US20180231245A1 - Burner head for low calorific fuels - Google Patents
Burner head for low calorific fuels Download PDFInfo
- Publication number
- US20180231245A1 US20180231245A1 US15/890,369 US201815890369A US2018231245A1 US 20180231245 A1 US20180231245 A1 US 20180231245A1 US 201815890369 A US201815890369 A US 201815890369A US 2018231245 A1 US2018231245 A1 US 2018231245A1
- Authority
- US
- United States
- Prior art keywords
- burner
- whirler
- fuel
- supply pipe
- burner head
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 58
- 238000002485 combustion reaction Methods 0.000 description 18
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/12—Radiant burners
- F23D14/14—Radiant burners using screens or perforated plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/20—Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
- F23D14/22—Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
- F23D14/24—Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other at least one of the fluids being submitted to a swirling motion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2900/00—Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
- F23D2900/14—Special features of gas burners
- F23D2900/14002—Special features of gas burners of premix or non premix types, specially adapted for the combustion of low heating value [LHV] gas
Definitions
- the invention relates to combustion of low calorific fuels from alternative sources and also from standardised sources
- Burners for combustion of low calorific fuels has to be designed to be able to cope with variable parameters of fuel.
- Composition of fuel varies according to the process from which it comes and how it was obtained.
- various incombustible components can occur, most often these are carbon dioxide especially by biofuels or nitrogen, which gets into fuel generally during fuelification of solids by the air.
- the instable concentration of inert substances also the composition of combustible components can fluctuate, mostly methane, hydrogen, carbon monoxide.
- the properties of methane, hydrogen, and carbon monoxide are significantly different. They have different weight, calorific value, and also combustion velocity.
- the combustion velocity is absolutely crucial and has to be considered by designing of the burner.
- the construction has to be designed so, that it is possible to satisfy various operating conditions.
- natural fuel is often used, which has significantly higher calorific value than low calorific fuels.
- the fuel is supplied by central tube, to which further technical elements are attached.
- These may be various types of whirlers or parts which ensure mixing of individual components, it means fuel and combustion air.
- the solutions according to prior art utilise the in steps supply of the fuel or air and solve the distribution and mixing of individual flows in different ways.
- the burner described in the document US2016238241 (A1) is intended to combustion of lean fuel, it means low calorific fuel (for example synthetic fuel resulting from the fuelification of biomass).
- the construction of the burner utilizes two-stage air supply to achieve enlargement of the flame and a favourable distribution of temperature field.
- the burner is provided with central fuel supply, into which quality fuel through four openings can be mixed in order to increase calorific value or for support of the stability. With the expanding burner on the output, the combustion air is gradually blended into the flame.
- the device described in US2008299506 (A1) is a metallurgical burner primarily designed for burning of low calorific fuels.
- the burner has a central pipe for air supply, around which a fuel supply pipe is arranged. From outer direction secondary air is fed, so that all the fuel is burnt out.
- a whirler creating turbulant flow is placed. It is possible to modify the whirler according to used fuel, especially according to its calorific value.
- the document WO2007012755 (A1) describes symmetric burner. Along the central axis individual flows of substances are gradually fed. Through the central tube fuel is supplied, from which a part is separated, and before burning is mixed with the air in a special chamber. A perforated whirler which has conical shape is placed at the end of the central tube, in order to put the fuel into direction. Premixed mixture flows from the chamber through nozzles directly to burning flame. Secondary air is fed from the outside end using whirling element is directed to achieve its rotation and mixing,
- the document EP 1 436 546 discloses a burner which utilises the co-stream arrangement of the fuel and the air.
- the feature of the burner is a conical extension ending with circular array of nozzles which are directed to the central surface.
- Several types of assembly geometry with different mixing ratios and different influence on turbulent flow are proposed.
- the aim of the invention is to present a burner assembly for low calorific fuels which would ensure sufficient stability of the flame and which would also eliminate undesired critical conditions arising during its operation when disruption of the flame or fire penetration into the burner body occurrs.
- the burner head for low calorific fuels which is characterized by the fact that in the front face of the central burner tube, a support tube is fixed, is fixed, on which a burner head ( 4 ) at the burner's output is mounted, the burner head is provided with nozzles arranged in a circle near to the inner perimeter of the burner head and forming the primary stage of the burner, and further the burner head is provided with angled grooves on the outer perimeter, which form the secondary stage of the burner, and further the whirler with its inner perimeter is arranged onto central burner tube at its outlet end and the whirler's surface has conical geometry extending outwardly and the whirler's surface openings arranged in a circle are provided.
- openings on the whirler arranged in three concentric circular rows.
- the fuel supply pipe provided on the wall with weld-on sleeve for connection of the pressure gauge or other measuring device.
- FIG. 1 is a longitudinal cross-section of built-in burner assembly according to the invention with arrangement of individual parts
- FIG. 2 represents side view of the burner according to the invention in the direction of media flow
- FIG. 3 represents a detail of the burner head in a perspective view
- FIG. 4 represents a detail of the whirler of combustion air according to the invention in a perspective view.
- FIG. 1 a longitudinal section of built-in burner assembly can be seen, which consists of a fuel supply pipe 8 provided with connecting flange 10 , through which the fuel F enters in the direction of the arrow. Further is the fuel supply pipe 8 attached to a central burner tube 5 which has a front face 6 on the side of the supply pipe 8 , which has an opening in the middle to allow insertion of a support tube 7 .
- the whole burner is not displayed, only its built-in assembly. Around it there are situated other standard parts of the burner, which are known to skilled persons.
- To the central burner tube 5 at its output end is, via weld-on reduction 3 , with its inner perimeter 15 a whirler 2 attached.
- the central burner tube 5 and the weld-on reduction 3 which terminates the central burner tube 5 , form together with the support tube 7 an assembly, which defines the flow of combustion fuel F.
- the fuel F flows in the direction of the arrow into space, which has a shape of a hollow cylinder, formed by the central burner tube 5 and the support tube 7 .
- This cylindrical space has such a specific length, so that the previous turbulent flow is maximally stabilised.
- the stabilisation contributes to the uniform distribution of the fuel inside the cylindrical space and the fuel is then uniformly burnt out.
- the support tube 7 can be used for addition of an atomiser (not shown) for liquid fuel. At the free end of the support tube 7 , screws 12 for arctation of such atomiser are situated.
- a groove on the burner output is milled into which a burner head 4 is inserted and welded-on, through which the fuel is distributed into combustion space.
- a weld-on sleeve 11 is located for connection of pressure gauge or other measuring device, which can be seen in FIG. 2 .
- a shutter is possible to insert in order to regulate pressure on the desired level.
- FIG. 3 the burner head 4 in perspective view is shown.
- the fuel F flowing through the burner head 4 via nozzles 13 which are spaced in a circle at the inner perimeter forming the primary stage of the burner 1 , is distributed uniformly along the central axis of the burner 1 .
- This flow is important especially for the flame core stabilisation.
- Burner head 4 is at its outer perimeter further provided with angled grooves 14 , which change the momentum direction of flowing fuel and form the secondary stage of the burner 1 .
- the fuel gets after passing through the angled grooves 14 into tangential rotation along the central axis of the burner 1 . Rotational flow causes better mixing of the fuel with the combustion air A, which arrives to the end of central burner tube 5 and simultaneously the flame is partially attached to the burner head 4 .
- whirler 2 in perspective view is shown, its wall 16 has conical geometry extending outwardly from the burner, which has a positive effect on the flow.
- the circle with openings may be only one or there can be another number of concentric circles.
- the angle of inclination of the wall 16 of the whirler 2 has an important role, since due to this inclination it is possible to direct partially the airflow, to direct it towards the centre of the flame, and causing a complete combustion.
- the burner head 4 has defined number of nozzles 13 arranged in a circle, whereas the number and size of nozzles 13 is determined based on the requirements for maximum performance, according to which the dimensions are determined so, that the requested amount of fuel flows through the primary stage created in this way.
- the number, width, and depth of angled grooves 14 are determined as to allow the remaining fuel to flow through these grooves at maximum power and the groove 14 inclination angle is determined relative to the plane of the burner head 4 in such a way, to ensure optimal turbulent flow in a tangential direction.
- the burner is intended for combustion of different types of low calorific fuels, also from other alternative devices, such as fuelifiers.
- Built-in burner assembly is applicable in plants, where waste fuels occurs, whose energy is let unused in burners with flaring and flue gases are emitted without use into the atmosphere.
- Another area where it is possible to use the burner are biogas plants and heat sources connected thereto.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Gas Burners (AREA)
- Combustion Of Fluid Fuel (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ2017-83A CZ201783A3 (cs) | 2017-02-13 | 2017-02-13 | Hořáková hlava na nízkovýhřevná paliva |
CZ2017-83 | 2017-02-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180231245A1 true US20180231245A1 (en) | 2018-08-16 |
Family
ID=61756357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/890,369 Abandoned US20180231245A1 (en) | 2017-02-13 | 2018-02-07 | Burner head for low calorific fuels |
Country Status (3)
Country | Link |
---|---|
US (1) | US20180231245A1 (cs) |
CZ (1) | CZ201783A3 (cs) |
EA (1) | EA033313B1 (cs) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113587089A (zh) * | 2021-07-16 | 2021-11-02 | 浙江斯特利热能设备制造有限公司 | 空气分级燃烧器 |
CN116464980A (zh) * | 2023-03-17 | 2023-07-21 | 安徽昌信生物质能源有限公司 | 生物质热解气与天然气组合燃烧器及其控制方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110513688B (zh) * | 2019-09-18 | 2024-07-16 | 安德森热能科技(苏州)有限责任公司 | 一种低氮空气加热旋流燃烧器 |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US536945A (en) * | 1895-04-02 | Gas and air mixer | ||
US1006324A (en) * | 1910-03-12 | 1911-10-17 | Harry C Werner | Gas-burner. |
US1497591A (en) * | 1923-04-03 | 1924-06-10 | Charles M Robert | Gas burner |
US1781236A (en) * | 1928-04-23 | 1930-11-11 | Lilge Friedrich | Whirl burner |
US2353865A (en) * | 1940-11-28 | 1944-07-18 | Leslie R Armstrong | Gas burner |
US2840152A (en) * | 1956-02-07 | 1958-06-24 | Zink Co John | Gas burner heads |
US3339617A (en) * | 1965-03-01 | 1967-09-05 | Carrier Corp | Burner |
US3387784A (en) * | 1966-10-27 | 1968-06-11 | Chemetron Corp | Burner for fluid fuels |
US3592575A (en) * | 1969-07-25 | 1971-07-13 | Forney International | Burner nozzle tip |
US3615053A (en) * | 1970-06-16 | 1971-10-26 | Bethlehem Steel Corp | Gas pressure regulated atomizer tip for gas/oil burner |
US3685740A (en) * | 1969-10-29 | 1972-08-22 | Air Reduction | Rocket burner with flame pattern control |
US3693875A (en) * | 1971-11-29 | 1972-09-26 | Thomas L Shepard | Rocket burner with flame pattern control |
US3700173A (en) * | 1970-12-30 | 1972-10-24 | Combustion Eng | Diffuser |
US3733169A (en) * | 1972-02-22 | 1973-05-15 | D Lefebvre | Flame retention head assembly |
US3897198A (en) * | 1972-04-17 | 1975-07-29 | Radiation Ltd | Gaseous fuel burners |
US4033714A (en) * | 1972-04-17 | 1977-07-05 | Radiation Limited | Gaseous fuel burners |
US4137905A (en) * | 1972-04-17 | 1979-02-06 | T. I. Domestic Appliances Limited | Gaseous fuel burners |
JPS58117911A (ja) * | 1981-12-31 | 1983-07-13 | Sanree Reinetsu Kk | ガスバ−ナ |
JPS58158412A (ja) * | 1982-03-15 | 1983-09-20 | Olympia Kogyo Kk | ガスバ−ナ |
US4963089A (en) * | 1989-08-24 | 1990-10-16 | Eclipse, Inc. | High turndown burner with integral pilot |
US5049066A (en) * | 1989-10-25 | 1991-09-17 | Tokyo Gas Company Limited | Burner for reducing NOx emissions |
US5562438A (en) * | 1995-06-22 | 1996-10-08 | Burnham Properties Corporation | Flue gas recirculation burner providing low Nox emissions |
US20120315586A1 (en) * | 2011-06-09 | 2012-12-13 | Gas Technology Institute | METHOD AND SYSTEM FOR LOW-NOx DUAL-FUEL COMBUSTION OF LIQUID AND/OR GASEOUS FUELS |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU723299A1 (ru) * | 1978-08-10 | 1980-03-25 | Научно-производственное объединение по технологии машиностроения ЦНИИТМАШ | Горелка |
GB9013368D0 (en) * | 1990-06-15 | 1990-08-08 | Lanemark Ltd | Improvements in or relating to burners |
DE4329971C2 (de) * | 1993-09-04 | 1998-11-26 | Johannes W Graat | Brennereinrichtung für einen gasartigen Brennstoff |
GB9709205D0 (en) * | 1997-05-07 | 1997-06-25 | Boc Group Plc | Oxy/oil swirl burner |
UA13814U (en) * | 2005-10-31 | 2006-04-17 | Novokramatorsk Mach Building | Appliance for fuel burning |
RU2391604C1 (ru) * | 2009-04-07 | 2010-06-10 | Леонид Анатольевич Ярыгин | Горелочное устройство |
MX370842B (es) * | 2013-06-17 | 2020-01-08 | Schlumberger Technology Bv | Montaje de quemador para encender gases de bajo contenido calorifico. |
FR3011911B1 (fr) * | 2013-10-14 | 2015-11-20 | Cogebio | Bruleur de gaz pauvre |
US10197270B2 (en) * | 2014-03-11 | 2019-02-05 | Mitsubishi Hitachi Power Systems, Ltd. | Combustion burner for boiler |
-
2017
- 2017-02-13 CZ CZ2017-83A patent/CZ201783A3/cs unknown
-
2018
- 2018-01-31 EA EA201890197A patent/EA033313B1/ru not_active IP Right Cessation
- 2018-02-07 US US15/890,369 patent/US20180231245A1/en not_active Abandoned
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US536945A (en) * | 1895-04-02 | Gas and air mixer | ||
US1006324A (en) * | 1910-03-12 | 1911-10-17 | Harry C Werner | Gas-burner. |
US1497591A (en) * | 1923-04-03 | 1924-06-10 | Charles M Robert | Gas burner |
US1781236A (en) * | 1928-04-23 | 1930-11-11 | Lilge Friedrich | Whirl burner |
US2353865A (en) * | 1940-11-28 | 1944-07-18 | Leslie R Armstrong | Gas burner |
US2840152A (en) * | 1956-02-07 | 1958-06-24 | Zink Co John | Gas burner heads |
US3339617A (en) * | 1965-03-01 | 1967-09-05 | Carrier Corp | Burner |
US3387784A (en) * | 1966-10-27 | 1968-06-11 | Chemetron Corp | Burner for fluid fuels |
US3592575A (en) * | 1969-07-25 | 1971-07-13 | Forney International | Burner nozzle tip |
US3685740A (en) * | 1969-10-29 | 1972-08-22 | Air Reduction | Rocket burner with flame pattern control |
US3615053A (en) * | 1970-06-16 | 1971-10-26 | Bethlehem Steel Corp | Gas pressure regulated atomizer tip for gas/oil burner |
US3700173A (en) * | 1970-12-30 | 1972-10-24 | Combustion Eng | Diffuser |
US3693875A (en) * | 1971-11-29 | 1972-09-26 | Thomas L Shepard | Rocket burner with flame pattern control |
US3733169A (en) * | 1972-02-22 | 1973-05-15 | D Lefebvre | Flame retention head assembly |
US4137905A (en) * | 1972-04-17 | 1979-02-06 | T. I. Domestic Appliances Limited | Gaseous fuel burners |
US4033714A (en) * | 1972-04-17 | 1977-07-05 | Radiation Limited | Gaseous fuel burners |
US3897198A (en) * | 1972-04-17 | 1975-07-29 | Radiation Ltd | Gaseous fuel burners |
JPS58117911A (ja) * | 1981-12-31 | 1983-07-13 | Sanree Reinetsu Kk | ガスバ−ナ |
JPS58158412A (ja) * | 1982-03-15 | 1983-09-20 | Olympia Kogyo Kk | ガスバ−ナ |
US4963089A (en) * | 1989-08-24 | 1990-10-16 | Eclipse, Inc. | High turndown burner with integral pilot |
US5049066A (en) * | 1989-10-25 | 1991-09-17 | Tokyo Gas Company Limited | Burner for reducing NOx emissions |
US5562438A (en) * | 1995-06-22 | 1996-10-08 | Burnham Properties Corporation | Flue gas recirculation burner providing low Nox emissions |
US20120315586A1 (en) * | 2011-06-09 | 2012-12-13 | Gas Technology Institute | METHOD AND SYSTEM FOR LOW-NOx DUAL-FUEL COMBUSTION OF LIQUID AND/OR GASEOUS FUELS |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113587089A (zh) * | 2021-07-16 | 2021-11-02 | 浙江斯特利热能设备制造有限公司 | 空气分级燃烧器 |
CN116464980A (zh) * | 2023-03-17 | 2023-07-21 | 安徽昌信生物质能源有限公司 | 生物质热解气与天然气组合燃烧器及其控制方法 |
Also Published As
Publication number | Publication date |
---|---|
EA201890197A2 (ru) | 2018-08-31 |
CZ307221B6 (cs) | 2018-04-04 |
EA201890197A3 (ru) | 2018-11-30 |
CZ201783A3 (cs) | 2018-04-04 |
EA033313B1 (ru) | 2019-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9127836B2 (en) | Combustion burner and boiler including the same | |
US6752620B2 (en) | Large scale vortex devices for improved burner operation | |
RU2503885C2 (ru) | Наконечник сопла для печи, работающей на пылевидном твердом топливе (варианты) | |
CA2667047C (en) | Gas turbine combustor | |
US8814560B2 (en) | Device and method for stabilizing the pressure and the flow of a gaseous mixture supplied to a surface-combustion cylindrical burner | |
WO2008138971A2 (en) | Cool flame combustion | |
CN104121601A (zh) | 用于燃气涡轮中的筒环形燃烧器布置的筒形燃烧器 | |
US10378760B2 (en) | Lean gas burner | |
US20180231245A1 (en) | Burner head for low calorific fuels | |
KR100495505B1 (ko) | 다단제어를 구현하는 가스연소 버너 | |
EP3364105B1 (en) | Burner for low calorific fuels | |
US7052273B2 (en) | Premixed fuel burner assembly | |
JP2006337016A (ja) | 炉燃焼システム及び燃料燃焼方法 | |
JP5786516B2 (ja) | バーナ | |
CN2296451Y (zh) | 混合式煤粉燃烧器 | |
EP3078910A1 (en) | Gas burner with staged combustion | |
CN218544418U (zh) | 一种燃烧器中心稳焰装置及燃烧器 | |
RU2391604C1 (ru) | Горелочное устройство | |
RU2230257C2 (ru) | Устройство для сжигания газообразного топлива | |
JP2010210100A (ja) | 管状火炎バーナ | |
WO2020261286A1 (en) | A domestic cooking burner for piped natural gas | |
JPH03199805A (ja) | 低NOxボイラおよびボイラ用バーナ | |
FI127741B (fi) | Bioöljypoltin | |
US20240200771A1 (en) | HIGH PERFORMANCE LOW NOx BURNER AND SYSTEM | |
JP2009115388A (ja) | 液体燃料用バーナおよび舶用ボイラ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: VYSOKE UCENI TECHNICKE V BRNE, CZECH REPUBLIC Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SKRYJA, PAVEL;HUDAK, IGOR;BELOHRADSKY, PETR;AND OTHERS;REEL/FRAME:044849/0365 Effective date: 20180126 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |