클 첨가(rma) 반응에 의해 가교될 수 있는 가교성 조성물
EP2457846A3 (de) * 2012-02-16 2012-06-27 Bayer MaterialScience AG Abgabemodul für kosmetische Zusammensetzungen
WO2013177546A2 (en) * 2012-05-24 2013-11-28 Novomer, Inc. Polycarbonate polyol compositions and methods
EP2984133B1 (en) 2013-04-08 2018-03-28 Allnex Netherlands B.V. Composition crosslinkable by real michael addition (rma) reaction
AU2015207497B2 (en) 2014-01-17 2018-10-18 Allnex Netherlands B.V. Waterborne coating composition with improved open time
US20150359724A1 (en) * 2014-06-16 2015-12-17 Elementis Specialties, Inc. Acrylate Gel Nail Coating Compositions
EP3166719B1 (en) * 2014-07-11 2022-11-09 Elementis Specialties, Inc. Organoclay compositions having quaternary ammonium ion having one or more branched alkyl substituents
AU2016247589B2 (en) 2015-04-17 2020-10-29 Allnex Netherlands B.V. Floor coating compositions
JP2018514614A (ja) 2015-04-17 2018-06-07 オールネックス・ネザーランズ・ビー.ブイ.Allnex Netherlands B.V. 真マイケル付加架橋性組成物のための接着促進剤
RU2721703C2 (ru) 2015-04-17 2020-05-21 Аллнекс Незерландс Б.В. Rma-сшиваемые композиции и rma-сшиваемые смолы для получения покрытий, легко поддающихся очистке
WO2016166334A1 (en) * 2015-04-17 2016-10-20 Nuplex Resins B.V. Process for the manufacture of a crosslinkable composition
WO2018005077A1 (en) 2016-06-30 2018-01-04 Elementis Specialties, Inc. Crosslinkable coating compositions formulated with dormant carbamate initiator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4602061A (en) * 1984-03-29 1986-07-22 Akzo N.V. Liquid, 2-component coating composition curable at ambient temperature comprising a malonate compound and an unsaturated carbonyl compound, and the Michael addition product thereof
US20130053505A1 (en) * 2010-04-07 2013-02-28 Nuplex Resins B.V. Crosslinkable composition crosslinkable with a latent base catalyst
US20140341824A1 (en) * 2013-05-17 2014-11-20 Mycone Dental Supply Co., Inc. Nail polish composition and method of making a nail polish

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
2457846_abstract *
Unknown author, title: Red 21 Lake, Cosmetic info, downloaded from https://cosmeticinfo/organic on 06/12/19 (Year: 2019) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200172743A1 (en) * 2017-08-16 2020-06-04 Covestro Deutschland Ag Acid indicator system
WO2020224523A1 (zh) * 2019-05-07 2020-11-12 广东华润涂料有限公司 涂料组合物以及由其制成的木制品
CN113181965A (zh) * 2021-04-23 2021-07-30 山西师范大学 一种纳米纤维素负载氯氧铋复合光催化剂的制备方法及其应用

Also Published As

Publication number Publication date
BR112019024811A2 (pt) 2020-06-09
EP3638417A1 (en) 2020-04-22
MX2019014529A (es) 2020-08-31
US10894886B2 (en) 2021-01-19
EP3638417A4 (en) 2021-02-24
US20180355185A1 (en) 2018-12-13
US20210108088A1 (en) 2021-04-15
CN110958913A (zh) 2020-04-03
WO2018231922A1 (en) 2018-12-20
CN110958913B (zh) 2023-05-05
EP3638417B1 (en) 2022-10-12
JP2020523452A (ja) 2020-08-06
KR20200018582A (ko) 2020-02-19
WO2018231920A1 (en) 2018-12-20
CA3065564A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
US11318082B2 (en) Crosslinkable coating compositions formulated with dormant carbamate initiator
US20180353400A1 (en) Nail color coating system
EP3283587B1 (en) Rma crosslinkable compositions and rma crosslinkable resins for easy to clean coatings
EP2560948B2 (en) Radiation curable amino(meth)acrylates
US20180353421A1 (en) Clear coat formulations for use over nail polish
CN112126330A (zh) 一种水性白漆
WO2022169729A1 (en) Crosslinkable coating compositions
JP2018028019A (ja) ポリイソシアネート組成物、水性塗料組成物及びその硬化塗膜

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: ELEMENTIS SPECIALTIES, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IJDO, WOUTER;CHEN, YANHUI;DESHMUKH, PRASHANT;AND OTHERS;SIGNING DATES FROM 20170707 TO 20170713;REEL/FRAME:049834/0828

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION