US20180022945A1 - Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles - Google Patents

Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles Download PDF

Info

Publication number
US20180022945A1
US20180022945A1 US15/546,681 US201615546681A US2018022945A1 US 20180022945 A1 US20180022945 A1 US 20180022945A1 US 201615546681 A US201615546681 A US 201615546681A US 2018022945 A1 US2018022945 A1 US 2018022945A1
Authority
US
United States
Prior art keywords
pigment
near infrared
infrared absorbing
absorbing fine
dispersion liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/546,681
Other languages
English (en)
Inventor
Mika Okada
Hideaki FUKUYAMA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of US20180022945A1 publication Critical patent/US20180022945A1/en
Assigned to SUMITOMO METAL MINING CO., LTD. reassignment SUMITOMO METAL MINING CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUKUYAMA, HIDEAKI, OKADA, MIKA
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/002Pigment pastes, e.g. for mixing in paints in organic medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/373Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/382Special inks absorbing or reflecting infrared light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/06Printing inks based on fatty oils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a near infrared absorbing fine particle dispersion liquid having absorption ability in a near infrared region and applicable to offset printing and a method for producing the same, an anti-counterfeit ink composition using the near infrared absorbing fine particle dispersion liquid, and an anti-counterfeit printed matter using the near infrared absorbing fine particles.
  • the “near infrared absorbing fine particles” and the “near infrared absorbing material fine particles” in the prior application based on the priority right are the same fine particles.
  • offset printing enables high-precision printing and has characteristics that it is suitable for mass printing.
  • the following properties are required: a pigment dispersion liquid to be used based on its printing principle is lipophilic and does not dissolve a rubber blanket to which the dispersion liquid is transferred during the offset printing.
  • Data is printed on various tickets, certificates and the like using a pigment using an infrared absorbing material, and the data is read by an infrared judging device or the like to thereby manage various information.
  • an infrared absorbing material when an infrared absorbing material is transparent in a visible light region, it can not be distinguished visually that the infrared absorbing material is printed as a pigment. This is preferable from a viewpoint of prevention of counterfeiting and the like, and is also preferable from a viewpoint of visibility and a beautiful appearance because it does not visually obstruct an original print display.
  • patent document 1 proposes an anti-counterfeit printed matter using a phthalocyanine compound.
  • patent document 2 proposes an anti-counterfeit printed matter using tin-doped indium oxide.
  • inventors of the present invention disclose a coating solution for a selectively permeable membrane in which hexaboride fine particles are dispersed in an organic solvent, using the hexaboride fine particles expressed by a general formula XB 6 (wherein element X is at least one or more kinds selected from a group consisting of La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr, and Ca) as a material having high visible light transmittance and near infrared absorbing function, in patent document 3 and patent document 4.
  • element X is at least one or more kinds selected from a group consisting of La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr, and Ca
  • an anti-counterfeit ink in which an anti-counterfeit ink composition containing the hexaboride fine particles is dispersed in a solvent as a near infrared absorbing material having a high visible light transmittance and a near infrared absorbing function, in patent document 5.
  • an organic pigment such as a phthalocyanine compound used in patent document 1 has a problem as follows. An infrared absorption property is changed due to an influence of temperature, ultraviolet rays or the like, and durability is inferior.
  • the infrared absorbing material using tin-doped indium oxide which is used in patent document 2
  • the inventors of the present invention attempt to obtain a dispersion liquid by using vegetable oils or vegetable oil-derived compounds as a solvent for offset printing, and adding to the solvent hexaboride fine particles expressed by a general formula XB a (wherein element X is at least one or more kinds selected from a group consisting of La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr, and Ca, satisfying 4.0 ⁇ a ⁇ 6.2).
  • element X is at least one or more kinds selected from a group consisting of La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr, and Ca, satisfying 4.0 ⁇ a ⁇ 6.2.
  • an object of the present invention is to provide a near infrared absorbing fine particle dispersion liquid having an absorption ability in a near infrared region, a clear contrast, and applicable to offset printing, and a method for producing the same.
  • an object of the present invention is to provide an anti-counterfeit printed matter which is impossible to be duplicated in copying and the like, and whose authenticity can be mechanically and reliably judged not depending on a visual judgment, having few restrictions in design, and excellent in anti-counterfeit effect, by using the anti-counterfeit ink composition containing the near infrared absorbing fine particle dispersion liquid.
  • the viscosity of the dispersion liquid can be kept at 180 mPa/S or less by adding a predetermined dispersant to the dispersion liquid.
  • the inventors of the present invention achieve an anti-counterfeit ink composition for offset printing containing a near infrared absorbing fine particle dispersion liquid as described above or containing a pigment commonly used in ordinary offset printing ink together with the abovementioned near infrared absorbing fine particle dispersion liquid, and an anti-counterfeit printed matter printed using the anti-counterfeit ink composition for offset printing.
  • the present invention is completed.
  • a first invention is a near infrared absorbing fine particle dispersion liquid, containing:
  • a solvent of one or more kinds selected from vegetable oils or vegetable oil-derived compounds selected from vegetable oils or vegetable oil-derived compounds
  • near infrared absorbing fine particles in an amount of 2 mass % or more and 25 mass % or less, selected from one or more kinds of hexaboride fine particles expressed by a general formula XB a (wherein element X is at least one or more kinds selected from a group consisting of La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr, and Ca, satisfying 4.0 ⁇ a ⁇ 6.2); and
  • viscosity is 180 mPa/S or less.
  • a second invention is the near infrared absorbing fine particle dispersion liquid of the first invention, wherein an anchor portion of the dispersant has one or more kinds selected from a secondary amino group, a tertiary amino group, and a quaternary ammonium group.
  • a third invention is the near infrared absorbing fine particle dispersion liquid of the first invention or the second invention, wherein the dispersant has an acid value of 1 mg KOH/g or more.
  • a fourth invention is the near infrared absorbing fine particle dispersion liquid of any one of the first to third inventions, wherein a dispersed particle size of each near infrared absorbing fine particle is 1 nm or more and 200 nm or less.
  • a fifth invention is the near infrared absorbing fine particle dispersion liquid of any one of the first to fourth inventions, wherein a lattice constant of the near infrared absorbing fine particle is 0.4100 nm or more and 0.4160 nm or less.
  • a sixth invention is the near infrared absorbing fine particle dispersion liquid of any one of the first to fifth inventions, wherein a surface of the near infrared absorbing fine particle is coated with a compound of one or more kinds selected from Si, Ti, Al, and Zr.
  • a seventh invention is the near infrared absorbing fine particle dispersion liquid of any one of the first to sixth inventions, wherein the vegetable oil is one or more kinds of vegetable oils selected from drying oil and semidrying oil.
  • An eighth invention is the near infrared absorbing fine particle dispersion liquid of any one of the first to seventh inventions, wherein the near infrared absorbing fine particle dispersion liquid further contains a binder.
  • a method for producing the near infrared absorbing fine particle dispersion liquid of any one of the first to eighth inventions including: mixing and dispersing the near infrared absorbing fine particles, the solvent, and the dispersant.
  • a tenth invention is an anti-counterfeit ink composition, containing the near infrared absorbing fine particle dispersion liquid of any one of the first to eighth inventions.
  • An eleventh invention is the anti-counterfeit ink composition of the tenth invention further containing a pigment.
  • a twelfth invention is the anti-counterfeit ink composition, wherein the pigment of the eleventh invention is an inorganic pigment and is one or more kinds selected from carbon black, white pigment, an extender pigment, a red pigment, a yellow pigment, a green pigment, a blue pigment, a purple pigment, a fluorescent pigment, a temperature indicating pigment, a pearl pigment, and a metal powder pigment.
  • the pigment of the eleventh invention is an inorganic pigment and is one or more kinds selected from carbon black, white pigment, an extender pigment, a red pigment, a yellow pigment, a green pigment, a blue pigment, a purple pigment, a fluorescent pigment, a temperature indicating pigment, a pearl pigment, and a metal powder pigment.
  • a thirteenth invention is the anti-counterfeit ink composition, wherein the pigment of the eleventh invention is an organic pigment and is one or more kinds selected from an azo lake pigment, an insoluble azo pigment, a condensed azo pigment, a phthalocyanine pigment, and a condensed polycyclic pigment.
  • a fourteenth invention is the anti-counterfeit ink composition of any one of the tenth invention to thirteenth invention, containing one or more kinds selected from a plasticizer, an antioxidant, a thickener, and a wax.
  • a fifteenth invention is an anti-counterfeit printed matter having a printed pattern on one side or both sides of a base material, containing near infrared absorbing fine particles of one or more kinds of hexaboride fine particles expressed by a general formula XB a (wherein element X is at least one or more kinds selected from a group consisting of La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr, and Ca, satisfying 4.0 ⁇ a ⁇ 6.2), in the printed pattern.
  • a sixteenth invention is an anti-counterfeit printed matter, wherein the printed pattern of the fifteenth invention further contains a pigment.
  • a seventeenth invention is an anti-counterfeit printed matter, wherein the pigment of the sixteenth invention is an inorganic pigment, and is one or more kinds selected from carbon black, white pigment, an extender pigment, a red pigment, a yellow pigment, a green pigment, a blue pigment, a purple pigment, a fluorescent pigment, a temperature indicating pigment, a pearl pigment, and a metal powder pigment.
  • An eighteenth invention is an anti-counterfeit printed matter, wherein the pigment of the sixteenth invention is an organic pigment and is one or more kinds selected from an azo lake pigment, an insoluble azo pigment, a condensed azo pigment, a phthalocyanine pigment, and a condensed polycyclic pigment.
  • a nineteenth invention is the anti-counterfeit printed matter of any one of the fifteenth to eighteenth inventions, wherein a value obtained by dividing an average value of a diffuse reflectance of the anti-counterfeit printed matter in a wavelength range of 800 nm to 1300 nm, by an average value of a diffuse reflectance of a blank not containing near infrared absorbing fine particles in a wavelength range of 800 nm to 1300 nm, is 0.84 or less.
  • the near infrared absorbing fine particle dispersion liquid of the present invention By using the near infrared absorbing fine particle dispersion liquid of the present invention, it is possible to easily perform offset printing having an absorption ability in a near infrared region and a clear contrast. Further, by using the near infrared absorbing fine particle dispersion liquid of the present invention, it is possible to provide an anti-counterfeit ink composition enabling offset printing, and an anti-counterfeit printed matter which is impossible to be duplicated in copying and the like, and whose authenticity can be judged mechanically and reliably not depending on a visual judgment, having few restrictions in design, and excellent in anti-counterfeit effect.
  • FIG. 1 is a light transmission profile of a dried film of a dispersion liquid A according to the present invention.
  • FIG. 2 is a light transmission profile of a dried film of a dispersion liquid B according to the present invention.
  • FIG. 3 is a light transmission profile of a dried film of a dispersion liquid C according to the present invention.
  • FIG. 4 is a light transmission profile of a dried film of a dispersion liquid D according to the present invention.
  • FIG. 5 is a schematic view of an aspect of a polymer dispersant used in the present invention.
  • FIG. 6 is a schematic view of an aspect of another different polymer dispersant used in the present invention.
  • FIG. 7 is a schematic view of an aspect of further another different polymer dispersant used in the present invention.
  • Embodiment of the present invention will be described in detail in an order of near infrared absorbing fine particles, a solvent, a dispersant, a method for dispersing near infrared absorbing fine particles in the solvent, a near infrared absorbing fine particle dispersion liquid, an anti-counterfeit ink composition for offset printing, a printing method, and an authenticity judging method.
  • the near infrared absorbing fine particles used in the present invention are hexaboride fine particles expressed by a general formula XB a (4.0 ⁇ a ⁇ 6.2).
  • element X is at least one or more kinds selected from La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr and Ca.
  • lanthanum hexaboride LaB 6 cerium hexaboride CeB 6 , praseodymium hexaboride PrB 6 , neodymium hexaboride NdB 6 , hexadentate gadolinium GdB 6 , terbium hexaboride TbB 6 , dysprosium hexaboride DyB 6 , holmium hexaboride HoB 6 , yttrium hexaboride YB 6 , samarium hexaboride SmB 6 , europium hexaboride EuB 6 , erbium hexaboride ErB 6 , thulium hexaboride TmB 6 , ytterbium hexaboride YbB 6 , lutetium hexaboride LuB 6 , lanthanum hexaboride LaB 6 , cerium
  • each hexaboride fine particle is not oxidized.
  • its surface is usually slightly oxidized in many cases, and it is inevitable to some extent that oxidation occurs on the surface in a fine particle dispersing step. Even in that case, there is no change in effectiveness of developing a heat ray shielding effect, and accordingly it is possible to use even the hexaboride fine particle whose surface is oxidized.
  • the abovementioned hexaboride fine particles have a higher heat ray shielding effect as crystallinity becomes higher. Even if the hexaboride fine particles have low crystallinity and produce broad diffraction peaks by X-ray diffraction, a desired heat ray shielding effect can be exhibited when a basic bond inside the fine particle is composed of a bond between each metal and boron and a lattice constant is 0.4100 nm or more and 0.4160 nm or less, and therefore the hexaboride fine particles can be preferably used in the present invention.
  • the lattice constant can be obtained by conducting a Rietveld analysis based on data of an XRD pattern, for example.
  • the surface of the hexaboride fine particle is coated with a silane coupling agent. Since the surface of hexaboride fine particle is coated with a silane coupling agent, excellent dispersibility of hexaboride fine particles can be obtained. This is because in the near infrared absorbing fine particle dispersion liquid of the present invention, excellent near infrared absorbing function and transparency in the visible light region can be obtained as a result of the excellent dispersibility.
  • a light transmittance has a maximum value between wavelengths 400 nm and 700 nm and has a minimum value between wavelengths 700 nm and 1800 nm, and further a difference between the maximum value and the minimum value in the transmittance of the light is 15 points or more.
  • a wavelength of a visible light is 380 nm to 780 nm and a human visibility takes a bell-type form with its peak at around 550 nm wavelength.
  • the hexaboride fine particles of the present invention largely absorb a light in a near ultraviolet region near a wavelength range of 350 to 400 nm and in the near infrared region near a wavelength range of 650 to 1300 nm, and particularly a light near a wavelength of 1000 nm. Therefore, a transmission color tone is from colorless to greenish in many cases.
  • the hexaboride fine particles of the present invention in order for the hexaboride fine particles of the present invention to exhibit absorption in the near infrared region, it is preferable to sufficiently decrease a dispersed particle size of each hexaboride fine particle. This is because absorption by hexaboride is caused by localized surface plasmon resonance which is a phenomenon peculiar to nanoparticles.
  • the dispersed particle size means an aggregated particle size of boride fine particles in a solvent, and it can be measured using various commercially available particle size distribution meters.
  • sampling is performed from a dispersion liquid in which boride fine particles are dispersed in a solvent, with aggregates of boride fine particles also present therein, so that the dispersed particle size can be measured using ELS-800 manufactured by Otsuka Electronics Co., Ltd. based on a principle of dynamic light scattering method.
  • the dispersed particle size of the hexaboride fine particles exceeds, for example, 1500 nm, the hexaboride fine particles have almost no absorption in the near infrared region.
  • the dispersed particle size of the hexaboride fine particles is about 800 nm or less, the absorption in the near infrared region becomes strong, and when it is 200 nm or less, stronger absorption is exhibited, and when it is 100 nm or less, further stronger absorption is exhibited.
  • the hexaboride fine particles of the present invention transparency/non-scattering property in the visible light region can be obtained by suppressing a light scattering caused by the fine particles.
  • the light scattering there are geometric optical scattering, Mie scattering, and Rayleigh scattering, depending on the ratio of the particle size to a light wavelength.
  • the hexaboride fine particle dispersion liquid of the present invention is used as a raw material for anti-counterfeit ink for offset printing, and when this is further taken into consideration in view of the above matter, the dispersed particle size of the hexaboride fine particle of the present invention is preferably 200 nm or less. This is because when the dispersed particle size is 200 nm or less, near infrared absorption of hexaboride by localized surface plasmon resonance is sufficiently exhibited and light scattering of the visible light is sufficiently reduced, and therefore the contrast of [reflection/absorption] or [transmission/absorption] of the light reflected by the surface of the printed matter or the light transmitted through the printed matter, is improved. On the other hand, when the dispersed particle size is 1 nm or more, industrial production is easy.
  • the surface of the hexaboride fine particle of the present invention is coated with an oxide containing at least one or more kinds of Si, Ti, Zr and Al, from a viewpoint of improving a weather resistance of the hexaboride fine particles.
  • the solvent used in the present invention is required to be water-insoluble and not to dissolve a rubber blanket used in the offset printing.
  • a solvent of one or more kinds selected from vegetable oils or vegetable oil-derived compounds can be used.
  • Drying oils such as linseed oil, sunflower oil and tung oil, semidrying oils such as sesame oil, cottonseed oil, rapeseed oil, soybean oil, rice bran oil, non-drying oils such as olive oil, coconut oil, palm oil, dehydrated castor oil and the like, can be used as vegetable oils.
  • Fatty acid monoesters or ethers obtained by directly esterifying fatty acid of vegetable oil and monoalcohol, can be used as the vegetable oil-derived compounds.
  • the abovementioned vegetable oils and vegetable oil-derived compounds have double bonds in fatty acid which is a constituent component of oil and fat contained therein. Such a double bond reacts with oxygen in the air, whereby a polymerization reaction proceeds between the molecules of the fat/oil having the double bond, and between fat/oil having the double bond and a pigment component having the double bond.
  • the polymerization reaction proceeds by polymerization of the molecules of the oil and fat and polymerization of oil and fat with pigment components or the like for offset printing, to thereby solidify a coating film after offset printing.
  • the solidification of the coating film after offset printing becomes faster as the number of double bonds in the fatty acid as a constituent component of the vegetable oils and the vegetable oil-derived compounds is larger, and the number of the double bonds in the fatty acid is evaluated by iodine value. Namely, the solidification of the coating film becomes faster as the iodine value of the vegetable oil-derived compounds or vegetable oils is higher.
  • the drying oil has an iodine value of 130 or more, the semidrying oil has 130 to 100, and the non-drying oil has 100 or less.
  • one or more kinds selected from semi-drying oil, drying oil such as linseed oil, sunflower oil, tung oil and the like having an iodine value of 130 or more, are preferable, as the vegetable oil and the vegetable oil-derived compound used for offset printing.
  • the dispersant for dispersing the near infrared absorbing fine particles in the solvent, which has a structure of a fatty acid, is preferable. Further, the dispersant is required to be soluble in the solvent of the present invention described above.
  • the structure of the dispersant is not particularly limited, but it is preferable to use a polymer dispersant having a basic anchor portion.
  • the anchor portion is a part (group) in the molecule of the polymer dispersant and is a part (group) that is adsorbed on the surface of the near infrared absorbing fine particle.
  • the polymer dispersant having particularly the basic anchor portion when used, storage stability of the ink is improved, which is preferable.
  • a basic part (group) serving as the anchor portion there are parts (groups) such as a secondary amino group, a tertiary amino group, and a quaternary ammonium group.
  • A1 and A2 are portions (anchor portions) which are adsorbed on solid fine particles.
  • anchor portion its structure is not particularly limited as long as it has at least one point (adsorption point) to be adsorbed on each solid fine particle, and has a chain, cyclic, or fused polycyclic shape, or a combination thereof for example.
  • A1 and A2 may be the same or different.
  • X, Y and Z are polymer chain portions which are solvated, and solved and spread out from the surface of the solid fine particle into a liquid, and hereinafter, X and Z are referred to as tail portions and Y is referred to as a loop portion.
  • X and Z are referred to as tail portions and Y is referred to as a loop portion.
  • a homopolymer composed of a single monomer and a copolymer composed of plural monomers are used.
  • a substance having no loop portion (Y) in the general formula [X-A1-Y-A2-Z] can be used, which is synonymous with the general formula [X-A1-A2-Z].
  • A constituting the polymer dispersant used in the present invention (in the present invention, A1, A2, A3, and A4 described above may be collectively referred to as “A” in some cases), has for example at least one adsorption point (functional group) having an adsorption interaction with the surface of the solid particle by hydrogen bonding or an acid-base interaction or the like. Further, although A1 and A2 may be the same or different, A1 and A2 preferably have the same functional group as the functional group having the adsorption interaction at the adsorption point, in consideration of adsorptivity to the solid fine particles.
  • X, Y and Z constituting the polymer dispersant used in the present invention may be composed of different chemical species, and at least two of them may be composed of the same chemical species. Since the tail portions and the loop portion are solvated portions which are solved and spread out from the surface of the solid fine particle into the liquid, the polymer chain having affinity with the solvent for dispersing the abovementioned solid fine particles is used.
  • the near infrared absorbing fine particle dispersion liquid of the present invention has a high ability of dispersing the abovementioned infrared absorbing fine particles in the solvent, which is preferable.
  • hexaboride of the present invention when 10 mass % or more and 25 mass % or less of hexaboride of the present invention is added to the solvent of one or more kinds selected from vegetable oils or vegetable oil-derived compounds to thereby perform a mechanical dispersion operation, a dispersing ability is exhibited, which enables the viscosity of the obtained dispersion liquid to be kept at 180 mPa/S or less.
  • pulverization and dispersion of hexaboride proceed sufficiently, and the dispersed particle size in the produced near infrared absorbing fine particle dispersion liquid can be set to 200 nm or less.
  • the viscosity of the near infrared absorbing fine particle dispersion liquid is preferably 180 mPa/S or less from a viewpoint of producing the anti-counterfeit ink for offset printing using the near infrared absorbing fine particle dispersion liquid.
  • Disperbyk 160 Disperbyk 161, Disperbyk 162, Disperbyk 163, Disperbyk 166, Disperbyk 170, Disperbyk 180, Disperbyk 182, Disperbyk 184, Disperbyk 190, Disperbyk 2155 (All manufactured by BYK Japan K.K.); EFKA-46, EFKA-47, EFKA-48, EFKA-49 (all manufactured by BASF); SOLSPERSE 11200, Solsperse 13940, Solsperse 16000, Solsperse 17000, Solsperse 18000, Solsperse 20000, Solsperse 24000, Solsperse 27000, Solsperse 28000, Solsperse 32000, Solsperse 33000, Solsperse 32000, Solsperse 39000, Solsperse 56000, Solsperse 71000 (
  • An addition amount of the dispersant of the present invention is preferably 30 parts by weight or more and 200 parts by weight or less based on 100 parts by weight of hexaboride fine particles.
  • a nonvolatile content (after heating at 180° C. for 20 minutes) of the dispersant is preferably high, for example, preferably 95% or more.
  • the method for dispersing the near infrared absorbing fine particles of the present invention in the solvent to thereby obtain the near infrared absorbing fine particle dispersion liquid can be arbitrarily selected as long as the fine particles are uniformly dispersed in the solvent. Specifically, it is preferable to use a wet medium mill such as a bead mill or a ball mill.
  • a concentration of the hexaboride fine particles is 2 to 25 mass %, preferably 5 to 25 mass %, and more preferably 10 to 25 mass %.
  • the concentration of the hexaboride fine particles is, the easier it is to prepare the anti-counterfeit ink for offset printing, which is preferable.
  • the concentration of the hexaboride fine particles is 25 mass % or less, the viscosity of the obtained near infrared absorbing fine particle dispersion liquid can be suppressed to 180 mPa/S or less by adding the abovementioned dispersant, and the hexaboride particles can be sufficiently pulverized and dispersed.
  • the dispersed particle size of the hexaboride fine particle can be arbitrarily controlled depending on the treatment time using the wet medium mill. By increasing the treatment time, the dispersed particle size can be suppressed to be small.
  • a lower limit value of the viscosity of the near infrared absorbing fine particle dispersion liquid of the present invention depends on the viscosity of the used vegetable oils or the vegetable oil-derived compounds.
  • the viscosity (24° C.) of sunflower oil is 50 mPa/S and the viscosity of linseed oil (24° C.) is 40 mPa/S.
  • the near infrared absorbing fine particle dispersion liquid of the present invention can be obtained.
  • a binder may be further added to the near infrared absorbing fine particle dispersion liquid of the present invention.
  • the binder is not particularly limited, and for example, synthetic resins such as rosin-modified phenol resin, rosin-modified alkyd resin and petroleum resin-modified phenolic resin, can be mentioned. Therefore, the binder suitable for the purpose can be selected.
  • the anti-counterfeit ink composition for offset printing can be obtained by mixing the near infrared absorbing fine particle dispersion liquid, a resin varnish component, a vegetable oil component, a petroleum solvent component, and an additive agent of the present invention.
  • the resin varnish component arbitrary resin system such as phenol resin, petroleum resin, rosin modified phenol resin, petroleum resin modified rosin modified phenol resin, vegetable oil modified rosin modified phenol resin, modified alkyd resin, rosin modified maleic acid resin, polyester resin, acrylic resin, urethane resin, and epoxy resin, etc., are preferably used, and for example, a resin varnish using rosin modified phenol resin or petroleum resin is preferably used.
  • An addition amount of the resin varnish in the lithographic offset printing ink composition is 15 to 70 mass %, preferably 40 to 60 mass %. Further, as the vegetable oil component and the petroleum solvent component, any one of those generally used for the lithographic offset ink may be used.
  • Plasticizers oxidant inhibitors, thickeners, waxes and the like can be mentioned as the additive agent.
  • the anti-counterfeit ink composition for offset printing of the present invention it is possible to form a colored pattern in the visible light region by adding a pigment used for a general lithographic offset ink.
  • a pigment used for a general lithographic offset ink By forming the colored pattern, an effect in terms of a design can be enhanced, and an anti-counterfeit effect can be enhanced.
  • any pigment may be used as long as it does not impair printing suitability.
  • various organic pigments such as carbon black, azo lake pigment, insoluble azo pigment, condensed azo pigment, phthalocyanine pigment, condensed polycyclic pigment and the like can be used.
  • various inorganic pigment including white pigments such as titanium oxide and white lead, extender pigments such as calcium carbonate, red pigments such as red iron oxide, yellow pigments such as yellow lead, green pigments such as chromium oxide, blue pigments such as ultramarine, purple pigment such as manganese violet, and fluorescent pigment, temperature-indicating pigment, pearl pigment, metal powder pigment and the like, can be used.
  • the anti-counterfeit ink composition for offset printing of the present invention as described above, it is possible to simultaneously use the near infrared absorbing fine particles and the pigment used for a general lithographic offset ink.
  • a color difference from ordinary offset ink not containing the near infrared absorbing fine particles can be small enough so that it cannot be visually discriminated.
  • the near infrared absorbing fine particle dispersion liquid, the resin varnish component, the petroleum solvent component, the additive, and/or the pigment of the present invention can be kneaded using a kneading machine such as a triple roll mill and the like.
  • a kneading machine such as a triple roll mill and the like.
  • wetting varnishes such as alkyd resin and other additives that are excellent in wetting properties of an infrared absorbing agent may be used in order to increase the degree of kneading and to improve working efficiency.
  • a conventionally known lithographic offset printing method is used as a printing method for providing the printed matter of the present invention.
  • offset sheet-fed printing offset rotary printing, waterless offset printing, dry offset printing, and the like can be mentioned.
  • white paper As a base material used in the printed matter of the present invention, for example, white paper, a plastic film printed in white, and the like can be mentioned.
  • plastic film in this case, polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET), synthetic paper and the like can be mentioned.
  • PP polypropylene
  • PVC polyvinyl chloride
  • PET polyethylene terephthalate
  • synthetic paper and the like can be mentioned.
  • white pure paper is chosen because of inexpensiveness and ease of handling.
  • lithographic offset printing ink As an anti-counterfeit ink set for offset printing of the present invention, conventionally known lithographic offset printing ink is used.
  • oxidation polymerization type ink, heat set type ink, osmotic drying type ink and the like can be mentioned.
  • AM screening amplitude modulation screening
  • FM screening frequency modulation screening
  • the printed matter of the present invention is irradiated with the near infrared rays having a wavelength of 800 nm to 1300 nm, and the near infrared rays having the abovementioned wavelength diffusely reflected from the printed matter are measured.
  • the printed matter of the present invention has less diffuse reflection of near infrared rays having a wavelength of 800 nm to 1300 nm as compared with a blank printed matter not containing the near infrared absorbing fine particles.
  • a diffuse reflectance value of the printed matter of the present invention in a wavelength range of 800 nm to 1300 nm
  • a diffuse reflectance value of the blank printed matter in a wavelength range of 800 nm to 1300 nm it is possible to evaluate a net diffuse reflectance of the near infrared absorbing fine particles excluding factors such as the binder and other factors and the base material.
  • the smaller this divided value is, the easier the authenticity is judged, and 0.84 or less is preferable, 0.77 or less is more preferable.
  • the content of the near infrared absorbing fine particles may be increased, and the concentration of the near infrared absorbing fine particles in the ink may be increased.
  • concentration of the near infrared absorbing fine particles in the ink may be increased.
  • a film thickness is thickened by overcoating the ink.
  • influences such as an increase in man-hours and unevenness on a printed surface due to thickening of the film thickness, etc. are caused.
  • an amount of the near infrared absorbing fine particles contained in the printed matter is small, thus leading to use of the near infrared absorbing fine particles of the present invention.
  • the amount of the near infrared absorbing fine particles contained in the printed matter is preferably 0.8 g/cm 2 or less.
  • the diffuse reflectance of the present invention is obtained by measuring a relative value of the diffuse reflectance in a wavelength region of 800 nm to 1300 nm, with respect to the diffuse reflectance of a white plate formed by solidifying barium sulfate fine powder, which is adjusted to 100% using a spectrophotometer.
  • a method for measuring the acid value of the near infrared absorbing fine particle dispersant of this example complies with JIS K 0070, and performed by a potentiometric titration method. Further, a method for measuring the viscosity of the near infrared absorbing fine particle dispersion liquid of this example was measured using a vibration type viscometer VM 100 A-L (manufactured by CBC Materials Co., Ltd.).
  • optical properties of the printed matter of this example were measured using a spectrophotometer U-4100 (manufactured by Hitachi, Ltd.).
  • the diffuse reflectance was measured as follows: a spectrophotometer U-4100 (manufactured by Hitachi, Ltd.) was prepared so that the diffuse reflectance of a white board on which fine powder of barium sulfate has been hardened was adjusted to 100%, and the diffuse reflectance was measured as a relative value of every 5 nm in a wavelength region of 800 nm to 1300 nm, and an average value of the obtained values was used.
  • lanthanum hexaboride fine particles 10.0 mass % of lanthanum hexaboride fine particles (average particle size: 1 to 2 m) as near infrared absorbing fine particles, 5.0 mass % of a dispersant (abbreviated as dispersant a hereafter) having a fatty acid in its structure, having an amino group, having an acid value of 20.3 mg KOH/g, having a hydroxystearic acid chain, and having a nonvolatile content of 100%, and 85.0 mass % of sunflower oil as a solvent, were weighed.
  • dispersant a a dispersant having a fatty acid in its structure, having an amino group, having an acid value of 20.3 mg KOH/g, having a hydroxystearic acid chain, and having a nonvolatile content of 100%
  • each hexaboride fine particle in the dispersion liquid A was measured using a particle size distribution meter (manufactured by Otsuka Electronics Co., Ltd.), it was found to be 84.3 nm, and the viscosity (24° C.) of the dispersion liquid A was 98.1 mPa ⁇ s. Further, a lattice constant of the lanthanum hexaboride fine particles was 0.41560 nm.
  • a transparent PET film having a thickness of 50 Lm was prepared as a base material to be printed, and the dispersion liquid A was applied on the surface thereof with a bar coater to a thickness of 8 am. This film was dried at 70° C. for 3 hours to thereby dry the dispersion liquid A.
  • the visible light transmittance of the obtained dried film of the dispersion liquid A was 68.2%. Further, the transmittance of a light having a wavelength of 550 nm in a visible light region was 70.3%, the transmittance of a light having a wavelength of 800 nm was 28.0%, the transmittance of a light having a wavelength of 900 nm was 19.7%, the transmittance of a light having a wavelength of 1000 nm was 17.8%, and the transmittance of a light having a wavelength of 1500 nm was 69.3% in a near infrared region.
  • the light transmission profile of the dried film of this dispersion liquid A is shown in FIG. 1 and the measurement results are shown in table 1 (examples 2 to 4 are also shown hereafter).
  • dispersion liquid B a near infrared absorbing fine particle dispersion liquid (hereinafter abbreviated as dispersion liquid B) of example 2 was obtained.
  • each hexaboride fine particle in the dispersion liquid B was measured using a particle size distribution meter (manufactured by Otsuka Electronics Co., Ltd.), it was 82.9 nm, and the viscosity (24° C.) of the dispersion liquid B was 93.2 mPa/S. Further, the lattice constant was 0.41560 nm.
  • FIG. 2 shows a light transmission profile of the dried film of this dispersion liquid B.
  • dispersant b a dispersant having a fatty acid in its structure, having an acid value of 5 mg KOH/g or more, and having a nonvolatile content of 100%
  • dispersant b a dispersant having a fatty acid in its structure, having an acid value of 5 mg KOH/g or more, and having a nonvolatile content of 100%
  • each hexaboride fine particle in the dispersion liquid C was measured using a particle size distribution meter (manufactured by Otsuka Electronics Co., Ltd.), it was 84.9 nm, and the viscosity (24° C.) of the dispersion liquid C was 163 mPa/S. Further, the lattice constant was 0.41560 nm.
  • FIG. 3 shows a light transmission profile of the dried film of this dispersion liquid C.
  • dispersant c a dispersant having a fatty acid in its structure, having an acid value of 20.3 mg KOH/g, having a nonvolatile content of 100%
  • dispersant c a dispersant having a fatty acid in its structure, having an acid value of 20.3 mg KOH/g, having a nonvolatile content of 100%
  • each hexaboride fine particle in the dispersion liquid D was measured using a particle size distribution meter (manufactured by Otsuka Electronics Co., Ltd.), it was 84.1 nm, and the viscosity (24° C.) of the dispersion liquid D was 115 mPa/S. Further, the lattice constant was 0.41560 nm.
  • FIG. 4 shows the transmission profile of the dried film of this dispersion liquid D.
  • each hexaboride fine particle in the dispersion liquid E was measured using a particle size distribution meter (manufactured by Otsuka Electronics Co., Ltd.), it was 84.3 nm, and the viscosity (24° C.) of the dispersion liquid E was 4.9 mPa/S.
  • an amount of the toluene as the solvent contained in the dispersion liquid E was 82.0 mass %. Since the toluene dissolves a rubber roller (nitrile butadiene rubber) of the offset printing machine, it was difficult to apply it to offset printing.
  • the printed pattern prepared using the near infrared absorbing fine particle dispersion liquid of the present invention can be discriminated by a near infrared ray discriminating machine.
  • the near infrared absorbing fine particle dispersion liquid E of comparative example 1 contains toluene as a solvent and dissolves a rubber blanket during offset printing. Therefore, application of the near infrared absorbing fine particle dispersion liquid E to the offset printing was considered to be unsuitable.
  • the dispersion liquid A prepared in example 1 a varnish, a petroleum solvent (AF-6 Solvent manufactured by Nippon Oil Corporation), soybean oil, tung oil, compound (manufactured by GODO Ink: UG compound), a metal drier (937 dryer manufactured by DIC Graphics Co., Ltd.), and a drying inhibitor (INKEEPER manufactured by Tokyo Ink Co., Ltd.) were mixed, to thereby obtain an ink A.
  • the concentration of lanthanum hexaboride in the ink A was 0.38 mass %.
  • the obtained offset printing ink did not cause agglomeration or the like and was stable.
  • White fine high quality paper was prepared as a base material to be printed and offset printing was performed using the ink A, to thereby obtain a printed matter A.
  • An average value of the diffuse reflectance of the obtained printed matter A in the wavelength range of 800 nm to 1300 nm was 56.2%.
  • the average value of the diffuse reflectance of the blank printed matter of comparative example 3 described later in a wavelength range of 800 nm to 1300 nm was 77.7%.
  • a value obtained by dividing the average value of the diffuse reflectance of the printed matter A of example 2 in the wavelength range of 800 nm to 1300 nm, by the average value of the diffuse reflectance of the blank printed matter of comparative example 3 in the wavelength range of 800 nm to 1300 nm described later was 0 72.
  • an anti-counterfeit ink B (abbreviated as an ink B hereafter) for offset printing was obtained.
  • the concentration of lanthanum hexaboride in the ink B was 0.75 mass %.
  • White fine high quality paper was prepared as the base material to be printed and offset printing was performed using the ink B, to thereby obtain a printed matter B.
  • the average value of the diffuse reflectance of the obtained printed matter B in the wavelength range of 800 nm to 1300 nm was 40.7%.
  • the value obtained by dividing the average value of the diffuse reflectance of the printed matter B in the wavelength range of 800 nm to 1300 nm, by the average value of the diffuse reflectance of the blank printed matter of the comparative example 3 in the wavelength range of 800 nm to 1300 nm was 0.52.
  • an anti-counterfeit ink C (abbreviated as an ink C hereafter) for offset printing was obtained.
  • the concentration of lanthanum hexaboride in the ink C was 1.88 mass %.
  • White fine high quality paper was prepared as the base material to be printed, and offset printing was performed using the ink C, to thereby obtain a printed matter C.
  • the average value of the diffuse reflectance of the obtained printed matter C in the wavelength range of 800 nm to 1300 nm was 15.8%.
  • the value obtained by dividing the average value of the diffuse reflectance of the printed matter C in the wavelength range of 800 nm to 1300 nm, by the average value of the diffuse reflectance of the blank printed matter of comparative example 3 in the wavelength range of 800 nm to 1300 was 0.20.
  • an anti-counterfeit ink D (abbreviated as an ink D hereafter) for offset printing was obtained.
  • White fine high quality paper was prepared as the base material to be printed and offset printing was performed using the ink D, to thereby obtain a printed matter D as a blank printed matter.
  • the average value of the diffuse reflectance of the obtained printed matter D as a blank printed matter in the wavelength range of 800 nm to 1300 nm was 77.7%.
  • ATO antimony-doped tin oxide
  • each antimony-doped tin oxide fine particle in the dispersion liquid F was measured, it was found to be 53.6 nm, and the viscosity (24° C.) of the dispersion liquid F was 156 mPa/S.
  • an anti-counterfeit ink E for offset printing (abbreviated as an ink E hereafter) was obtained.
  • White fine high quality paper was prepared as the base material to be printed and offset printing was performed using the ink E, to thereby obtain a printed matter E.
  • the average value of the reflectance of the obtained printed matter E in the wavelength range of 800 nm to 1300 nm was 69.5%.
  • the value obtained by dividing the average value of the diffuse reflectance of the printed matter E in the wavelength range of 800 nm to 1300 nm, by the average value of the diffuse reflectance of the blank of comparative example 3 in the wavelength range of 800 nm to 1300 nm was 0.89.
  • printed matters A to C containing hexaboride fine particles in the printed pattern show low diffuse reflectance in the wavelength range of 800 to 1300 nm.
  • the value obtained by dividing the average value of the diffuse reflectance in the wavelength range of 800 nm to 1300 nm, by the average value of the diffuse reflectance of the blank in the wavelength range of 800 nm to 1300 nm is as small as 0.20 to 0.72. As a result, it was confirmed that the authenticity of the printed matter containing hexaboride particles was easily judged.
  • the printed matter D not containing hexaboride fine particles in the printed pattern of comparative example 3 and the printed matter E containing antimony-doped tin oxide fine particles in the printed pattern of comparative example 4 show high diffuse reflectance in the wavelength range of 800 nm to 1300 nm.
  • the value obtained by dividing the average value of the diffuse reflectance in the wavelength range of 800 nm to 1300 nm, by the average value of the diffuse reflectance of the blank in the wavelength range of 800 nm to 1300 nm is as large as 0.89 to 1.00, and judgment of authenticity is considered to be difficult by the reflectance in the wavelength range of 800 nm to 1300.
  • the thickness of the ink on the surface of the printed matter is required to be increased so that it can be visually recognized, and it is considered not practical to use such a printed matter for preventing counterfeiting.
  • Dispersant having fatty acid in its structure an acid value of 5 mg KOH/g or more, and a nonvolatile content of 100%.
  • c Dispersant having fatty acid in its structure, an acid value of 20.3 mg KOH/g, and a nonvolatile content of 100%.
  • d An acrylic dispersant having a carboxyl group as a functional group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Printing Methods (AREA)
US15/546,681 2015-01-27 2016-01-27 Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles Abandoned US20180022945A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015012895 2015-01-27
JP2015-012895 2015-01-27
PCT/JP2016/052396 WO2016121839A1 (fr) 2015-01-27 2016-01-27 Solution de dispersion de microparticules absorbant les rayons du proche infrarouge, procédé de production de cette dernière, composition d'encre anti-contrefaçon mettant en œuvre ladite solution de dispersion de microparticules absorbant les rayons du proche infrarouge, et matière imprimée anti-contrefaçon mettant en œuvre lesdites microparticules absorbant les rayons du proche infrarouge

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052396 A-371-Of-International WO2016121839A1 (fr) 2015-01-27 2016-01-27 Solution de dispersion de microparticules absorbant les rayons du proche infrarouge, procédé de production de cette dernière, composition d'encre anti-contrefaçon mettant en œuvre ladite solution de dispersion de microparticules absorbant les rayons du proche infrarouge, et matière imprimée anti-contrefaçon mettant en œuvre lesdites microparticules absorbant les rayons du proche infrarouge

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/662,281 Division US11248133B2 (en) 2015-01-27 2019-10-24 Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles

Publications (1)

Publication Number Publication Date
US20180022945A1 true US20180022945A1 (en) 2018-01-25

Family

ID=56543447

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/546,681 Abandoned US20180022945A1 (en) 2015-01-27 2016-01-27 Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
US16/662,281 Active 2036-09-21 US11248133B2 (en) 2015-01-27 2019-10-24 Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/662,281 Active 2036-09-21 US11248133B2 (en) 2015-01-27 2019-10-24 Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles

Country Status (7)

Country Link
US (2) US20180022945A1 (fr)
EP (1) EP3252112B1 (fr)
JP (1) JPWO2016121839A1 (fr)
CN (1) CN107429097B (fr)
AU (1) AU2016213099B2 (fr)
TW (1) TW201634390A (fr)
WO (1) WO2016121839A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11248168B2 (en) * 2018-11-19 2022-02-15 Zhejiang Jingyi New Material Technology Co. Ltd Inorganic-organic hybrid core-shell nanorod and light valve having the nanorod
CN117467310A (zh) * 2023-10-31 2024-01-30 珠海市铠信科技有限公司 防伪色浆、紫外光固化防伪喷墨墨水及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190127599A1 (en) * 2017-11-01 2019-05-02 Industrial Technology Research Institute Dispersion of ir absorption particles, inkjet ink, and method of 3d printing
CN108559331A (zh) * 2018-03-22 2018-09-21 深圳市华鑫防伪科技有限公司 一种感应显示防伪材料及该材料的感应显示防伪探测方法
CN108659621A (zh) * 2018-03-22 2018-10-16 深圳市华鑫防伪科技有限公司 一种感应显示防伪材料及该材料的感应显示防伪探测方法
CN108559332A (zh) * 2018-03-22 2018-09-21 深圳市华鑫防伪科技有限公司 一种红外线防伪检测材料及该材料的红外线防伪探测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168842A (ja) * 2002-11-19 2004-06-17 Sumitomo Metal Mining Co Ltd 偽造防止インク用組成物、偽造防止インク及び偽造防止印刷物
US20050136243A1 (en) * 2003-12-17 2005-06-23 Fisher William K. Polymer sheets and multiple layer glass panels having adjustable tint
JP2008291167A (ja) * 2007-05-28 2008-12-04 Toyo Ink Mfg Co Ltd 平版インキ組成物
US7906590B2 (en) * 2007-01-24 2011-03-15 Cabot Corporation Process to form modified pigments

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04320466A (ja) 1991-04-19 1992-11-11 Mitsui Toatsu Chem Inc セキュリティインキ
JP4058822B2 (ja) 1997-09-30 2008-03-12 住友金属鉱山株式会社 選択透過膜用塗布液、選択透過膜および選択透過多層膜
JP4096277B2 (ja) 1998-09-22 2008-06-04 住友金属鉱山株式会社 日射遮蔽材料、日射遮蔽膜用塗布液、及び、日射遮蔽膜
JP2000309736A (ja) 1999-04-26 2000-11-07 Toppan Printing Co Ltd 赤外線吸収インキ組成物およびそれを用いた印刷物
JP3982466B2 (ja) 2002-09-25 2007-09-26 住友金属鉱山株式会社 熱線遮蔽成分分散体とその製造方法およびこの分散体を用いて得られる熱線遮蔽膜形成用塗布液と熱線遮蔽膜並びに熱線遮蔽樹脂成形体
KR100852715B1 (ko) 2004-08-13 2008-08-19 이해욱 기능성 피막조성물, 상기 피막조성물 상에 형성된 필름,그리고 상기 피막조성물 및 필름을 형성하는 방법
GB2438196B (en) * 2006-05-13 2008-05-28 Inovink Ltd Improvements in or relating to printing
US8129494B2 (en) * 2006-12-26 2012-03-06 Asahi Kasei E-Materials Corporation Resin composition for printing plate
JP5168445B2 (ja) * 2007-01-11 2013-03-21 住友金属鉱山株式会社 接合体およびその製造方法
DE102008049595A1 (de) * 2008-09-30 2010-04-01 Merck Patent Gmbh Infrarotabsorbierende Druckfarben
JP2009108324A (ja) * 2008-12-12 2009-05-21 Sumitomo Metal Mining Co Ltd 偽造防止用インク及び偽造防止印刷物
JP2012214650A (ja) * 2011-04-01 2012-11-08 Seiko Epson Corp 水性インク組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168842A (ja) * 2002-11-19 2004-06-17 Sumitomo Metal Mining Co Ltd 偽造防止インク用組成物、偽造防止インク及び偽造防止印刷物
US20050136243A1 (en) * 2003-12-17 2005-06-23 Fisher William K. Polymer sheets and multiple layer glass panels having adjustable tint
US7906590B2 (en) * 2007-01-24 2011-03-15 Cabot Corporation Process to form modified pigments
JP2008291167A (ja) * 2007-05-28 2008-12-04 Toyo Ink Mfg Co Ltd 平版インキ組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11248168B2 (en) * 2018-11-19 2022-02-15 Zhejiang Jingyi New Material Technology Co. Ltd Inorganic-organic hybrid core-shell nanorod and light valve having the nanorod
CN117467310A (zh) * 2023-10-31 2024-01-30 珠海市铠信科技有限公司 防伪色浆、紫外光固化防伪喷墨墨水及其制备方法和应用

Also Published As

Publication number Publication date
CN107429097B (zh) 2020-10-27
JPWO2016121839A1 (ja) 2017-11-02
AU2016213099A1 (en) 2017-08-31
EP3252112B1 (fr) 2021-03-10
TW201634390A (zh) 2016-10-01
US11248133B2 (en) 2022-02-15
US20200062974A1 (en) 2020-02-27
AU2016213099B2 (en) 2020-01-02
EP3252112A1 (fr) 2017-12-06
CN107429097A (zh) 2017-12-01
WO2016121839A1 (fr) 2016-08-04
EP3252112A4 (fr) 2018-06-20

Similar Documents

Publication Publication Date Title
US11021002B2 (en) Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
US11248133B2 (en) Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
US11084949B2 (en) Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
US10442948B2 (en) Near-infrared absorbing fine particle dispersion liquid and method for producing the same
AU2016213105B2 (en) Near-infrared ray absorbing microparticle dispersion solution and production method thereof
JP6541400B2 (ja) 偽造防止用インキ及びその印刷物

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUMITOMO METAL MINING CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OKADA, MIKA;FUKUYAMA, HIDEAKI;REEL/FRAME:045067/0480

Effective date: 20171215

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION