US20180204883A1 - Touch display substrate, touch display apparatus having the same, pixel arrangement, and fabricating method thereof - Google Patents

Touch display substrate, touch display apparatus having the same, pixel arrangement, and fabricating method thereof Download PDF

Info

Publication number
US20180204883A1
US20180204883A1 US15/533,127 US201615533127A US2018204883A1 US 20180204883 A1 US20180204883 A1 US 20180204883A1 US 201615533127 A US201615533127 A US 201615533127A US 2018204883 A1 US2018204883 A1 US 2018204883A1
Authority
US
United States
Prior art keywords
layer
subpixel
pixel
region
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/533,127
Other versions
US10026789B1 (en
Inventor
Haisheng Wang
Xue DONG
Hailin XUE
Xiaochuan Chen
Xiaoliang DING
Shengji Yang
Yingming Liu
Weijie Zhao
Changfeng LI
Wei Liu
Pengpeng Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Beijing BOE Optoelectronics Technology Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Beijing BOE Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd, Beijing BOE Optoelectronics Technology Co Ltd filed Critical BOE Technology Group Co Ltd
Assigned to BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD. reassignment BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WANG, HAISHENG
Assigned to BOE TECHNOLOGY GROUP CO., LTD., BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD. reassignment BOE TECHNOLOGY GROUP CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: XUE, HAILIN
Assigned to BOE TECHNOLOGY GROUP CO., LTD., BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD. reassignment BOE TECHNOLOGY GROUP CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LI, Changfeng
Assigned to BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD. reassignment BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DING, XIAOLIANG
Assigned to BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD. reassignment BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DONG, XUE
Assigned to BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD. reassignment BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WANG, PENGPENG
Assigned to BOE TECHNOLOGY GROUP CO., LTD., BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD. reassignment BOE TECHNOLOGY GROUP CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YANG, Shengji
Assigned to BOE TECHNOLOGY GROUP CO., LTD., BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD. reassignment BOE TECHNOLOGY GROUP CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Zhao, Weijie
Assigned to BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD. reassignment BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIU, WEI
Assigned to BOE TECHNOLOGY GROUP CO., LTD., BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD. reassignment BOE TECHNOLOGY GROUP CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, XIAOCHUAN
Assigned to BOE TECHNOLOGY GROUP CO., LTD., BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD. reassignment BOE TECHNOLOGY GROUP CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIU, YINGMING
Publication of US10026789B1 publication Critical patent/US10026789B1/en
Application granted granted Critical
Publication of US20180204883A1 publication Critical patent/US20180204883A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • H01L27/323
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • H01L27/322
    • H01L27/3262
    • H01L27/3276
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels

Definitions

  • the present invention relates to display technology, more particularly, to a touch display substrate, a touch display apparatus having the same, a pixel arrangement, and a fabricating method thereof.
  • OLED Organic light emitting diodes
  • OLEDs use the principles of electrophosphorescence to convert electrical energy in an OLED into light in a highly efficient manner.
  • OLEDs are self-emitting apparatuses that do not require a backlight. Having the advantages of a wide viewing angle, high contrast, fast response, high flexibility, a wide working temperature range, and a simpler structure and manufacturing process, they have found a wide range of applications in display field.
  • a touch module is added onto the display module.
  • the display module and the touch module may be manufactured separately.
  • the touch module is bonded onto the display panel. This type of touch display panel has a large thickness and is prone to damage.
  • the present invention provides a touch display substrate, comprising: an array of a plurality of pixels, each pixel having a first region and a second region in plan view of the touch display substrate, each pixel comprising a first electrode layer on a base substrate comprising a plurality of first electrode blocks in the first region, each of which corresponding to a subpixel; and a second electrode block in the second region; a first light emitting layer in the first region on a side of the plurality of first electrode blocks distal to the base substrate; a second light emitting layer in the second region on a side of the second electrode block distal to the base substrate; a second electrode layer in the first region on a side of the first light emitting layer distal to the plurality of first electrode blocks; and a touch electrode layer in the second region on a side of the second light emitting layer distal to the second electrode block; the touch electrode layer and the second electrode layer spaced apart and electrically insulated from each other.
  • each pixel further comprises a pattern spacer layer on the base substrate dividing the pixel into the first region and the second region; the pattern spacer layer spacing apart and electrically insulating the touch electrode layer and the second electrode layer; and the pattern spacer layer spacing apart and electrically insulating the first light emitting layer and the second light emitting layer.
  • the touch electrode layer is in a same layer as the second electrode layer, and the first light emitting layer is in a same layer as the second light emitting layer.
  • one second electrode block in the second region is electrically connected to the touch electrode layer.
  • the one second electrode block in the second region is electrically connected to the touch electrode layer through a conductive channel in the second light emitting layer, the conductive channel comprising a sintered conductive material comprising at least one of a light emitting material of the second light emitting layer, a conductive material of the one second electrode block in the second region, and a conductive material of the touch electrode layer.
  • the touch display substrate further comprises a plurality of electrode lead wires in the first region and a plurality of touch control lead wires in the second region; the plurality of touch control lead wires in a same layer as the plurality of electrode lead wires; the plurality of touch control lead wires electrically connected to the touch electrode layer through a conductive channel in the second light emitting layer, the conductive channel comprising a sintered conductive material comprising at least one of a light emitting material of the second light emitting layer, a conductive material of a touch control lead wire in the second region, and a conductive material of the touch electrode layer.
  • each pixel further comprises a pixel compensation circuit in the second region.
  • each pixel comprises a subpixel of a first color, a subpixel of a second color, a subpixel of a third color in the first region, and a plurality of pixel compensation circuits in the second region; each pixel compensation circuit is connected to one of the subpixel oldie first color from a same pixel, the subpixel of the second color and the subpixel of the third color from adjacent pixels.
  • each second region is surrounded by the subpixel of the first color from the same pixel, the subpixel of the second color from a first adjacent pixel, and two subpixels oldie third color respectively from a second and a third adjacent pixels; the first color, the second color, and the third color are different colors selected form red, green, and blue.
  • each pixel comprises three pixel compensation circuits, each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color from a first adjacent pixel, and the subpixel of the third color from a second adjacent pixel.
  • each pixel comprises four pixel compensation circuits, each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color from a first adjacent pixel, the subpixel of the third color from a second adjacent pixel, and the subpixel of the third color from a third adjacent pixel.
  • each pixel comprises a subpixel of a first color, a subpixel of a second color, a subpixel of a third color in the first region, a touch subpixel in the second region
  • the touch electrode layer is configured to operate in a time-division driving mode, the time-division mode comprising a display mode and a touch control mode
  • the touch electrode layer is a touch control electrode for conducting touch signals during the touch control mode
  • one second electrode block in the second region and the touch electrode layer are electrodes for applying voltage signal to the second light emitting layer during display mode
  • each pixel further comprises four pixel compensation circuits, each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color from a first adjacent pixel, the subpixel of the third color from a second adjacent pixel, and the touch subpixel.
  • the first light emitting layer is an integral white light emitting layer; each pixel further comprises a plurality of color filters on a side of the second electrode layer distal to the first light emitting layer, each of which corresponding to a subpixel.
  • the touch electrode layer is configured to operate in a time-division driving mode, the time-division mode comprising a display mode and a touch control mode, the touch electrode layer, is a touch control electrode for conducting touch, signals during the touch control mode, and one second electrode block in the second region and the touch electrode layer are electrodes for applying voltage signal to the second light emitting layer during display mode.
  • the touch display substrate further comprises a plurality of thin film transistors on a p-silicon substrate, each of which corresponding to one first electrode block or one second electrode block.
  • the first electrode layer is an anode layer
  • the second electrode layer is a cathode layer
  • the present invention provides a pixel arrangement comprising an array of a plurality of pixels, wherein each pixel comprises a subpixel of a first color, a subpixel of a second color, a subpixel of a third color, a touch subpixel; and a plurality of pixel compensation circuits in the touch subpixel; each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color and the subpixel of the third color from adjacent pixels; and each touch subpixel is surrounded by the subpixel of the first color from a same pixel, the subpixel of the second color from a first adjacent pixel, and two subpixels of the third color respectively from a second and a third adjacent pixels.
  • each pixel comprises three pixel compensation circuits, each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color from a first adjacent pixel, the subpixel of the third color from a second adjacent pixel.
  • each pixel comprises four pixel compensation circuits, each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color from a first adjacent pixel, the subpixel of the third color from a second adjacent pixel, and the subpixel of the third color from a third adjacent pixel.
  • each pixel comprises four pixel compensation circuits, each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color from a first adjacent pixel, the subpixel of the third color from a second adjacent pixel, and the touch subpixel.
  • the present invention provides a method of fabricating a touch display substrate comprising forming an array of a plurality, of pixels, each pixel comprising, a fast region and a second, region in plan view of the touch display substrate; wherein forming each pixel comprising forming a first electrode layer on a base substrate; the step of forming the first electrode layer comprising forming a plurality of first electrode blocks in the first region, each of which corresponding to a subpixel; and forming a second electrode block in the second region; thrilling a first light emitting layer in the first region on a side of the plurality of first electrode blocks distal to the base substrate; forming a second light emitting layer in the second region on a side of the second electrode block distal to the base substrate; forming a second electrode layer in the first region on a side of the first light emitting layer distal to the plurality of first electrode blocks; and forming a touch electrode layer in the second region on a side of the second light emitting layer distal to the second electrode block
  • the method further comprises forming a pattern spacer layer on the base substrate dividing each pixel into the first region and the second region; the pattern spacer layer spacing apart and electrically insulating the touch electrode layer and the second electrode layer; and the pattern spacer layer spacing apart and electrically insulating the first light emitting layer and the second light emitting layer.
  • the pattern spacer layer is made of a photoresist material
  • the step of forming each pixel comprises depositing a photoresist layer on the base substrate having the first electrode layer; exposing the photoresist layer with a mask plate having a pattern corresponding to the pattern spacer layer; developing the exposed photoresist layer thereby forming the pattern spacer layer; depositing an organic light emitting material layer on a side of the first electrode layer distal to the base substrate having the pattern spacer layer, thereby forming the first light emitting layer in the first region and the second light emitting layer in the second region; and depositing an electrode material layer on a side of the organic light emitting material layer distal to the first electrode layer, thereby forming the second electrode layer in the first region and the touch electrode layer in the second region.
  • the method further comprises electrically connecting one second electrode block in the second region to the touch electrode layer.
  • the step of electrically connecting the one second electrode block in the second region to the touch electrode layer comprises sintering a portion of a multilayer structure comprising the one second electrode block in the second region, the second light emitting layer, and the touch electrode layer, and forming a conductive channel in the second light emitting layer, the conductive channel comprising a sintered conductive material comprising at least one of a light emitting material, a conductive material of the one second electrode block, and a conductive material of the touch electrode layer.
  • the step of forming each pixel further comprises forming a pixel compensation circuit in the second region.
  • the first region comprises a subpixel of a first color, a subpixel of a second color, a subpixel of a third color; forming each pixel, comprises forming a plurality of pixel compensation circuits in the second region, each of which connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color and the subpixel of the third color from adjacent pixels; the method comprising forming the array of the plurality of pixels so that each second region is surrounded by the subpixel of the first color from a same pixel, the subpixel of the second color from an adjacent pixel, and two subpixels of the third color respectively from two other adjacent pixels.
  • the touch electrode layer is formed in a same layer as the second electrode layer, and the first light emitting layer is formed in a same layer as the second light emitting layer.
  • the method further comprises forming a plurality of electrode lead wires in the first region and a plurality of touch control lead wires in the second region in a same layer; and electrically connecting the plurality of touch control lead wires to the touch electrode layer through a conductive channel in the second light emitting layer; wherein the step of electrically connecting the plurality of touch control lead wires to the touch electrode layer comprises sintering a portion of a multilayer structure comprising a touch control lead wire in the second region, the second light emitting layer, and the touch electrode layer; and forming a conductive channel in the second light emitting layer, the conductive channel comprising a sintered conductive material comprising at least one of a light emitting material, a conductive material of the touch control lead wire, and a conductive material of the touch electrode layer.
  • the present invention provides a touch display apparatus comprising a touch display substrate described herein or fabricated by a method described herein.
  • FIG. 1A is a diagram illustrating the structure of a touch display substrate in some embodiments.
  • FIG. 1B is a diagram illustrating the structure of a touch display substrate in some embodiments.
  • FIG. 1C is a diagram illustrating the structure of a touch display substrate in some embodiments.
  • FIG. 2 is a diagram illustrating a pixel arrangement in a touch display substrate in some embodiments.
  • FIG. 3 is a diagram illustrating a pixel arrangement in a conventional touch display substrate.
  • FIG. 4 is a diagram illustrating an arrangement for pixel compensation circuits in a touch display substrate in some embodiments.
  • FIG. 5 is a diagram illustrating an arrangement for pixel compensation circuits in a touch display substrate in some embodiments.
  • FIG. 6 is a flow chart illustrating a method of fabricating a touch display substrate in some embodiments.
  • FIG. 7A is a diagram illustrating the structure of a pattern spacer layer in some embodiments.
  • FIG. 7B is a diagram illustrating the structure of a pattern spacer layer in sonic embodiments.
  • the present disclosure provides, inter alia, a novel in-cell touch display substrate, a touch display apparatus having the same, and a fabricating method thereof
  • the present touch display substrate utilizes a subpixel area of each pixel as a touch sensor area, and electrically insulating a portion of the cathode (or anode) as the touch electrode.
  • the present design provides a compact in-cell touch structure which may be manufactured together with the display module.
  • the touch lead wires may be optionally disposed in a same layer as the electrode lead wires for cathode or anode, the touch electrode and the touch lead wires may be electrically connected by sintering a portion of the light emitting layer.
  • the touch display substrate may be designed to have a novel pixel arrangement so that multiple pixel compensation circuits from multiple subpixels may be disposed in a same touch subpixel area.
  • the present touch display substrate includes an array of a plurality of pixels.
  • Each pixel includes a first region and a second region in plan view of the touch display substrate.
  • each pixel includes a first electrode layer on a base substrate comprising a plurality of first electrode blocks in the first region, each of which corresponding to a subpixel, and at least one second electrode block in the second region; a first light emitting layer in the first region on a side of the plurality of first electrode blocks distal to the base substrate; a second light emitting layer in the second region on a side of the second electrode block distal to the base substrate; a second electrode layer in the first region on a side of the first light emitting layer distal to the plurality of first electrode blocks; and a touch electrode layer in the second region on a side of the second light emitting layer distal to the second electrode block.
  • the touch electrode layer and the second electrode layer spaced apart and electrically insulated from each other.
  • the first light emitting layer and the second light emitting layer are spaced apart and electrically insulated from each other.
  • the touch electrode layer is in a same layer as the second electrode layer.
  • the first light emitting layer is in a same layer as the second light emitting layer.
  • the touch electrode layer and the second electrode layer spaced apart and electrically insulated from each other, the first light emitting layer and the second light emitting layer are spaced apart and electrically insulated from each other, the touch electrode layer is in a same layer as the second electrode layer, and the first light emitting layer is in a same layer as the second light emitting layer.
  • the present disclosure provides a method of fabricating a touch display substrate described herein.
  • the touch display substrate includes an array of a plurality of pixels, with each pixel including a first region and a second region in plan view of the touch display substrate.
  • the step of forming each pixel includes forming a first electrode layer on a base substrate; the step of forming the first electrode layer comprising forming a plurality of first electrode blocks in the first region, each of which corresponding to a subpixel; and forming a second electrode block in the second region; forming a first light emitting, layer in the first region on a side of the plurality of first electrode blocks distal to the base substrate; forming a second light emitting layer in the second region on a side of the second electrode block distal to the base substrate; forming a second electrode layer in the first region on a side of the first light emitting layer distal to the plurality of first electrode blocks; and forming a touch electrode layer in the second region on a side of the second light emitting
  • the touch electrode layer and the second electrode layer are formed to be spaced apart and electrically insulated from each other.
  • the first light emitting layer and the second light emitting layer are formed to be spaced apart and electrically insulated from each other.
  • the touch electrode layer is formed in a same layer as the second electrode layer.
  • the first light emitting layer is formed in a same layer as the second light emitting layer.
  • the touch electrode layer and the second electrode layer are firmed to be spaced apart and electrically insulated from each other, the first light emitting layer and the second light emitting layer are formed to be spaced apart and electrically insulated from each other, the touch electrode layer is formed in a same layer as the second electrode layer, and the first light emitting layer is formed in a same layer as the second light emitting layer.
  • the patterns of the first light emitting layer, the second light emitting layer, the touch electrode layer, and the second electrode layer may be formed using a mask plate so that there is a gap between the first light emitting layer from the second light emitting layer, and a gap between the touch electrode layer and the second electrode layer.
  • a single light emitting layer may be formed in a single process (e.g., a deposition process), and the single light emitting layer may be patterned to form the first light emitting layer and the second light emitting layer (e.g., etching a gap in the single light emitting layer dividing it into two layers).
  • a single electrode layer may be formed in a single process (e.g., a deposition process), and the single electrode layer may be patterned to form the touch electrode layer and the second electrode layer (e.g., etching a gap in the single electrode layer dividing it into two layers).
  • each pixel includes a pattern spacer layer on the base substrate dividing the pixel into the first region and the second region.
  • the pattern spacer layer spaces apart and electrically insulates the touch electrode layer and the second electrode layer from each other.
  • the pattern spacer layer spaces apart and electrically insulates the first light emitting layer and the second light emitting layer from each other.
  • the step of forming each pixel may optionally include forming a pattern spacer layer on the base substrate dividing each pixel into the first region and the second region.
  • the pattern spacer layer is formed to space apart and electrically insulate the touch electrode layer and the second electrode layer; and space apart and electrically insulate the first light emitting layer and the second light emitting layer.
  • FIG. 1A is a diagram illustrating the structure of a touch display substrate in some embodiments.
  • the touch display substrate in the embodiment includes an array of a plurality of pixels 1 .
  • Each pixel 1 may include a plurality of subpixels, e.g., subpixels 11 A, 11 B, 11 C, and 11 D.
  • the touch display substrate in the embodiment includes a first electrode layer 4 on a base substrate 20 .
  • the first electrode layer 4 includes a plurality of first electrode blocks, e.g., 4 A and a second electrode block, in other words one or more second electrode block, e.g., 4 B.
  • the touch display substrate includes a pattern spacer layer 5 dividing the pixel 1 into a first region 2 and a second region 3 in plan view of the base substrate 20 .
  • the first region 2 includes a plurality of subpixels 11 A, 11 B, and 11 C capable of image display, each of which includes a driving thin film transistor 10 .
  • the second region 3 includes at least one touch subpixel 11 D for touch control.
  • the touch subpixel 11 D is also capable of image display.
  • the touch subpixel 11 D includes a driving thin film transistor 10 .
  • Each driving thin film transistor 10 is electrically connected to a first electrode block 4 A or a second electrode block 4 B.
  • the base substrate may be made of any appropriate material, e.g., glass, quartz, or a transparent resin.
  • the thin film transistor 10 may be a thin film transistor including a gate electrode, a source electrode, a drain electrode, and an active layer.
  • the base substrate is a p+ silicon substrate.
  • the thin film transistor 10 may be a thin film transistor including a gate structure 40 , an N-well 50 , and a field oxide (FOX) isolation structure 60 .
  • the base substrate is an n+ silicon substrate.
  • the thin film transistor including a gate structure, a P-well, and a field oxide (FOX) isolation structure 60 .
  • the first electrode layer is an anode layer
  • the second electrode layer is a cathode layer
  • the first electrode layer is a cathode layer
  • the second electrode layer is an anode layer
  • the first electrode blocks 4 A are in the first region 2
  • the second electrode block 4 B is in the second region 3 .
  • Each of the first electrode blocks 4 A corresponds to one of subpixels 11 A, 11 B, 11 C.
  • the second electrode block 4 B corresponds to subpixel 11 D.
  • the touch display substrate includes a light emitting layer 6 on a side of the first electrode layer 4 distal to the base substrate 20 .
  • the pattern spacer layer 5 divides the light emitting layer 6 into a first light emitting layer 6 A in the first region 2 and a second light emitting layer 6 B in the second region 3 , i.e., the first light emitting layer GA and the second light emitting layer 6 B are spaced apart by the pattern spacer layer 5 .
  • the first light emitting layer 6 A corresponds to subpixels 11 A, 11 B, and 11 C
  • the second light emitting layer 6 B corresponds to subpixel 11 D. Because the pattern spacer layer 5 is made of electrically non-conductive material such as a photoresist, the first light emitting layer GA and the second light emitting layer 6 B are also electrically insulated by the pattern spacer layer 5 .
  • the first light emitting layer GA and the second light emitting layer 6 B may be made in a single process, e.g., a single deposition process.
  • the first light emitting layer 6 A and the second light emitting layer 6 B may be in a same layer.
  • the first light emitting layer 6 A and the second light emitting layer 6 B may be made in two deposition processes. Accordingly, the first light emitting layer 6 A and the second light emitting layer 6 B may be in different layers.
  • the first light emitting layer 6 A is on a side of the first electrode blocks 4 A distal to the base substrate 20
  • the second light emitting layer 6 B is on side of the second electrode blocks 4 B distal to the base substrate 20 .
  • the touch display substrate in the embodiment further includes a second electrode layer 7 A on a side of the light emitting layer 6 distal to the first electrode layer 4 .
  • the second electrode layer 7 A is on a side of the first light emitting layer 6 A distal to the first electrode blocks 4 A.
  • the second electrode layer 7 A is in the first region 2 .
  • the second electrode layer 7 A is an integral electrode layer.
  • the touch display substrate in the embodiment further includes a touch electrode layer 78 on a side of the light emitting layer 6 distal to the first electrode layer 4 .
  • the touch electrode layer 78 is on a side of the second light emitting layer 6 B distal to the second electrode block 4 B.
  • the touch electrode layer 7 B is in the second region 3 .
  • the touch electrode layer 7 B is an integral electrode layer.
  • the first light emitting layer 6 A is on a side of the second electrode layer 7 A proximal to the base substrate 20
  • the second light emitting layer 6 B is on side of the touch electrode layer 7 B proximal to the base substrate 20 .
  • the touch display substrate includes one or more organic layer between the first light emitting layer 6 and the first electrode layer 4 .
  • the touch display substrate includes one or more organic layer between the first light emitting layer 6 A and the first electrode layer 4 in the first region (e.g., the first electrode block 4 A).
  • the touch display substrate includes one or more organic layer between the second light emitting layer 6 B and the first electrode layer 4 in the second region (e.g., the second electrode block 4 B).
  • the touch display substrate includes one or more organic layer between the first light emitting layer 6 A and the second electrode layer 7 A.
  • the touch display substrate includes one or more organic layer between the second light emitting layer 6 B and the touch electrode layer 7 B.
  • the one or more organic layer is a carrier transport layer such as a hole transport layer or an electron transport layer.
  • the one or more organic layer is a carrier injection layer such as a hole injection layer or an electron injection layer.
  • the first light emitting layer 6 A is an integral white light emitting layer.
  • the second light emitting layer 6 B is an integral white light emitting layer.
  • the first light emitting layer 6 A and the second light emitting layer 6 B are formed in a single process.
  • the first light emitting layer 6 A includes a plurality of light emitting blocks, each of which is capable of emitting a light of a different color, e.g., a red light emitting block, a green light emitting block, a blue light emitting block, or a white light emitting block, Each light emitting block corresponds to a subpixel, e.g., subpixel 11 A, 11 B, or 11 C. Each light emitting block corresponds to a first electrode block 4 A.
  • the touch display substrate includes a pixel definition layer insulating each of the light emitting blocks.
  • the light emitting blocks include a red light emitting layer.
  • the light emitting blocks include a green light emitting layer.
  • the light emitting blocks include a blue light emitting layer.
  • the light emitting blocks include a white light emitting layer.
  • the touch display substrate includes one or more organic layer between a first light emitting block and a first electrode block 4 A.
  • the touch display substrate includes one or more organic layer between a first light emitting block and the second electrode layer 7 A.
  • the one or more organic layer is a carrier transport layer such as a hole transport layer or an electron transport layer.
  • the one or more organic layer is a carrier injection layer such as a hole injection layer or an electron injection layer.
  • the pattern spacer layer 5 separates the second electrode layer 7 A in the first region 2 apart from the touch electrode layer 7 B in the second region 3 , i.e. the second electrode layer 7 A and the touch electrode layer 7 B are spaced apart by the pattern spacer layer 5 .
  • the second electrode layer 7 A corresponds to subpixels 11 A, 11 B, and 11 C
  • the touch electrode layer 7 B corresponds to subpixel 11 D. Because the pattern spacer layer 5 is made of non-conductive material such as a photoresist, the second electrode layer 7 A and the touch electrode layer 7 B are also electrically insulated by the pattern spacer layer 5 .
  • the second electrode layer 7 A and the touch electrode layer 7 B may be made in a single process, e.g., a single deposition process.
  • the second electrode layer 7 A and the touch electrode layer 7 B may be in a same layer.
  • the second electrode layer 7 A and the touch electrode layer 7 B may be made in two deposition processes. Accordingly, the second electrode layer 7 A and the touch electrode layer 7 B may be in different layers.
  • the second electrode block 4 B in the second region is electrically connected to the touch electrode layer 7 B.
  • Various embodiments may be practiced to electrically connect the second electrode block 4 B to the touch electrode layer 7 B.
  • the second electrode block 4 B and the touch electrode layer 7 B may be electrically connected through a via extending through the second light emitting layer 6 B.
  • the second electrode block 4 B and the touch electrode layer 7 B may also be electrically connected through a conductive channel in the second light emitting layer 6 B.
  • the conductive channel includes a sintered conductive material including a light emitting material, a conductive material of the second electrode block in the second region, and a conductive material of the touch electrode layer.
  • FIG. 1B is a diagram illustrating the structure of a touch display substrate in some embodiments.
  • the touch display substrate in the embodiment includes a conductive channel 8 in the second light emitting layer 6 B.
  • the conductive channel 8 may be formed by sintering the second light emitting layer 6 B, the touch electrode layer 7 B, and the second electrode block 4 B, e.g., by a laser.
  • the conductive channel 8 includes a sintered conductive material including at least one of a light emitting material of the second light emitting layer 6 B, a conductive material of the second electrode block 4 B, and a conductive material of the touch electrode layer 7 B.
  • a portion of the touch electrode layer 7 B corresponding to the conductive channel 8 also includes a sintered material comprising at least a conductive material of the touch electrode layer 7 B and a light emitting material of the second light emitting layer 6 B.
  • a portion of the second electrode block 4 B corresponding to the conductive channel 8 also includes a sintered material comprising at least a conductive material of the second electrode block 4 B and a light emitting material of the second light emitting layer 6 B.
  • the conductive channel 8 is at least partially sintered so that the conductive channel 8 becomes electrically conductive, electrically connecting the second electrode block 4 B and the touch electrode layer 7 B.
  • touch display substrate includes an additional layer between the second light emitting layer 6 B and the second electrode block 4 B in the second region, or between the second light emitting layer 6 B and the touch electrode layer 7 B.
  • the touch display substrate includes one or more organic layer between the second light emitting layer 6 B and the second electrode block 4 B in the second region.
  • the touch display substrate includes one or more organic layer between the second light emitting layer 6 B and the touch electrode layer 7 B.
  • the one or more organic layer is a carrier transport layer such as a hole transport layer or an electron transport layer.
  • the one or more organic layer is a carrier injection layer such as a hole injection layer or an electron injection layer.
  • the conductive channel 8 may optionally include a sintered conductive material including a light emitting material of the second light emitting layer 6 B, a conductive material of the second electrode block 4 B, a conductive material of the touch electrode layer 7 B, and a material of the additional layer between the second light emitting layer 6 B and the second electrode block 4 B in the second region, or between the second light emitting layer 6 B and the touch electrode layer 7 B.
  • the additional layers include a carrier transport layer such as a hole transport layer or an electron transport layer and a carrier injection layer such as a hole injection layer or an electron injection layer.
  • the conductive channel 8 includes a sintered conductive material including a light emitting material of the second light emitting layer 6 B, a conductive material of the second electrode block 4 B, a conductive material of the touch electrode layer 7 B, and a material of a carrier transport layer (e.g., a hole transport layer or an electron transport layer).
  • the conductive channel 8 includes a sintered conductive material including a light emitting material of the second light emitting layer 6 B, a conductive material of the second electrode block 4 B, a conductive material of the touch electrode layer 7 B, and a material of a carrier injection layer (e.g., a hole injection layer or an electron injection layer).
  • the conductive channel 8 includes a sintered conductive material including a light emitting material of the second light emitting layer 6 B, a conductive material of the second electrode block 4 B, a conductive material of the touch electrode layer 7 B, a material of a carrier transport layer (e.g., a hole transport layer or an electron transport layer), and a material of a carrier injection layer (e.g., a hole injection layer or an electron injection layer).
  • a carrier transport layer e.g., a hole transport layer or an electron transport layer
  • a carrier injection layer e.g., a hole injection layer or an electron injection layer
  • FIG. 1C is a diagram illustrating the structure of a touch display substrate in some embodiments.
  • the touch display substrate in the embodiment includes a conductive channel 8 ′ in the second light emitting layer 6 B.
  • the touch display substrate in the embodiment includes a plurality of electrode lead wires 80 in the first region and a plurality of touch control lead wires 70 in the second region.
  • the plurality of touch control lead wires 70 are in a same layer as the plurality of electrode lead wires 80 .
  • the plurality of touch control lead wires 70 may be electrically connected to the touch electrode layer 7 B through a conductive channel 8 ′ in the second light emitting layer 6 B.
  • the conductive channel 8 ′ may be formed by sintering the second light emitting layer 6 B, the touch electrode layer 7 B, and the touch control lead wires 70 , e.g., by a laser.
  • the conductive channel 8 ′ includes a sintered conductive material including at least one of a light emitting material of the second light emitting layer 6 B, a conductive material of the touch control lead wires 70 , and a conductive material of the touch electrode layer 7 B.
  • a portion of the touch electrode layer 7 B corresponding to the conductive channel 8 ′ also includes a sintered material comprising at least a conductive material of the touch electrode layer 7 B and a light emitting material of the second light emitting layer 6 B.
  • a portion of the touch control lead wires 70 corresponding to the conductive channel 8 ′ also includes a sintered material comprising at least a conductive material of the touch control lead wires 70 and a light emitting material of the second light emitting layer 6 B.
  • the conductive channel 8 ′ is at least partially sintered so that the conductive channel 8 ′ becomes electrically conductive, electrically connecting the touch control lead wires 70 and the touch electrode layer 7 B.
  • touch display substrate includes an additional layer between the second light emitting layer 6 B and the touch control lead wires 70 in the second region, or between the, second light emitting layer 6 B and the touch electrode layer 7 B.
  • the touch display substrate includes one or more organic layer between the second light emitting layer GB and the touch control lead wires 70 in the second region.
  • the touch display substrate includes one or more organic layer between the second light emitting layer 6 B and the touch electrode layer 7 B.
  • the one or more organic layer is a carrier transport layer such as a hole transport layer or an electron transport layer.
  • the one or more organic layer is a carrier injection layer such as a hole injection layer or an electron injection layer.
  • the conductive channel 8 ′ may optionally include a sintered conductive material including a light emitting material of the second light emitting layer 6 B, a conductive material of the touch control lead wires 70 , a conductive material of the touch electrode layer 7 B, and a material of the additional layer between the second light emitting layer 6 B and the touch control lead wires 70 in the second region, or between the second light emitting layer 6 B and the touch electrode layer 7 B.
  • the additional layers include a carrier transport layer such as a hole transport layer or an electron transport layer and a carrier injection layer such as a hole injection layer or an electron injection layer.
  • the conductive channel 8 ′ includes a sintered conductive material including a light emitting material of the second light emitting layer 6 B, a conductive material of the touch control lead wires 70 , a conductive material of the touch electrode layer 7 B, and a material of a carrier transport layer (e.g., a hole transport layer or an electron transport layer).
  • the conductive channel 8 ′ includes a sintered conductive material including a light emitting material of the second light emitting layer 6 B, a conductive material of the touch control lead wires 70 , a conductive material of the touch electrode layer 7 B, and a material of a carrier injection layer (e.g., a hole injection layer or an electron injection layer).
  • the conductive channel 8 ′ includes a sintered conductive material including a light emitting material of the second light emitting layer 6 B, a conductive material of the touch control ad wires 70 , a conductive material of the touch electrode layer 7 B, a material of a carrier transport layer (e.g., a hole transport layer or an electron transport layer), and a material of a carrier injection layer (e.g., a hole injection layer or an electron injection layer).
  • a carrier transport layer e.g., a hole transport layer or an electron transport layer
  • a carrier injection layer e.g., a hole injection layer or an electron injection layer
  • touch control lead wires 70 may be connected to the touch electrode layer 7 B through the conductive channel 8 ′. Accordingly, the touch control lead wires 70 may be formed in a same layer as electrode lead wires 80 for driving image display in the first region. Optionally, the touch control lead wires 70 are in a same layer as the first electrode lead wires. Optionally, the touch control lead wires 70 are in a same layer as the second electrode lead wires.
  • the touch display substrate in the embodiments further includes at least one pixel compensation circuit 9 in the second region.
  • pixel compensation circuit 9 include, but are not limited to, a 6T1C circuit, a 2T1C circuit, a 4T1C circuit, and a 5T1C circuit.
  • the touch display substrate includes a plurality of pixel compensation circuits 9 (e.g., 2, 3, 4, or more) in the second region.
  • the touch display substrate may include a plurality of pixel compensation circuits 9 , each of which corresponding to a different subpixel (e.g., a red subpixel, a green subpixel, or a blue subpixel).
  • a pixel in another aspect, includes a subpixel of a first color, a subpixel of a second color, a subpixel of a third color, and a second region in the pixel is adjacent to a subpixel of the first color from a same pixel, a subpixel of the second color from a first adjacent pixel, and two subpixels of the third color respectively from a second and a third adjacent pixels.
  • the first color, the second color, and the third color are three different colors, e.g., red, green, and blue.
  • FIG. 2 is a diagram illustrating a pixel arrangement in a touch display substrate in some embodiments.
  • the touch display substrate in the embodiment includes a red subpixel 11 A, a green subpixel 11 B, a blue subpixel 11 C, and a touch subpixel 11 D.
  • the pixel of the present disclosure includes a first region and a second region.
  • the first region includes the red subpixel 11 A, the green subpixel 11 B, and the blue subpixel 11 C capable of image display.
  • the second region includes the touch subpixel 11 D for touch control.
  • the touch subpixel 11 D is also capable of image display.
  • Each pixel also includes at least one pixel compensation circuit in the touch subpixel 11 D.
  • each pixel may include at least three pixel compensation circuits in the touch subpixel 11 D, each of which is connected to one of the red subpixel 11 A, the green subpixel 11 B, and the blue subpixel 11 C.
  • the second region (and the touch subpixel 11 D) is surrounded by four subpixels, a blue subpixel 11 C from the same pixel (on the left side of 11 D), a red subpixel 11 A front a first adjacent pixel (on the right side of 11 D), and two green subpixels 11 C from a second adjacent pixel and a third adjacent pixel (on the upper and low sides of 11 D).
  • FIG. 3 is a diagram illustrating a pixel arrangement in a conventional touch display substrate.
  • the second region (and the touch subpixel 11 D) is surrounded by a blue subpixel 11 C from the same pixel (on the left side of 11 D), a red subpixel 11 A from a first adjacent pixel (on the right side of 11 D), and two touch subpixels 11 D from a second adjacent pixel and a third adjacent pixel (on the upper and low sides of 11 D).
  • the second region is not surrounded by a green subpixel 11 B. As such, it is difficult to dispose a pixel compensation circuit associated with a green subpixel 11 B in the second region.
  • FIG. 4 is a diagram illustrating an arrangement fair pixel compensation circuits in a touch display substrate in some embodiments.
  • each second region of each pixel includes three sections 11 D 1 , 11 D 2 , and 11 D 3 , each of which includes a pixel compensation circuit.
  • the second region may include a pixel compensation circuit in 11 D 2 connected to, a red subpixel from a first adjacent pixel (on the right side of touch subpixel), a pixel compensation circuit in 11 D 3 connected to a blue subpixel from a same pixel (on the left side of touch subpixel), and a pixel compensation circuit in 11 D 1 connected to a green subpixel from a second adjacent pixel (on the upper side of touch subpixel).
  • a pixel compensation circuit in 11 D 2 connected to, a red subpixel from a first adjacent pixel (on the right side of touch subpixel), a pixel compensation circuit in 11 D 3 connected to a blue subpixel from a same pixel (on the left side of touch subpixel), and a pixel compensation circuit in 11 D 1 connected to a green subpixel from a second adjacent pixel (on the upper side of touch subpixel).
  • the second region may include more than three pixel compensation circuits.
  • FIG. 5 is a diagram illustrating an arrangement for pixel compensation circuits in a touch display substrate in some embodiments. Referring to FIG. 5 , each second region of each pixel, includes four sections 11 D 1 , 11 D 2 , 11 D 3 , and 11 D 4 , each of which includes a pixel compensation circuit.
  • the second region may include a pixel compensation circuit in 11 D 2 connected to a red subpixel from a first adjacent pixel (on the right side of touch subpixel), a pixel compensation circuit in 11 D 3 connected to a blue subpixel from a same pixel (on the left side of touch subpixel), a pixel compensation circuit in 11 D 1 connected to, a green subpixel from a second adjacent pixel (on the upper side of touch subpixel), and a pixel compensation circuit in 11 D 4 connected to a green subpixel from a third adjacent pixel (on the lower side of touch subpixel).
  • a pixel compensation circuit in 11 D 2 connected to a red subpixel from a first adjacent pixel (on the right side of touch subpixel)
  • a pixel compensation circuit in 11 D 3 connected to a blue subpixel from a same pixel (on the left side of touch subpixel)
  • a pixel compensation circuit in 11 D 1 connected to, a green subpixel from a second adjacent pixel (on the upper side of touch subpixel)
  • the touch electrode layer is operated in a time-division driving mode.
  • the time-division driving mode may include a display mode and a touch control mode.
  • the touch electrode layer is a touch control electrode for conducting touch signals during the touch control mode.
  • the second electrode block in the second region and the touch electrode layer are electrodes for applying voltage signal to the second light emitting layer for image display during display mode.
  • the second region may further include a pixel compensation circuit for the touch subpixel.
  • the second region may include a pixel compensation circuit in 11 D 2 connected to a red subpixel from a first adjacent pixel (on the right side of touch subpixel), a pixel compensation circuit in 11 D 3 connected to a blue subpixel front a same pixel (on the left side of touch subpixel), a pixel compensation circuit in 11 D 1 connected to a green subpixel from a second adjacent pixel (on the upper side of touch subpixel), and a pixel compensation circuit in 11 D 4 for the touch subpixel itself.
  • the light emitting layer in the embodiments is a white light emitting layer (including the first light emitting layer 6 A and the second light emitting layer 6 B).
  • each pixel further includes a plurality of color filters 30 A, 30 B, and 30 C, in the first region 2 .
  • Each of the plurality of color filters 30 A, 30 B, and 30 C corresponds to a subpixel.
  • the color filter 30 A may be a red color filter corresponding to a red subpixel
  • the color filter 30 B may be a green color filter corresponding to a green subpixel
  • the color filter 30 C may be a blue color filter corresponding to a blue subpixel.
  • the first light emitting layer 6 A is an integral light emitting layer.
  • the present disclosure provides a method of fabricating a touch display substrate.
  • the method includes forming an array of a plurality of pixels.
  • FIG. 6 is a flow chart illustrating a method of fabricating a touch display substrate in some embodiments. Referring to FIG.
  • the step of forming each pixel in the embodiment includes forming a first electrode layer on a base substrate comprising a plurality of first electrode blocks and a second electrode block; forming a pattern spacer layer on the base substrate dividing each pixel into a first region and a second region in plan view of the base substrate; forming a light, emitting layer on a side of the first electrode layer distal to the base substrate, the light emitting layer comprising a first light emitting layer in the first region and a second light emitting layer in the second region, the first light emitting layer and the second light emitting layer spaced apart by the pattern spacer layer; and forming a second electrode layer and a touch electrode layer in a same layer on a side of the light emitting layer distal to the first electrode layer; the second electrode layer in the first region, the touch electrode layer in the second region; the touch electrode layer spaced apart and electrically insulated by the pattern spacer layer from the second electrode layer.
  • FIG. 7A is a diagram illustrating the structure of a pattern spacer layer in some embodiments.
  • the pattern spacer layer 5 is formed on the base substrate, and a light emitting material and an electrode material are sequentially deposited on the base substrate having the pattern spacer layer 5 .
  • the first light emitting layer 6 A and the second electrode layer 7 A are formed in the first region.
  • the second light emitting layer 6 B and the touch electrode layer 7 B are formed in the second region. As shown in FIG.
  • the pattern spacer layer electrically insulates the first light emitting layer 6 A in the first region and the second light emitting layer 6 B in the second region; and insulates the second electrode layer 7 A in the first region and the touch electrode layer 7 B in the second region.
  • the light emitting material and the electrode material may also be deposited on the pattern spacer layer 5 , forming a third light emitting portion 12 and an electrode layer 13 on the pattern spacer layer 5 .
  • the third light emitting portion 12 and an electrode layer 13 may be removed (e.g., by etching, milling, etc.) subsequent to the formation of the first tight emitting layer 6 A, the second electrode layer 7 A, the second light emitting layer 6 B and the touch electrode layer 7 B.
  • FIG. 7B is a diagram illustrating the structure of a pattern spacer layer in some embodiments. Referring to FIG.
  • the pattern spacer layer 5 is formed on the base substrate, and a light emitting material and an electrode material are sequentially deposited on the base substrate having the pattern spacer layer 5 .
  • the light emitting material and electrode material on the pattern spacer layer 5 are removed.
  • the step of forming each pixel includes depositing a photoresist layer on the base substrate haying the first electrode layer; exposing the photoresist layer with a mask plate having a pattern corresponding to the pattern spacer layer; and developing the exposed photoresist layer thereby forming the pattern spacer layer.
  • the step may further include depositing an organic light emitting material layer on a side of the first electrode layer distal to the base substrate having the pattern spacer layer, thereby forming the first light emitting layer in the first region and the second light emitting layer in the second region.
  • the first light emitting layer in the first region and the second light emitting layer in the second region may be formed in a single deposition step.
  • the first light emitting layer in the first region and the second light emitting layer in the second region may be formed separately in two processes.
  • the step may further include depositing an electrode material layer on a side of the organic light emitting material layer distal to the first electrode layer, thereby forming the second electrode layer in the first region and the touch electrode layer in the second region.
  • the second electrode layer in the first region and the touch electrode layer in the second region may be formed in a single deposition step.
  • the second electrode layer in the first region and the touch electrode layer in the second region may be formed separately in two processes.
  • the first light emitting layer in the first region and the second light emitting layer in the second region are formed in a single deposition step, and the second electrode layer in the first region and the touch electrode layer in the second region are formed in a single deposition step.
  • any light emitting material and electrode material deposited on a side of the pattern spacer layer distal to the base substrate may be removed.
  • the step of forming the first electrode layer includes forming a plurality of first electrode blocks in the first region, each of which corresponding to a subpixel; and forming a second, electrode block in the, second region.
  • the plurality of first electrode blocks in the first region and the second electrode block in the second region may be formed in a single process, e.g., by a single deposition process, and using a single mask for patterning.
  • the plurality of first electrode blocks in the first region and the second electrode block in the second region are formed separately.
  • the step of forming each pixel further includes electrically connecting the second electrode block in the second region to the touch electrode layer.
  • electrically connecting the second electrode block to the touch electrode layer may include forming a via extending through the second light emitting layer thereby electrically connecting the second electrode block and the touch electrode layer.
  • the step of electrically connecting the second electrode block in the second region to the touch electrode layer includes sintering a portion of a multilayer structure including the second electrode block in the second region, the second light emitting layer, and the touch electrode layer; and forming conductive channel in the second light emitting layer.
  • the conductive channel includes a sintered conductive material having a light emitting material, a conductive material of the second electrode block, and a conductive material of the touch electrode layer.
  • the sintering step may be performed by a laser.
  • the conductive channel is at least partially sintered so that the conductive channel is electrically conductive, electrically connecting the second electrode block and the touch electrode layer.
  • touch display substrate may include an additional layer between the second light emitting layer and the second electrode block in the second region, or between the second light emitting layer and the touch electrode layer.
  • the touch display substrate includes one or more organic layer between the second light emitting layer and the second electrode block in the second region.
  • the touch display substrate includes one or more organic layer between the second light emitting layer and the touch electrode layer.
  • the one or more organic layer is a carrier transport layer such as a hole transport layer or an electron transport layer.
  • the one or more organic layer is a carrier injection layer; such as a hole injection layer or an electron injection layer.
  • the sintering step may optionally include sintering a portion of a multilayer structure including the second electrode block in the second region, the second light emitting layer, the touch electrode layer; the additional layer(s) between the second light emitting layer and the second electrode block in the second region; and the additional layer(s) between the second light emitting layer and the touch electrode layer.
  • the additional layers include a carrier transport layer such as a bole transport layer or an electron transport layer and a carrier injection layer such as a hole injection layer or an electron injection layer.
  • the step of famine each pixel further includes electrically connecting a plurality of touch control lead wires in the second region to the touch electrode layer.
  • a plurality of touch control lead wires in the second region to the touch electrode layer.
  • the step may include forming a via extending through the second light emitting layer thereby electrically connecting the touch control lead wires and the touch electrode layer.
  • the step of electrically connecting the touch control lead wires in the second region to the touch electrode layer includes sintering a portion of a multilayer structure including the touch control lead wires in the second region, the second light emitting layer, and the touch electrode layer; and forming conductive channel in the second light emitting layer.
  • the conductive channel includes a sintered conductive material having at least one of a light emitting material, a conductive material of the touch control lead wires, and a conductive material of the touch electrode layer.
  • the sintering step may be performed by a laser.
  • the conductive channel is at least partially sintered so that the conductive channel is electrically conductive, electrically connecting the touch control lead wires and the touch electrode layer.
  • touch display substrate may include an additional layer between the second light emitting layer and the touch control lead wires in the second region, or between the second light emitting layer and the touch electrode layer.
  • the touch display substrate includes one or more organic layer between the second light emitting layer and the touch control lead wires in the second region.
  • the touch display substrate includes one or more organic layer between the second light emitting, layer and the touch electrode layer.
  • the one or more organic layer is a carrier transport layer such as a hole transport layer or an electron transport layer.
  • the one or more organic layer is a carrier injection layer such as a hole injection layer or an electron injection layer.
  • the sintering step may optionally include sintering a portion of a multilayer structure including the touch control lead wires in the second region, the second light emitting layer, the touch electrode layer; the additional layer(s) between the second light emitting layer and the touch control lead wires in the second region; and the additional layer(s) between the second light emitting layer and the touch electrode layer.
  • the additional layers include a carrier transport layer such as a hole transport layer or an electron transport layer and a carrier injection layer such as a hole injection layer or an electron injection layer.
  • the step of forming each pixel further includes forming a pixel compensation circuit in the second region.
  • the step includes forming a plurality of pixel compensation circuits in the second region.
  • the first region includes a subpixel of a first color, a subpixel of a second color, to subpixel of a third color.
  • the step of forming each pixel includes forming a plurality of pixel compensation circuits in the second region, each of which connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color and the subpixel of the third color from adjacent pixels.
  • the method includes forming the array of the plurality of pixels so that each second region is surrounded by the subpixel of the first color from a same pixel, the subpixel of the second color from an adjacent pixel, and two subpixels of the third color respectively from two other adjacent pixels.
  • the step of forming the plurality of pixel compensation circuits in a simile second region includes forming a pixel compensation circuit connected to a subpixel of a first color from a same pixel, a pixel compensation circuit connected to a subpixel of a second color from a first adjacent pixel, and two pixel compensation circuits connected to two subpixels of a third color from a second and a third adjacent pixels, respectively.
  • the step of forming the plurality of pixel compensation circuits in a single second region includes forming a pixel compensation circuit connected to a subpixel of a first color from a same pixel, a pixel compensation circuit connected to a subpixel of a second color from a first adjacent pixel, a pixel compensation circuit connected to a subpixel of a third color from a second adjacent pixel, and a pixel compensation circuit connected the touch subpixel itself.
  • the present disclosure provides a touch display apparatus having a touch display substrate described herein or fabricated by a method described herein.
  • the touch display substrate is an organic light emitting substrate
  • the touch display apparatus is an organic light emitting apparatus.
  • touch display apparatuses include, but are not limited to, an electronic paper, a mobile phone, a tablet computer, a television, a notebook computer, a digital album, a GPS, etc.
  • the term “the invention”, “the present invention” or the like does not necessarily limit the claim scope to a specific embodiment, and the reference to exemplary embodiments of the invention does not imply a limitation on the invention, and no such limitation is to be inferred.
  • the invention is limited only by the spirit and scope of the appended claims. Moreover, these claims may refer to use “first”, “second”, etc. following with noun or element. Such terms should be understood as a nomenclature and should not be construed as giving the limitation on the number of the elements modified by such nomenclature unless specific number has been given. Any advantages and benefits described may not apply to all embodiments of the invention.

Abstract

The present application discloses a touch display substrate including an array of a plurality of pixels. Each pixel includes a first region and a second region in plan view of the touch display substrate. Each pixel includes a first electrode layer on a base substrate comprising plurality of first electrode blocks in the first region, each of which corresponding to a subpixel; and a second electrode block in the second region; a first light emitting layer in the first region on a side of the plurality of first electrode blocks distal to the base substrate; a second light emitting layer in the second region on a side of the second electrode block distal to the base substrate; a second electrode layer in the first region on a side of the first light emitting layer distal to the plurality of first electrode blocks; and a touch electrode layer in the second region on a side of the second light emitting layer distal to the second electrode block; the touch electrode layer and the second electrode layer spaced apart and electrically insulated from each other.

Description

    TECHNICAL FIELD
  • The present invention relates to display technology, more particularly, to a touch display substrate, a touch display apparatus having the same, a pixel arrangement, and a fabricating method thereof.
  • BACKGROUND
  • Organic light emitting diodes (OLED) use the principles of electrophosphorescence to convert electrical energy in an OLED into light in a highly efficient manner. OLEDs are self-emitting apparatuses that do not require a backlight. Having the advantages of a wide viewing angle, high contrast, fast response, high flexibility, a wide working temperature range, and a simpler structure and manufacturing process, they have found a wide range of applications in display field.
  • In conventional touch display organic light emitting apparatuses, a touch module is added onto the display module. The display module and the touch module may be manufactured separately. The touch module is bonded onto the display panel. This type of touch display panel has a large thickness and is prone to damage.
  • SUMMARY
  • In one aspect, the present invention provides a touch display substrate, comprising: an array of a plurality of pixels, each pixel having a first region and a second region in plan view of the touch display substrate, each pixel comprising a first electrode layer on a base substrate comprising a plurality of first electrode blocks in the first region, each of which corresponding to a subpixel; and a second electrode block in the second region; a first light emitting layer in the first region on a side of the plurality of first electrode blocks distal to the base substrate; a second light emitting layer in the second region on a side of the second electrode block distal to the base substrate; a second electrode layer in the first region on a side of the first light emitting layer distal to the plurality of first electrode blocks; and a touch electrode layer in the second region on a side of the second light emitting layer distal to the second electrode block; the touch electrode layer and the second electrode layer spaced apart and electrically insulated from each other.
  • Optionally, each pixel further comprises a pattern spacer layer on the base substrate dividing the pixel into the first region and the second region; the pattern spacer layer spacing apart and electrically insulating the touch electrode layer and the second electrode layer; and the pattern spacer layer spacing apart and electrically insulating the first light emitting layer and the second light emitting layer.
  • Optionally, the touch electrode layer is in a same layer as the second electrode layer, and the first light emitting layer is in a same layer as the second light emitting layer.
  • Optionally, one second electrode block in the second region is electrically connected to the touch electrode layer.
  • Optionally, the one second electrode block in the second region is electrically connected to the touch electrode layer through a conductive channel in the second light emitting layer, the conductive channel comprising a sintered conductive material comprising at least one of a light emitting material of the second light emitting layer, a conductive material of the one second electrode block in the second region, and a conductive material of the touch electrode layer.
  • Optionally, the touch display substrate further comprises a plurality of electrode lead wires in the first region and a plurality of touch control lead wires in the second region; the plurality of touch control lead wires in a same layer as the plurality of electrode lead wires; the plurality of touch control lead wires electrically connected to the touch electrode layer through a conductive channel in the second light emitting layer, the conductive channel comprising a sintered conductive material comprising at least one of a light emitting material of the second light emitting layer, a conductive material of a touch control lead wire in the second region, and a conductive material of the touch electrode layer.
  • Optionally, each pixel further comprises a pixel compensation circuit in the second region.
  • Optionally, each pixel comprises a subpixel of a first color, a subpixel of a second color, a subpixel of a third color in the first region, and a plurality of pixel compensation circuits in the second region; each pixel compensation circuit is connected to one of the subpixel oldie first color from a same pixel, the subpixel of the second color and the subpixel of the third color from adjacent pixels.
  • Optionally, each second region is surrounded by the subpixel of the first color from the same pixel, the subpixel of the second color from a first adjacent pixel, and two subpixels oldie third color respectively from a second and a third adjacent pixels; the first color, the second color, and the third color are different colors selected form red, green, and blue.
  • Optionally; each pixel comprises three pixel compensation circuits, each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color from a first adjacent pixel, and the subpixel of the third color from a second adjacent pixel.
  • Optionally, each pixel comprises four pixel compensation circuits, each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color from a first adjacent pixel, the subpixel of the third color from a second adjacent pixel, and the subpixel of the third color from a third adjacent pixel.
  • Optionally, each pixel comprises a subpixel of a first color, a subpixel of a second color, a subpixel of a third color in the first region, a touch subpixel in the second region, the touch electrode layer is configured to operate in a time-division driving mode, the time-division mode comprising a display mode and a touch control mode, the touch electrode layer is a touch control electrode for conducting touch signals during the touch control mode, and one second electrode block in the second region and the touch electrode layer are electrodes for applying voltage signal to the second light emitting layer during display mode, each pixel further comprises four pixel compensation circuits, each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color from a first adjacent pixel, the subpixel of the third color from a second adjacent pixel, and the touch subpixel.
  • Optionally, the first light emitting layer is an integral white light emitting layer; each pixel further comprises a plurality of color filters on a side of the second electrode layer distal to the first light emitting layer, each of which corresponding to a subpixel.
  • Optionally, the touch electrode layer is configured to operate in a time-division driving mode, the time-division mode comprising a display mode and a touch control mode, the touch electrode layer, is a touch control electrode for conducting touch, signals during the touch control mode, and one second electrode block in the second region and the touch electrode layer are electrodes for applying voltage signal to the second light emitting layer during display mode.
  • Optionally, the touch display substrate further comprises a plurality of thin film transistors on a p-silicon substrate, each of which corresponding to one first electrode block or one second electrode block.
  • Optionally, the first electrode layer is an anode layer, and the second electrode layer is a cathode layer.
  • In another aspect, the present invention provides a pixel arrangement comprising an array of a plurality of pixels, wherein each pixel comprises a subpixel of a first color, a subpixel of a second color, a subpixel of a third color, a touch subpixel; and a plurality of pixel compensation circuits in the touch subpixel; each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color and the subpixel of the third color from adjacent pixels; and each touch subpixel is surrounded by the subpixel of the first color from a same pixel, the subpixel of the second color from a first adjacent pixel, and two subpixels of the third color respectively from a second and a third adjacent pixels.
  • Optionally, each pixel comprises three pixel compensation circuits, each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color from a first adjacent pixel, the subpixel of the third color from a second adjacent pixel.
  • Optionally, each pixel comprises four pixel compensation circuits, each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color from a first adjacent pixel, the subpixel of the third color from a second adjacent pixel, and the subpixel of the third color from a third adjacent pixel.
  • Optionally, each pixel comprises four pixel compensation circuits, each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color from a first adjacent pixel, the subpixel of the third color from a second adjacent pixel, and the touch subpixel.
  • In another, aspect, the present invention provides a method of fabricating a touch display substrate comprising forming an array of a plurality, of pixels, each pixel comprising, a fast region and a second, region in plan view of the touch display substrate; wherein forming each pixel comprising forming a first electrode layer on a base substrate; the step of forming the first electrode layer comprising forming a plurality of first electrode blocks in the first region, each of which corresponding to a subpixel; and forming a second electrode block in the second region; thrilling a first light emitting layer in the first region on a side of the plurality of first electrode blocks distal to the base substrate; forming a second light emitting layer in the second region on a side of the second electrode block distal to the base substrate; forming a second electrode layer in the first region on a side of the first light emitting layer distal to the plurality of first electrode blocks; and forming a touch electrode layer in the second region on a side of the second light emitting layer distal to the second electrode block; the touch electrode layer and the second electrode layer spaced apart and electrically insulated from each other.
  • Optionally, the method further comprises forming a pattern spacer layer on the base substrate dividing each pixel into the first region and the second region; the pattern spacer layer spacing apart and electrically insulating the touch electrode layer and the second electrode layer; and the pattern spacer layer spacing apart and electrically insulating the first light emitting layer and the second light emitting layer.
  • Optionally, the pattern spacer layer is made of a photoresist material, the step of forming each pixel comprises depositing a photoresist layer on the base substrate having the first electrode layer; exposing the photoresist layer with a mask plate having a pattern corresponding to the pattern spacer layer; developing the exposed photoresist layer thereby forming the pattern spacer layer; depositing an organic light emitting material layer on a side of the first electrode layer distal to the base substrate having the pattern spacer layer, thereby forming the first light emitting layer in the first region and the second light emitting layer in the second region; and depositing an electrode material layer on a side of the organic light emitting material layer distal to the first electrode layer, thereby forming the second electrode layer in the first region and the touch electrode layer in the second region.
  • Optionally, the method further comprises electrically connecting one second electrode block in the second region to the touch electrode layer.
  • Optionally, the step of electrically connecting the one second electrode block in the second region to the touch electrode layer comprises sintering a portion of a multilayer structure comprising the one second electrode block in the second region, the second light emitting layer, and the touch electrode layer, and forming a conductive channel in the second light emitting layer, the conductive channel comprising a sintered conductive material comprising at least one of a light emitting material, a conductive material of the one second electrode block, and a conductive material of the touch electrode layer.
  • Optionally, the step of forming each pixel further comprises forming a pixel compensation circuit in the second region.
  • Optionally, the first region comprises a subpixel of a first color, a subpixel of a second color, a subpixel of a third color; forming each pixel, comprises forming a plurality of pixel compensation circuits in the second region, each of which connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color and the subpixel of the third color from adjacent pixels; the method comprising forming the array of the plurality of pixels so that each second region is surrounded by the subpixel of the first color from a same pixel, the subpixel of the second color from an adjacent pixel, and two subpixels of the third color respectively from two other adjacent pixels.
  • Optionally, the touch electrode layer is formed in a same layer as the second electrode layer, and the first light emitting layer is formed in a same layer as the second light emitting layer.
  • Optionally, the method further comprises forming a plurality of electrode lead wires in the first region and a plurality of touch control lead wires in the second region in a same layer; and electrically connecting the plurality of touch control lead wires to the touch electrode layer through a conductive channel in the second light emitting layer; wherein the step of electrically connecting the plurality of touch control lead wires to the touch electrode layer comprises sintering a portion of a multilayer structure comprising a touch control lead wire in the second region, the second light emitting layer, and the touch electrode layer; and forming a conductive channel in the second light emitting layer, the conductive channel comprising a sintered conductive material comprising at least one of a light emitting material, a conductive material of the touch control lead wire, and a conductive material of the touch electrode layer.
  • In another aspect, the present invention provides a touch display apparatus comprising a touch display substrate described herein or fabricated by a method described herein.
  • BRIEF DESCRIPTION OF THE FIGURES
  • The following drawings are merely examples for illustrative purposes according to various disclosed embodiments and are not intended to limit the scope of the present invention.
  • FIG. 1A is a diagram illustrating the structure of a touch display substrate in some embodiments.
  • FIG. 1B is a diagram illustrating the structure of a touch display substrate in some embodiments.
  • FIG. 1C is a diagram illustrating the structure of a touch display substrate in some embodiments.
  • FIG. 2 is a diagram illustrating a pixel arrangement in a touch display substrate in some embodiments.
  • FIG. 3 is a diagram illustrating a pixel arrangement in a conventional touch display substrate.
  • FIG. 4 is a diagram illustrating an arrangement for pixel compensation circuits in a touch display substrate in some embodiments.
  • FIG. 5 is a diagram illustrating an arrangement for pixel compensation circuits in a touch display substrate in some embodiments.
  • FIG. 6 is a flow chart illustrating a method of fabricating a touch display substrate in some embodiments.
  • FIG. 7A is a diagram illustrating the structure of a pattern spacer layer in some embodiments.
  • FIG. 7B is a diagram illustrating the structure of a pattern spacer layer in sonic embodiments.
  • DETAILED DESCRIPTION
  • The disclosure will now describe more specifically with reference to the following embodiments. It is to be noted that the following descriptions of some embodiments are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed.
  • The present disclosure provides, inter alia, a novel in-cell touch display substrate, a touch display apparatus having the same, and a fabricating method thereof In some embodiments, the present touch display substrate utilizes a subpixel area of each pixel as a touch sensor area, and electrically insulating a portion of the cathode (or anode) as the touch electrode. The present design provides a compact in-cell touch structure which may be manufactured together with the display module. Moreover, the touch lead wires may be optionally disposed in a same layer as the electrode lead wires for cathode or anode, the touch electrode and the touch lead wires may be electrically connected by sintering a portion of the light emitting layer. To further decrease the thickness and increase the aperture ratio of the display substrate, the touch display substrate may be designed to have a novel pixel arrangement so that multiple pixel compensation circuits from multiple subpixels may be disposed in a same touch subpixel area.
  • In some embodiments, the present touch display substrate includes an array of a plurality of pixels. Each pixel includes a first region and a second region in plan view of the touch display substrate. In some embodiments, each pixel includes a first electrode layer on a base substrate comprising a plurality of first electrode blocks in the first region, each of which corresponding to a subpixel, and at least one second electrode block in the second region; a first light emitting layer in the first region on a side of the plurality of first electrode blocks distal to the base substrate; a second light emitting layer in the second region on a side of the second electrode block distal to the base substrate; a second electrode layer in the first region on a side of the first light emitting layer distal to the plurality of first electrode blocks; and a touch electrode layer in the second region on a side of the second light emitting layer distal to the second electrode block. Optionally, the touch electrode layer and the second electrode layer spaced apart and electrically insulated from each other. Optionally, the first light emitting layer and the second light emitting layer are spaced apart and electrically insulated from each other. Optionally, the touch electrode layer is in a same layer as the second electrode layer. Optionally, the first light emitting layer is in a same layer as the second light emitting layer. Optionally, the touch electrode layer and the second electrode layer spaced apart and electrically insulated from each other, the first light emitting layer and the second light emitting layer are spaced apart and electrically insulated from each other, the touch electrode layer is in a same layer as the second electrode layer, and the first light emitting layer is in a same layer as the second light emitting layer.
  • In another aspect, the present disclosure provides a method of fabricating a touch display substrate described herein. The touch display substrate includes an array of a plurality of pixels, with each pixel including a first region and a second region in plan view of the touch display substrate. In some embodiments, the step of forming each pixel includes forming a first electrode layer on a base substrate; the step of forming the first electrode layer comprising forming a plurality of first electrode blocks in the first region, each of which corresponding to a subpixel; and forming a second electrode block in the second region; forming a first light emitting, layer in the first region on a side of the plurality of first electrode blocks distal to the base substrate; forming a second light emitting layer in the second region on a side of the second electrode block distal to the base substrate; forming a second electrode layer in the first region on a side of the first light emitting layer distal to the plurality of first electrode blocks; and forming a touch electrode layer in the second region on a side of the second light emitting layer distal to the second electrode block. Optionally, the touch electrode layer and the second electrode layer are formed to be spaced apart and electrically insulated from each other. Optionally, the first light emitting layer and the second light emitting layer are formed to be spaced apart and electrically insulated from each other. Optionally, the touch electrode layer is formed in a same layer as the second electrode layer. Optionally, the first light emitting layer is formed in a same layer as the second light emitting layer. Optionally, the touch electrode layer and the second electrode layer are firmed to be spaced apart and electrically insulated from each other, the first light emitting layer and the second light emitting layer are formed to be spaced apart and electrically insulated from each other, the touch electrode layer is formed in a same layer as the second electrode layer, and the first light emitting layer is formed in a same layer as the second light emitting layer.
  • Various methods may be practiced to space apart and electrically insulate the touch electrode layer from the second electrode layer, and the first light emitting layer from the second light emitting layer. For example, the patterns of the first light emitting layer, the second light emitting layer, the touch electrode layer, and the second electrode layer may be formed using a mask plate so that there is a gap between the first light emitting layer from the second light emitting layer, and a gap between the touch electrode layer and the second electrode layer. In some embodiments, a single light emitting layer may be formed in a single process (e.g., a deposition process), and the single light emitting layer may be patterned to form the first light emitting layer and the second light emitting layer (e.g., etching a gap in the single light emitting layer dividing it into two layers). Similarly, a single electrode layer may be formed in a single process (e.g., a deposition process), and the single electrode layer may be patterned to form the touch electrode layer and the second electrode layer (e.g., etching a gap in the single electrode layer dividing it into two layers).
  • In some embodiments, each pixel includes a pattern spacer layer on the base substrate dividing the pixel into the first region and the second region. The pattern spacer layer spaces apart and electrically insulates the touch electrode layer and the second electrode layer from each other. Optionally, the pattern spacer layer spaces apart and electrically insulates the first light emitting layer and the second light emitting layer from each other.
  • Accordingly, the step of forming each pixel may optionally include forming a pattern spacer layer on the base substrate dividing each pixel into the first region and the second region. The pattern spacer layer is formed to space apart and electrically insulate the touch electrode layer and the second electrode layer; and space apart and electrically insulate the first light emitting layer and the second light emitting layer.
  • FIG. 1A is a diagram illustrating the structure of a touch display substrate in some embodiments. Referring to FIG. 1A, the touch display substrate in the embodiment includes an array of a plurality of pixels 1. Each pixel 1 may include a plurality of subpixels, e.g., subpixels 11A, 11B, 11C, and 11D. As shown in FIG. 1A, the touch display substrate in the embodiment includes a first electrode layer 4 on a base substrate 20. The first electrode layer 4 includes a plurality of first electrode blocks, e.g., 4A and a second electrode block, in other words one or more second electrode block, e.g., 4B. Moreover, the touch display substrate includes a pattern spacer layer 5 dividing the pixel 1 into a first region 2 and a second region 3 in plan view of the base substrate 20. The first region 2 includes a plurality of subpixels 11A, 11B, and 11C capable of image display, each of which includes a driving thin film transistor 10. The second region 3 includes at least one touch subpixel 11D for touch control. Optionally, the touch subpixel 11D is also capable of image display. Optionally, the touch subpixel 11D includes a driving thin film transistor 10. Each driving thin film transistor 10 is electrically connected to a first electrode block 4A or a second electrode block 4B.
  • Various embodiments may be practiced to make and use the touch display substrate. For example, the base substrate may be made of any appropriate material, e.g., glass, quartz, or a transparent resin. The thin film transistor 10 may be a thin film transistor including a gate electrode, a source electrode, a drain electrode, and an active layer.
  • In some embodiments, the base substrate is a p+ silicon substrate. As shown in FIG. 1A, the thin film transistor 10 may be a thin film transistor including a gate structure 40, an N-well 50, and a field oxide (FOX) isolation structure 60. In some embodiments, the base substrate is an n+ silicon substrate. Optionally, the thin film transistor including a gate structure, a P-well, and a field oxide (FOX) isolation structure 60.
  • Optionally, the first electrode layer is an anode layer, and the second electrode layer is a cathode layer. Optionally, the first electrode layer is a cathode layer, and the second electrode layer is an anode layer.
  • As shown in FIG. 1A, the first electrode blocks 4A are in the first region 2, and the second electrode block 4B is in the second region 3. Each of the first electrode blocks 4A corresponds to one of subpixels 11A, 11B, 11C. The second electrode block 4B corresponds to subpixel 11D.
  • In some embodiments, the touch display substrate includes a light emitting layer 6 on a side of the first electrode layer 4 distal to the base substrate 20. The pattern spacer layer 5 divides the light emitting layer 6 into a first light emitting layer 6A in the first region 2 and a second light emitting layer 6B in the second region 3, i.e., the first light emitting layer GA and the second light emitting layer 6B are spaced apart by the pattern spacer layer 5. The first light emitting layer 6A corresponds to subpixels 11A, 11B, and 11C, and the second light emitting layer 6B corresponds to subpixel 11D. Because the pattern spacer layer 5 is made of electrically non-conductive material such as a photoresist, the first light emitting layer GA and the second light emitting layer 6B are also electrically insulated by the pattern spacer layer 5.
  • The first light emitting layer GA and the second light emitting layer 6B may be made in a single process, e.g., a single deposition process. Thus, the first light emitting layer 6A and the second light emitting layer 6B may be in a same layer. Optionally, the first light emitting layer 6A and the second light emitting layer 6B may be made in two deposition processes. Accordingly, the first light emitting layer 6A and the second light emitting layer 6B may be in different layers.
  • As shown in FIG. 1A, the first light emitting layer 6A is on a side of the first electrode blocks 4A distal to the base substrate 20, and the second light emitting layer 6B is on side of the second electrode blocks 4B distal to the base substrate 20.
  • Referring to FIG. 1A, the touch display substrate in the embodiment further includes a second electrode layer 7A on a side of the light emitting layer 6 distal to the first electrode layer 4. Specifically, the second electrode layer 7A is on a side of the first light emitting layer 6A distal to the first electrode blocks 4A. The second electrode layer 7A is in the first region 2. Optionally, the second electrode layer 7A is an integral electrode layer.
  • Referring to FIG. 1A, the touch display substrate in the embodiment further includes a touch electrode layer 78 on a side of the light emitting layer 6 distal to the first electrode layer 4. Specifically, the touch electrode layer 78 is on a side of the second light emitting layer 6B distal to the second electrode block 4B. The touch electrode layer 7B is in the second region 3. Optionally, the touch electrode layer 7B is an integral electrode layer.
  • As shown in FIG. 1A, the first light emitting layer 6A is on a side of the second electrode layer 7A proximal to the base substrate 20, and the second light emitting layer 6B is on side of the touch electrode layer 7B proximal to the base substrate 20.
  • In some embodiments, the touch display substrate includes one or more organic layer between the first light emitting layer 6 and the first electrode layer 4. Optionally, the touch display substrate includes one or more organic layer between the first light emitting layer 6A and the first electrode layer 4 in the first region (e.g., the first electrode block 4A). Optionally, the touch display substrate includes one or more organic layer between the second light emitting layer 6B and the first electrode layer 4 in the second region (e.g., the second electrode block 4B). In some embodiments, the touch display substrate includes one or more organic layer between the first light emitting layer 6A and the second electrode layer 7A. In some embodiments, the touch display substrate includes one or more organic layer between the second light emitting layer 6B and the touch electrode layer 7B. Optionally, the one or more organic layer is a carrier transport layer such as a hole transport layer or an electron transport layer. Optionally, the one or more organic layer is a carrier injection layer such as a hole injection layer or an electron injection layer.
  • Optionally, the first light emitting layer 6A is an integral white light emitting layer. Optionally, the second light emitting layer 6B is an integral white light emitting layer. Optionally, the first light emitting layer 6A and the second light emitting layer 6B are formed in a single process.
  • Optionally, the first light emitting layer 6A includes a plurality of light emitting blocks, each of which is capable of emitting a light of a different color, e.g., a red light emitting block, a green light emitting block, a blue light emitting block, or a white light emitting block, Each light emitting block corresponds to a subpixel, e.g., subpixel 11A, 11B, or 11C. Each light emitting block corresponds to a first electrode block 4A. Optionally, the touch display substrate includes a pixel definition layer insulating each of the light emitting blocks. Optionally, the light emitting blocks include a red light emitting layer. Optionally, the light emitting blocks include a green light emitting layer. Optionally, the light emitting blocks include a blue light emitting layer. Optionally, the light emitting blocks include a white light emitting layer. In some embodiments, the touch display substrate includes one or more organic layer between a first light emitting block and a first electrode block 4A. In some embodiments, the touch display substrate includes one or more organic layer between a first light emitting block and the second electrode layer 7A. Optionally, the one or more organic layer is a carrier transport layer such as a hole transport layer or an electron transport layer. Optionally, the one or more organic layer is a carrier injection layer such as a hole injection layer or an electron injection layer.
  • The pattern spacer layer 5 separates the second electrode layer 7A in the first region 2 apart from the touch electrode layer 7B in the second region 3, i.e. the second electrode layer 7A and the touch electrode layer 7B are spaced apart by the pattern spacer layer 5. The second electrode layer 7A corresponds to subpixels 11A, 11B, and 11C, and the touch electrode layer 7B corresponds to subpixel 11D. Because the pattern spacer layer 5 is made of non-conductive material such as a photoresist, the second electrode layer 7A and the touch electrode layer 7B are also electrically insulated by the pattern spacer layer 5.
  • The second electrode layer 7A and the touch electrode layer 7B may be made in a single process, e.g., a single deposition process. Thus, the second electrode layer 7A and the touch electrode layer 7B may be in a same layer. Optionally, the second electrode layer 7A and the touch electrode layer 7B may be made in two deposition processes. Accordingly, the second electrode layer 7A and the touch electrode layer 7B may be in different layers.
  • In some embodiments, the second electrode block 4B in the second region is electrically connected to the touch electrode layer 7B. Various embodiments may be practiced to electrically connect the second electrode block 4B to the touch electrode layer 7B. For example, the second electrode block 4B and the touch electrode layer 7B may be electrically connected through a via extending through the second light emitting layer 6B. As discussed hereinthroughout, the second electrode block 4B and the touch electrode layer 7B may also be electrically connected through a conductive channel in the second light emitting layer 6B. The conductive channel includes a sintered conductive material including a light emitting material, a conductive material of the second electrode block in the second region, and a conductive material of the touch electrode layer.
  • FIG. 1B is a diagram illustrating the structure of a touch display substrate in some embodiments. Referring to FIG. 1B, the touch display substrate in the embodiment includes a conductive channel 8 in the second light emitting layer 6B. The conductive channel 8 may be formed by sintering the second light emitting layer 6B, the touch electrode layer 7B, and the second electrode block 4B, e.g., by a laser. The conductive channel 8 includes a sintered conductive material including at least one of a light emitting material of the second light emitting layer 6B, a conductive material of the second electrode block 4B, and a conductive material of the touch electrode layer 7B. Optionally, a portion of the touch electrode layer 7B corresponding to the conductive channel 8 also includes a sintered material comprising at least a conductive material of the touch electrode layer 7B and a light emitting material of the second light emitting layer 6B. Optionally, a portion of the second electrode block 4B corresponding to the conductive channel 8 also includes a sintered material comprising at least a conductive material of the second electrode block 4B and a light emitting material of the second light emitting layer 6B. The conductive channel 8 is at least partially sintered so that the conductive channel 8 becomes electrically conductive, electrically connecting the second electrode block 4B and the touch electrode layer 7B.
  • In some embodiments, touch display substrate includes an additional layer between the second light emitting layer 6B and the second electrode block 4B in the second region, or between the second light emitting layer 6B and the touch electrode layer 7B. Optionally, the touch display substrate includes one or more organic layer between the second light emitting layer 6B and the second electrode block 4B in the second region. Optionally, the touch display substrate includes one or more organic layer between the second light emitting layer 6B and the touch electrode layer 7B. Optionally, the one or more organic layer is a carrier transport layer such as a hole transport layer or an electron transport layer. Optionally, the one or more organic layer is a carrier injection layer such as a hole injection layer or an electron injection layer.
  • Accordingly, the conductive channel 8 may optionally include a sintered conductive material including a light emitting material of the second light emitting layer 6B, a conductive material of the second electrode block 4B, a conductive material of the touch electrode layer 7B, and a material of the additional layer between the second light emitting layer 6B and the second electrode block 4B in the second region, or between the second light emitting layer 6B and the touch electrode layer 7B. Examples of the additional layers include a carrier transport layer such as a hole transport layer or an electron transport layer and a carrier injection layer such as a hole injection layer or an electron injection layer. Optionally, the conductive channel 8 includes a sintered conductive material including a light emitting material of the second light emitting layer 6B, a conductive material of the second electrode block 4B, a conductive material of the touch electrode layer 7B, and a material of a carrier transport layer (e.g., a hole transport layer or an electron transport layer). Optionally, the conductive channel 8 includes a sintered conductive material including a light emitting material of the second light emitting layer 6B, a conductive material of the second electrode block 4B, a conductive material of the touch electrode layer 7B, and a material of a carrier injection layer (e.g., a hole injection layer or an electron injection layer). Optionally, the conductive channel 8 includes a sintered conductive material including a light emitting material of the second light emitting layer 6B, a conductive material of the second electrode block 4B, a conductive material of the touch electrode layer 7B, a material of a carrier transport layer (e.g., a hole transport layer or an electron transport layer), and a material of a carrier injection layer (e.g., a hole injection layer or an electron injection layer).
  • FIG. 1C is a diagram illustrating the structure of a touch display substrate in some embodiments. Referring to FIG. 1C, the touch display substrate in the embodiment includes a conductive channel 8′ in the second light emitting layer 6B. As shown in FIG. 1C, the touch display substrate in the embodiment includes a plurality of electrode lead wires 80 in the first region and a plurality of touch control lead wires 70 in the second region. The plurality of touch control lead wires 70 are in a same layer as the plurality of electrode lead wires 80. The plurality of touch control lead wires 70 may be electrically connected to the touch electrode layer 7B through a conductive channel 8′ in the second light emitting layer 6B. The conductive channel 8′ may be formed by sintering the second light emitting layer 6B, the touch electrode layer 7B, and the touch control lead wires 70, e.g., by a laser. The conductive channel 8′ includes a sintered conductive material including at least one of a light emitting material of the second light emitting layer 6B, a conductive material of the touch control lead wires 70, and a conductive material of the touch electrode layer 7B. Optionally, a portion of the touch electrode layer 7B corresponding to the conductive channel 8′ also includes a sintered material comprising at least a conductive material of the touch electrode layer 7B and a light emitting material of the second light emitting layer 6B. Optionally, a portion of the touch control lead wires 70 corresponding to the conductive channel 8′ also includes a sintered material comprising at least a conductive material of the touch control lead wires 70 and a light emitting material of the second light emitting layer 6B. The conductive channel 8′ is at least partially sintered so that the conductive channel 8′ becomes electrically conductive, electrically connecting the touch control lead wires 70 and the touch electrode layer 7B.
  • In some embodiments, touch display substrate includes an additional layer between the second light emitting layer 6B and the touch control lead wires 70 in the second region, or between the, second light emitting layer 6B and the touch electrode layer 7B. Optionally, the touch display substrate includes one or more organic layer between the second light emitting layer GB and the touch control lead wires 70 in the second region. Optionally, the touch display substrate includes one or more organic layer between the second light emitting layer 6B and the touch electrode layer 7B. Optionally, the one or more organic layer is a carrier transport layer such as a hole transport layer or an electron transport layer. Optionally, the one or more organic layer is a carrier injection layer such as a hole injection layer or an electron injection layer.
  • Accordingly, the conductive channel 8′ may optionally include a sintered conductive material including a light emitting material of the second light emitting layer 6B, a conductive material of the touch control lead wires 70, a conductive material of the touch electrode layer 7B, and a material of the additional layer between the second light emitting layer 6B and the touch control lead wires 70 in the second region, or between the second light emitting layer 6B and the touch electrode layer 7B. Examples of the additional layers include a carrier transport layer such as a hole transport layer or an electron transport layer and a carrier injection layer such as a hole injection layer or an electron injection layer. Optionally, the conductive channel 8′ includes a sintered conductive material including a light emitting material of the second light emitting layer 6B, a conductive material of the touch control lead wires 70, a conductive material of the touch electrode layer 7B, and a material of a carrier transport layer (e.g., a hole transport layer or an electron transport layer). Optionally, the conductive channel 8′ includes a sintered conductive material including a light emitting material of the second light emitting layer 6B, a conductive material of the touch control lead wires 70, a conductive material of the touch electrode layer 7B, and a material of a carrier injection layer (e.g., a hole injection layer or an electron injection layer). Optionally, the conductive channel 8′ includes a sintered conductive material including a light emitting material of the second light emitting layer 6B, a conductive material of the touch control ad wires 70, a conductive material of the touch electrode layer 7B, a material of a carrier transport layer (e.g., a hole transport layer or an electron transport layer), and a material of a carrier injection layer (e.g., a hole injection layer or an electron injection layer).
  • Because the touch electrode layer 7B may be electrically connected to the touch control lead wires 70 through the conductive channel 8′, touch control lead wires 70 may be connected to the touch electrode layer 7B through the conductive channel 8′. Accordingly, the touch control lead wires 70 may be formed in a same layer as electrode lead wires 80 for driving image display in the first region. Optionally, the touch control lead wires 70 are in a same layer as the first electrode lead wires. Optionally, the touch control lead wires 70 are in a same layer as the second electrode lead wires.
  • Referring to EEGs, 1A-1C, the touch display substrate in the embodiments further includes at least one pixel compensation circuit 9 in the second region. Examples of pixel compensation circuit 9 include, but are not limited to, a 6T1C circuit, a 2T1C circuit, a 4T1C circuit, and a 5T1C circuit.
  • In some embodiments, the touch display substrate includes a plurality of pixel compensation circuits 9 (e.g., 2, 3, 4, or more) in the second region. For example, the touch display substrate may include a plurality of pixel compensation circuits 9, each of which corresponding to a different subpixel (e.g., a red subpixel, a green subpixel, or a blue subpixel).
  • In another aspect, the present disclosure provides a novel pixel arrangement in the touch display substrate. In some embodiments, a pixel includes a subpixel of a first color, a subpixel of a second color, a subpixel of a third color, and a second region in the pixel is adjacent to a subpixel of the first color from a same pixel, a subpixel of the second color from a first adjacent pixel, and two subpixels of the third color respectively from a second and a third adjacent pixels. The first color, the second color, and the third color are three different colors, e.g., red, green, and blue.
  • FIG. 2 is a diagram illustrating a pixel arrangement in a touch display substrate in some embodiments. Referring to FIG. 2, the touch display substrate in the embodiment includes a red subpixel 11A, a green subpixel 11B, a blue subpixel 11C, and a touch subpixel 11D. As discussed hereinthroughout, the pixel of the present disclosure includes a first region and a second region. The first region includes the red subpixel 11A, the green subpixel 11B, and the blue subpixel 11C capable of image display. The second region includes the touch subpixel 11D for touch control. Optionally, the touch subpixel 11D is also capable of image display. Each pixel also includes at least one pixel compensation circuit in the touch subpixel 11D. For example, each pixel may include at least three pixel compensation circuits in the touch subpixel 11D, each of which is connected to one of the red subpixel 11A, the green subpixel 11B, and the blue subpixel 11C.
  • Referring to FIG. 2, the second region (and the touch subpixel 11D) is surrounded by four subpixels, a blue subpixel 11C from the same pixel (on the left side of 11D), a red subpixel 11A front a first adjacent pixel (on the right side of 11D), and two green subpixels 11C from a second adjacent pixel and a third adjacent pixel (on the upper and low sides of 11D).
  • FIG. 3 is a diagram illustrating a pixel arrangement in a conventional touch display substrate. Referring to FIG. 3, the second region (and the touch subpixel 11D) is surrounded by a blue subpixel 11C from the same pixel (on the left side of 11D), a red subpixel 11A from a first adjacent pixel (on the right side of 11D), and two touch subpixels 11D from a second adjacent pixel and a third adjacent pixel (on the upper and low sides of 11D). Thus, in the conventional touch display substrate, the second region is not surrounded by a green subpixel 11B. As such, it is difficult to dispose a pixel compensation circuit associated with a green subpixel 11B in the second region.
  • As compared to the conventional touch display substrate, the second region in the present touch display substrate is surrounded by a red subpixel 11A, a blue subpixel 11C, and two green subpixels 11B. Accordingly, pixel compensation circuits associated with subpixels of all three colors may be conveniently disposed in a same second region. FIG. 4 is a diagram illustrating an arrangement fair pixel compensation circuits in a touch display substrate in some embodiments. Referring to FIG. 4, each second region of each pixel includes three sections 11D1, 11D2, and 11D3, each of which includes a pixel compensation circuit. For example, the second region may include a pixel compensation circuit in 11D2 connected to, a red subpixel from a first adjacent pixel (on the right side of touch subpixel), a pixel compensation circuit in 11D3 connected to a blue subpixel from a same pixel (on the left side of touch subpixel), and a pixel compensation circuit in 11D1 connected to a green subpixel from a second adjacent pixel (on the upper side of touch subpixel).
  • The second region may include more than three pixel compensation circuits. FIG. 5 is a diagram illustrating an arrangement for pixel compensation circuits in a touch display substrate in some embodiments. Referring to FIG. 5, each second region of each pixel, includes four sections 11D1, 11D2, 11D3, and 11D4, each of which includes a pixel compensation circuit. For example, the second region may include a pixel compensation circuit in 11D2 connected to a red subpixel from a first adjacent pixel (on the right side of touch subpixel), a pixel compensation circuit in 11D3 connected to a blue subpixel from a same pixel (on the left side of touch subpixel), a pixel compensation circuit in 11D1 connected to, a green subpixel from a second adjacent pixel (on the upper side of touch subpixel), and a pixel compensation circuit in 11D4 connected to a green subpixel from a third adjacent pixel (on the lower side of touch subpixel).
  • In some embodiments, the touch electrode layer is operated in a time-division driving mode. For example, the time-division driving mode may include a display mode and a touch control mode. The touch electrode layer is a touch control electrode for conducting touch signals during the touch control mode. In display mode, the second electrode block in the second region and the touch electrode layer are electrodes for applying voltage signal to the second light emitting layer for image display during display mode. Optionally, when the touch electrode layer is operated in a tune-division driving mode, the second region may further include a pixel compensation circuit for the touch subpixel. For example, the second region may include a pixel compensation circuit in 11D2 connected to a red subpixel from a first adjacent pixel (on the right side of touch subpixel), a pixel compensation circuit in 11D3 connected to a blue subpixel front a same pixel (on the left side of touch subpixel), a pixel compensation circuit in 11D1 connected to a green subpixel from a second adjacent pixel (on the upper side of touch subpixel), and a pixel compensation circuit in 11D4 for the touch subpixel itself.
  • Referring to FIGS. 1A and 1B, the light emitting layer in the embodiments is a white light emitting layer (including the first light emitting layer 6A and the second light emitting layer 6B). As shown in FIGS. 1A and 1B, each pixel further includes a plurality of color filters 30A, 30B, and 30C, in the first region 2. Each of the plurality of color filters 30A, 30B, and 30C corresponds to a subpixel. For example, the color filter 30A may be a red color filter corresponding to a red subpixel, the color filter 30B may be a green color filter corresponding to a green subpixel, and the color filter 30C may be a blue color filter corresponding to a blue subpixel. Optionally, the first light emitting layer 6A is an integral light emitting layer.
  • In another aspect, the present disclosure provides a method of fabricating a touch display substrate. In some embodiments, the method includes forming an array of a plurality of pixels. FIG. 6 is a flow chart illustrating a method of fabricating a touch display substrate in some embodiments. Referring to FIG. 6, the step of forming each pixel in the embodiment includes forming a first electrode layer on a base substrate comprising a plurality of first electrode blocks and a second electrode block; forming a pattern spacer layer on the base substrate dividing each pixel into a first region and a second region in plan view of the base substrate; forming a light, emitting layer on a side of the first electrode layer distal to the base substrate, the light emitting layer comprising a first light emitting layer in the first region and a second light emitting layer in the second region, the first light emitting layer and the second light emitting layer spaced apart by the pattern spacer layer; and forming a second electrode layer and a touch electrode layer in a same layer on a side of the light emitting layer distal to the first electrode layer; the second electrode layer in the first region, the touch electrode layer in the second region; the touch electrode layer spaced apart and electrically insulated by the pattern spacer layer from the second electrode layer.
  • Various appropriate materials may be used for making the pattern spacer layer. In some embodiments, the pattern spacer layer is made of a photoresist material. FIG. 7A is a diagram illustrating the structure of a pattern spacer layer in some embodiments. Referring to FIG. 7A, the pattern spacer layer 5 is formed on the base substrate, and a light emitting material and an electrode material are sequentially deposited on the base substrate having the pattern spacer layer 5. The first light emitting layer 6A and the second electrode layer 7A are formed in the first region. The second light emitting layer 6B and the touch electrode layer 7B are formed in the second region. As shown in FIG. 7B, the pattern spacer layer electrically insulates the first light emitting layer 6A in the first region and the second light emitting layer 6B in the second region; and insulates the second electrode layer 7A in the first region and the touch electrode layer 7B in the second region.
  • During the deposition process, the light emitting material and the electrode material may also be deposited on the pattern spacer layer 5, forming a third light emitting portion 12 and an electrode layer 13 on the pattern spacer layer 5. Optionally, the third light emitting portion 12 and an electrode layer 13 may be removed (e.g., by etching, milling, etc.) subsequent to the formation of the first tight emitting layer 6A, the second electrode layer 7A, the second light emitting layer 6B and the touch electrode layer 7B. FIG. 7B is a diagram illustrating the structure of a pattern spacer layer in some embodiments. Referring to FIG. 7B, the pattern spacer layer 5 is formed on the base substrate, and a light emitting material and an electrode material are sequentially deposited on the base substrate having the pattern spacer layer 5. The light emitting material and electrode material on the pattern spacer layer 5 are removed.
  • Accordingly, in some embodiments, the step of forming each pixel includes depositing a photoresist layer on the base substrate haying the first electrode layer; exposing the photoresist layer with a mask plate having a pattern corresponding to the pattern spacer layer; and developing the exposed photoresist layer thereby forming the pattern spacer layer. Once the pattern spacer layer is formed, the step may further include depositing an organic light emitting material layer on a side of the first electrode layer distal to the base substrate having the pattern spacer layer, thereby forming the first light emitting layer in the first region and the second light emitting layer in the second region. The first light emitting layer in the first region and the second light emitting layer in the second region may be formed in a single deposition step. Optionally, the first light emitting layer in the first region and the second light emitting layer in the second region may be thrilled separately in two processes. Once the first light emitting layer in the first region and the second light emitting layer in the second region are formed, the step may further include depositing an electrode material layer on a side of the organic light emitting material layer distal to the first electrode layer, thereby forming the second electrode layer in the first region and the touch electrode layer in the second region. The second electrode layer in the first region and the touch electrode layer in the second region may be formed in a single deposition step. Optionally, the second electrode layer in the first region and the touch electrode layer in the second region may be formed separately in two processes.
  • Optionally, the first light emitting layer in the first region and the second light emitting layer in the second region are formed in a single deposition step, and the second electrode layer in the first region and the touch electrode layer in the second region are formed in a single deposition step. Optionally, any light emitting material and electrode material deposited on a side of the pattern spacer layer distal to the base substrate may be removed.
  • In some embodiments, the step of forming the first electrode layer includes forming a plurality of first electrode blocks in the first region, each of which corresponding to a subpixel; and forming a second, electrode block in the, second region. The plurality of first electrode blocks in the first region and the second electrode block in the second region may be formed in a single process, e.g., by a single deposition process, and using a single mask for patterning. Optionally, the plurality of first electrode blocks in the first region and the second electrode block in the second region are formed separately.
  • In some embodiments, the step of forming each pixel further includes electrically connecting the second electrode block in the second region to the touch electrode layer. Various appropriate methods may be practiced to electrically connect the second electrode block to the touch electrode layer. For example, the step may include forming a via extending through the second light emitting layer thereby electrically connecting the second electrode block and the touch electrode layer.
  • In some embodiments, the step of electrically connecting the second electrode block in the second region to the touch electrode layer includes sintering a portion of a multilayer structure including the second electrode block in the second region, the second light emitting layer, and the touch electrode layer; and forming conductive channel in the second light emitting layer. The conductive channel includes a sintered conductive material having a light emitting material, a conductive material of the second electrode block, and a conductive material of the touch electrode layer. Optionally, the sintering step may be performed by a laser. The conductive channel is at least partially sintered so that the conductive channel is electrically conductive, electrically connecting the second electrode block and the touch electrode layer.
  • As discussed hereinthroughout, touch display substrate may include an additional layer between the second light emitting layer and the second electrode block in the second region, or between the second light emitting layer and the touch electrode layer. Optionally, the touch display substrate includes one or more organic layer between the second light emitting layer and the second electrode block in the second region. Optionally, the touch display substrate includes one or more organic layer between the second light emitting layer and the touch electrode layer. Optionally, the one or more organic layer is a carrier transport layer such as a hole transport layer or an electron transport layer. Optionally, the one or more organic layer is a carrier injection layer; such as a hole injection layer or an electron injection layer.
  • Accordingly, the sintering step may optionally include sintering a portion of a multilayer structure including the second electrode block in the second region, the second light emitting layer, the touch electrode layer; the additional layer(s) between the second light emitting layer and the second electrode block in the second region; and the additional layer(s) between the second light emitting layer and the touch electrode layer. Examples of the additional layers include a carrier transport layer such as a bole transport layer or an electron transport layer and a carrier injection layer such as a hole injection layer or an electron injection layer.
  • In some embodiments, the step of famine each pixel further includes electrically connecting a plurality of touch control lead wires in the second region to the touch electrode layer. Various appropriate methods may be practiced to electrically connect the plurality of touch control lead wires to the touch electrode layer. For example, the step may include forming a via extending through the second light emitting layer thereby electrically connecting the touch control lead wires and the touch electrode layer.
  • In some embodiments, the step of electrically connecting the touch control lead wires in the second region to the touch electrode layer includes sintering a portion of a multilayer structure including the touch control lead wires in the second region, the second light emitting layer, and the touch electrode layer; and forming conductive channel in the second light emitting layer. The conductive channel includes a sintered conductive material having at least one of a light emitting material, a conductive material of the touch control lead wires, and a conductive material of the touch electrode layer. Optionally, the sintering step may be performed by a laser. The conductive channel is at least partially sintered so that the conductive channel is electrically conductive, electrically connecting the touch control lead wires and the touch electrode layer.
  • As discussed hereinthroughout, touch display substrate may include an additional layer between the second light emitting layer and the touch control lead wires in the second region, or between the second light emitting layer and the touch electrode layer. Optionally, the touch display substrate includes one or more organic layer between the second light emitting layer and the touch control lead wires in the second region. Optionally, the touch display substrate includes one or more organic layer between the second light emitting, layer and the touch electrode layer. Optionally, the one or more organic layer is a carrier transport layer such as a hole transport layer or an electron transport layer. Optionally, the one or more organic layer is a carrier injection layer such as a hole injection layer or an electron injection layer.
  • Accordingly, the sintering step may optionally include sintering a portion of a multilayer structure including the touch control lead wires in the second region, the second light emitting layer, the touch electrode layer; the additional layer(s) between the second light emitting layer and the touch control lead wires in the second region; and the additional layer(s) between the second light emitting layer and the touch electrode layer. Examples of the additional layers include a carrier transport layer such as a hole transport layer or an electron transport layer and a carrier injection layer such as a hole injection layer or an electron injection layer.
  • In some embodiments, the step of forming each pixel further includes forming a pixel compensation circuit in the second region. Optionally, the step includes forming a plurality of pixel compensation circuits in the second region.
  • In some embodiments, the first region includes a subpixel of a first color, a subpixel of a second color, to subpixel of a third color. The step of forming each pixel includes forming a plurality of pixel compensation circuits in the second region, each of which connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color and the subpixel of the third color from adjacent pixels. The method includes forming the array of the plurality of pixels so that each second region is surrounded by the subpixel of the first color from a same pixel, the subpixel of the second color from an adjacent pixel, and two subpixels of the third color respectively from two other adjacent pixels.
  • In some embodiments, the step of forming the plurality of pixel compensation circuits in a simile second region includes forming a pixel compensation circuit connected to a subpixel of a first color from a same pixel, a pixel compensation circuit connected to a subpixel of a second color from a first adjacent pixel, and two pixel compensation circuits connected to two subpixels of a third color from a second and a third adjacent pixels, respectively.
  • In some embodiments, the step of forming the plurality of pixel compensation circuits in a single second region includes forming a pixel compensation circuit connected to a subpixel of a first color from a same pixel, a pixel compensation circuit connected to a subpixel of a second color from a first adjacent pixel, a pixel compensation circuit connected to a subpixel of a third color from a second adjacent pixel, and a pixel compensation circuit connected the touch subpixel itself.
  • In another aspect, the present disclosure provides a touch display apparatus having a touch display substrate described herein or fabricated by a method described herein. In some embodiments, the touch display substrate is an organic light emitting substrate, and the touch display apparatus is an organic light emitting apparatus. Examples of touch display apparatuses include, but are not limited to, an electronic paper, a mobile phone, a tablet computer, a television, a notebook computer, a digital album, a GPS, etc.
  • The foregoing description of the embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form or to exemplary embodiments disclosed. Accordingly, the foregoing description should be regarded as illustrative rather than restrictive. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. The embodiments are chosen and described in order to explain the principles of the invention and its best mode practical application, thereby to enable persons skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular use or implementation contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents in which all terms are meant in their broadest reasonable sense unless otherwise indicated. Therefore, the term “the invention”, “the present invention” or the like does not necessarily limit the claim scope to a specific embodiment, and the reference to exemplary embodiments of the invention does not imply a limitation on the invention, and no such limitation is to be inferred. The invention is limited only by the spirit and scope of the appended claims. Moreover, these claims may refer to use “first”, “second”, etc. following with noun or element. Such terms should be understood as a nomenclature and should not be construed as giving the limitation on the number of the elements modified by such nomenclature unless specific number has been given. Any advantages and benefits described may not apply to all embodiments of the invention. It should be appreciated that variations may be made in the embodiments described by persons skilled in the art without departing from the scope of the present invention as defined by the following claims. Moreover, no element and component in the present disclosure is intended to be dedicated to the public regardless of whether the element or component is explicitly recited in the following claims.

Claims (32)

1. A touch display substrate, comprising: an array of a plurality of pixels, each pixel having a first region and a second region in plan view of the touch display substrate, each pixel comprising:
a first electrode layer on a base substrate comprising a plurality of first electrode blocks in the first region, each of which corresponding to a subpixel; and a second electrode block in the second region;
a first light emitting layer in the first region on a side of the plurality of first electrode blocks distal to the base substrate;
a second light emitting layer in the second region on a side of the second electrode block distal to the base substrate;
a second electrode layer in the first region on a side of the first light emitting layer distal to the plurality of first electrode blocks; and
a touch electrode layer in the second region on a side of the second light emitting layer distal to the second electrode block; the touch electrode layer and the second electrode layer spaced apart and electrically insulated front each other;
wherein each pixel comprises a subpixel of a first color, a subpixel of a second color, a subpixel of a third color in the first region, and a plurality of pixel compensation circuits in the second region; each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color and the subpixel of the third color from adjacent pixels.
2. The touch display substrate of claim 1, wherein each pixel further comprises a pattern spacer layer on the base substrate dividing the pixel into the first region and the second region; the pattern spacer layer spacing apart and electrically insulating the touch electrode layer and the second electrode layer; and the pattern spacer layer spacing apart and electrically insulating the first light emitting layer and the second light emitting layer.
3. The touch display substrate of claim 1, wherein the touch electrode layer is in a same layer as the second electrode layer, and the first light emitting layer is in a same layer as the second light emitting layer.
4. The touch display substrate of claim 1, wherein one second electrode block m the second region is electrically connected to the touch electrode layer.
5. The touch display substrate of claim 4, wherein the one second electrode block in the second region is electrically connected to the touch electrode layer through a conductive channel in the second light emitting layer, the conductive channel comprising a sintered conductive material comprising at least one of a light emitting material of the second light emitting layer, a conductive material of the one second electrode block in the second region, and a conductive material of the touch electrode layer.
6. The touch display substrate of claim 1, further comprising a plurality of electrode lead wires in the first region and a plurality of touch control lead wires in the second region; the plurality of touch control lead wires in a same layer as the plurality of electrode lead wires; the plurality of touch control lead wires electrically connected to the touch electrode layer through a conductive channel in the second light emitting layer, the conductive channel comprising a sintered conductive material comprising at least one of a light emitting material of the second light emitting layer, a conductive material of a touch control lead wire in the second region, and a conductive material of the touch electrode layer.
7. (canceled)
8. (canceled)
9. The touch display substrate of claim 1, wherein each second region is surrounded by the subpixel of the first color from the same pixel, the subpixel of the second color from a first adjacent pixel, and two subpixels of the third color respectively from a second and a third adjacent pixels; the first color, the second color, and the third color are different colors selected form red, green, and blue.
10. The touch display substrate of claim 1, wherein each pixel comprises three pixel compensation circuits, each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color from a first adjacent pixel, and the subpixel of the third color from a second adjacent pixel.
11. The touch display substrate of claim 1, wherein each pixel comprises four pixel, compensation circuits, each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color from a first adjacent pixel, the subpixel of the third color from a second adjacent pixel, and the subpixel of the third color from a third adjacent pixel.
12. The touch display substrate of claim 1, wherein each pixel further comprises a touch subpixel in the second region, the touch electrode layer is configured to operate in a time-division driving mode, the time-division mode comprising a display mode and a touch control mode, the touch electrode layer is a touch control electrode for conducting touch signals during the touch control mode, and one second electrode block in the second region and the touch electrode layer are electrodes for applying voltage signal to the second light emitting layer during display mode;
each pixel further comprises four pixel compensation circuits, each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color from a first adjacent pixel, the subpixel of the third color from a second adjacent pixel, and the touch subpixel.
13. (canceled)
14. (canceled)
15. (canceled)
16. (canceled)
17. A touch display apparatus comprising a touch display substrate of claim 1.
18. A pixel arrangement, comprising an array of a plurality of pixels, wherein each pixel comprises a subpixel of a first color, a subpixel of a second color, a subpixel of a third color, a touch subpixel; and a plurality of pixel compensation circuits in the touch subpixel;
each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color and the subpixel of the third color from adjacent pixels; and
each touch subpixel is surrounded by the subpixel of the first color from a same pixel, the subpixel of the second color from a first adjacent pixel, and two subpixels of the third color respectively from a second and a third adjacent pixels.
19. The pixel arrangement of claim 18, wherein each pixel comprises three pixel compensation circuits, each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color from a first adjacent pixel, the subpixel of the third color from a second adjacent pixel.
20. The pixel arrangement of claim 18, wherein each pixel comprises four pixel compensation circuits, each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color from a first adjacent pixel, the subpixel of the third color from a second adjacent pixel, and the subpixel of the third color from a third adjacent pixel.
21. (canceled)
22. A method of fabricating a touch display substrate, comprising forming an array of a plurality of pixels, each pixel comprising a first region and a second region in plan view of the touch display substrate; wherein forming each pixel comprising:
forming a first electrode layer on a base substrate; the step of forming the first electrode layer comprising forming a plurality of first electrode blocks in the first region, each of which corresponding to a subpixel; and forming a second electrode block in the second region;
forming a first light emitting layer in the lint region on a side of the plurality of first electrode blocks distal to the base substrate;
forming a second light emitting layer in the second region on a side of the second electrode block distal to the base substrate;
forming a second electrode layer in the first region on a side of the first light emitting layer distal to the plurality of first electrode blocks;
forming a touch electrode layer in the second region on a side of the second light emitting layer distal to the second electrode block; the touch electrode layer and the second electrode layer spaced apart and electrically insulated from each other; and
forming a pixel compensation circuit in the second region;
wherein the first region comprises a subpixel of a first color, a subpixel of a second color, a subpixel of a third color, forming each pixel comprises forming a plurality of pixel compensation circuits in the second region, each of which connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color and the subpixel of the third color from adjacent pixels;
the method comprising:
forming the array of the plurality of pixels so that each second region is surrounded by the subpixel of the first color from a same pixel, the subpixel of the second color from an adjacent pixel and two subpixels of the third color respectively from two other adjacent pixels.
23. (canceled)
24. The method of claim 22, further comprising forming a pattern spacer layer on the base substrate dividing each pixel into the first region and the second region; the pattern spacer layer spacing apart and electrically insulating the touch electrode layer and the second electrode layer; and the pattern spacer layer spacing apart and electrically insulating the first light emitting layer and the second light emitting layer;
wherein the pattern spacer layer is made of a photoresist material, the step of forming each pixel comprising:
depositing a photoresist layer on the base substrate haying the first electrode layer;
exposing the photoresist layer with a mask plate having a pattern corresponding to the pattern spacer layer;
developing the exposed photoresist layer thereby forming the pattern spacer layer;
depositing an organic light emitting material layer on a side of the first electrode layer distal to the base substrate having the pattern spacer layer, thereby forming the first light emitting layer in the first region and the second light emitting layer in the second region; and
depositing an electrode material layer on a side of the organic light emitting material layer distal to the first electrode layer, thereby forming the second electrode layer in the first region and the touch electrode layer in the second region.
25. (canceled)
26. The method of claim 24, further comprising electrically connecting one second electrode block in the second region to the touch electrode layer;
wherein the step of electrically connecting the one second electrode block in the second region to the touch electrode layer comprises sintering a portion of a multilayer structure comprising the one second electrode block in the second region, the second light emitting layer, and the touch electrode layer; and forming a conductive channel in the second light emitting layer, the conductive channel comprising a sintered conductive material comprising at least one of a light emitting material, as conductive material of the one second electrode block, and a conductive material of the touch electrode layer.
27. (canceled)
28. (canceled)
29. The method of claim 22 further comprising forming a plurality of electrode lead wires in the first region and a plurality of touch control lead wires in the second region in a same layer; and
electrically connecting the plurality of touch control lead wires to the touch electrode layer through a conductive channel in the second light emitting layer,
wherein the step of electrically connecting the plurality of touch control lead wires to the touch electrode layer comprises sintering a portion of a multilayer structure comprising a touch control lead wire in the second region, the second light emitting layer, and the touch electrode layer; and forming a conductive channel in the second light emitting layer, the conductive channel comprising a sintered conductive material comprising at least one of a light emitting material, a conductive material of the touch control lead wire, and a conductive material of the touch electrode layer.
30. (canceled)
31. The pixel arrangement of claim 18, wherein each pixel comprises four pixel compensation circuits, each pixel compensation circuit is connected to one of the subpixel of the first color from a same pixel, the subpixel of the second color from a first adjacent pixel, the subpixel of the third color from a second adjacent pixel, and the touch subpixel.
32. The touch display substrate of claim 1, wherein the first light emitting layer is an integral white light emitting layer; each pixel further comprises a plurality of color filters on a side of the second electrode layer distal to the first light emitting layer, each of which corresponding to a subpixel.
US15/533,127 2016-06-17 2016-06-17 Touch display substrate, touch display apparatus having the same, pixel arrangement, and fabricating method thereof Active US10026789B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/086155 WO2017214971A1 (en) 2016-06-17 2016-06-17 Touch display substrate, touch display apparatus having the same, pixel arrangement, and fabricating method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086155 A-371-Of-International WO2017214971A1 (en) 2016-06-17 2016-06-17 Touch display substrate, touch display apparatus having the same, pixel arrangement, and fabricating method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/995,438 Continuation US10700143B2 (en) 2016-06-17 2018-06-01 Touch display substrate, touch display apparatus having the same, pixel arrangement, and fabricating method thereof

Publications (2)

Publication Number Publication Date
US10026789B1 US10026789B1 (en) 2018-07-17
US20180204883A1 true US20180204883A1 (en) 2018-07-19

Family

ID=57224352

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/533,127 Active US10026789B1 (en) 2016-06-17 2016-06-17 Touch display substrate, touch display apparatus having the same, pixel arrangement, and fabricating method thereof
US15/995,438 Active 2036-07-13 US10700143B2 (en) 2016-06-17 2018-06-01 Touch display substrate, touch display apparatus having the same, pixel arrangement, and fabricating method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/995,438 Active 2036-07-13 US10700143B2 (en) 2016-06-17 2018-06-01 Touch display substrate, touch display apparatus having the same, pixel arrangement, and fabricating method thereof

Country Status (6)

Country Link
US (2) US10026789B1 (en)
EP (1) EP3472693B1 (en)
JP (1) JP6737537B2 (en)
KR (1) KR102042079B1 (en)
CN (1) CN106104440B (en)
WO (1) WO2017214971A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111506208A (en) * 2019-01-31 2020-08-07 陕西坤同半导体科技有限公司 Induction component and full-screen fingerprint touch display panel
EP3918415B1 (en) * 2019-02-01 2024-04-03 BOE Technology Group Co., Ltd. Apparatus integrated with display panel for tof 3d spatial positioning
CN109871159B (en) * 2019-03-01 2020-09-11 信利(惠州)智能显示有限公司 Touch display module and touch display screen
CN110767085B (en) * 2019-03-29 2021-11-30 昆山国显光电有限公司 Display substrate, display panel and display device
CN110660836A (en) * 2019-09-30 2020-01-07 上海天马有机发光显示技术有限公司 Display panel and display device
CN110931533B (en) * 2019-12-10 2022-11-25 武汉天马微电子有限公司 Display panel, manufacturing method thereof and display device
CN111048572A (en) * 2019-12-27 2020-04-21 固安翌光科技有限公司 OLED light-emitting panel

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080150848A1 (en) * 2006-12-26 2008-06-26 Lg. Philips Lcd Co., Ltd. Organic light-emitting diode panel and touch-screen system including the same
US20110102692A1 (en) * 2009-10-30 2011-05-05 Chimei Innolux Corporation Display device including compensation capacitors with different capacitance values
US20120154728A1 (en) * 2010-12-21 2012-06-21 Kum Mi Oh Liquid crystal display device and method of manufacturing the same
US20120182518A1 (en) * 2011-01-14 2012-07-19 Chih-Hsiang Ho Variation-Tolerant Self-Repairing Displays
US20140043281A1 (en) * 2012-08-13 2014-02-13 Lg Display Co., Ltd. Display Device with Integrated Touch Screen and Method of Driving the Same
US20160018918A1 (en) * 2013-12-24 2016-01-21 Boe Technology Group Co., Ltd. Touch circuit, touch substrate and touch display device
US20160155385A1 (en) * 2014-07-07 2016-06-02 Boe Technology Group Co., Ltd. Pixel structure and driving method thereof, and display apparatus
US20170090246A1 (en) * 2015-09-25 2017-03-30 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US20170092174A1 (en) * 2015-09-30 2017-03-30 Apple Inc. Sub-pixel layout compensation
US20170269745A1 (en) * 2015-09-11 2017-09-21 Boe Technology Group Co., Ltd. Array substrate for capacitive in-cell touch panel and method for driving the same, related display panels, and related display apparatus

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259573A (en) * 2005-03-18 2006-09-28 Seiko Epson Corp Organic el device, drive method thereof, and electronic device
US8477125B2 (en) * 2005-12-21 2013-07-02 Samsung Display Co., Ltd. Photo sensor and organic light-emitting display using the same
JP2008281615A (en) * 2007-05-08 2008-11-20 Seiko Epson Corp Electro-optical device, method for manufacturing the same and electronic equipment
JP4893683B2 (en) * 2008-04-11 2012-03-07 ソニー株式会社 Image display device
KR101589272B1 (en) * 2009-08-21 2016-01-27 엘지디스플레이 주식회사 Touch sensor in-cell type organic electroluminescent device and methode of fabricating the same
KR101636670B1 (en) * 2009-12-29 2016-07-06 엘지디스플레이 주식회사 Touch-Sensitive Display Apparatus and Method for Manufacturing The Same
JP2011237489A (en) * 2010-05-06 2011-11-24 Toshiba Mobile Display Co Ltd Organic el display device
US9164620B2 (en) * 2010-06-07 2015-10-20 Apple Inc. Touch sensing error compensation
CN102289093B (en) * 2010-06-17 2013-10-09 北京京东方光电科技有限公司 Base board, manufacturing method thereof, LCD (Liquid Crystal Display) and touch addressing method
JP5789113B2 (en) * 2011-03-31 2015-10-07 株式会社Joled Display device and electronic device
KR101306843B1 (en) * 2012-02-24 2013-09-10 엘지디스플레이 주식회사 Organic light Emitting Display Device
KR101900914B1 (en) * 2012-09-18 2018-11-05 삼성디스플레이 주식회사 Organic light emitting display device
KR101932126B1 (en) * 2012-09-24 2018-12-24 엘지디스플레이 주식회사 Touch-type organic light-emitting diode display device
KR102068588B1 (en) * 2012-11-13 2020-02-11 엘지디스플레이 주식회사 Display Device With Integrated Touch Screen
TWI499952B (en) * 2013-08-08 2015-09-11 Innolux Corp Array substrate and display panel using the same
KR20150073539A (en) * 2013-12-23 2015-07-01 삼성전자주식회사 Apparatus and method for sensing a touch input in electronic device
JP2015228367A (en) * 2014-05-02 2015-12-17 株式会社半導体エネルギー研究所 Semiconductor device, input-output device and electronic apparatus
US9836165B2 (en) 2014-05-16 2017-12-05 Apple Inc. Integrated silicon-OLED display and touch sensor panel
CN104020892B (en) * 2014-05-30 2017-07-28 京东方科技集团股份有限公司 A kind of In-cell touch panel and display device
CN104009067A (en) * 2014-06-16 2014-08-27 信利(惠州)智能显示有限公司 Organic light-emitting diode display device with touch control function and manufacturing method thereof
CN104898888B (en) * 2015-06-23 2017-09-19 京东方科技集团股份有限公司 A kind of built-in type touch display screen, its driving method and display device
CN105243993B (en) * 2015-09-22 2018-01-26 京东方科技集团股份有限公司 Oled display substrate and its driving method and OLED display

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080150848A1 (en) * 2006-12-26 2008-06-26 Lg. Philips Lcd Co., Ltd. Organic light-emitting diode panel and touch-screen system including the same
US20110102692A1 (en) * 2009-10-30 2011-05-05 Chimei Innolux Corporation Display device including compensation capacitors with different capacitance values
US20120154728A1 (en) * 2010-12-21 2012-06-21 Kum Mi Oh Liquid crystal display device and method of manufacturing the same
US20120182518A1 (en) * 2011-01-14 2012-07-19 Chih-Hsiang Ho Variation-Tolerant Self-Repairing Displays
US20140043281A1 (en) * 2012-08-13 2014-02-13 Lg Display Co., Ltd. Display Device with Integrated Touch Screen and Method of Driving the Same
US20160018918A1 (en) * 2013-12-24 2016-01-21 Boe Technology Group Co., Ltd. Touch circuit, touch substrate and touch display device
US20160155385A1 (en) * 2014-07-07 2016-06-02 Boe Technology Group Co., Ltd. Pixel structure and driving method thereof, and display apparatus
US20170269745A1 (en) * 2015-09-11 2017-09-21 Boe Technology Group Co., Ltd. Array substrate for capacitive in-cell touch panel and method for driving the same, related display panels, and related display apparatus
US20170090246A1 (en) * 2015-09-25 2017-03-30 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US20170092174A1 (en) * 2015-09-30 2017-03-30 Apple Inc. Sub-pixel layout compensation

Also Published As

Publication number Publication date
US10026789B1 (en) 2018-07-17
KR102042079B1 (en) 2019-11-07
JP2019525269A (en) 2019-09-05
CN106104440B (en) 2019-03-19
JP6737537B2 (en) 2020-08-12
US10700143B2 (en) 2020-06-30
US20180308904A1 (en) 2018-10-25
WO2017214971A1 (en) 2017-12-21
EP3472693A4 (en) 2019-12-25
CN106104440A (en) 2016-11-09
EP3472693B1 (en) 2021-12-15
KR20180116205A (en) 2018-10-24
EP3472693A1 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
US10700143B2 (en) Touch display substrate, touch display apparatus having the same, pixel arrangement, and fabricating method thereof
EP3242325B1 (en) Display substrate, manufacturing method thereof and display panel
US20180342563A1 (en) Oled display substrate and manufacturing method thereof, display panel and display apparatus
CN104425556B (en) Light-emitting device, the manufacturing method of light-emitting device and electronic equipment
JP5153825B2 (en) Organic light emitting display device and method for manufacturing the same
US9455304B2 (en) Organic light-emitting diode display with white and blue diodes
TW201503352A (en) Display unit, method of manufacturing display unit, and electronic apparatus
JP2002184573A (en) Manufacturing method of organic electroluminescent pixel device
US20150379921A1 (en) Organic Light-Emitting Diode Display With Supplemental Power Supply Distribution Paths
US11016624B2 (en) Touch display panel and manufacturing method thereof, display device
US11216096B2 (en) Touch display panel, method of manufacturing the same, method of driving the same, and touch display device
JP2022539621A (en) Display panel, manufacturing method thereof, and display device
WO2021035534A1 (en) Display substrate and manufacturing method therefor, and display device
US20060028124A1 (en) Active matrix organic electro-luminescent display panel and fabrication method thereof
WO2021083226A1 (en) Display substrate and manufacturing method therefor, and display device
US11963397B2 (en) Display panel, method for manufacturing the same and display device
WO2020233485A1 (en) Light-emitting component, manufacturing method therefor, mask, and display device
CN109755281B (en) OLED display panel and manufacturing method thereof
WO2020147204A1 (en) Oled display panel and manufacturing method therefor
JP6912147B2 (en) Pixel array
CN109979976B (en) Display panel, display screen and display device
CN111384088B (en) Display screen, preparation method of display screen and electronic equipment
US11527098B2 (en) Displaying base plate and fabricating method thereof, and displaying device
WO2022252018A1 (en) Display substrate and display apparatus
WO2022104702A1 (en) Display panel and manufacturing method therefor, and display apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LI, CHANGFENG;REEL/FRAME:043455/0117

Effective date: 20170526

Owner name: BOE TECHNOLOGY GROUP CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LI, CHANGFENG;REEL/FRAME:043455/0117

Effective date: 20170526

Owner name: BOE TECHNOLOGY GROUP CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:XUE, HAILIN;REEL/FRAME:043455/0127

Effective date: 20170526

Owner name: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WANG, HAISHENG;REEL/FRAME:043455/0253

Effective date: 20170526

Owner name: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:XUE, HAILIN;REEL/FRAME:043455/0127

Effective date: 20170526

Owner name: BOE TECHNOLOGY GROUP CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WANG, HAISHENG;REEL/FRAME:043455/0253

Effective date: 20170526

AS Assignment

Owner name: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DONG, XUE;REEL/FRAME:043214/0971

Effective date: 20170526

Owner name: BOE TECHNOLOGY GROUP CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DONG, XUE;REEL/FRAME:043214/0971

Effective date: 20170526

Owner name: BOE TECHNOLOGY GROUP CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DING, XIAOLIANG;REEL/FRAME:043214/0934

Effective date: 20170526

Owner name: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DING, XIAOLIANG;REEL/FRAME:043214/0934

Effective date: 20170526

Owner name: BOE TECHNOLOGY GROUP CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEN, XIAOCHUAN;REEL/FRAME:043477/0890

Effective date: 20170526

Owner name: BOE TECHNOLOGY GROUP CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIU, WEI;REEL/FRAME:043476/0342

Effective date: 20170526

Owner name: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZHAO, WEIJIE;REEL/FRAME:043476/0338

Effective date: 20170526

Owner name: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEN, XIAOCHUAN;REEL/FRAME:043477/0890

Effective date: 20170526

Owner name: BOE TECHNOLOGY GROUP CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YANG, SHENGJI;REEL/FRAME:043476/0332

Effective date: 20170526

Owner name: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YANG, SHENGJI;REEL/FRAME:043476/0332

Effective date: 20170526

Owner name: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WANG, PENGPENG;REEL/FRAME:043476/0328

Effective date: 20170526

Owner name: BOE TECHNOLOGY GROUP CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZHAO, WEIJIE;REEL/FRAME:043476/0338

Effective date: 20170526

Owner name: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIU, YINGMING;REEL/FRAME:043477/0909

Effective date: 20170526

Owner name: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIU, WEI;REEL/FRAME:043476/0342

Effective date: 20170526

Owner name: BOE TECHNOLOGY GROUP CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WANG, PENGPENG;REEL/FRAME:043476/0328

Effective date: 20170526

Owner name: BOE TECHNOLOGY GROUP CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIU, YINGMING;REEL/FRAME:043477/0909

Effective date: 20170526

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4